

Braking Systems & Distributed Power

June 10, 2014 Washington, D.C.

John Rimer- CSX Transportation

ECP brake systems are expensive and do

- equipped technology is expensive and only works if the entire train is Electronically Controlled Pneumatic Braking (ECP)
- Data in UMLER shows < 1500 ECP equipped cars
- Expected industry cost to upgrade to ECP: \$12 \$21B
- 8-15K per car, 25-50K per locomotive

ECP brakes have limited use and minimal safety impact

- which are unaffected by ECP technology The majority of mainline braking is done via dynamic brakes
- Information available on Crude Oil Train incidents indicate that the incidents the use of ECP or DP would have had no impact on preventing

emergency situation ECP system has imited advantages in an

to brake at the same time ECP system electronically sends a signal to each car, causing all cars

- in the stopping force of a traditional air brake system vs. an ECP brake system Once the brake signal is received by all cars, there is no difference
- against the wheel ECP braking relies on traditional air brake functionality to set the brake shoe
- If train is separated on an ECP system, an emergency brake application is initiated as in the case of a conventional braking

This outcome is likely in a derailment situations

TOP vs Conventional Braking Systems

Braking Technology

Time to Brake

Effectiveness in Accident

Requirements

Industry Adoption

Cost

П О П

- Electronically transmits signal to cars to brake
- All rail car brakes react simultaneously
- If train separates, reverts to an emergency application of the brakes
- All cars and locos must be equipped with ECP brakes
- Low, only 15 estimated trains
- Total estimated industry cost (US): \$12- \$21B, plus additional maintenance and training

Traditional Application

- Propagates air through train
- Estimated 6-7 seconds per 100 car train
- If train separates, results in an emergency application of the brakes
- No additional requirements
- Industry currently uses traditional air brake system
- No additional cost

- in the middle or end of a train DP system places additional locomotives at intermediate points
- System is remotely controlled from the leading locomotive
- require DP or economics justify costs Enables longer trains where operational considerations

Assists trains in traversing difficult grades and curves

- specific lanes; industry uses DP today in those lanes Distributed Power (DP) has efficiency advantages in
- Simulations on a 102 car train operating in DP vs conventional brakes in an emergency brake application indicate:
- Stopping times varied less than 2 seconds
- Stopping distances varied less that 135 feet
- No significant difference to in-train forces

Pros

- Air reaches cars sooner due to distributed power throughout train
- Lower friction, potential fuel savings
- Ideal for coal/heavy unit train service (industry currently uses DP for many of these trains)

heavier trains

Increases ability to run

Cons

- Substantial capital investment (\$70-80K/locomotive)
- Employees must be trained to use DP
- Increases time to build and switch trains
- Longer trains might require additional sidings or yard configurations
- Additional signal infrastructure is often required

·		