18. SpreadsheetML Reference Material

[Note: For further information on the mapping of elements and attributes to OPC parts, see the Bibliography entry, "Information on elements, attributes, and OPC parts in ISO/IEC 29500 (OOXML)". end note]

The subordinate subclauses specify the semantics for the XML markup comprising a SpreadsheetML document, as defined by $\S 12$ of this Part of ISO/IEC 29500.

18.1 Table of Contents

This subclause is informative.

18.2 Workbook 1539
18.2.1 bookViews (Workbook Views) 1540
18.2.2 calcPr (Calculation Properties) 1540
18.2.3 customWorkbookView (Custom Workbook View) 1544
18.2.4 customWorkbookViews (Custom Workbook Views) 1550
18.2.5 definedName (Defined Name) 1550
18.2.6 definedNames (Defined Names) 1555
18.2.7 ext (Extension) 1555
18.2.8 externalReference (External Reference) 1557
18.2.9 externalReferences (External References) 1557
18.2.10 extLst (Future Feature Data Storage Area) 1557
18.2.11 fileRecoveryPr (File Recovery Properties) 1558
18.2.12 fileSharing (File Sharing) 1559
18.2.13 fileVersion (File Version) 1562
18.2.14 functionGroup (Function Group) 1563
18.2.15 functionGroups (Function Groups) 1563
18.2.16 oleSize (Embedded Object Size) 1564
18.2.17 pivotCache (PivotCache). 1564
18.2.18 pivotCaches (PivotCaches) 1565
18.2.19 sheet (Sheet Information) 1565
18.2.20 sheets (Sheets) 1566
18.2.21 smartTagPr (Smart Tag Properties) 1566
18.2.22 smartTagType (Smart Tag Type) 1567
18.2.23 smartTagTypes (Smart Tag Types). 1568
18.2.24 webPublishing (Web Publishing Properties) 1568
18.2.25 webPublishObject (Web Publishing Object) 1569
18.2.26 webPublishObjects (Web Publish Objects) 1570
18.2.27 workbook (Workbook). 1571
18.2.28 workbookPr (Workbook Properties) 1573
18.2.29 workbookProtection (Workbook Protection) 1577
18.2.30 workbookView (Workbook View) 1584
18.3 Worksheets 1586
18.3.1 Worksheets 1587
18.3.1.1 anchor (Object Cell Anchor) 1587
18.3.1.2 autoFilter (AutoFilter Settings) 1588
18.3.1.3 brk (Break) 1589
18.3.1.4 c (Cell) 1590
18.3.1.5 cellSmartTag (Cell Smart Tag) 1591
18.3.1.6 cellSmartTagPr (Smart Tag Properties) 1592
18.3.1.7 cellSmartTags (Cell Smart Tags) 1592
18.3.1.8 cellWatch (Cell Watch Item) 1593
18.3.1.9 cellWatches (Cell Watch Items) 1593
18.3.1.10 cfRule (Conditional Formatting Rule) 1594
18.3.1.11 cfvo (Conditional Format Value Object) 1596
18.3.1.12 chartsheet (Chart Sheet) 1597
18.3.1.13 col (Column Width \& Formatting) 1597
18.3.1.14 colBreaks (Vertical Page Breaks) 1599
18.3.1.15 color (Data Bar Color) 1600
18.3.1.16 colorScale (Color Scale) 1601
18.3.1.17 cols (Column Information) 1602
18.3.1.18 conditionalFormatting (Conditional Formatting) 1602
18.3.1.19 control (Embedded Control) 1603
18.3.1.20 controlPr (Embedded Control Properties). 1603
18.3.1.21 controls (Embedded Controls) 1608
18.3.1.22 customPr (Custom Property). 1608
18.3.1.23 customProperties (Custom Properties) 1609
18.3.1.24 customSheetView (Custom Chart Sheet View) 1609
18.3.1.25 customSheetView (Custom Sheet View) 1610
18.3.1.26 customSheetViews (Custom Chart Sheet Views) 1612
18.3.1.27 customSheetViews (Custom Sheet Views) 1613
18.3.1.28 dataBar (Data Bar) 1613
18.3.1.29 dataConsolidate (Data Consolidate) 1614
18.3.1.30 dataRef (Data Consolidation Reference) 1615
18.3.1.31 dataRefs (Data Consolidation References) 1615
18.3.1.32 dataValidation (Data Validation) 1616
18.3.1.33 dataValidations (Data Validations) 1617
18.3.1.34 dialogsheet (Dialog Sheet) 1619
18.3.1.35 dimension (Worksheet Dimensions) 1619
18.3.1.36 drawing (Drawing) 1619
18.3.1.37 drawingHF (Drawing Reference in Header Footer) 1620
18.3.1.38 evenFooter (Even Page Footer) 1625
18.3.1.39 evenHeader (Even Page Header) 1626
18.3.1.40 f(Formula) 1628
18.3.1.41 firstFooter (First Page Footer) 1632
18.3.1.42 firstHeader (First Page Header) 1632
18.3.1.43 formula (Formula) 1633
18.3.1.44 formula1 (Formula 1). 1633
18.3.1.45 formula2 (Formula 2) 1634
18.3.1.46 headerFooter (Header Footer Settings) 1634
18.3.1.47 hyperlink (Hyperlink) 1635
18.3.1.48 hyperlinks (Hyperlinks) 1636
18.3.1.49 iconSet (Icon Set) 1637
18.3.1.50 ignoredError (Ignored Error) 1637
18.3.1.51 ignoredErrors (Ignored Errors) 1639
18.3.1.52 inputCells (Input Cells) 1639
18.3.1.53 is (Rich Text Inline). 1640
18.3.1.54 mergeCell (Merged Cell). 1641
18.3.1.55 mergeCells (Merge Cells) 1641
18.3.1.56 objectPr (Embedded Object Properties) 1641
18.3.1.57 oddFooter (Odd Page Footer) 1645
18.3.1.58 oddHeader (Odd Header) 1645
18.3.1.59 oleObject (Embedded Object) 1646
18.3.1.60 oleObjects (Embedded Objects) 1647
18.3.1.61 outlinePr (Outline Properties) 1647
18.3.1.62 pageMargins (Page Margins) 1649
18.3.1.63 pageSetup (Page Setup Settings) 1649
18.3.1.64 pageSetup (Chart Sheet Page Setup) 1655
18.3.1.65 pageSetUpPr (Page Setup Properties) 1658
18.3.1.66 pane (View Pane) 1658
18.3.1.67 picture (Background Image) 1659
18.3.1.68 pivotArea (Pivot Area) 1660
18.3.1.69 pivotSelection (PivotTable Selection) 1661
18.3.1.70 printOptions (Print Options) 1665
18.3.1.71 protectedRange (Protected Range) 1665
18.3.1.72 protectedRanges (Protected Ranges) 1669
18.3.1.73 row (Row) 1669
18.3.1.74 rowBreaks (Horizontal Page Breaks (Row)) 1675
18.3.1.75 scenario (Scenario) 1675
18.3.1.76 scenarios (Scenarios) 1676
18.3.1.77 securityDescriptor (Security Descriptor) 1677
18.3.1.78 selection (Selection) 1678
18.3.1.79 sheetCalcPr (Sheet Calculation Properties) 1678
18.3.1.80 sheetData (Sheet Data) 1679
18.3.1.81 sheetFormatPr (Sheet Format Properties) 1679
18.3.1.82 sheetPr (Sheet Properties) 1680
18.3.1.83 sheetPr (Chart Sheet Properties) 1682
18.3.1.84 sheetProtection (Chart Sheet Protection) 1682
18.3.1.85 sheetProtection (Sheet Protection Options) 1685
18.3.1.86 sheetView (Chart Sheet View) 1691
18.3.1.87 sheetView (Worksheet View) 1692
18.3.1.88 sheetViews (Sheet Views). 1696
18.3.1.89 sheetViews (Chart Sheet Views) 1696
18.3.1.90 smartTags (Smart Tags) 1696
18.3.1.91 sortCondition (Sort Condition) 1697
18.3.1.92 sortState (Sort State) 1698
18.3.1.93 tabColor (Sheet Tab Color) 1699
18.3.1.94 tablePart (Table Part) 1700
18.3.1.95 tableParts (Table Parts) 1701
18.3.1.96 v (Cell Value) 1701
18.3.1.97 webPublishltem (Web Publishing Item) 1702
18.3.1.98 webPublishItems (Web Publishing Items) 1703
18.3.1.99 worksheet (Worksheet) 1704
18.3.2 AutoFilter Settings 1704
18.3.2.1 colorFilter (Color Filter Criteria) 1704
18.3.2.2 customFilter (Custom Filter Criteria) 1705
18.3.2.3 customFilters (Custom Filters) 1705
18.3.2.4 dateGroupltem (Date Grouping) 1706
18.3.2.5 dynamicFilter (Dynamic Filter) 1707
18.3.2.6 filter (Filter). 1708
18.3.2.7 filterColumn (AutoFilter Column) 1709
18.3.2.8 filters (Filter Criteria) 1709
18.3.2.9 iconFilter (Icon Filter) 1710
18.3.2.10 top10 (Top 10) 1710
18.4 Shared String Table. 1711
18.4.1 charset (Character Set) 1713
18.4.2 outline (Outline) 1714
18.4.3 phoneticPr (Phonetic Properties) 1715
18.4.4 r (Rich Text Run) 1716
18.4.5 rFont (Font) 1716
18.4.6 rPh (Phonetic Run) 1717
18.4.7 rPr (Run Properties) 1717
18.4.8 si (String Item) 1717
18.4.9 sst (Shared String Table) 1718
18.4.10 strike (Strike Through) 1718
18.4.11 sz (Font Size) 1719
18.4.12 t (Text) 1719
18.4.13 u (Underline) 1720
18.4.14 vertAlign (Vertical Alignment) 1720
18.5 Tables 1720
18.5.1 Tables 1721
18.5.1.1 calculatedColumnFormula (Calculated Column Formula) 1722
18.5.1.2 table (Table). 1722
18.5.1.3 tableColumn (Table Column) 1727
18.5.1.4 tableColumns (Table Columns) 1729
18.5.1.5 tableStyleInfo (Table Style) 1729
18.5.1.6 totalsRowFormula (Totals Row Formula) 1730
18.5.1.7 xmIColumnPr (XML Column Properties). 1731
18.5.2 Single Cell Tables 1733
18.5.2.1 singleXmICell (Table Properties) 1733
18.5.2.2 singleXmICells (Single Cells) 1734
18.5.2.3 xmICellPr (Cell Properties) 1734
18.5.2.4 xmIPr (Column XML Properties) 1734
18.6 Calculation Chain 1736
18.6.1 c (Cell) 1737
18.6.2 calcChain (Calculation Chain Info) 1739
18.7 Comments 1739
18.7.1 author (Author) 1740
18.7.2 authors (Authors) 1740
18.7.3 comment (Comment) 1741
18.7.4 commentList (List of Comments) 1741
18.7.5 commentPr (Comment Properties) 1741
18.7.6 comments (Comments) 1745
18.7.7 text (Comment Text) 1746
18.8 Styles 1746
18.8.1 alignment (Alignment). 1746
18.8.2 b (Bold) 1749
18.8.3 bgColor (Background Color) 1749
18.8.4 border (Border) 1751
18.8.5 borders (Borders) 1752
18.8.6 bottom (Bottom Border) 1753
18.8.7 cellStyle (Cell Style). 1753
18.8.8 cellStyles (Cell Styles) 1754
18.8.9 cellStyleXfs (Formatting Records) 1755
18.8.10 cellXfs (Cell Formats) 1756
18.8.11 colors (Colors) 1756
18.8.12 condense (Condense) 1756
18.8.13 diagonal (Diagonal) 1757
18.8.14 dxf (Formatting) 1757
18.8.15 dxfs (Formats) 1757
18.8.16 end (Trailing Edge Border) 1758
18.8.17 extend (Extend) 1758
18.8.18 family (Font Family) 1758
18.8.19 fgColor (Foreground Color) 1759
18.8.20 fill (Fill) 1760
18.8.21 fills (Fills) 1760
18.8.22 font (Font) 1761
18.8.23 fonts (Fonts) 1761
18.8.24 gradientFill (Gradient) 1762
18.8.25 horizontal (Horizontal Inner Borders) 1765
18.8.26 i (Italic) 1765
18.8.27 indexedColors (Color Indexes) 1765
18.8.28 mruColors (MRU Colors) 1769
18.8.29 name (Font Name) 1769
18.8.30 numFmt (Number Format) 1769
18.8.31 numFmts (Number Formats) 1776
18.8.32 patternFill (Pattern) 1785
18.8.33 protection (Protection Properties) 1785
18.8.34 rgbColor (RGB Color) 1786
18.8.35 scheme (Scheme) 1786
18.8.36 shadow (Shadow) 1787
18.8.37 start (Leading Edge Border) 1787
18.8.38 stop (Gradient Stop) 1787
18.8.39 styleSheet (Style Sheet) 1788
18.8.40 tableStyle (Table Style) 1788
18.8.41 tableStyleElement (Table Style) 1789
18.8.42 tableStyles (Table Styles) 1791
18.8.43 top (Top Border) 1792
18.8.44 vertical (Vertical Inner Border) 1792
18.8.45 xf (Format) 1792
18.9 Metadata 1794
18.9.1 bk (Metadata Block) 1795
18.9.2 bk (Future Metadata Block) 1796
18.9.3 cellMetadata (Cell Metadata) 1796
18.9.4 futureMetadata (Future Metadata) 1796
18.9.5 k (KPI MDX Metadata) 1797
18.9.6 mdx (MDX Metadata Record) 1797
18.9.7 mdxMetadata (MDX Metadata Information) 1798
18.9.8 metadata (Metadata) 1798
18.9.9 metadataStrings (Metadata String Store) 1798
18.9.10 metadataType (Metadata Type Information) 1799
18.9.11 metadataTypes (Metadata Types Collection) 1804
18.9.12 ms (Set MDX Metadata) 1805
18.9.13 n (Member Unique Name Index) 1805
18.9.14 p (Member Property MDX Metadata) 1806
18.9.15 rc (Metadata Record) 1806
18.9.16 t (Tuple MDX Metadata) 1807
18.9.17 valueMetadata (Value Metadata) 1808
18.10 Pivot Tables 1808
18.10.1 Pivot Tables 1813
18.10.1.1 autoSortScope (AutoSort Scope) 1813
18.10.1.2 b (Boolean) 1813
18.10.1.3 cacheField (PivotCache Field) 1814
18.10.1.4 cacheFields (PivotCache Fields) 1818
18.10.1.5 cacheHierarchies (PivotCache Hierarchies) 1819
18.10.1.6 cacheHierarchy (PivotCache Hierarchy) 1819
18.10.1.7 cacheSource (PivotCache Source Description) 1823
18.10.1.8 calculatedltem (Calculated Item) 1824
18.10.1.9 calculatedItems (Calculated Items) 1825
18.10.1.10 calculatedMember (Calculated Member) 1826
18.10.1.11 calculatedMembers (Calculated Members) 1827
18.10.1.12 chartFormat (PivotChart Format) 1828
18.10.1.13 chartFormats (PivotChart Formats) 1829
18.10.1.14 colFields (Column Fields) 1831
18.10.1.15 colHierarchiesUsage (Column OLAP Hierarchy References) 1831
18.10.1.16 colHierarchyUsage (Column OLAP Hierarchies) 1832
18.10.1.17 colltems (Column Items) 1832
18.10.1.18 conditionalFormat (Conditional Formatting) 1833
18.10.1.19 conditionalFormats (Conditional Formats) 1834
18.10.1.20 consolidation (Consolidation Source) 1835
18.10.1.21 d (Date Time) 1836
18.10.1.22 dataField (Data Field Item) 1836
18.10.1.23 dataFields (Data Fields) 1838
18.10.1.24 dimension (OLAP Dimension) 1839
18.10.1.25 dimensions (OLAP Dimensions) 1839
18.10.1.2 discretePr (Discrete Grouping Properties) 1840
18.10.1.27 e (Error Value) 1842
18.10.1.28 entries (Entries) 1844
18.10.1.29 field (Field) 1845
18.10.1.30 fieldGroup (Field Group Properties) 1845
18.10.1.31 fieldsUsage (Fields Usage) 1847
18.10.1.32 fieldUsage (PivotCache Field Id) 1847
18.10.1.33 filter (PivotTable Advanced Filter) 1848
18.10.1.34 filters (Filters) 1849
18.10.1.35 format (PivotTable Format) 1850
18.10.1.36 formats (PivotTable Formats) 1851
18.10.1.37 group (OLAP Group) 1851
18.10.1.38 groupltems (OLAP Group Items) 1852
18.10.1.39 groupLevel (OLAP Grouping Levels) 1853
18.10.1.40 groupLevels (OLAP Grouping Levels) 1855
18.10.1.41 groupMember (OLAP Group Member) 1856
18.10.1.42 groupMembers (OLAP Group Members) 1856
18.10.1.43 groups (OLAP Level Groups) 1857
18.10.1.44 i (Row Items) 1857
18.10.1.45 item (PivotTable Field Item) 1858
18.10.1.46 items (Field Items) 1861
18.10.1.47 kpi (OLAP KPI) 1862
18.10.1.48 kpis (OLAP KPIs) 1863
18.10.1.49 location (PivotTable Location) 1864
18.10.1.50 m (No Value) 1865
18.10.1.51 map (OLAP Measure Group) 1867
18.10.1.52 maps (OLAP Measure Group) 1868
18.10.1.53 measureGroup (OLAP Measure Group) 1868
18.10.1.54 measureGroups (OLAP Measure Groups) 1869
18.10.1.55 member (Member) 1870
18.10.1.56 members (Members) 1870
18.10.1.57 mp (OLAP Member Property) 1870
18.10.1.58 mpMap (Member Properties Map) 1872
18.10.1.59 mps (OLAP Member Properties). 1873
18.10.1.60 n(Numeric) 1873
18.10.1.61 page (Page Items) 1875
18.10.1.62 pageField (Page Field). 1876
18.10.1.63 pageFields (Page Field Items) 1877
18.10.1.64 pageltem (Page Item) 1877
18.10.1.65 pages (Page Item Values) 1877
18.10.1.66 pivotAreas (Pivot Areas) 1878
18.10.1.67 pivotCacheDefinition (PivotCache Definition) 1878
18.10.1.68 pivotCacheRecords (PivotCache Records) 1882
18.10.1.69 pivotField (PivotTable Field) 1883
18.10.1.70 pivotFields (PivotTable Fields) 1894
18.10.1.71 pivotHierarchies (PivotTable OLAP Hierarchies) 1895
18.10.1.72 pivotHierarchy (OLAP Hierarchy). 1896
18.10.1.73 pivotTableDefinition (PivotTable Definition) 1898
18.10.1.74 pivotTableStyleInfo (PivotTable Style). 1928
18.10.1.75 query (Query) 1930
18.10.1.76 queryCache (OLAP Query Cache) 1930
18.10.1.77 r (PivotCache Record) 1931
18.10.1.78 rangePr (Range Grouping Properties) 1931
18.10.1.79 rangeSet (Range Set) 1933
18.10.1.80 rangeSets (Range Sets) 1936
18.10.1.81 rowFields (Row Fields) 1936
18.10.1.82 rowHierarchiesUsage (Row OLAP Hierarchy References) 1937
18.10.1.83 rowHierarchyUsage (Row OLAP Hierarchies) 1938
18.10.1.84 rowltems (Row Items) 1938
18.10.1.85 $\quad s$ (Character Value) 1939
18.10.1.86 serverFormat (Server Format) 1941
18.10.1.87 serverFormats (Server Formats) 1942
18.10.1.88 set (OLAP Set) 1942
18.10.1.89 sets (Sets) 1943
18.10.1.90 sharedltems (Shared Items) 1943
18.10.1.91 sortByTuple (Sort By Tuple) 1947
18.10.1.92 tpl (Tuple) 1947
18.10.1.93 tpls (Tuples) 1948
18.10.1.94 tupleCache (Tuple Cache) 1948
18.10.1.95 worksheetSource (Worksheet PivotCache Source) 1948
18.10.1.96 x (Member Property Index) 1949
18.10.1.97 x (Shared Items Index) 1949
18.10.2 Shared Pivot Table Data 1949
18.10.2.1 reference (Reference) 1950
18.10.2.2 references (References) 1953
18.11 Shared Workbook Data 1954
18.11.1 Shared Workbook Data 1954
18.11.1.1 header (Header) 1957
18.11.1.2 headers (Revision Headers) 1958
18.11.1.3 nc (New Cell Data) 1961
18.11.1.4 ndxf (New Formatting Information) 1962
18.11.1.5 oc (Old Cell Data) 1962
18.11.1.6 odxf (Old Formatting Information) 1963
18.11.1.7 oldFormula (Old Formula) 1963
18.11.1.8 raf (Revision AutoFormat) 1963
18.11.1.9 rcc (Revision Cell Change) 1964
18.11.1.10 rcft (Revision Merge Conflict) 1966
18.11.1.11 rcmt (Revision Cell Comment) 1967
18.11.1.12 rcv (Revision Custom View) 1968
18.11.1.13 rdn (Revision Defined Name) 1969
18.11.1.14 reviewed (Reviewed) 1972
18.11.1.15 reviewedList (Reviewed List) 1972
18.11.1.16 revisions (Revisions) 1972
18.11.1.17 rfmt (Revision Format) 1974
18.11.1.18 ris (Revision Insert Sheet) 1975
18.11.1.19 rm (Revision Cell Move). 1976
18.11.1.20 rqt (Revision Query Table) 1977
18.11.1.21 rrc (Revision Row Column Insert Delete) 1977
18.11.1.22 rsnm (Revision Sheet Name) 1978
18.11.1.23 sheetld (Sheet Id) 1979
18.11.1.24 sheetldMap (Sheet Id Map) 1980
18.11.1.25 undo (Undo) 1980
18.11.2 Shared Workbook User Data 1981
18.11.2.1 userInfo (User Information) 1981
18.11.2.2 users (User List) 1982
18.12 QueryTable Data 1982
18.12.1 deletedField (Deleted Field) 1983
18.12.2 queryTable (Query Table) 1984
18.12.3 queryTableDeletedFields (Deleted Fields) 1987
18.12.4 queryTableField (QueryTable Field) 1987
18.12.5 queryTableFields (Query table fields) 1988
18.12.6 queryTableRefresh (QueryTable Refresh Information) 1989
18.13 External Data Connections 1990
18.13.1 connection (Connection) 1990
18.13.2 connections (Connections) 1995
18.13.3 dbPr (Database Properties) 1995
18.13.4 m (No Value) 1998
18.13.5 olapPr (OLAP Properties) 1998
18.13.6 parameter (Parameter Properties) 2001
18.13.7 parameters (Query Parameters) 2004
18.13.8 s (Character Value) 2005
18.13.9 tables (Tables) 2005
18.13.10 textField (Text Import Field Settings) 2005
18.13.11 textFields (Fields) 2006
18.13.12 textPr (Text Import Settings) 2006
18.13.13 webPr (Web Query Properties) 2009
18.14 Supplementary Workbook Data 2012
18.14.1 cell (External Cell Data). 2013
18.14.2 ddeltem (DDE Item definition) 2014
18.14.3 ddeltems (DDE Items Collection) 2015
18.14.4 ddeLink (DDE Connection) 2015
18.14.5 definedName (Defined Name) 2016
18.14.6 definedNames (Named Links) 2016
18.14.7 externalBook (External Workbook) 2016
18.14.8 externalLink (External Reference) 2017
18.14.9 oleltem (Object Link Item) 2017
18.14.10 oleItems (Object Link Items) 2018
18.14.11 oleLink (Generic Object Link Connection) 2018
18.14.12 row (Row) 2019
18.14.13 sheetData (External Sheet Data Set) 2019
18.14.14 sheetDataSet (Cached Worksheet Data) 2020
18.14.15 sheetName (Sheet Name) 2020
18.14.16 sheetNames (Supporting Workbook Sheet Names) 2020
18.14.17 val (DDE Link Value) 2020
18.14.18 value (Value) 2021
18.14.19 values (DDE Name Values) 2022
18.15 Volatile Dependencies 2022
18.15.1 main (Main) 2024
18.15.2 stp (Strings in Subtopic) 2025
18.15.3 tp (Topic) 2025
18.15.4 tr (References) 2026
18.15.5 volType (Volatile Dependency Type) 2026
18.15.6 volTypes (Volatile Dependency Types) 2027
18.16 Custom XML Mappings 2027
18.16.1 DataBinding (XML Mapping) 2030
18.16.2 Map (XML Mapping Properties) 2032
18.16.3 MapInfo (XML Mapping) 2033
18.16.4 Schema (XML Schema) 2034
18.17 Formulas 2035
18.17.1 Introduction. 2035
18.17.2 Syntax 2036
18.17.2.1 Constants 2041
18.17.2.2 Operators 2043
18.17.2.3 Cell References 2045
18.17.2.4 Functions 2051
18.17.2.5 Names 2053
18.17.2.6 Types and Values 2054
18.17.2.7 Single- and Array Formulas 2055
18.17.3 Error values 2056
18.17.4 Dates and Times 2058
18.17.4.1 Date Conversion for Serial Date-Times 2059
18.17.4.2 Time Conversion for Serial Date-Times 2060
18.17.4.3 Combined Date and Time Conversion for Serial Date-Times 2060
18.17.5 Limits and Precision 2061
18.17.5.1 Limits 2061
18.17.5.2 Precision 2061
18.17.5.3 Lexical Representation 2062
18.17.5.4 Interpretation 2062
18.17.6 XML Representation 2062
18.17.6.1 Cell Reference Style 2062
18.17.6.2 Scalar Formulas. 2063
18.17.6.3 Array Formulas 2064
18.17.6.4 Formula Evaluation Order 2065
18.17.6.5 Name Representation 2065
18.17.6.6 Value Representation 2066
18.17.6.7 Dates and Times 2066
18.17.7 Predefined Function Definitions 2067
18.17.7.1 ABS 2070
18.17.7.2 ACCRINT 2071
18.17.7.3 ACCRINTM 2073
18.17.7.4 ACOS 2076
18.17.7.5 ACOSH 2076
18.17.7.6 ADDRESS 2077
18.17.7.7 AMORDEGRC 2078
18.17.7.8 AMORLINC 2081
18.17.7.9 AND 2084
18.17.7.10 AREAS. 2084
18.17.7.11 ASC 2085
18.17.7.12 ASIN 2085
18.17.7.13 ASINH 2086
18.17.7.14 ATAN 2087
18.17.7.15 ATAN2 2087
18.17.7.16 ATANH 2088
18.17.7.17 AVEDEV. 2088
18.17.7.18 AVERAGE 2089
18.17.7.19 AVERAGEA 2090
18.17.7.20 AVERAGEIF 2091
18.17.7.21 AVERAGEIFS 2092
18.17.7.22 BAHTTEXT 2093
18.17.7.23 BESSELI 2094
18.17.7.24 BESSEL 2095
18.17.7.25 BESSELK 2096
18.17.7.26 BESSELY 2096
18.17.7.27 BETADIST 2097
18.17.7.28 BETAINV 2098
18.17.7.29 BIN2DEC 2099
18.17.7.30 BIN2HEX 2100
18.17.7.31 BIN2OCT 2101
18.17.7.32 BINOMDIST 2102
18.17.7.33 CEILING 2103
18.17.7.34 CELL 2104
18.17.7.35 CHAR 2110
18.17.7.36 CHIDIST 2111
18.17.7.37 CHIINV. 2112
18.17.7.38 CHITEST 2113
18.17.7.39 CHOOSE 2114
18.17.7.40 CLEAN 2115
18.17.7.41 CODE 2115
18.17.7.42 COLUMN 2116
18.17.7.43 COLUMNS 2117
18.17.7.44 COMBIN 2117
18.17.7.45 COMPLEX 2118
18.17.7.46 CONCATENATE. 2119
18.17.7.47 CONFIDENCE 2119
18.17.7.48 CONVERT 2120
18.17.7.49 CORREL 2125
18.17.7.50 COS 2126
18.17.7.51 COSH 2127
18.17.7.52 COUNT 2127
18.17.7.53 COUNTA 2128
18.17.7.54 COUNTBLANK 2129
18.17.7.55 COUNTIF 2129
18.17.7.56 COUNTIFS 2130
18.17.7.57 COUPDAYBS 2132
18.17.7.58 COUPDAYS 2134
18.17.7.59 COUPDAYSNC 2137
18.17.7.60 COUPNCD 2139
18.17.7.61 COUPNUM 2142
18.17.7.62 COUPPCD 2144
18.17.7.63 COVAR 2147
18.17.7.64 CRITBINOM 2148
18.17.7.65 CUBEKPIMEMBER 2149
18.17.7.66 CUBEMEMBER 2150
18.17.7.67 CUBEMEMBERPROPERTY 2151
18.17.7.68 CUBERANKEDMEMBER 2152
18.17.7.69 CUBESET 2153
18.17.7.70 CUBESETCOUNT. 2155
18.17.7.71 CUBEVALUE. 2156
18.17.7.72 CUMIPMT. 2157
18.17.7.73 CUMPRINC 2158
18.17.7.74 DATE 2159
18.17.7.75 DATEDIF 2160
18.17.7.76 DATEVALUE 2162
18.17.7.77 DAVERAGE 2163
18.17.7.78 DAY 2165
18.17.7.79 DAYS360 2165
18.17.7.80 DB 2167
18.17.7.81 DCOUNT 2168
18.17.7.82 DCOUNTA 2169
18.17.7.83 DDB 2170
18.17.7.84 DEC2BIN 2171
18.17.7.85 DEC2HEX 2172
18.17.7.86 DEC2OCT 2173
18.17.7.87 DEGREES 2174
18.17.7.88 DELTA. 2174
18.17.7.89 DEVSQ 2175
18.17.7.90 DGET. 2176
18.17.7.91 DISC 2176
18.17.7.92 DMAX 2179
18.17.7.93 DMIN 2180
18.17.7.94 DOLLAR 2180
18.17.7.95 DOLLARDE 2181
18.17.7.96 DOLLARFR 2182
18.17.7.97 DPRODUCT 2183
18.17.7.98 DSTDEV 2184
18.17.7.99 DSTDEVP 2184
18.17.7.100 DSUM 2185
18.17.7.101 DURATION 2186
18.17.7.102 DVAR 2188
18.17.7.103 DVARP 2189
18.17.7.104 ECMA.CEILING 2190
18.17.7.105 EDATE 2190
18.17.7.106 EFFECT 2191
18.17.7.107 EOMONTH 2192
18.17.7.108 ERF 2193
18.17.7.109 ERFC 2194
18.17.7.110 ERROR.TYPE 2195
18.17.7.111 EVEN 2196
18.17.7.112 EXACT 2196
18.17.7.113 EXP 2197
18.17.7.114 EXPONDIST 2198
18.17.7.115 FACT 2199
18.17.7.116 FACTDOUBLE 2199
18.17.7.117 FALSE 2200
18.17.7.118 FDIST 2200
18.17.7.119 FIND 2201
18.17.7.120 FINDB 2202
18.17.7.121 FINV 2203
18.17.7.122 FISHER 2204
18.17.7.123 FISHERINV 2205
18.17.7.124 FIXED 2205
18.17.7.125 FLOOR 2206
18.17.7.126 FORECAST 2207
18.17.7.127 FREQUENCY 2208
18.17.7.128 FTEST 2208
18.17.7.129 FV 2209
18.17.7.130 FVSCHEDULE 2210
18.17.7.131 GAMMADIST 2211
18.17.7.132 GAMMAINV 2212
18.17.7.133 GAMMALN 2213
18.17.7.134 GCD 2214
18.17.7.135 GEOMEAN 2214
18.17.7.136 GESTEP 2215
18.17.7.137 GETPIVOTDATA 2216
18.17.7.138 GROWTH 2217
18.17.7.139 HARMEAN 2219
18.17.7.140 HEX2BIN 2220
18.17.7.141 HEX2DEC 2221
18.17.7.142 HEX2OCT 2221
18.17.7.143 HLOOKUP 2222
18.17.7.144 HOUR 2224
18.17.7.145 HYPERLINK 2225
18.17.7.146 HYPGEOMDIST 2226
18.17.7.147 IF 2227
18.17.7.148 IFERROR 2228
18.17.7.149 IMABS 2229
18.17.7.150 IMAGINARY 2229
18.17.7.151 IMARGUMENT 2230
18.17.7.152 IMCONJUGATE 2231
18.17.7.153 IMCOS 2231
18.17.7.154 IMDIV 2232
18.17.7.155 IMEXP. 2233
18.17.7.156 IMLN 2234
18.17.7.157 IMLOG10 2234
18.17.7.158 IMLOG2 2235
18.17.7.159 IMPOWER 2236
18.17.7.160 IMPRODUCT 2237
18.17.7.161 IMREAL 2238
18.17.7.162 IMSIN 2238
18.17.7.163 IMSQRT 2239
18.17.7.164 IMSUB 2240
18.17.7.165 IMSUM 2241
18.17.7.166 INDEX 2242
18.17.7.167 INDIRECT 2244
18.17.7.168 INFO 2245
18.17.7.169 INT 2246
18.17.7.170 INTERCEPT 2247
18.17.7.171 INTRATE 2248
18.17.7.172 IPMT. 2251
18.17.7.173 IRR 2252
18.17.7.174 ISBLANK 2252
18.17.7.175 ISERR 2253
18.17.7.176 ISERROR 2253
18.17.7.177 ISEVEN. 2254
18.17.7.178 ISLOGICAL 2254
18.17.7.179 ISNA 2255
18.17.7.180 ISNONTEXT. 2255
18.17.7.181 ISNUMBER 2256
18.17.7.182 ISO.CEILING 2257
18.17.7.183 ISODD 2257
18.17.7.184 ISPMT 2258
18.17.7.185 ISREF 2259
18.17.7.186 ISTEXT 2259
18.17.7.187 JIS 2260
18.17.7.188 KURT 2260
18.17.7.189 LARGE 2261
18.17.7.190 LCM 2262
18.17.7.191 LEFT 2262
18.17.7.192 LEFTB 2263
18.17.7.193 LEN 2264
18.17.7.194 LENB 2264
18.17.7.195 LINEST 2265
18.17.7.196 LN 2267
18.17.7.197 LOG 2268
18.17.7.198 LOG10 2268
18.17.7.199 LOGEST. 2269
18.17.7.200 LOGINV 2271
18.17.7.201 LOGNORMDIST 2272
18.17.7.202 LOOKUP 2272
18.17.7.203 LOWER 2274
18.17.7.204 MATCH 2275
18.17.7.205 MAX 2276
18.17.7.206 MAXA 2277
18.17.7.207 MDETERM 2277
18.17.7.208 MDURATION 2278
18.17.7.209 MEDIAN 2281
18.17.7.210 MID 2282
18.17.7.211 MIDB 2283
18.17.7.212 MIN 2283
18.17.7.213 MINA 2284
18.17.7.214 MINUTE 2285
18.17.7.215 MINVERSE 2286
18.17.7.216 MIRR 2286
18.17.7.217 MMULT 2287
18.17.7.218 MOD 2288
18.17.7.219 MODE 2289
18.17.7.220 MONTH 2290
18.17.7.221 MROUND 2290
18.17.7.222 MULTINOMIAL 2291
18.17.7.223 N. 2292
18.17.7.224 NA 2293
18.17.7.225 NEGBINOMDIST 2293
18.17.7.226 NETWORKDAYS 2294
18.17.7.227 NETWORKDAYS.INTL 2295
18.17.7.228 NOMINAL 2297
18.17.7.229 NORMDIST 2298
18.17.7.230 NORMINV 2299
18.17.7.231 NORMSDIST 2299
18.17.7.232 NORMSINV. 2300
18.17.7.233 NOT 2301
18.17.7.234 NOW 2301
18.17.7.235 NPER 2301
18.17.7.236 NPV 2302
18.17.7.237 OCT2BIN 2304
18.17.7.238 ОСТ2DEC 2305
18.17.7.239 OCT2HEX 2305
18.17.7.240 ODD 2306
18.17.7.241 ODDFPRICE 2307
18.17.7.242 ODDFYIELD 2311
18.17.7.243 ODDLPRICE 2314
18.17.7.244 ODDLYIELD 2316
18.17.7.245 OFFSET 2320
18.17.7.246 OR 2321
18.17.7.247 PEARSON 2321
18.17.7.248 PERCENTILE 2322
18.17.7.249 PERCENTRANK 2323
18.17.7.250 PERMUT 2324
18.17.7.251 PHONETIC 2325
18.17.7.252 PI 2325
18.17.7.253 PMT 2326
18.17.7.254 POISSON 2326
18.17.7.255 POWER 2328
18.17.7.256 PPMT 2328
18.17.7.257 PRICE 2329
18.17.7.258 PRICEDISC 2332
18.17.7.259 PRICEMAT 2335
18.17.7.260 PROB 2338
18.17.7.261 PRODUCT 2339
18.17.7.262 PROPER 2340
18.17.7.263 PV 2340
18.17.7.264 QUARTILE 2341
18.17.7.265 QUOTIENT. 2342
18.17.7.266 RADIANS 2343
18.17.7.267 RAND 2343
18.17.7.268 RANDBETWEEN 2344
18.17.7.269 RANK 2344
18.17.7.270 RATE. 2345
18.17.7.271 RECEIVED 2346
18.17.7.272 REPLACE 2349
18.17.7.273 REPLACEB 2350
18.17.7.274 REPT. 2351
18.17.7.275 RIGHT 2351
18.17.7.276 RIGHTB 2352
18.17.7.277 ROMAN 2353
18.17.7.278 ROUND 2354
18.17.7.279 ROUNDDOWN 2355
18.17.7.280 ROUNDUP 2356
18.17.7.281 ROW 2356
18.17.7.282 ROWS 2357
18.17.7.283 RSQ 2358
18.17.7.284 RTD 2359
18.17.7.285 SEARCH 2360
18.17.7.286 SEARCHB 2361
18.17.7.287 SECOND 2361
18.17.7.288 SERIESSUM 2362
18.17.7.289 SIGN 2363
18.17.7.290 SIN 2364
18.17.7.291 SINH 2364
18.17.7.292 SKEW 2365
18.17.7.293 SLN 2366
18.17.7.294 SLOPE 2366
18.17.7.295 SMALL 2367
18.17.7.296 SQRT 2368
18.17.7.297 SQRTPI 2369
18.17.7.298 STANDARDIZE 2369
18.17.7.299 STDEV. 2370
18.17.7.300 STDEVA 2371
18.17.7.301 STDEVP. 2372
18.17.7.302 STDEVPA 2373
18.17.7.303 STEYX 2374
18.17.7.304 SUBSTITUTE 2375
18.17.7.305 SUBTOTAL 2376
18.17.7.306 SUM 2377
18.17.7.307 SUMIF 2378
18.17.7.308 SUMIFS 2379
18.17.7.309 SUMPRODUCT 2380
18.17.7.310 SUMSQ 2381
18.17.7.311 SUMX2MY2 2382
18.17.7.312 SUMX2PY2 2383
18.17.7.313 SUMXMY2 2383
18.17.7.314 SYD 2384
18.17.7.315 T 2385
18.17.7.316 TAN 2386
18.17.7.317 TANH 2386
18.17.7.318 TBILLEQ 2387
18.17.7.319 TBILLPRICE 2387
18.17.7.320 TBILLYIELD. 2388
18.17.7.321 TDIST 2389
18.17.7.322 TEXT 2390
18.17.7.323 TIME 2391
18.17.7.324 TIMEVALUE 2391
18.17.7.325 TINV 2392
18.17.7.326 TODAY 2393
18.17.7.327 TRANSPOSE 2393
18.17.7.328 TREND 2394
18.17.7.329 TRIM. 2395
18.17.7.330 TRIMMEAN 2395
18.17.7.331 TRUE 2396
18.17.7.332 TRUNC 2396
18.17.7.333 TTEST 2397
18.17.7.334 TYPE 2398
18.17.7.335 UPPER 2399
18.17.7.336 USDOLLAR 2399
18.17.7.337 VALUE 2400
18.17.7.338 VAR 2401
18.17.7.339 VARA 2402
18.17.7.340 VARP 2403
18.17.7.341 VARPA 2403
18.17.7.342 VDB 2404
18.17.7.343 VLOOKUP 2405
18.17.7.344 WEEKDAY 2407
18.17.7.345 WEEKNUM 2408
18.17.7.346 WEIBULL 2410
18.17.7.347 WORKDAY 2411
18.17.7.348 WORKDAY.INTL 2412
18.17.7.349 XIRR 2414
18.17.7.350 XNPV 2415
18.17.7.351 YEAR 2416
18.17.7.352 YEARFRAC 2417
18.17.7.353 YIELD 2420
18.17.7.354 YIELDDISC 2423
18.17.7.355 YIELDMAT 2425
18.17.7.356 ZTEST. 2428
18.18 Simple Types 2429
18.18.1 ST_Axis (PivotTable Axis) 2429
18.18.2 ST_Borderld (Border Id). 2429
18.18.3 ST_BorderStyle (Border Line Styles) 2430
18.18.4 ST_CalcMode (Calculation Mode) 2432
18.18.5 ST_CellComments (Cell Comments) 2433
18.18.6 ST_CellFormulaType (Formula Type) 2433
18.18.7 ST_CellRef (Cell Reference) 2434
18.18.8 ST_CellSpan (Cell Span Type) 2434
18.18.9 ST_CellSpans (Cell Spans) 2434
18.18.10 ST_CellStyleXfId (Cell Style Format Id) 2434
18.18.11 ST_CellType (Cell Type). 2434
18.18.12 ST_CfType (Conditional Format Type) 2435
18.18.13 ST_CfvoType (Conditional Format Value Object Type) 2437
18.18.14 ST_Comments (Comment Display Types) 2437
18.18.15 ST_ConditionalFormattingOperator (Conditional Format Operators) 2438
18.18.16 ST_CredMethod (Credentials Method) 2438
18.18.17 ST_DataConsolidateFunction (Data Consolidation Functions) 2439
18.18.18 ST_DataValidationErrorStyle (Data Validation Error Styles) 2440
18.18.19 ST_DataValidationImeMode (Data Validation IME Mode) 2440
18.18.20 ST_DataValidationOperator (Data Validation Operator) 2441
18.18.21 ST_DataValidationType (Data Validation Type) 2442
18.18.22 ST_DateTimeGrouping (Date Time Grouping) 2443
18.18.23 ST_DdeValueType (DDE Value Types) 2443
18.18.24 ST_DvAspect (Data View Aspect Type) 2443
18.18.25 ST_Dxfld (Format Id) 2444
18.18.26 ST_DynamicFilterType (Dynamic Filter) 2444
18.18.27 ST_ExternalConnectionType (Text Field Datatype) 2446
18.18.28 ST_FieldSortType (Field Sort Type) 2446
18.18.29 ST_FileType (File Type) 2447
18.18.30 ST_Fillid (Fill Id). 2447
18.18.31 ST_FilterOperator (Filter Operator). 2447
18.18.32 ST_Fontld (Font Id) 2448
18.18.33 ST_FontScheme (Font scheme Styles) 2448
18.18.34 ST_FormatAction (PivotTable Format Types) 2448
18.18.35 ST_Formula (Formula) 2449
18.18.36 ST_FormulaExpression (Formula Expression Type) 2449
18.18.37 ST_GradientType (Gradient Type) 2449
18.18.38 ST_GroupBy (Values Group By) 2450
18.18.39 ST_GrowShrinkType (Grow Shrink Type) 2450
18.18.40 ST_HorizontalAlignment (Horizontal Alignment Type) 2451
18.18.41 ST_HtmIFmt (HTML Formatting Handling) 2455
18.18.42 ST_IconSetType (Icon Set Type) 2455
18.18.43 ST_ItemType (Pivotltem Type) 2458
18.18.44 ST_MdxFunctionType (MDX Function Type) 2459
18.18.45 ST_MdxKPIProperty (MDX KPI Property) 2459
18.18.46 ST_MdxSetOrder (MDX Set Order). 2460
18.18.47 ST_NumFmtld (Number Format Id) 2460
18.18.48 ST_Objects (Object Display Types) 2460
18.18.49 ST_OleUpdate (OLE Update Types) 2461
18.18.50 ST_Orientation (Orientation). 2461
18.18.51 ST_PageOrder (Page Order) 2462
18.18.52 ST_Pane (Pane Types) 2462
18.18.53 ST_PaneState (Pane State) 2463
18.18.54 ST_ParameterType (Parameter Type) 2463
18.18.55 ST_PatternType (Pattern Type) 2464
18.18.56 ST_PhoneticAlignment (Phonetic Alignment Types) 2469
18.18.57 ST_PhoneticType (Phonetic Type) 2469
18.18.58 ST_PivotAreaType (Rule Type) 2470
18.18.59 ST_PivotFilterType (Pivot Filter Types) 2470
18.18.60 ST_PrintError (Print Errors) 2473
18.18.61 ST_Qualifier (Qualifier) 2473
18.18.62 ST_Ref (Cell References). 2474
18.18.63 ST_RefA (Single Cell Reference) 2474
18.18.64 ST_RefMode (Reference Mode) 2474
18.18.65 ST_RevisionAction (Revision Action Types) 2475
18.18.66 ST_rwColActionType (Row Column Action Type). 2475
18.18.67 ST_Scope (Conditional Formatting Scope) 2476
18.18.68 ST_SheetState (Sheet Visibility Types) 2476
18.18.69 ST_SheetViewType (Sheet View Type) 2476
18.18.70 ST_ShowDataAs (Show Data As) 2477
18.18.71 ST_SmartTagShow (Smart Tag Display Types) 2477
18.18.72 ST_SortBy (Sort By) 2478
18.18.73 ST_SortMethod (Sort Method) 2478
18.18.74 ST_SortType (Set Sort Order) 2479
18.18.75 ST_SourceType (PivotCache Type) 2479
18.18.76 ST_Sqref (Reference Sequence) 2480
18.18.77 ST_TableStyleType (Table Style Type) 2480
18.18.78 ST_TableType (Table Type). 2499
18.18.79 ST_TargetScreenSize (Target Screen Size Types) 2499
18.18.80 ST_TextHAlign (Comment Text Horizontal Alignment) 2499
18.18.81 ST_TextVAlign (Comment Text Vertical Alignment) 2500
18.18.82 ST_TimePeriod (Time Period Types). 2500
18.18.83 ST_TotalsRowFunction (Totals Row Function Types) 2501
18.18.84 ST_Type (Top N Evaluation Type) 2502
18.18.85 ST_UnderlineValues (Underline Types) 2502
18.18.86 ST_UnsignedIntHex (Hex Unsigned Integer) 2503
18.18.87 ST_UpdateLinks (Update Links Behavior Types) 2503
18.18.88 ST_VerticalAlignment (Vertical Alignment Types) 2504
18.18.89 ST_Visibility (Visibility Types) 2507
18.18.90 ST_VolDepType (Volatile Dependency Types). 2507
18.18.91 ST_VolValueType (Volatile Dependency Value Types) 2508
18.18.92 ST_WebSourceType (Web Source Type) 2508
18.18.93 ST_XmIDataType (XML Data Types) 2509
18.18.94 ST_FontFamily (Font Family) 2509

End of informative text.

18.2 Workbook

A workbook is composed of workbook-level properties and a collection of 1 or more sheets. The sheets are the central structure within a workbook, and can contain cells, which, in turn, can contain the text, numbers, dates, formulas, and other constructs of a workbook. The workbook part and corresponding properties comprise data used to set application and workbook-level operational state. The workbook also serves to bind all the sheets and child elements into an organized single file. The workbook XML attributes and elements include information about what application last saved the file, where and how the windows of the workbook were positioned, and an enumeration of the worksheets in the workbook.

It is important for the sake of simplicity to minimize the required set of workbook XML attributes and elements that shall be present to compose a valid SpreadsheetML workbook. Therefore this is the XML for the smallest possible (blank) workbook:
<workbook>
<sheets>
<sheet name="Sheet1" sheetId="1" r:id="rId1"/>
</sheets>
</workbook>
Note that this workbook has a single sheet, named Sheet1. An Id for the sheet is required, and a relationship Id pointing to the location of the sheet definition is also required.

18.2.1 bookViews (Workbook Views)

This element specifies the collection of workbook views of the enclosing workbook. Each view can specify a window position, filter options, and other configurations. There is no limit on the number of workbook views that can be defined for a workbook.

[Example:

```
<bookViews>
    <workbookView showHorizontalScroll="0" showVerticalScroll="0"
        showSheetTabs="0" xWindow="120" yWindow="45" windowWidth="15135"
        windowHeight="8130" activeTab="2" autoFilterDateGrouping="0"/>
    </bookViews>
end example]
```

[Note: The W3C XML Schema definition of this element's content model ($\underline{\text { CT BookViews) is located in §A.2. end }}$ note]

18.2.2 calcPr (Calculation Properties)

This element defines the collection of properties the application uses to record calculation status and details. Calculation is the process of computing formulas and then displaying the results as values in the cells that contain the formulas.
[Example:

```
<calcPr calcId="122211" calcMode="auto" refMode="R1C1" iterate="1"
    fullPrecision="0"/>
```

end example]

Attributes	Description
calcCompleted (Calc Completed)	Specifies a boolean value that determines whether workbook data was recalculated before the workbook was saved.
	A value of 1 or true indicates recalculation was completed before save. A value of θ or false indicates that recalculation was not completed before save.

Attributes	Description		
	$\begin{array}{l}\text { The default value for this attribute is true. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { calcId (Calculation } \\ \text { Id) }\end{array}$	$\begin{array}{l}\text { Specifies the version of the calculation engine used to calculate values in the workbook. } \\ \text { When you open a workbook created in the current version, the application recalculates } \\ \text { only the formulas that depend on cells that have changed. When you open a workbook } \\ \text { that was created in an earlier version of the application, all the formulas in the } \\ \text { workbook- those that depend on cells that have changed and those that do not- are } \\ \text { recalculated. This ensures that the workbook is fully optimized for the current application } \\ \text { version. }\end{array}$		
The value for calcID depends on the application. SpreadsheetML defaults form			
[version][build], where [version] refers to the version of the application, and [build]			
refers to the build of the application when the calculation engine changed.			
[Example:			
<calcPr calcId="122211"/>		$]$	end example]
:---			
ene possible values for this attribute are defined by the W3C XML Schema unsignedInt			
(Concurrent			

Attributes	Description
Calculations)	A value of on, 1, or true indicates concurrent calculations are enabled in this workbook. A value of θ or false indicates concurrent calculations are not enabled. The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
concurrentManual Count (Concurrent Thread Manual Count)	Specifies the count of concurrent calculation processes manually set by the user. If omitted, the count is set automatically by the application. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
forceFullCalc (Force Full Calculation)	Specifies a boolean value that indicates whether the application performs a full recalculation when one was not indicated by other calculation properties. This attribute allows the application to expose mechanisms in the user interface that give users the ability to trigger when full recalculations take place.
A value of 1 or true indicates the application performs a full recalculation of the	
workbook.	
A value of θ or false indicates the application does not perform a full recalculation of	
the workbook.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	datatype.
fullPrecision (Full Precision Calculation)	Specifies a boolean that indicates the precision the application uses when performing calculations in the workbook. Full precision means that the application uses the entire value(s) stored in cells referenced by the formula to perform the calculation. [Example: If two cells each contain the value 10.005 and the cells are formatted to display values in currency format, the value \$10.01 is displayed in each cell. If you add the two cells together, the result is \$20.01 because the application adds the stored values 10.005 and 10.005, not the displayed values. You can change the precision of calculations so that the application uses the displayed value instead of the stored value when it recalculates formulas.
For the above example, if fullPrecision is false, then the result must be \$20.02, because each cell shows \$10.01, so those are the values to be added. Furthermore, when fullPrecision is false, the calculated value as displayed must be saved to file. end example]	
A value of 1 or true indicates the application uses the stored values of the referenced	
cells when performing calculations.	
A value of θ or false indicates the application uses the display values of the referenced	
cells when performing calculations.	
iterateCount	
(Iteration Count)	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	The default value for this attribute is 100. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
iterateDelta (Iterative Calculation Delta)	Specifies a double that contains the maximum change for iterative calculations. The application stops calculating after iterateCount iterations or after all values in the circular reference change by less than iterateDelta between iterations, whichever comes first. The default value for this attribute is "0.001"
The possible values for this attribute are defined by the W3C XML Schema double	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT CalcPr) is located in §A.2. end note]

18.2.3 customWorkbookView (Custom Workbook View)

This element specifies a single custom workbook view. A custom workbook view consists of a set of display and print settings that you can name and apply to a workbook. You can create more than one custom workbook view of the same workbook. Custom Workbook Views are not required in order to construct a valid SpreadsheetML document, and are not necessary if the document is never displayed by a spreadsheet application, or if the spreadsheet application has a fixed display for workbooks. However, if a spreadsheet application chooses to implement configurable display modes, the customWorkbookView element should be used to persist the settings for those display modes. The settings fall into the following categories, and individual settings are detailed in the table following:

Window settings - these include size and positioning of the spreadsheet window as well as which window features should be displayed (scrollbars, sheet tabs, etc.).

Workbook content display and print settings - specifies whether features in the workbook should be included or ignored by a spreadsheet application when a custom workbook view is displayed or printed. [Example: Whether comments in the workbook should be displayed and how objects such as images should be displayed can be controlled by a Custom Workbook View. end example]

Persistence settings - these include settings that describe how a spreadsheet application should update persisted SpreadsheetML content if multiple spreadsheet applications are accessing a common instance of the SpreadsheetML document at the same time.

When a Custom Workbook View is present, there should also be corresponding customSheetView (§18.3.1.25) elements for each sheet ($\S 18.2$.19) in the workbook. The guid attribute of these customSheetView elements associates the customSheetView with the appropriate customWorkbookView. Attributes on the customWorkbookView element should be used to determine which settings within the Custom Sheet View should be respected by a spreadsheet application if the Custom Workbook View is displayed.

Attributes	Description		
$\begin{array}{l}\text { activeSheetId } \\ \text { (Active Sheet in } \\ \text { Book View) }\end{array}$	$\begin{array}{l}\text { Specifies the sheetId of a sheet in the workbook that identifies to a consuming } \\ \text { application the default sheet to display. Corresponds to a sheetId of a sheet in the } \\ \text { sheets collection. } \\ \text { This attribute is required. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema unsignedInt } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { autoUpdate (Auto } \\ \text { Update) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that is an instruction that if the workbook is loaded by a } \\ \text { spreadsheet application, that spreadsheet application should automatically update } \\ \text { changes at the interval specified by the mergeInterval attribute. This is only applicable } \\ \text { for shared workbooks (\$18.11). }\end{array}$		
A value of 1 or true is an instruction to the spreadsheet application to update changes			
at the interval specified in the mergeInterval attribute.			
A value of θ or false is an instruction to the spreadsheet applicationto update changes			
whenever the spreadsheet application generates SpreadsheetML representing the			
workbook.		$\left.\quad \begin{array}{l}\text { The default value for this attribute is false. }\end{array}\right\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description
	$\begin{array}{l}\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$
$\begin{array}{l}\text { guid (Custom View } \\ \text { GUID) }\end{array}$	$\begin{array}{l}\text { Specifies a globally unique identifier (GUID) for this custom view } \\ \text { The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4). }\end{array}$
$\begin{array}{l}\text { includeHiddenRow } \\ \text { Col (Include Hidden } \\ \text { Rows \& Columns) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether to include hidden rows, columns, and } \\ \text { filter settings in this custom view. } \\ \text { A value of } 1 \text { or true indicates that hidden rows, columns, and filter settings are included } \\ \text { in this custom view. }\end{array}$
A value of θ or false indicates that hidden rows, columns, and filter settings are not	
included.	
The default value for this attribute is true.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	datatype.
minimized (Minimized)	Specifies a boolean value that indicates whether the workbook window is minimized. A value of 1 or true indicates the workbook window is minimized. A value of θ or false indicates the workbook window is not minimized. The default value for this attribute is false. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
name (Custom View Name)	Specifies the name of the custom view. This attribute is required.
The possible values for this attribute are defined by the ST_Xstring simple type	
(§22.9.2.19).	

Attributes	Description
(Show Comments)	The possible values for this attribute are defined by the ST_Comments simple type (§18.18.14).
showFormulaBar (Show Formula Bar)	Specifies a boolean value that indicates whether to display the formula bar in the application user interface. A value of 1 or true indicates the formula bar is shown in the user interface. A value of 0 or false indicates the formula bar is not shown in the user interface. The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showHorizontalScr oll (Show Horizontal Scroll)	Specifies a boolean value that indicates whether to display the horizontal scroll bar in the user interface. A value of 1 or true indicates that the horizontal scrollbar is shown. A value of 0 or false indicates that the horizontal scrollbar is not shown. The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showObjects (Show Objects)	Specifies how objects are displayed in this custom view. The default value for this attribute is "all." The possible values for this attribute are defined by the ST_Objects simple type (§18.18.48).
showSheetTabs (Show Sheet Tabs)	Specifies a boolean value that indicates whether to display the sheet tabs in the user interface. A value of 1 or true indicates that sheet tabs shall be shown. A value of 0 or false indicates that sheet tabs shall not be shown. The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showStatusbar (Show Status Bar)	Specifies a boolean value that indicates whether to display the status bar in the user interface.

Attributes	Description
	A value of 1 or true indicates that the status bar is shown. A value of 0 or false indicates the status bar is not shown. The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showVerticalScroll (Show Vertical Scroll)	Specifies a boolean value that indicates whether to display the vertical scroll bar. A value of 1 or true indicates the vertical scrollbar shall be shown. A value of 0 or false indicates the vertical scrollbar shall not be shown. The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
tabRatio (Sheet Tab Ratio)	Specifies the ratio between the workbook tabs bar and the horizontal scroll bar. tabRatio is assumed to be out of 1000 of the horizontal window width. The default value for this attribute is 600 . The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
windowHeight (Window Height)	Specifies the height of the workbook window. The unit of measurement for this value is twips. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
windowWidth (Window Width)	Specifies the width of the workbook window. The unit of measurement for this value is twips. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
xWindow (Top Left Corner (X Coordinate))	Specifies the X coordinate for the upper left corner of the workbook window. The unit of measurement for this value is twips. The possible values for this attribute are defined by the W3C XML Schema int datatype.
yWindow (Top Left Corner (Y Coordinate))	Specifies the Y coordinate for the upper left corner of the workbook window. The unit of measurement for this value is twips. The possible values for this attribute are defined by the W3C XML Schema int datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CustomWorkbookView) is located in §A.2. end note]

18.2.4 customWorkbookViews (Custom Workbook Views)

This element defines the collection of custom workbook views that are defined for this workbook. A customWorkbookView is similar in concept to a workbookView (§18.2.30) in that its attributes contain settings related to the way that the workbook should be displayed on a screen by a spreadsheet application.
[Note: Whilst a workbookView is intended to store the way the workbook window should be displayed by a spreadsheet application, customWorkbookView elements are intended to allow the user to switch between a selection of customWorkbookView items defining window and content display options. end note]

A customWorkbookView contains a greater number of settings (e.g., the presence of a formula bar; visibility of hidden data; whether or not to show comments) and is named.
[Example: A workbook which is used by two different departments might contain two customWorkbookView elements - one where the comments and hidden data are not shown, and one where they are. Users might switch between the customWorkbookView items according to the department in which they work. end example]

There is no limit on the number of custom views that can be contained within a SpreadsheetML instance.

[Example:

<customWorkbookViews>
<customWorkbookView name="CustomView" guid="\{CE6681F1-E999-414D-8446-68A031534B57\}" maximized="1" xWindow="1" yWindow="1" windowWidth="1024" windowHeight="547" activeSheetId="1"/>
</customWorkbookViews>
end example]
[Note: The W3C XML Schema definition of this element's content model (CT CustomWorkbookViews) is located in §A.2. end note]

18.2.5 definedName (Defined Name)

This element defines the defined names that are defined within this workbook. Defined names are descriptive text that is used to represents a cell, range of cells, formula, or constant value. Use easy-to-understand names, such as Products, to refer to hard to understand ranges, such as Sales!C20:C30.

A defined name in a formula can make it easier to understand the purpose of the formula. [Example: The formula $=$ SUM(FirstQuarterSales) might be easier to identify than $=$ SUM(C20:C30). end example]

Names are available to any sheet. [Example: Ifthe name ProjectedSales refers to the range A20:A30 on the first worksheet in a workbook, you can use the name ProjectedSales on any other sheet in the same workbook to refer to range $\mathrm{A} 20: \mathrm{A} 30$ on the first worksheet. end example]

Names can also be used to represent formulas or values that do not change (constants). [Example: The name SalesTax can be used to represent the sales tax amount (such as 6.2 percent) applied to sales transactions. end example]

You can also link to a defined name in another workbook, or define a name that refers to cells in another workbook. [Example: The formula =SUM(Sales.xls!ProjectedSales) refers to the named range ProjectedSales in the workbook named Sales. end example]

A compliant producer or consumer considers a defined name in the range A1-XFD1048576 to be an error.

All other names outside this range can be defined as names and overrides a cell reference if an ambiguity exists.
[Example: For clarification: LOG10 is always a cell reference, LOG10() is always formula, LOGO1000 can be a defined name that overrides a cell reference. end example]

Attributes	Description
comment (Comment)	Specifies the comment the user provided when the name was created. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
customMenu (Custom Menu Text)	Specifies custom menu text for the defined name. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
description (Description)	Specifies description text for the defined name. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
function (Function)	Specifies a boolean value that indicates that the defined name refers to a user-defined function. This attribute is used when there is an add-in or other code project associated with the file.
A value of 1 or true indicates the name refers to a function.	
A value of θ or false indicates the name does not refer to a function.	
The default value for this attribute is false.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
(Function Group Id)	group defines the general category for the function. This attribute is used when there is an add-in or other code project associated with the file. The following functionGrouplds are defined in SpreadsheetML for applications that support the association of an add-in or code project for their workbook: The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
help (Help)	Specifies the help topic to display for this defined name. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
hidden (Hidden Name)	Specifies a boolean value that indicates whether the defined name is hidden in the user interface. A value of 1 or true indicates the name is hidden. A value of 0 or false indicates the name is not hidden. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
localSheetId (Local Name Sheet Id)	Specifies the sheet index in this workbook where data from an external reference is displayed. [Example: In the following example, the defined name refers to a range whose data source is an external database called "Northwind_Database": <definedName name="Northwind_Database"

Attributes	Description
	localSheetId="2">Sheet5!\$A\$1:\$T\$47</definedName> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
name (Defined Name)	Specifies the name that appears in the user interface for the defined name. This attribute is required. The following built-in names are defined in this SpreadsheetML specification: - Print - _xInm .Print_Area: this defined name specifies the workbook's print area. - _xInm .Print_Titles: this defined name specifies the row(s) or column(s) to repeat at the top of each printed page. - Filter \& Advanced Filter - _xlnm .Criteria: this defined name refers to a range containing the criteria values to be used in applying an advanced filter to a range of data. - _xinm ._FilterDatabase: can be one of the following a. this defined name refers to a range to which an advanced filter has been applied. This represents the source data range, unfiltered. b. This defined name refers to a range to which an AutoFilter has been applied. - _xInm .Extract: this defined name refers to the range containing the filtered output values resulting from applying an advanced filter criteria to a source range. - Miscellaneous - _xInm .Consolidate_Area: the defined name refers to a consolidation area. - _xInm .Database: the range specified in the defined name is from a database data source. - _xInm .Sheet_Title: the defined name refers to a sheet title. Built-in names reserved by SpreadsheetML begin with "_xlnm.". End users shall not use this string for custom names in the user interface. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
publishToServer (Publish To Server)	Specifies a boolean value that indicates whether the defined name is included in the version of the workbook that is published to or rendered on a Web or application server. A value of 1 or true indicates the name shall be published. A value of 0 or false indicates the name shall not be published. The possible values for this attribute are defined by the W3C XML Schema boolean

Attributes	Description		
	datatype.		
$\begin{array}{l}\text { shortcutKey } \\ \text { (Shortcut Key) }\end{array}$	$\begin{array}{l}\text { Specifies the keyboard shortcut for the defined name. } \\ \text { The possible values for this attribute are defined by the ST_Xstring simple type } \\ \text { (§22.9.2.19). }\end{array}$		
$\begin{array}{l}\text { statusBar (Status } \\ \text { Bar) }\end{array}$	$\begin{array}{l}\text { Specifies text that is displayed on the application status bar when the user places focus } \\ \text { on the defined name. } \\ \text { The possible values for this attribute are defined by the ST_Xstring simple type } \\ \text { (§22.9.2.19). }\end{array}$		
$\begin{array}{l}\text { vbProcedure } \\ \text { (Procedure) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the defined name is related to an } \\ \text { external function, command, or other executable code. }\end{array}$		
A value of 1 or true indicates the name is related to an external function, command, or			
other executable code, and the loading application can optionally decide whether to load			
and/or execute the commands.			
A value of 0 or false indicates the name does not refer to an external function,			
command, or other executable code.		$\}$	The default value for this attribute is false.
:---			
A value of 0 or false indicates the name does not refer to an external function,	,	The possible values for this attribute are defined by the W3C XML Schema boolean	
:---			
datatype.			

Attributes	Description
	command, or other executable code. The default value for this attribute is false. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
Xml:space (Content Contains Significant Whitespace)	Specifies how white space should be handled for the contents of this element using the W3C space preservation rules.
Namespace: $\underline{\text { http://www.w3.org }}$	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification. ace

[Note: The W3C XML Schema definition of this element's content model (CT DefinedName) is located in §A.2. end note]

18.2.6 definedNames (Defined Names)

This element defines the collection of defined names for this workbook. Defined names are descriptive names to represent cells, ranges of cells, formulas, or constant values. Defined names can be used to represent a range on any worksheet.
[Example:

```
<definedNames>
    <definedName name="NamedFormula"
        comment="Comment text for defined name.">SUM(Sheet3!$B$2:$B$9)</definedName>
    <definedName name="NamedRange">Sheet3!$A$1:$C$12</definedName>
    <definedName name="NamedRangeFromExternalReference" localSheetId="2"
        hidden="1">Sheet5!$A$1:$T$47</definedName>
</definedNames>
```

end example]
[Note: The W3C XML Schema definition of this element's content model (CT DefinedNames) is located in §A.2. end note]

18.2.7 ext (Extension)

Each extension within an extension list shall be contained within an ext element. Extensions shall be versioned by namespace, using the uri attribute, and shall be allowed to appear in any order within the extension list. Any number of extensions shall be allowed within an extension list.

When extension lists are processed, a consumer might understand some extensions, and might not understand other extensions. The preservation model for extensions is that unprocessed extensions shall always be preserved (when consuming) and written out (when producing) in whole, as long as the underlying schema extended by the extension list remains. [Example: If a spreadsheetML sheet contains several extensions within an extension list, and through runtime processing that sheet is removed from the workbook, then the extensions associated with that sheet must not be written out when producing the resulting markup document. end example].

Markup namespaces within extensions shall not be required to be listed in the Ignorable Compatibility-Rule attribute, nor shall these namespaces be required to be listed in the PreserveElements and PreserveAttributes Compatibility-Rule attributes. [Note: See Part 3 for additional discussion on Application-Defined Extension Elements and processing rules. end note]

[Example:

In this example, there are two extensions written. The first extension describes a new structure that might have been defined by a fictitious second version of ISO/IEC 29500. The second extension describes a structure that might be introduced by a private party, developed independently from ISO/IEC 29500.

```
<extLst>
    <ext uri='http://purl.oclc.org/ooxml/spreadsheetml/versionTwoExtension'>
        <v2:newContent
xmln:v2='http://purl.oclc.org/ooxml/spreadsheetml/versionTwoExtension'>
        </v2:newContent>
    </ext>
    <ext uri='http://www.extension.com/versionOneExtension'>
        <v2:moreContent xmlsn:v2='http://www.extension.com/versionOneExtension'>
            ...
        </v2:moreContent>
    </ext>
</extList>
```

end example]
Each extension has an uri attribute, which serves as an identifier to indicate information about the extension. [Note: For example, the uri might state the version of a markup specification to which the content conforms, or it might state the version of a producing application that wrote the content. end note] Upon encountering extensions, a processing consumer shall determine whether it knows how to process extensions using the value of the uri. If the consumer knows how to process such an extension, the markup contained within that extension is processed. Otherwise, the extension content shall be preserved so long as the underlying structure being extended by the extLst has not been removed.

Attributes	Description
uri (URI)	A token to identify version and application information for this particular extension. The possible values for this attribute are defined by the W3C XML Schema token datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Extension) is located in §A.2. end note]

18.2.8 externalReference (External Reference)

This element defines an external reference that stores data for workbook elements.

Attributes	Description
id (Relationship Id)	Specifies a unique identifier that is used to identify a relationship to another part in the file. Relationship identifiers link the element definition with the part where data for the element is stored.
Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	The possible values for this attribute are defined by the ST_RelationshipId simple type (§22.8.2.1).

[Note: The W3C XML Schema definition of this element's content model (CT ExternalReference) is located in §A.2. end note]

18.2.9 externalReferences (External References)

This element defines the collection of external references for this workbook.
[Note: The W3C XML Schema definition of this element's content model (CT ExternalReferences) is located in §A.2. end note]

18.2.10 extLst (Future Feature Data Storage Area)

This element provides a convention for extending spreadsheetML in defined locations within the markup specification. The locations shall be denoted with the extLst element, and are called extension lists. Extension list locations within the markup document are specified in the markup specification and can be used to store extensions to the markup specification, whether those are future version extensions of the markup specification or are private extensions implemented independently from the markup specification. Markup within an extension might not be understood by a markup consumer.
extLst elements contain ext elements, called extensions. See §18.2.7 for more discussion of extensions.
[Note: Allowing markup specification extensions and private markup extensions within an extension list does not violate interoperability because the rules articulated within $\S 18.2 .7$ and Part $3, \S 12$ describe how markup producers and consumers must generate and consume markup documents containing application defined extension elements, including how to avoid and when to generate error conditions. end note]
[Note: This element is not intended to reintroduce transitional schema into the strict conformance class. end note]
[Note: The W3C XML Schema definition of this element’s content model (CT ExtensionList) is located in §A.2. end note]

18.2.11 fileRecoveryPr (File Recovery Properties)

This element defines properties that track the state of the workbook file, such as whether the file was saved during a crash, or whether it should be opened in auto-recover mode.

Attributes	Description
autoRecover (Auto Recover)	Specifies a boolean value that indicates whether the file is mark for auto-recovery. Applications typically mark files for auto-recover following a crash. A value of 1 or true indicates the file is marked for auto-recover. A value of 0 or false indicates the file is not marked for auto-recover. The default value for this attribute is false. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
crashSave (Crash Save)	Specifies a boolean value that indicates whether the application last saved the workbook file after a crash. A value of 1 or true indicates the workbook was last saved after a crash. A value of 0 or false indicates was not last saved as part of a crash. The default value for this attribute is false. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
dataExtractLoad (Data Extract Load)	Specifies a boolean value that indicates whether the application last opened the workbook for data recovery. A value of 1 or true indicates the workbook was last opened for data recovery. A value of θ or false indicates was not last opened for data recovery.

Attributes	Description
	The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
repairLoad (Repair Load)	Specifies a boolean value that indicates whether the application last opened the workbook in safe or repair mode.
A value of 1 or true indicates the workbook was last opened in safe or repair mode.	
A value of θ or false indicates the workbook was last opened without problems.	
The default value for this attribute is false.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT FileRecoveryPr) is located in §A.2. end note]

18.2.12 fileSharing (File Sharing)

This element tracks file sharing settings for the workbook. When a password is to be hashed and stored in this element, it shall be hashed starting from a UTF-16LE encoded string value. If there is a leading BOM character (U+FEFF) in the encoded password it is removed before hash calculation.

Attributes		Description
algorithmName (Cryptographic Algorithm Name)	Specifies the specific cryptographic hashing algorithm which shall be used along with the salt attribute and input password in order to compute the hash value. The following values are reserved:	
	Value	Algorithm
	MD2	Specifies that the MD2 algorithm, as defined by RFC 1319, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	MD4	Specifies that the MD4 algorithm, as defined by RFC 1320, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]

Attributes	Description	
	MD5	Specifies that the MD5 algorithm, as defined by RFC 1321, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-128	Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-160	Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-1	Specifies that the SHA-1 algorithm, as defined by ISO/IEC 101183:2004 shall be used.
	SHA-256	Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-384	Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-512	Specifies that the SHA-512 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	WHIRLPOOL	Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	[Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```< ... algorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The algorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm must be used to generate a hash from the user-defined password. end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).	
hashValue (Password Hash Value)	Specifies the hash value for the password required for editing this workbook. This value shall be compared with the resulting hash value after hashing the user-supplied password using the algorithm specified by the preceding attributes and parent XML element, and if the two values match, the protection shall no longer be enforced. If this value is omitted, then the reservationPassword attribute shall contain the	

Attributes	Description
	password hash for the workbook. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```<... algorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The hashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies that the user-supplied password must be hashed using the pre-processing defined by the parent element (if any) followed by the SHA-1 algorithm (specified via the cryptAlgorithmSid attribute value of 1) and that the resulting has value must be $90 N 7 n W k C A y E Z i b 1 R o m S J T j m P p C Y=$ for the protection to be disabled. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.
readOnlyRecomme nded (Read Only Recommended)	Specifies a boolean value that indicates on open, whether the application alerts the user that the file be marked as read-only. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
saltValue (Salt Value for Password Verifier)	Specifies the salt that was prepended to the user-supplied password before it was hashed using the hashing algorithm defined by the preceding attribute values to generate the hashValue attribute, and that shall also be prepended to the user-supplied password before attempting to generate a hash value for comparison. A salt is a random string which is added to a user-supplied password before it is hashed in order to prevent a malicious party from pre-calculating all possible password/hash combinations and simply using those pre-calculated values (often referred to as a "dictionary attack"). If this attribute is omitted, then no salt shall be prepended to the user-supplied password before it is hashed for comparison with the stored hash value. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: $\begin{aligned} & \text { <... saltValue="ZUdHa+D8F/OAKP3I7ssUnQ==" } \\ & \text { hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" /> } \end{aligned}$ The saltValue attribute value of ZUdHa+D8F/OAKP3I7ssUnQ== specifies that the usersupplied password must have this value prepended before it is run through the specified hashing algorithm to generate a resulting hash value for comparison. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.
spinCount	Specifies the number of times the hashing function shall be iteratively run (runs using

Attributes	Description
(Iterations to Run Hashing Algorithm)	each iteration's result plus a 4 byte value (0-based, little endian) containing the number of the iteration as the input for the next iteration) when attempting to compare a user- supplied password with the value stored in the hashValue attribute. [Rationale: Running the algorithm many times increases the cost of exhaustive search attacks correspondingly. Storing this value allows for the number of iterations to be increased over time to accommodate faster hardware (and hence the ability to run more iterations in less time). end rationale] [Example: Consider an Office Open XML document with the following information stored in one of its protection elements:
<... spinCount="100000"	
hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />	
The spinCount attribute value of 100000 specifies that the hashing function must be run	
one hundred thousand times to generate a hash value for comparison with the	
hashValue attribute. end example]	
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT FileSharing) is located in §A.2. end note]

18.2.13 fileVersion (File Version)

This element defines properties that track which version of the application accessed the data and source code contained in the file.

Attributes	Description
appName (Application Name)	Specifies the application name. When saving, applications can write their appName value and optionally write lastEdited and lowestEdited attributes to track the version of the application that performed those actions. When opening the workbook, applications can examine the value of appName and decide how to interpret the lastEdited, lowestEdited, and rupBuild attributes. The possible values for this attribute are defined by the W3C XML Schema string datatype.
codeName (Code	Specifies the GUID that identifies the code project that is associated with the workbook.

Attributes	Description		
Name)	[Note: the primary use of this attribute is to track the version of the compiled code.] The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).		
lastEdited (Last Edited Version)	Specifies the version of the application that last saved the workbook. This attribute is application-dependent. The possible values for this attribute are defined by the W3C XML Schema string datatype.		
lowestEdited (Lowest Edited Version)	Specifies the earliest version of the application that saved the workbook. This value is reset any time an application that can read all data in the file saves the file. This attribute is application-dependent.		
The possible values for this attribute are defined by the W3C XML Schema string datatype.			
Version)	Specifies the incremental public release of the application. [EXample: Betas, service packs, and versions. end example]		The possible values for this attribute are defined by the W3C XML Schema string
:---			
datatype.			

[Note: The W3C XML Schema definition of this element's content model (CT FileVersion) is located in §A.2. end note]

18.2.14 functionGroup (Function Group)

This element represents a single function group.

Attributes	Description
name (Name)	Specifies the name of the function group. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT FunctionGroup) is located in §A.2. end note]

18.2.15 functionGroups (Function Groups)

This element defines the collection of function groups for the workbook.

Attributes	Description
builtInGroupCount	Specifies the count of built-in function groups that the application provides in this

Attributes	Description
(Built-in Function Group Count)	workbook.
	The default value for this attribute is 16. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT FunctionGroups) is located in §A.2. end note]

18.2.16 oleSize (Embedded Object Size)

This element defines the embedded object server for this workbook.

Attributes	Description
ref (Reference)	Specifies the reference for the embedded object.
	The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).

[Note: The W3C XML Schema definition of this element's content model (CT OleSize) is located in §A.2. end note]

18.2.17 pivotCache (PivotCache)

This element represents a cache of data for pivot tables and formulas in the workbook.

Attributes	Description		
$\begin{array}{l}\text { cacheId } \\ \text { (PivotCache Id) }\end{array}$	$\begin{array}{l}\text { Specifies the unique identifier for the pivot cache for this workbook in the pivot cache } \\ \text { part. }\end{array}$		
This attribute is required.			
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.		$]$	Namespace:
:---			
http://purl.oclc.or			
g/ooxml/officeDoc			
ument/relationshi			
ps	This attribute is required.	The possible values for this attribute are defined by the ST_RelationshipId simple type	
:---			
(§22.8.2.1).			

[Note: The W3C XML Schema definition of this element’s content model (CT PivotCache) is located in §A.2. end note]

18.2.18 pivotCaches (PivotCaches)

This element enumerates pivot cache definition parts used by pivot tables and formulas in this workbook.
[Example:
<pivotCaches>
<pivotCache cacheId="4" r:id="rId8"/>
</pivotCaches>
end example]
[Note: The W3C XML Schema definition of this element’s content model (CT PivotCaches) is located in §A.2. end note]

18.2.19 sheet (Sheet Information)

This element defines a sheet in this workbook. Sheet data is stored in a separate part.

Attributes	Description
id (Relationship Id) Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	Specifies the identifier of the sheet part where the definition for this sheet is stored. This attribute is required. The possible values for this attribute are defined by the ST_RelationshipId simple type (\$22.8.2.1).
name (Sheet Name)	Specifies the name of the sheet. This name shall be unique. This attribute is required. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
sheetId (Sheet Tab Id)	Specifies the internal identifier for the sheet. This identifier shall be unique. This attribute is required. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
state (Visible State)	Specifies the visible state of this sheet. The default value for this attribute is "visible."

Attributes	Description
	The possible values for this attribute are defined by the ST_SheetState simple type (§18.18.68).

[Note: The W3C XML Schema definition of this element's content model (CT Sheet) is located in §A.2. end note]

18.2.20 sheets (Sheets)

This element represents the collection of sheets in the workbook. There are different types of sheets you can create in SpreadsheetML. The most common sheet type is a worksheet; also called a spreadsheet. A worksheet is the primary document that you use in SpreadsheetML to store and work with data. A worksheet consists of cells that are organized into columns and rows.

Some workbooks might have a modular design where there is one sheet for data and another worksheet for each specific analysis performed on that data. In a complex modular system, you might have dozens of sheets, each dedicated to a specific task.

[Example:

<sheets>
<sheet name="Sheet1" sheetId="1" r:id="rId1"/>
<sheet name="Sheet2" sheetId="2" r:id="rId2"/>
<sheet name="Sheet5" sheetId="3" r:id="rId3"/>
<sheet name="Chart1" sheetId="4" r:id="rId4"/> </sheets>
end example]
[Note: The W3C XML Schema definition of this element's content model (CT Sheets) is located in §A.2. end note]

18.2.21 smartTagPr (Smart Tag Properties)

This element defines a collection of smart tag properties that determine smart tag behavior in the workbook.
[Example:
<smartTagPr embed="1" show="noIndicator"/>
end example]

Attributes	Description
embed (Embed SmartTags)	Specifies a boolean value that indicates whether the application saves smart tags with the workbook. Smart tag information is saved both in the workbook part and the sheet parts.
A value of 1 or true indicates the application saves smart tags with the workbook.	

Attributes	Description
	A value of θ or false indicates the application does not save smart tags with the workbook. The default value for this attribute is false. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
show (Show Smart Tags)	Specifies how the application displays smart tags in the user interface. The default value for this attribute is "all."
The possible values for this attribute are defined by the ST_SmartTagShow simple type	
(§18.18.71).	

[Note: The W3C XML Schema definition of this element’s content model (CT SmartTagPr) is located in §A.2. end note]

18.2.22 smartTagType (Smart Tag Type)

This element represents a smart tag in the workbook.

Attributes	Description
name (Name)	Specifies the element name used for a smart tag that is used by the application. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
namespaceUri (SmartTag Namespace URI)	Specifies the namespace Uniform Resource Identifier (URI) for a smart tag used by the application. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
url (Smart Tag URL)	Specifies the URL for a smart tag provided by the smart tag provider in the application. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT SmartTagType) is located in §A.2. end note]

18.2.23 smartTagTypes (Smart Tag Types)

This element defines the collection of smart tag types in the workbook. Smart tags represent data that is recognized and labeled as a particular type.
[Example: For example, a person's name or a date can be recognized and labeled with a smart tag.

```
<smartTagTypes>
    <smartTagType namespaceUri="urn:schemas-openxmlformats-org:office:smarttags"
        name="date"/>
</smartTagTypes>
```

end example]
[Note: The W3C XML Schema definition of this element's content model (CT SmartTagTypes) is located in §A.2. end note]

18.2.24 webPublishing (Web Publishing Properties)

This element defines properties that relate to publishing this workbook to the Web.

Attributes	Description
allowPng (Allow PNG)	Specifies a boolean value that indicates whether the application saves images in the PNG (Portable Network Graphics) graphic format. A value of 1 or true indicates the application supports PNG . A value of θ or false indicates the application does not support PNG. The default value for this attribute is false. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
characterSet (Character Set)	Name of the character set the application uses when a Web page is saved. The values allowed within this attribute are names and aliases listed in the IANA CHARACTER SETS listing found at http://www.iana.org/assignments/character-sets.
If this attribute is not present then the codePage attribute can be used.	
The possible values for this attribute are defined by the W3C XML Schema string	
datatype.	

Attributes	Description
	The default value for this attribute is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
dpi (DPI)	Specifies the DPI (defined as the number of pixels per inch) that are used to display images in Web pages. The specified DPI affects the size of graphics relative to the size of text on the screen. The default value for this attribute is 96. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
longFileNames (Enable Long File Names)	Specifies a boolean value that indicates whether the application allows file names longer than 8 octets with a three octet extension for Web pages. File names are not case- sensitive. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
targetScreenSize (Target Screen Size)	Specifies the screen size on which Web pages are displayed. The specified screen size might affect the size and layout of images on web pages. The default value of this attribute is "800x600."
thicket (Thicket)	The possible values for this attribute are defined by the ST_TargetScreenSize simple type (§18.18.79).
Specifies a boolean value that indicates that the application stores supporting files such as bullets, background textures, and graphics in a separate folder from the Web page	
vml (VML in	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
Specifies a boolean value that indicates whether the application uses VML (Vector Markup Language) to display graphics in Web browsers	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT WebPublishing) is located in §A.2. end note]

18.2.25 webPublishObject (Web Publishing Object)

This element defines a single Web publishing object for the workbook. This element tracks basic information about an object in the workbook, such as a named range, that is published to the Web.

Attributes	Description		
autoRepublish (Auto Republish)	Specifies a boolean value that indicates whether the object specified in sourceObject is automatically published every time the workbook is saved. A value of 1 or true indicates the application will publish the sourceObject when the workbook is saved. A value of 0 or false indicates the application will not publish the sourceObject when the workbook is saved. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.		
destinationFile (Destination File)	Specifies the destination file name to which the sourceObject is published. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).		
divId (Div Id)	Specifies the destination bookmark (div id) for the published object. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).		
id (Id)	Specifies the number, in "nnnnn" format, used in generated div id, in style id's, token filenames, and other variables.		
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.		\quad	Specifies the named range to be published. If omitted, the entire workbook is published.
:---			
The possible values for this attribute are defined by the ST_Xstring simple type			
(§22.9.2.19).			

[Note: The W3C XML Schema definition of this element's content model (CT WebPublishObject) is located in §A.2. end note]

18.2.26 webPublishObjects (Web Publish Objects)

This element defines the collection of Web publishing objects in the workbook.

Attributes	
count (Count)	Specifies the number of items in the collection.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT WebPublishObjects) is located in §A.2. end note]

18.2.27 workbook (Workbook)

The workbook element is the top level element. It contains elements and attributes that encompass the data content of the workbook. The workbook's child elements each have their own subclause references, and these are shown in the child elements table below. A partial list of the workbook's structures that these elements represent are:

- Sheets: represents the collection of worksheets in the workbook. The sheets are the central structure within a workbook, and contain the text, numbers, dates, formulas, and other elements of a workbook.
- Views: SpreadsheetML defines a collection of Workbook views that define basic window dimensions and position of the workbook if it is ever displayed by a spreadsheet application. It also defines a collection of Custom Workbook Views that allows SpreadsheetML to describe one or more views of the data within a workbook.
- Properties: the workbook has several property collection that store basic workbook settings, such as the date system to use, file protection settings, calculation settings, and smart tag behaviors.
- Names: words or strings of characters that represent cells, ranges of cells, formulas, or constant values.

[Example:

```
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workbook xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main"
mlns:r="http://purl.oclc.org/ooxml/officeDocument/relationships">
    <fileVersion lastEdited="4" lowestEdited="4" rupBuild="4017"/>
    <workbookPr vbName="ThisWorkbook" defaultThemeVersion="123820"/>
    <bookViews>
        <workbookView xWindow="120" yWindow="45" windowWidth="15135"
            windowHeight="7650" activeTab="4"/>
    </bookViews>
    <sheets>
        <sheet name="Sheet1" sheetId="1" r:id="rId1"/>
        <sheet name="Sheet2" sheetId="2" r:id="rId2"/>
        <sheet name="Sheet5" sheetId="3" r:id="rId3"/>
        <sheet name="Chart1" sheetId="4" r:id="rId4"/>
    </sheets>
```

```
    <definedNames>
        <definedName name="MyDefinedName">Sheet3!$A$1:$C$12</definedName>
        </definedNames>
        <calcPr calcId="122211" calcMode="autoNoTable" refMode="R1C1" iterate="1"
        fullPrecision="0"/>
    <customWorkbookViews>
        <customWorkbookView name="CustomView1"
            guid="{CE6681F1-E999-414D-8446-68A031534B57}" maximized="1" xWindow="1"
            yWindow="1" windowWidth="1024" windowHeight="547" activeSheetId="1"/>
    </customWorkbookViews>
    <pivotCaches>
        <pivotCache cacheId="0" r:id="rId8"/>
        </pivotCaches>
    <smartTagPr embed="1" show="noIndicator"/>
    <smartTagTypes>
        <smartTagType namespaceUri="urn:schemas-openxmlformats-org:office:smarttags"
        name="date"/>
    </smartTagTypes>
    <webPublishing codePage="1252"/>
</workbook>
```

end example]

Attributes	Description
conformance (Document Conformance Class)	Specifies the conformance class (§2.1) to which the SpreadsheetML document conforms. If this attribute is omitted, its default value is transitional. [Example: Consider the following SpreadsheetML Workbook part markup:
	<workbook conformance=" strict"> </workbook>
	This document has a conformance attribute value of strict, therefore it conforms to the SML Strict conformance class. end example]
	The possible values for this attribute are defined by the ST_ConformanceClass simple type (§22.9.2.2).

[Note: The W3C XML Schema definition of this element's content model (CT Workbook) is located in §A.2. end note]

18.2.28 workbookPr (Workbook Properties)

This element defines a collection of workbook properties.
[Example:

```
    <workbookPr showObjects="none" saveExternalLinkValues="0"
    defaultThemeVersion="123820"/>
end example]
```

Attributes	Description
allowRefreshQuery (Allow Refresh Query)	Specifies a boolean value that indicates whether the application will refresh query tables in this workbook. A value of 1 or true indicates the application will refresh query tables when the workbook is loaded. A value of θ or false indicates the application will not refresh query tables.
The default value for this attribute is false.	
autoCompressPict ures (Auto Compress Pictures)	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
Specifies a boolean value that indicates the application automatically compressed pictures in the workbook.	
A value of 1 or true indicates the application automatically compresses pictures of the	
workbook. When a picture is compressed, the application:	
Reduces resolution (to 96 dots per inch (dpi) for Web and 200 dpi for print), and	
unnecessary information is discarded.	
Discards extra information. [Example: When a picture has been cropped or	
resized, the "hidden" parts of the picture are stored in the file. end example]	
Compress the picture, if possible.	

Attributes	Description		
	$\begin{array}{l}\text { A value of } \theta \text { or false indicates the application does not create a backup. } \\ \text { The default value for this attribute is false. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { checkCompatibility } \\ \text { (Check } \\ \text { Compatibility On } \\ \text { Save) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the application checks for compatibility } \\ \text { when saving this workbook to older file formats. }\end{array}$		
A value of 1 or true indicates the application performs a compatibility check when saving			
to legacy binary formats.			
A value of θ or false indicates the application does not perform a compatibility check			
when saving to legacy binary formats.			
The default value for this attribute is false.		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description		
	datatype.		
$\begin{array}{l}\text { filterPrivacy (Filter } \\ \text { Privacy) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the application has inspected the } \\ \text { workbook for personally identifying information (PII). If this flag is set, the application } \\ \text { warns the user any time the user performs an action that will insert PII into the } \\ \text { document. [Example: Inserting a comment might insert the user's name. end example] }\end{array}$		
A value of 1 or true indicates the application will warn the user when they insert PII into			
the workbook.			
A value of 0 or false indicates the application will not warn the user when they insert PII			
into the workbook; the workbook has not been inspected for PII.			
The default value for this attribute is false.		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description		
	$\begin{array}{l}\text { The default value for this attribute is false. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { refreshAllConnecti } \\ \text { ons (Refresh all } \\ \text { Connections on } \\ \text { Open) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the workbok shall refresh all the } \\ \text { connections to data sources during load. } \\ \text { The default value for this attribute is false. }\end{array}$		
$\begin{array}{l}\text { saveExternalLinkV } \\ \text { alues (Save External } \\ \text { Link Values) } \\ \text { datatype. }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the application will cache values } \\ \text { retrieved from other workbooks via an externally linking formula. Data is cached at save. }\end{array}$		
A value of 1 or true indicates data from externally linked formulas is cached. A			
supporting part is written out containing a cached cell table from the external workbook.			
A value of 0 or false indicates data from externally linked formulas is not cached.		$\}$	The default value for this attribute is true.
:---			
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.			

Attributes	Description
showObjects (Show Objects)	Specifies how the application shows embedded objects in the workbook. This attribute it optional. The default value for this attribute is "all." The possible values for this attribute are defined by the ST_Objects simple type (§18.18.48).
showPivotChartFilt er (Show Pivot Chart Filter)	Specifies a boolean value that indicates whether filtering options are shown for pivot charts in the workbook. A value of 1 or true indicates filtering options shall be shown for pivot charts.
A value of 0 or false indicates filtering options shall not be shown.	
The default value for this attribute is false.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT WorkbookPr) is located in §A.2. end note]

18.2.29 workbookProtection (Workbook Protection)

This element specifies options for protecting data in the workbook. Applications might use workbook protection to prevent anyone from accidentally changing, moving, or deleting important data. This protection can be ignored by applications which choose not to support this optional protection mechanism.

When a password is to be hashed and stored in this element, it shall be hashed as defined below, starting from a UTF-16LE encoded string value. If there is a leading BOM character (U+FEFF) in the encoded password it is removed before hash calculation.
[Note: Worksheet or workbook element protection should not be confused with file security. It is not meant to make your workbook safe from unintentional modification, and cannot protect it from malicious modification. end note]

Attributes	Description		
$\begin{array}{l}\text { lockRevision (Lock } \\ \text { Revisions) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the workbook is locked for revisions. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { lockStructure (Lock } \\ \text { Structure) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether structure of workbook is locked. } \\ \text { A value of } 1 \text { or true indicates the structure of the workbook is locked. Worksheets in the } \\ \text { workbook can't be moved, deleted, hidden, unhidden, or renamed, and new worksheets } \\ \text { can't be inserted. }\end{array}$		
A value of θ or false indicates the structure of the workbook is not locked.		$\}$	The default value for this attribute is false.
:---	\quad	The possible values for this attribute are defined by the W3C XML Schema boolean	
:---			
datatype.			

Attributes	Description	
		this algorithm to store new hash values, due to publically known breaks. end note]
	MD5	Specifies that the MD5 algorithm, as defined by RFC 1321, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-128	Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-160	Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-1	Specifies that the SHA-1 algorithm, as defined by ISO/IEC 101183:2004 shall be used.
	SHA-256	Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-384	Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-512	Specifies that the SHA-512 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	WHIRLPOOL	Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	[Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```< ... revisionsAlgorithmName="SHA-1" revisionsHashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The revisionsAlgorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm shall be used to generate a hash from the user-defined password. end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).	
revisionsHashValu e (Password Hash Value)	Specifies the hash value for the password stored for unlocking revisions in this workbook. This value shall be compared with the resulting hash value after hashing the usersupplied password using the algorithm specified by the preceding attributes and parent	

Attributes	$\begin{array}{l}\text { XML element, and if the two values match, the protection shall no longer be enforced. } \\ \text { If this value is omitted, then the reservationPassword attribute shall contain the } \\ \text { password hash for the workbook. } \\ \text { [Example: Consider a SpreadsheetML document with the following information stored in } \\ \text { one of its protection elements: } \\ \text { <... revisionsAlgorithmName="SHA-1" } \\ \text { revisionsHashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" /> }\end{array}$		
The revisionsHashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies			
that the user-supplied password must be hashed using the pre-processing defined by the			
parent element (if any) followed by the SHA-1 algorithm (specified via the			
revisionsAlgorithmName attribute value of SHA-1) and that the resulting has value must			
be 9oN7nWkCAyEZib1RomSJTjmPpCY= for the protection to be disabled. end example]		$]$	The possible values for this attribute are defined by the W3C XML Schema base64Binary
:---			
datatype.			

Attributes	Description		
Hashing Algorithm)	$\begin{array}{l}\text { of the iteration as the input for the next iteration) when attempting to compare a user- } \\ \text { supplied password with the value stored in the revisionsHashValue attribute. } \\ \text { [Rationale: Running the algorithm many times increases the cost of exhaustive search } \\ \text { attacks correspondingly. Storing this value allows for the number of iterations to be } \\ \text { increased over time to accommodate faster hardware (and hence the ability to run more } \\ \text { iterations in less time). end rationale] }\end{array}$		
[Example: Consider an Office Open XML document with the following information stored			
in one of its protection elements:			
<... revisionsSpinCount="100000"			
revisionHashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />		$\}$	The revisionsSpinCount attribute value of 100000 specifies that the hashing function
:---			
must be run one hundred thousand times to generate a hash value for comparison with			
the revisionsHashValue attribute. end example]			
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.			

Attributes	Description	
	RIPEMD-128	Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-160	Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-1	Specifies that the SHA-1 algorithm, as defined by ISO/IEC 101183:2004 shall be used.
	SHA-256	Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-384	Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-512	Specifies that the SHA-512 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
		Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	[Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```< ... workbookAlgorithmName="SHA-1" workbookHashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The workbookAlgorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm must be used to generate a hash from the user-defined password. end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).	
workbookHashVal ue (Password Hash Value)	Specifies the hash value for the password stored for unlocking this workbook. This value shall be compared with the resulting hash value after hashing the user-supplied password using the algorithm specified by the preceding attributes and parent XML element, and if the two values match, the protection shall no longer be enforced. If this value is omitted, then the reservationPassword attribute shall contain the password hash for the workbook. [Example: Consider a SpreadsheetML document with the following information stored in one of its protection elements: <... workbookAlgorithmName="SHA-1"	

Attributes	Description
	workbookHashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" /> The workbookHashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies that the user-supplied password must be hashed using the pre-processing defined by the parent element (if any) followed by the SHA-1 algorithm (specified via the workbookAlgorithmName attribute value of SHA-1) and that the resulting has value must be 90 N7nWkCAyEZib1RomSJTjmPpCY= for the protection to be disabled. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.
workbookSaltValu e (Salt Value for Password Verifier)	Specifies the salt which was prepended to the user-supplied password before it was hashed using the hashing algorithm defined by the preceding attribute values to generate the workbookHashValue attribute, and which shall also be prepended to the usersupplied password before attempting to generate a hash value for comparison. A salt is a random string which is added to a user-supplied password before it is hashed in order to prevent a malicious party from pre-calculating all possible password/hash combinations and simply using those pre-calculated values (often referred to as a "dictionary attack"). If this attribute is omitted, then no salt shall be prepended to the user-supplied password before it is hashed for comparison with the stored hash value. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: $\begin{aligned} & \text { <... workbookSaltValue="ZUdHa+D8F/OAKP3I7ssUnQ==" } \\ & \text { workbookHashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" /> } \end{aligned}$ The workbookSaltValue attribute value of ZUdHa+D8F/OAKP3I7ssUnQ== specifies that the user-supplied password must have this value prepended before it is run through the specified hashing algorithm to generate a resulting hash value for comparison. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.
workbookSpinCou nt (Iterations to Run Hashing Algorithm)	Specifies the number of times the hashing function shall be iteratively run (runs using each iteration's result plus a 4 byte value (0 -based, little endian) containing the number of the iteration as the input for the next iteration) when attempting to compare a usersupplied password with the value stored in the workbookHashValue attribute. [Rationale: Running the algorithm many times increases the cost of exhaustive search attacks correspondingly. Storing this value allows for the number of iterations to be increased over time to accommodate faster hardware (and hence the ability to run more iterations in less time). end rationale]

Attributes	Description
[Example: Consider an Office Open XML document with the following information stored	
in one of its protection elements:	
<... workbookSpinCount="100000"	
revisionHashValue="90N7nWkCAyEZib1RomSJTjmPpCY=" />	
The workbookSpinCount attribute value of 100000 specifies that the hashing function must be run one hundred thousand times to generate a hash value for comparison with the workbookHashValue attribute. end example]	
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT WorkbookProtection) is located in §A.2. end note]

18.2.30 workbookView (Workbook View)

This element specifies a single Workbook view.
Units for window widths and other dimensions are expressed in twips. Twip measurements are portable between different display resolutions. The formula is (screen pixels) * (20*72) / (logical device dpi), where the logical device dpi can be different for x and y coordinates.

Attributes	Description
activeTab (Active Sheet Index)	Specifies an unsignedInt that contains the index to the active sheet in this book view. The default value for this attribute is 0. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
autoFilterDateGrou ping (AutoFilter Date Grouping)	Specifies a boolean value that indicates whether to group dates when presenting the user with filtering options in the user interface.
A value of 1 or true indicates that dates are grouped.	
A value of 0 or false indicates that dates are not grouped.	
The default value for this attribute is true.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description		
	$\begin{array}{l}\text { The default value for this attribute is } 0 . \\ \text { The possible values for this attribute are defined by the W3C XML Schema unsignedInt } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { minimized } \\ \text { (Minimized) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether the workbook window is minimized. } \\ \text { A value of } 1 \text { or true indicates the workbook window is minimized. }\end{array}$		
	$\begin{array}{l}\text { A value of } \theta \text { or false indicates the workbook window is not minimized. } \\ \text { The default value for this attribute is false. }\end{array}$		
$\begin{array}{l}\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$			
oll (Show Horizontal			
Scroll)	$\begin{array}{l}\text { Specifies a boolean value that indicates whether to display the horizontal scroll bar in the } \\ \text { user interface. }\end{array}$		
A value of 1 or true indicates that the horizontal scrollbar shall be shown.			
A value of θ or false indicates that the horizontal scrollbar shall not be shown.			
The default value for this attribute is true.		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description
	datatype.
tabRatio (Sheet Tab Ratio)	Specifies ratio between the workbook tabs bar and the horizontal scroll bar. The default value for this attribute is 600. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
visibility (Visibility)	Specifies visible state of the workbook window. The default value for this attribute is "visible."
windowHeight (Window Height)	She possible values for this attribute are defined by the ST_Visibility simple type (§18.18.89).
twips.	
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT BookView) is located in §A.2. end note]

18.3 Worksheets

Sheets are the central structures within a workbook, and are where the user does most of their spreadsheet work. The most common type of sheet is the worksheet, which is represented as a grid of cells. Worksheet cells can contain text, numbers, dates, and formulas. Cells can be formatted as well. Workbooks usually contain more than one sheet. To aid in the analysis of data and making informed decisions, spreadsheet applications often implement features and objects which help calculate, sort, filter, organize, and graphically display information.

Since these features are often connected very tightly with the spreadsheet grid, these are also included in the sheet definition on disk.

Other types of sheets include chart sheets and dialog sheets.
Note that sheet information is organized into three main sections:

- Top-level sheet properties (everything before sheetData)
- The cell table (sheetData)
- Supporting sheet features (everything after sheetData)

18.3.1 Worksheets

The following elements define a sheet and its contents:

18.3.1.1 anchor (Object Cell Anchor)

This element specifies the position of an embedded object or embedded control.
[Example: The following example demonstrates an embedded object whose top-left corner is at the top-left point of the cell in the first column and first row and whose bottom-right corner is offset horizontally into the cell at the fifth column and eleventh row.

```
<oleObject ... >
    <objectPr ... >
            <anchor sizeWithCells="true">
                <from>
                    <col>0</col>
                    <colOff>0</colOff>
                    <row>0</row>
                    <rowOff>0</rowOff>
                </from>
                <to>
                    <col>4</col>
                    <colOff>182880</colOff>
                    <row>10</row>
                <rowOff>0</rowOff>
            </to>
        <anchor>
    </objectPr>
</oleObject>
end example]
```

Attributes	Description
moveWithCells	Specifies that the object moves with its underlying cells.

Attributes	Description		
(Move With Cells)	$\begin{array}{l}\text { [Example: } \\ \text { <anchor moveWithCells="true" ... > } \\ \text { end example] } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { sizeWithCells (Size } \\ \text { With Cells) }\end{array}$	$\begin{array}{l}\text { Specifies that the object resizes with its underlying cells. } \\ \text { [Example: }\end{array}$		
<anchor sizeWithCells="true" ... \gg			
end example]		$]$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

[Note: The W3C XML Schema definition of this element’s content model (CT ObjectAnchor) is located in §A.2. end note]

18.3.1.2 autoFilter (AutoFilter Settings)

AutoFilter temporarily hides rows based on a filter criteria, which is applied column by column to a table of data in the worksheet. This collection expresses AutoFilter settings.
[Example: This example expresses a filter indicating to 'show only values greater than 0.5 '. The filter is being applied to the range B3:E8, and the criteria is being applied to values in the column whose colId is 1 (zero based column numbering, from left to right). Therefore any rows must be hidden if the value in that particular column is less than or equal to 0.5 .

```
<autoFilter ref="B3:E8">
    <filterColumn colId="1">
            <customFilters>
                <customFilter operator="greaterThan" val="0.5"/>
        </customFilters>
    </filterColumn>
</autoFilter>
```

end example]

Attributes	Description
ref (Cell or Range Reference)	Reference to the cell range to which the AutoFilter is applied. The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).

[Note: The W3C XML Schema definition of this element's content model (CT AutoFilter) is located in §A.2. end note]

18.3.1.3 brk (Break)

Individual row or column breaks

Attributes	Description
id (Id)	Zero-based row or column Id of the page break. Breaks occur above the specified row and left of the specified column. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
man (Manual Page Break)	Manual Break flag. 1 means the break is a manually inserted break. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
max (Maximum)	Zero-based index of end row or column of the break. For row breaks, specifies column index; for column breaks, specifies row index.
min (Minimum)	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
Zero-based index of start row or column of the break. For row breaks, specifies column index; for column breaks, specifies row index.	
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

Attributes	Description
pt (Pivot-Created Page Break)	Flag indicating that a PivotTable created this break. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Break) is located in §A.2. end note]

18.3.1.4 c (Cell)

This collection represents a cell in the worksheet. Information about the cell's location (reference), value, data type, formatting, and formula is expressed here.
[Example: This example shows the information stored for a cell whose address in the grid is C6, whose style index is ' 6 ', and whose value metadata index is ' 15 '. The cell contains a formula as well as a calculated result of that formula.

```
    <c r="C6" s="1" vm="15">
    <f>CUBEVALUE("xlextdat9 Adventure Works",C$5,$A6)</f>
    <v>2838512.355</v>
</c>
```

end example]

While a cell can have a formula element f and a value element v, when the cell's type t is inlineStr then only the element is is allowed as a child element.

[Example:

Here is an example of expressing a string in the cell rather than using the shared string table.

```
<row r="1" spans="1:1">
    <c r="A1" t="inlineStr">
            <is><t>This is inline string example</t></is>
    </c>
</row>
end example]
```

Attributes	Description
cm (Cell Metadata Index)	The zero-based index of the cell metadata record associated with this cell. Metadata information is found in the Metadata Part. Cell metadata is extra information stored at the cell level, and is attached to the cell (travels through moves, copy / paste, clear, etc). Cell metadata is not accessible via formula reference.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	

Attributes	Description
	datatype.
ph (Show Phonetic)	A Boolean value indicating if the spreadsheet application should show phonetic information. Phonetic information is displayed in the same cell across the top of the cell and serves as a 'hint' which indicates how the text should be pronounced. This should only be used for East Asian languages. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
r (Reference)	An A1 style reference to the location of this cell The possible values for this attribute are defined by the ST_CellRef simple type (§18.18.7).
s (Style Index)	The index of this cell's style. Style records are stored in the Styles Part. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
t (Cell Data Type)	An enumeration representing the cell's data type. The possible values for this attribute are defined by the ST_CellType simple type (§18.18.11).
vm (Value Metadata Index)	The zero-based index of the value metadata record associated with this cell's value. Metadata records are stored in the Metadata Part. Value metadata is extra information stored at the cell level, but associated with the value rather than the cell itself. Value metadata is accessible via formula reference.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

[Note: The W3C XML Schema definition of this element’s content model (CT Cell) is located in §A.2. end note]

18.3.1.5 cellSmartTag (Cell Smart Tag)

Single smart tag associated with a cell. There can be more than one cellSmartTag for a cell.

Attributes	Description
deleted (Deleted)	Boolean flag indicating that the application shouldn't display a particular smart tag in the cell. [Example: When the user has chosen to explicitly remove the Smart Tag by interacting with the application's user interface. end example]
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	part.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

[Note: The W3C XML Schema definition of this element’s content model (CT CellSmartTag) is located in §A.2. end note]

18.3.1.6 cellSmartTagPr (Smart Tag Properties)

Represents a single property of a smart tag in a cell; contains a key-value pair.

Attributes	Description
key (Key Name)	Key name of a single property of a smart tag in a cell. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
val (Value)	String value of a single property of a smart tag in a cell. The possible values for this attribute are defined by the ST_Xstring simple type (\$22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT CellSmartTagPr) is located in §A.2. end note]

18.3.1.7 cellSmartTags (Cell Smart Tags)

The element is used to label the cell with a smart tag. A cell can be determined to have semantic meaning and the cell containing this data can be labeled with a smart tag. The actions which can be taken depend on the semantic meaning of the data and the actions that the application decides to associate with that type of smart tag.
[Example: If you recently sent mail to "Chad Rothschiller", and you type the name into a cell on the worksheet, the name is recognized and given a smart tag with actions you can take including Send Mail, Schedule a Meeting, Open Contact, or Add to Contacts.

```
end example]
```

An application can decide that the smart tag indicators appear in the cell in the worksheet.
This collection represents a collection of smart tags on a cell.
[Example: This example expresses a smart tag associated with cell A1. The @type is used to associate this smart tag with a workbook-level smart tag type defined in the workbook start part.

```
<cellSmartTags r="A1">
    <cellSmartTag type="0"/>
</cellSmartTags>
```

end example]

Attributes	Description
r (Reference)	Reference to the cell that contains this set of smart tags.
	The possible values for this attribute are defined by the ST_CellRef simple type (§18.18.7).

[Note: The W3C XML Schema definition of this element's content model (CT CellSmartTags) is located in §A.2. end note]

18.3.1.8 cellWatch (Cell Watch Item)

The watch window is a single UI location where the application user can keep track of certain cell formulas \& values which they have chosen to be in the set of watched cells. This element expresses the cell address of a cell being watched. It is always a reference to a single cell.

Attributes	Description
r (Reference)	Cell reference of the cell being watched.
	The possible values for this attribute are defined by the ST_CellRef simple type (§18.18.7).

[Note: The W3C XML Schema definition of this element's content model (CT CellWatch) is located in §A.2. end note]

18.3.1.9 cellWatches (Cell Watch Items)

Collection of cells on this worksheet being watched in the 'watch window'.
[Example: In this example, cells B3 and B4 are being watched.

```
<cellWatches>
    <cellWatch r="B3"/>
    <cellWatch r="B4"/>
</cellWatches>
```

end example]
[Note: The W3C XML Schema definition of this element's content model (CT CellWatches) is located in §A.2. end note]

18.3.1.10 cfRule (Conditional Formatting Rule)

This collection represents a description of a conditional formatting rule.

[Example:

This example shows a conditional formatting rule highlighting cells whose values are greater than 0.5 . Note that in this case the content of <formula> is a static value, but can also be a formula expression.

```
<conditionalFormatting sqref="E3:E9">
    <cfRule type="cellIs" dxfId="0" priority="1" operator="greaterThan">
        <formula>0.5</formula>
    </cfRule>
</conditionalFormatting>
```

end example]

Only rules with a type attribute value of expression support formula syntax.

Attributes	Description
aboveAverage (Above Or Below Average)	Indicates whether the rule is an "above average" rule. 1 indicates 'above average'. This attribute is ignored if type is not equal to aboveAverage. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
bottom (Bottom N)	Indicates whether a "top/bottom $\mathrm{n} " ~ r u l e ~ i s ~ a ~ " b o t t o m ~ n " ~ r u l e . ~$ attribute is ignored if type is not equal to top10.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype. This	

Attributes	Description
equalAverage (Equal Average)	Flag indicating whether the 'aboveAverage' and 'belowAverage' criteria is inclusive of the average itself, or exclusive of that value. 1 indicates to include the average value in the criteria. This attribute is ignored if type is not equal to aboveAverage. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
operator (Operator)	The operator in a "cell value is" conditional formatting rule. This attribute is ignored if type is not equal to cellis The possible values for this attribute are defined by the ST_ConditionalFormattingOperator simple type (§18.18.15).
$\begin{aligned} & \text { percent (Top } 10 \\ & \text { Percent) } \end{aligned}$	Indicates whether a "top/bottom n " rule is a "top/bottom n percent" rule. This attribute is ignored if type is not equal to top10. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
priority (Priority)	The priority of this conditional formatting rule. This value is used to determine which format should be evaluated and rendered. Lower numeric values are higher priority than higher numeric values, where 1 is the highest priority. The possible values for this attribute are defined by the W3C XML Schema int datatype.
rank (Rank)	The value of " n " in a "top/bottom n " conditional formatting rule. This attribute is ignored if type is not equal to top10. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
stdDev (StdDev)	The number of standard deviations to include above or below the average in the conditional formatting rule. This attribute is ignored if type is not equal to aboveAverage. If a value is present for stdDev and the rule type = aboveAverage, then this rule is automatically an "above or below N standard deviations" rule. The possible values for this attribute are defined by the W3C XML Schema int datatype.
stopIfTrue (Stop If True)	If this flag is 1 , no rules with lower priority shall be applied over this rule, when this rule evaluates to true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
text (Text)	The text value in a "text contains" conditional formatting rule. This attribute is ignored if type is not equal to containsText. The possible values for this attribute are defined by the W3C XML Schema string datatype.

Attributes	Description
timePeriod (Time Period)	The applicable time period in a "date occurring..." conditional formatting rule. This attribute is ignored if type is not equal to timePeriod. The possible values for this attribute are defined by the ST_TimePeriod simple type (§18.18.82).
type (Type)	Type of conditional formatting rule. The possible values for this attribute are defined by the ST_CfType simple type (§18.18.12).

[Note: The W3C XML Schema definition of this element’s content model (CT CfRule) is located in §A.2. end note]

18.3.1.11 cfvo (Conditional Format Value Object)

Describes the values of the interpolation points in a gradient scale.
[Example: This example demonstrates a color scale conditional formatting rule, which defines a color for the minimum value in the range of cell values, a color for the midpoint value, and a color for the maximum value in the in the range of cell values. Information is given about how to define the midpoint. In this case, it is the 50 percent mark.

```
<colorScale>
    <cfvo type="min" val="0"/>
    <cfvo type="percent" val="50"/>
    <cfvo type="max" val="0"/>
    <color rgb="FFFF0000"/>
    <color rgb="FFFFFF00"/>
    <color rgb="FF00B050"/>
</colorScale>
```

The first <cfvo> element corresponds with the first <color> definition, and so on.
end example]

Attributes	Description
gte (Greater Than Or Equal)	For icon sets, determines whether this threshold value uses the greater than or equal to operator. O indicates 'greater than' is used instead of 'greater than or equal to'. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
type (Type)	The type of this conditional formatting value object. [Example: 'min' and 'max' would be used (in conjunction with @val) to express the lower and upper values to be used in a gradient. end example]

Attributes	Description
	The possible values for this attribute are defined by the ST_CfvoType simple type (§18.18.13).
val (Value)	The value of this conditional formatting value object. The possible values for this attribute are defined by the ST_Xstring simple type (\$22.9.2.19).

[Note: The W3C XML Schema definition of this element’s content model (CT Cfvo) is located in §A.2. end note]

18.3.1.12 chartsheet (Chart Sheet)

This is the root element of Chartsheet Parts in a SpreadsheetML document.
[Note: The W3C XML Schema definition of this element's content model (CT Chartsheet) is located in §A.2. end note]

18.3.1.13 col (Column Width \& Formatting)

Defines column width and column formatting for one or more columns of the worksheet.
[Example: This example shows that column 5 (E) has width and style information applied.

```
    <col min="5" max="5" width="9.140625" style="3"/>
end example]
```

Attributes	Description
bestFit (Best Fit Column Width)	Flag indicating if the specified column(s) is set to 'best fit'. 'Best fit' is set to true under these conditions: - The column width has never been manually set by the user, AND - The column width is not the default width - - 'Best fit' means that when numbers are typed into a cell contained in a 'best fit' column, the column width should automatically resize to display the number. [Note: In best fit cases, column width must not be made smaller, only larger. end note] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
collapsed (Collapsed)	Flag indicating if the outlining of the affected column(s) is in the collapsed state. See description of row collapsed and outlinePr element's summaryBelow and summaryRight attributes for detailed information. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

Attributes	Description
customWidth (Custom Width)	Flag indicating that the column width for the affected column(s) is different from the default or has been manually set. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
hidden (Hidden Columns)	Flag indicating if the affected column(s) are hidden on this worksheet. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
max (Maximum Column)	Last column affected by this 'column info' record. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
min (Minimum Column)	First column affected by this 'column info' record. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
outlineLevel (Outline Level)	Outline level of affected column(s). Range is 0 to 7 . See description of outlinePr element's summaryBelow and summaryRight attributes for detailed information. The possible values for this attribute are defined by the W3C XML Schema unsignedByte datatype.
phonetic (Show Phonetic Information)	Flag indicating if the phonetic information should be displayed by default for the affected column(s) of the worksheet. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
style (Style)	Default style for the affected column(s). Affects cells not yet allocated in the column(s). In other words, this style applies to new columns. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
width (Column Width)	Column width measured as the number of characters of the maximum digit width of the numbers $0,1,2, \ldots, 9$ as rendered in the normal style's font. There are 4 pixels of margin padding (two on each side), plus 1 pixel padding for the gridlines. width $=$ Truncate ([\{Number of Characters $\} *\{$ Maximum Digit Width $\}+\{5$ pixel padding\}]/\{Maximum Digit Width ${ }^{*}$ 256)/256 [Example: Using the Calibri font as an example, the maximum digit width of 11 point font size is 7 pixels (at 96 dpi). In fact, each digit is the same width for this font. Therefore, if the cell width is 8 characters wide, the value of this attribute must be Truncate $\left([8 * 7+5] / 7^{*} 256\right) / 256=8.7109375$. end example]

Attributes	Description
	To translate the value of width in the file into the column width value at runtime (expressed in terms of pixels), use this calculation: $=$ Truncate $(((256$ * $\{$ width $\}+$ Truncate $(128 /\{$ Maximum Digit Width $\}) / 256) *\{$ Maximum Digit Width\}) [Example: Using the same example as above, the calculation would be Truncate $\left(\left(\left(256^{*} 8.7109375+\right.\right.\right.$ Truncate $\left.\left.\left.(128 / 7)\right) / 256\right) * 7\right)=61$ pixels. end example] To translate from pixels to character width, use this calculation: $=$ Truncate((\{pixels\}-5)/\{Maximum Digit Width\} * 100+0.5)/100 [Example: Using the example above, the calculation would be Truncate((61$5) / 7 * 100+0.5) / 100=8$ characters. end example] [Note: when wide borders are applied, part of the left/right border must overlap with the 2 pixel padding on each side. Wide borders do not affect the width calculation of the column. end note] [Note: When the sheet is in the mode to view formulas instead of values, the pixel width of the column is doubled. end note] The possible values for this attribute are defined by the W3C XML Schema double datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT Col) is located in §A.2. end note]

18.3.1.14 colBreaks (Vertical Page Breaks)

Vertical page break information used for print layout view, page layout view, drawing print breaks in normal view, and for printing the worksheet.

[Example:

In this example, a page break has been inserted at C3 (the break occurs left and above C3).

```
<colBreaks count="1" manualBreakCount="1">
    <brk id="2" max="1048575" man="1"/>
</colBreaks>
```

end example]

Attributes	Description
count (Page Break Count)	Number of breaks in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
manualBreakCount (Manual Break Count)	Number of manual breaks in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PageBreak) is located in §A.2. end note]

18.3.1.15 color (Data Bar Color)

One of the colors associated with the data bar or color scale.
The auto attribute shall not be used in the context of data bars.

Attributes	Description
auto (Automatic)	A boolean value indicating the color is automatic and system color dependent. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
indexed (Index)	Indexed color value. Only used for backwards compatibility. References a color in indexedColors. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
rgb (Alpha Red Green Blue Color Value)	Standard Alpha Red Green Blue color value (ARGB). The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
theme (Theme Color)	A zero-based index into the <clrScheme> collection (§20.1.6.2), referencing a particular <sysClr> or <srgbClr> value expressed in the Theme part. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
tint (Tint)	Specifies the tint value applied to the color. If tint is supplied, then it is applied to the RGB value of the color to determine the final color applied. The tint value is stored as a double from -1.0 .. 1.0, where -1.0 means 100\% darken and

Attributes	Description
	1.0 means 100% lighten. Also, 0.0 means no change.
	In loading the RGB value, it is converted to HLS where HLS values are ($0 . . \mathrm{HLSMAX}$), where
	HLSMAX is currently 255.
	[Example:
	Here are some examples of how to apply tint to color:
	If (tint < 0)
	Lum' $=$ Lum * (1.0 + tint)
	For example: Lum = 200; tint =-0.5; Darken 50%
	Lum ${ }^{\prime}=200$ * (0.5) $=>100$
	For example: Lum = 200; tint =-1.0; Darken 100\% (make black)
	Lum' $=200$ * (1.0-1.0) $=>0$
	If (tint > 0)
	Lum ${ }^{\prime}=$ Lum * (1.0-tint) $+($ HLSMAX - HLSMAX * (1.0-tint) $)$
	For example: Lum = 100; tint $=0.75$; Lighten 75%
	Lum ${ }^{\prime}=100 *(1-.75)+($ HLSMAX - HLSMAX*(1-.75))
	$=100 * .25+(255-255 * .25)$
	$=25+(255-63)=25+192=217$
	For example: Lum = 100; tint = 1.0; Lighten 100\% (make white)
	Lum $^{\prime}=100 *(1-1)+\left(\operatorname{HLSMAX}^{\text {- HLSMAX* }}\right.$ (1-1) $)$
	$=100 * 0+(255-255 * 0)$
	$=0+(255-0)=255$
	end example]
	The possible values for this attribute are defined by the W3C XML Schema double datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Color) is located in §A.2. end note]

18.3.1.16 colorScale (Color Scale)

Describes a gradated color scale in this conditional formatting rule.
[Example:

```
<colorScale>
    <cfvo type="min" val="0"/>
    <cfvo type="max" val="0"/>
    <color theme="5"/>
    <color rgb="FFFFEF9C"/>
</colorScale>
```

end example]
[Note: The W3C XML Schema definition of this element's content model (CT ColorScale) is located in §A.2. end note]

18.3.1.17 cols (Column Information)

Information about whole columns of the worksheet.

[Example:

This example shows that column 4 (D) has 'best fit' applied to it, which is also a custom width. Also, column 5 (E) is listed as having a custom width and a style applied at the column level (as opposed to the cell level).

```
<cols>
    <col min="4" max="4" width="12" bestFit="1" customWidth="1"/>
    <col min="5" max="5" width="9.140625" style="3"/>
</cols>
end example]
```

[Note: The W3C XML Schema definition of this element's content model (CT Cols) is located in §A.2. end note]

18.3.1.1 conditionalFormatting (Conditional Formatting)

A Conditional Format is a format, such as cell shading or font color, that a spreadsheet application can automatically apply to cells if a specified condition is true. This collection expresses conditional formatting rules applied to a particular cell or range.
[Example: This example applies a 'top10' rule to the cells C3:C8. The @dxfId references the formatting (defined in the styles part) to be applied to cells that match the criteria.

```
<conditionalFormatting sqref="C3:C8">
    <cfRule type="top10" dxfId="1" priority="3" rank="2"/>
</conditionalFormatting>
```

end example]

Attributes	Description
pivot (PivotTable Conditional	Flag indicating if this is conditional formatting associated with a PivotTable.

Attributes	Description
Formatting)	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
sqref (Sequence of Refernces)	Range over which these conditional formatting rules apply. The possible values for this attribute are defined by the ST_Sqref simple type (§18.18.76).

[Note: The W3C XML Schema definition of this element's content model (CT ConditionalFormatting) is located in §A.2. end note]

18.3.1.19 control (Embedded Control)

A single embedded control.

Attributes	Description
id (Relationship Id)	This relationship ID references an Embedded Control Data part which contains control- specific properties and state information about this particular embedded control.
Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	The possible values for this attribute are defined by the ST_RelationshipId simple type (§22.8.2.1).
name (Control Name)	The code name of the control. The possible values for this attribute are defined by the W3C XML Schema string datatype.
shapeId (Shape Id)	ID of the drawing shape in the DrawingML part with which this control is associated. The drawing is used to draw the control in the sheet.
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT Control) is located in §A.2. end note]

18.3.1.20 controlPr (Embedded Control Properties)

This element specifies the visual, positional and cell linkage properties of an embedded control.
[Example: The following example demonstrates an non-printing embedded control linked to cell A4 that is represented as an image:
<controls>
<control ... >

```
        <controlPr print="false" autoLine="false" linkedCell="$A$4" cf="pict"
r:id="rId5">
            <anchor sizeWithCells="true">
                <from> ... </from>
                <to> ... </to>
            </anchor>
            </controlPr>
        </control>
</controls>
```

end example]

Attributes	Description
altText (Alternative Text)	Specifies alternative text for the object, for use by assistive technologies or applications. [Example: <controlPr altText="Alternate text" ... /> end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
autoFill (Automatic Fill Flag)	Specifies whether the object's fill formatting is provided automatically by the application. [Example: <controlPr autoFill="false" ... /> end example] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
autoLine (Automatic Line Flag)	Specifies whether the object's line formatting is provided automatically by the application. [Example: <controlPr autoLine="false" ... /> end example] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
autoPict (Automatic	Specifies whether the object's size is formatted automatically by the application.

Attributes	Description
Size Flag)	[Example: <controlPr autoPict="false" ... /> end example] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
cf (Image Format)	Specifies the image format used to render the object. [Example: <controlPr cf="pict" ... /> end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
defaultSize (Default Size Flag)	Specifies whether the object is at its default size. [Example: <controlPr defaultSize="false" ... /> end example] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
disabled (Disabled Flag)	Specifies whether the object is allowed to run an attached macro. ```[Example: \\ <controlPr disabled="true" ... /> \\ end example]``` The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
id (Relationship ID for Embedded Control Properties) Namespace: http://purl.oclc.or	Specifies the relationship ID for the relationship which contains the properties for this embedded control. This property bag is contained in a separate part within the package. The relationship explicitly targeted by this attribute shall be of relationship type http://purl.oclc.org/ooxml/officeDocument/relationships/control or the document shall be conisdered non-conformant.

Attributes	Description
g/ooxml/officeDoc ument/relationshi ps	If this attribute is omitted, then the embedded control shall be given no property bag when instantiated. [Example: Consider the following WordprocessingML markup for an embedded control in a document: $\begin{aligned} & \text { <w:control r:id="rId5" w:id="CheckBox1" w:name="CheckBox1" } \\ & \text { w:shapeid="_x0000_s1027" w:class="shape" w:w="145" w:h="28" } \\ & \text { w:align="left" /> } \end{aligned}$ The id attribute in the relationship reference namespace specifies that the relationship with relationship ID rId5 must contain the property data for this embedded control. end example] The possible values for this attribute are defined by the ST_RelationshipId simple type (§22.8.2.1).
linkedCell (Linked Formula)	Specifies the cell the control is linked to, using standard cell A1-style reference syntax as described in $\S 18.17 .2 .3 .1$. The value in the linked cell and the index of the selected item in the object are linked together. This link is ignored if the control allows multiple selections. [Example: <controlPr linkedCell="\$A\$4" ... /> end example] The possible values for this attribute are defined by the ST_Formula simple type (§18.18.35).
listFillRange (List Items Source Range)	Specifies the range of source data cells used to populate the list box, using standard A1style cell reference syntax as described in §18.17.2.3.1. [Example: <controlPr listFillRange="\$A\$1:\$A\$15" ... /> end example] The possible values for this attribute are defined by the ST_Formula simple type (§18.18.35).
locked (Locked Flag)	Specifies that the object is locked when the sheet is protected. [Example:

Attributes	$\begin{array}{l}\text { <controlPr locked="false" ... /> } \\ \text { end example] }\end{array}$		
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		$]$	macro (Custom
:---			
Function)		Specifies the custom function associated with the object. [Example: A macro script, add-	
:---			
in function, and so on. end example]			
[Example:			
<controlPr macro="Button1_Click()" ... />			
end example]			
The possible values for this attribute are defined by the ST_Formula simple type			
(§18.18.35).			

Attributes	Description
	end example] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ControlPr) is located in §A.2. end note]

18.3.1.21 controls (Embedded Controls)

Worksheets can have embedded controls embedded in them. This collection is a listing of embedded controls in this worksheet. This collection is used to reference individual Embedded Control Data part definitions, enumerate the code name of each control, and reference drawing information used to draw the control.
[Note: The W3C XML Schema definition of this element's content model (CT Controls) is located in §A.2. end note]

18.3.1.22 customPr (Custom Property)

The custom property element provides a mechanism to store name/value pairs of arbitrary user-defined data. The name is stored in the attribute name, the arbitrary data is stored in the binary part referenced by the relationshipld.
[Note: There is nothing in the binary part except the arbitrary data itself.
Custom XML Data Properties provide a preferred mechanism for storing arbitrary data. The customPr supports legacy third-party document components, as well as those situations that have a stringent need for binary parts. end note]

Attributes	Description
id (Relationship Id)	This relationship references the binary part containing the specified custom properties.
Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	The possible values for this attribute are defined by the ST_RelationshipId simple type $(\$ 22.8 .2 .1)$.
name (Custom Property Name)	Name of the custom property The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element’s content model (CT CustomProperty) is located in §A.2. end note]

18.3.1.23 customProperties (Custom Properties)

This collection is used to reference binary parts containing arbitrary user-defined data.
[Note: The W3C XML Schema definition of this element's content model (CT CustomProperties) is located in §A.2. end note]

18.3.1.24 customSheetView (Custom Chart Sheet View)

This element defines custom view properties for chart sheets. [Note: See customSheetView (§18.3.1.25) for an example. end note]

Attributes	Description
guid (GUID)	Unique identifier of this custom view The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
scale (Print Scale)	Print scaling, representing percent values. The values of this attribute shall be restricted to the range from 10 to 400. Horizontal \& Vertical scale together. [Example: $10-10 \%$ $20-20 \%$
	... $100-100 \%$ \ldots $400-400 \%$
	end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
state (Visible State)	Visibility state of the sheet. The possible values for this attribute are defined by the ST_SheetState simple type (§18.18.68).
zoomToFit (Zoom	Flag indicating whether chart sheet is zoom to fit window. To Fit)
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CustomChartsheetView) is located in §A.2. end note]

18.3.1.25 customSheetView (Custom Sheet View)

This collection stores information pertaining to one custom sheet view definition. A custom view is a collection of settings defining a particular view of the sheet. These views can be selected by the user for quick access to predefined views of the sheet.
[Example: This example indicates that there is both a horizontal and vertical split in the sheet view, and that the top left cell of the bottom right pane is F7. Page margin, print options, page setup, and header / footer information is also stored with this view.

```
<customSheetView guid="{F3A061A9-D5FD-4F9C-A7CD-483AD476BA25}"
    sizeWithWindow="0">
    <pane xSplit="5" ySplit="6" topLeftCell="F7"/>
    <selection/>
    <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3"
            footer="0.3"/>
    <printOptions gridLinesSet="0"/>
    <pageSetup paperSize="0" scale="0" orientation="portrait" printDriver="0"
            horizontalDpi="0" verticalDpi="0" copies="0"/>
    <headerFooter/>
</customSheetView>
```

end example]

Attributes	Description
colorId (Color Id)	Index to the color value for the text in row/column headings and gridlines for this custom view. This is an 'index color value' (ICV) rather than rgb value. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
filter (Filtered List)	Flag indicating whether the view contains a filtered range. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
filterUnique (Filter)	Indicates whether an advanced filter has been applied, and the option to filter out duplicate records from the data list has been selected, in this custom view.
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.	
fitToPage (Fit To	Flag indicating whether this view should be fit to page when printing this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
guid (GUID)	Unique identifier of this custom view. This is used to ensure uniqueness. It is generated when the view is created. Shall correspond to a customWorkbookView guid value in the

Attributes	Description
	workbook Start Part. The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
hiddenColumns (Hidden Columns)	Flag indicating that there is one or more hidden column(s) in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
hiddenRows (Hidden Rows)	Flag indicating that there is one or more hidden row(s) in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
outlineSymbols (Show Outline Symbols)	Flag indicating whether outline symbols are displayed in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
printArea (Print Area Defined)	Flag indicating whether a print area is defined as part of this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
scale (Print Scale)	Print scaling for this custom view. The values of this attribute shall be restricted to the range from 10 to 400. [Example: 10-10\% 20-20\% 100-100\% 400-400\% end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
showAutoFilter (Show AutoFilter Drop Down Controls)	Flag indicating whether the autofilter dropdown buttons are visible in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showFormulas (Show Formulas)	Flag indicating whether formulas are shown in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showGridLines	Flag indicating whether gridlines are shown in this custom view.

Attributes	Description
(Show Grid Lines)	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showPageBreaks (Show Page Breaks)	Flag indicating whether page breaks are shown in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showRowCol (Show Headers)	Flag indicating whether row and column headers are shown in this custom view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showRuler (Show Ruler)	Flag indicating whether to show the ruler in this custom view. Only applicable if this Custom View is in Page Layout View. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
state (Visible State)	Visibility state for this custom view. The possible values for this attribute are defined by the ST_SheetState simple type (§18.18.68).
topLeftCell (Top Left Visible Cell)	Location of the top left visible cell in the bottom right pane in this custom view (when in Left-to-Right mode). The possible values for this attribute are defined by the ST_CellRef simple type (§18.18.7).
zeroValues (Show	Indicates the view type for this Custom View Zero Values) The possible values for this attribute are defined by the ST_SheetViewType simple type (§18.18.69).
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT CustomSheetView) is located in §A.2. end note]

18.3.1.26 customSheetViews (Custom Chart Sheet Views)

Collection of custom Chart Sheet View information.
[Note: The W3C XML Schema definition of this element's content model (CT CustomChartsheetViews) is located in §A.2. end note]

18.3.1.27 customSheetViews (Custom Sheet Views)

This is a collection of custom sheet views.
[Note: The W3C XML Schema definition of this element's content model (CT CustomSheetViews) is located in §A.2. end note]

18.3.1.28 dataBar (Data Bar)

Describes a data bar conditional formatting rule.

[Example:

In this example a data bar conditional format is expressed, which spreads across all cell values in the cell range, and whose color is blue.

```
<dataBar>
    <cfvo type="min" val="0"/>
    <cfvo type="max" val="0"/>
    <color rgb="FF638EC6"/>
</dataBar>
```

end example]

The length of the data bar for any cell can be calculated as follows:
Data bar length $=$ minLength + (cell value - minimum value in the range) / (maximum value in the range minimum value in the range) * (maxLength - minLength),
where min and max length are a fixed percentage of the column width (by default, 10% and 90% respectively.)
The minimum difference in length (or increment amount) is 1 pixel.

Attributes	Description
maxLength (Maximum Length)	The maximum length of the data bar, as a percentage of the cell width. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
minLength (Minimum Length)	The minimum length of the data bar, as a percentage of the cell width. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
showValue (Show Values)	Indicates whether to show the values of the cells on which this data bar is applied. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT DataBar) is located in §A.2. end note]

18.3.1.29 dataConsolidate (Data Consolidate)

Data consolidation settings. The dataRefs are the set of source ranges containing data to consolidate. The function indicates the function that shall be used to consolidate the data.

[Example:

This example demonstrates consolidating the ranges A1:C1 and A3:C3 by using the 'count' function.

```
<dataConsolidate function="count">
    <dataRefs count="2">
                <dataRef ref="A1:C1" sheet="Sheet1"/>
        <dataRef ref="A3:C3" sheet="Sheet1"/>
    </dataRefs>
</dataConsolidate>
```

end example]

Attributes	Description
function (Function Index)	Indicates which function to use when consolidating the ranges. The possible values for this attribute are defined by the ST_DataConsolidateFunction simple type (§18.18.17).
link (Link)	Create links to source data. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
startLabels (Use Starting Column Labels)	Use labels in first column. Both startLabels and topLabels can be true at the same time. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
topLabels (Labels In Top Row)	Use labels in top row. Both leftLabels and topLabels can be true at the same time. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
xml:space (Content Contains Significant Whitespace)	Specifies how white space should be handled for the contents of this element using the W3C space preservation rules.
Namespace: http://www.w3.org	The possible values for this attribute are defined by §2.10 of the XML 1.0 specification.
XML/1998/namesp	

[Note: The W3C XML Schema definition of this element's content model (CT DataConsolidate) is located in §A.2. end note]

18.3.1.30 dataRef (Data Consolidation Reference)

A single data consolidate reference. One dataRef shall use either name or sheet \& ref, but not both on the same dataRef.

Attributes	Description
id (relationship Id)	Used only when the source range is external to this workbook.
Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	The possible values for this attribute are defined by the ST_RelationshipId simple type $(\S 22.8 .2 .1)$.
name (Named Range)	Named range, either in this workbook or the external workbook referenced by r:Id. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
ref (Reference)	Cell range. The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
sheet (Sheet Name)	Sheet name. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT DataRef) is located in §A.2. end note]

18.3.1.31 dataRefs (Data Consolidation References)

Data consolidate reference collection.

Attributes	Description
count (Data Consolidation Reference Count)	Count of data consolidate references. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT DataRefs) is located in §A.2. end note]

18.3.1.32 dataValidation (Data Validation)

A single item of data validation defined on a range of the worksheet.

Attributes	Description
allowBlank (Allow Blank)	A boolean value indicating whether the data validation allows the use of empty or blank entries. 1 means empty entries are OK and do not violate the validation constraints. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
error (Error Message)	Message text of error alert. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
errorStyle (Data Validation Error Style)	The style of error alert used for this data validation. The possible values for this attribute are defined by the ST_DataValidationErrorStyle simple type (§18.18.18).
errorTitle (Error Alert Text)	Title bar text of error alert. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
imeMode (IME Mode Enforced)	The IME (input method editor) mode enforced by this data validation. Only applies for these languages: - Chinese Simplified - Chinese Traditional - Japanese - Korean - When imeMode is set, the input for the cell can be restricted to specific sets of characters, as specified by the value of imeMode. See the simple type referenced below for additional details. When imeMode is set but the application's language is not one of the languages listed above, then the default value is noControl. The possible values for this attribute are defined by the ST_DataValidationImeMode simple type (§18.18.19).
operator (Operator)	The relational operator used with this data validation. The possible values for this attribute are defined by the ST_DataValidationOperator simple type (§18.18.20).

Attributes	\quad Description		
prompt (Input Prompt)	Message text of input prompt. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).		
promptTitle (Prompt Title)	Title bar text of input prompt. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).		
showDropDown (Show Drop Down)	A boolean value indicating whether to display a dropdown combo box for a list type data validation.		
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		\quad	showErrorMessage
:---			
A boolean value indicating whether to display the error alert message when an invalid			
value has been entered, according to the criteria specified.			
(Show Error			
Message)	\quad	The possible values for this attribute are defined by the W3C XML Schema boolean	
:---			
datatype.			

[Note: The W3C XML Schema definition of this element's content model (CT DataValidation) is located in §A.2. end note]

18.3.1.33 dataValidations (Data Validations)

This collection expresses all data validation information for cells in a sheet which have data validation features applied.

Data validation is used to specify constraints on the data that can be entered into a cell. Additional UI can be provided to help the user select values (e.g., a dropdown control on the cell or hover text when the cell is active), and to help the user understand why a particular entry was disallowed (e.g., alerts and messages).

Various data types can be selected, and logical operators (e.g., greater than, less than, equal to, etc) can be used. Additionally, instead of specifying an explicit set of values that are permitted, a cell or range reference can be used.

An input message can be specified to help the user know what kind of value is expected, and a warning message (and warning type) can be specified to alert the user when they've entered data which is not permitted based on the data validations specified in the worksheet.
[Example:

```
<dataValidations count="1">
    <dataValidation type="whole" errorStyle="warning" operator="greaterThan"
            showInputMessage="1" showErrorMessage="1" errorTitle="Invalid Data"
            error="The value must be a whole number greater than 0."
            promptTitle="Whole Number"
            prompt="Please enter a whole number greater than 0." sqref="A1">
            <formula1>0</formula1>
    </dataValidation>
</dataValidations>
```

end example]

Attributes	Description
count (Data Validation Item Count)	The expected number of data validation items for this worksheet. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
disablePrompts (Disable Prompts)	A boolean value indicating whether all input prompts for the worksheet are disabled. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
xWindow (Top Left Corner (X Coodrinate))	The x-coordinate (relative to window) of top-left corner of the data validation input prompt (textbox). This is per sheet, not per cell. Units in pixels.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.	
yWindow (Top Left Corner (Y Coordinate))	The y-coordinate (relative to window) of top-left corner of the data validation input prompt (textbox). This is per sheet, not per cell. Units in pixels.
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT DataValidations) is located in §A.2. end note]

18.3.1.34 dialogsheet (Dialog Sheet)

This is the root element for Dialogsheet parts within a SpreadsheetML document.
[Note: The W3C XML Schema definition of this element’s content model (CT Dialogsheet) is located in §A.2. end note]

18.3.1.35 dimension (Worksheet Dimensions)

This element specifies the used range of the worksheet. It specifies the row and column bounds of used cells in the worksheet. This is optional and is not required. Used cells include cells with formulas, text content, and cell formatting. When an entire column is formatted, only the first cell in that column is considered used.

[Example:

```
    <dimension ref="A1:C2"/>
end example]
```

Attributes	Description
ref (Reference)	The row and column bounds of all cells in this worksheet. Corresponds to the range that would contain all c elements written under sheetData. Does not support whole column or whole row reference notation.
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).	

[Note: The W3C XML Schema definition of this element’s content model (CT SheetDimension) is located in §A.2. end note]

18.3.1.36 drawing (Drawing)

This element indicates that the sheet contains drawing components built on the drawingML platform. The relationship Id references the part containing the drawingML definitions.

Attributes	Description
id (Relationship id)	Relationship Id referencing a part containing drawingML definitions for this worksheet.
Namespace:	The possible values for this attribute are defined by the ST_RelationshipId simple type
http://purl.oclc.or	(§22.8.2.1).
g/ooxml/officeDoc	
ument/relationshi	
ps	

[Note: The W3C XML Schema definition of this element's content model (CT Drawing) is located in §A.2. end note]

18.3.1.37 drawingHF (Drawing Reference in Header Footer)

This element specifies the usage of drawing objects rendered in the header / footer of the sheet. It specifies an explicit relationship to the part containing the DrawingML shapes used in the header / footer. It also indicates where in the header / footer each shape belongs. One drawing object can appear in each of the left side, center and right side of the header and footer.
[Example: This example shows a worksheet with graphics in the header. The DrawingML part referred to by rld2 contains at least two objects. The object with ID 6 is shown in the left side of the header on the first page only. The object with ID 7 is shown in the left side of the header for the other pages.

```
<worksheet ... >
    ..
    <headerFooter differentFirst="1" ... >
        ...
    </headerFooter>
    <drawingHF r:id="rId2" lho="7" lhf="6"/>
</worksheet>
```

end example]

Attributes	Description
cfe (Center Footer for Even Pages)	Specifies the DrawingML shape to be used for the center of the footer on even pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... cfe="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
cff (Center Footer for First Page)	Specifies the DrawingML shape to be used for the center of the footer on the first page if the differentFirst attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... cff="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

Attributes	Description
cfo (Center Footer for Odd Pages)	Specifies the DrawingML shape to be used for the center of the footer on odd pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. If the differentOddEven attribute is false, this attribute specifies the DrawingML shape to be used for the center of the footer on both odd and even pages. [Example: <drawingHF ... cfo="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
che (Center Header for Even Pages)	Specifies the DrawingML shape to be used for the center of the header on even pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... che="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
chf (Center Header for First Page)	Specifies the DrawingML shape to be used for the center of the header on the first page if the differentFirst attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... chf="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
cho (Center Header for Odd Pages)	Specifies the DrawingML shape to be used for the center of the header on odd pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. If the differentOddEven attribute is false, this attribute specifies the DrawingML shape to be used for the center of the header on both odd and even pages. [Example: <drawingHF ... cho="5"/>

Attributes	Description
	end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
id (Relationship ID for Embedded Control Properties) Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	Specifies the relationship ID for the relationship to the DrawingML part that contains the drawing objects used in the header and footer. This DrawingML part is a separate part within the package. [Example: <drawingHF r:id="rId2" lho="7" lhf="6"/> The id attribute in the relationship reference namespace specifies that the relationship with relationship ID rId5 must contain the drawing objects used in the header and footer. end example] The possible values for this attribute are defined by the ST_RelationshipId simple type (§22.8.2.1).
lfe (Left Footer for Even Pages)	Specifies the DrawingML shape to be used for the left side of the footer on even pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... lfe="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
lff (Left Footer for First Page)	Specifies the DrawingML shape to be used for the left side of the footer on the first page if the differentFirst attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... lff="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
lfo (Left Footer for Odd Pages)	Specifies the DrawingML shape to be used for the left side of the footer on odd pages if the differentOddEven attribute of the corresponding headerFooter element

Attributes	Description
	(§18.3.1.46) is true. If the differentOddEven attribute is false, this attribute specifies the DrawingML shape to be used for the left side of the footer on both odd and even pages. [Example: <drawingHF ... lfo="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
lhe (Left Header for Even Pages)	Specifies the DrawingML shape to be used for the left side of the header on even pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... lhe="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
lhf (Left Header for First Page)	Specifies the DrawingML shape to be used for the left side of the header on the first page if the differentFirst attribute of the corresponding headerFooter element (§18.3.1.46) is true. [Example: <drawingHF ... lhf="5"/> end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
lho (Left Header for Odd Pages)	Specifies the DrawingML shape to be used for the left side of the header on odd pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. If the differentOddEven attribute is false, this attribute specifies the DrawingML shape to be used for the left side of the header on both odd and even pages. [Example: <drawingHF ... lho="5"/> end example]

Attributes	Description		
	$\begin{array}{l}\text { The possible values for this attribute are defined by the W3C XML Schema unsignedInt } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { rfe (Right Footer for } \\ \text { Even Pages) }\end{array}$	$\begin{array}{l}\text { Specifies the DrawingML shape to be used for the right side of the footer on even pages if } \\ \text { the differentOddEven attribute of the corresponding headerFooter element } \\ \text { (§18.3.1.46) is true. } \\ \text { [Example: } \\ \text { <drawingHF ... rfe="5"/> }\end{array}$		
end example]			
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.		$]$	Specifies the DrawingML shape to be used for the right side of the footer on the first
:---			
page if the differentFirst attribute of the corresponding headerFooter element			
(§18.3.1.46) is true.			
[Example:			
<drawingHF ... rff="5"/> (Right Footer for			

Attributes	Description
	```<drawingHF ... rhe="5"/> end example]```   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
rhf (Right Header for First Page)	Specifies the DrawingML shape to be used for the right side of the header on the first page if the differentFirst attribute of the corresponding headerFooter element (§18.3.1.46) is true.   [Example: <drawingHF ... rhf="5"/>   end example]   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
rho (Right Header for Odd Pages)	Specifies the DrawingML shape to be used for the right side of the header on odd pages if the differentOddEven attribute of the corresponding headerFooter element (§18.3.1.46) is true. If the differentOddEven attribute is false, this attribute specifies the DrawingML shape to be used for the right side of the header on both odd and even pages.   [Example:   <drawingHF ... rho="5"/>   end example]   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT DrawingHF) is located in §A.2. end note]

### 18.3.1.38 evenFooter (Even Page Footer)

Even page footer value. Corresponds to even printed pages. [Example: Even page(s) in the sheet can not be printed if the print area is specified to be a range such that it falls outside an even page's scope. end example]

If no even footer is specified, then the odd footer's value is assumed for even page footers. See the evenHeader element (§18.3.1.39) description for full discussion of value content.

The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content   Contains Significant	Specifies how white space should be handled for the contents of this element using the   Whitespace)
W3C space preservation rules.    Namespace: The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.   http://www.w3.org    XML/1998/namesp	

[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.39 evenHeader (Even Page Header)

Even page header value. Corresponds to even printed pages. [Example: Even page(s) in the sheet can not be printed if the print area is specified to be a range such that it falls outside an even page's scope. end example]

If no even header is specified, then odd header value is assumed for even page headers.

## Header/Footer Formatting Syntax

There are a number of formatting codes that can be written inline with the actual header / footer text, which affect the formatting in the header or footer.

## [Example:

This example shows the text "Center Bold Header" on the first line (center section), and the date on the second line (center section).

```
<headerFooter>
 <oddHeader>&CCenter &"-,Bold"Bold
 &"-,Regular"Header_x000A_&D</oddHeader>
</headerFooter>
end example]
General Rules:
There is no required order in which these codes need to appear.
```

The first occurrence of the following codes turns the formatting ON, the second occurrence turns it OFF again:

- strikethrough
- superscript
- subscript

Superscript and subscript cannot both be ON at same time. Whichever comes first wins and the other is ignored, while the first is ON.
\&L - code for "left section" (there are three header / footer locations, "left", "center", and "right"). When two or more occurrences of this section marker exist, the contents from all markers are concatenated, in the order of appearance, and placed into the left section.
\&P - code for "current page \#"
$\& N$ - code for "total pages"
\&font size - code for "text font size", where font size is a font size in points.
\&K - code for "text font color"

RGB Color is specified as RRGGBB

Theme Color is specified as TTSNN where TT is the theme color Id, S is either " + " or "-" of the tint/shade value, NN is the tint/shade value.
$\& S$ - code for "text strikethrough" on / off
$\& X$ - code for "text super script" on / off
\&Y - code for "text subscript" on / off
\&C - code for "center section". When two or more occurrences of this section marker exist, the contents from all markers are concatenated, in the order of appearance, and placed into the center section.
\&D - code for "date"
\&T - code for "time"
\&G - code for "picture as background"
$\& U$ - code for "text single underline"
$\& E$ - code for "double underline"
$\& R$ - code for "right section". When two or more occurrences of this section marker exist, the contents from all markers are concatenated, in the order of appearance, and placed into the right section.
\&Z - code for "this workbook's file path"
\&F - code for "this workbook's file name"
$\& A$ - code for "sheet tab name"
\& + - code for add to page \#.
\&- - code for subtract from page \#.
\&"font name,font type" - code for "text font name" and "text font type", where font name and font type are strings specifying the name and type of the font, separated by a comma. When a hyphen appears in font name, it means "none specified". Both of font name and font type can be localized values. Although ISO/IEC 14496-22 permits commas in font family/subfamily/full names, name and font type, the lexically first comma in the string is the one recognized as the separating comma.
\&"-,Bold" - code for "bold font style"
\&B - also means "bold font style".
\&"-,Regular" - code for "regular font style"
\&"-,Italic" - code for "italic font style"
\& - also means "italic font style"
\&"-,Bold Italic" code for "bold italic font style"
\& O - code for "outline style"
\&H - code for "shadow style"
The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).
[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.40 <br> f (Formula)

Formula for the cell. The formula expression is contained in the character node of this element.
[Example:

```
<f>SUM(C4:E4)</f>
end example]
```

The possible values for the $t$ attribute are defined by the simple type ST_CellFormulaType, and are as follows:

Value	Description
array (Array   formula)	Array formula. An array formula is a single formula, applied across a range of one or more   cells. An array formula can return multiple results from one single calculation, the results   spanning the cells in which it is contained ( $\$ 18.17 .2 .7)$.
dataTable (Table	Data table. A data table is a range of cells that shows how changing certain values in one


Value	Description		
formula)	$\begin{array}{l}\text { or more formulas affects the results of those formulas. A data table provides a shortcut } \\ \text { for calculating multiple versions in one operation, and a way to include the results of all } \\ \text { of the different variations in a sheet. }\end{array}$		
$\begin{array}{ll}\text { Both one- and two-input variable data tables can be created (see attribute } \\ \text { dt2D).[Example: A one-input variable data table might be used to calculate how different } \\ \text { interest rates affect a monthly mortgage payment, while a two-input variable data table } \\ \text { might be used to calculate how different interest rates and loan terms will affect the } \\ \text { mortgage payment. end example] } \\ \text { In a one-input variable data table, values are listed either down a column (column- } \\ \text { oriented) or across a row (row-oriented) (see attribute dtr). }\end{array}$			
Formulas that are used in a one-input variable data table shall refer to an input cell (see			
attribute r1), the cell in which each input value from a data table is substituted. Any cell			
on a worksheet can be the input cell. Although the input cell does not need to be part of			
the data table, the formulas in data tables shall refer to that input cell.		$\}$	Two-input variable data tables use only one formula with two lists of input values. The
:---			
formula shall refer to two input cells (see attributes r1 and r2).			


Attributes	Description
aca (Always   Calculate Array)	Only applies to array formulas. true indicates that the entire array shall be calculated in   full. If false the individual cells of the array shall be calculated as needed. The aca value   shall be ignored unless the value of the corresponding $t$ attribute is array.
[Note: The primary case where an array formula must be calculated in part instead of in	
full is when some cells in the array depend on other cells that are semi-calculated, e.g.,	
contains the function =RAND(). end note]	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	


Attributes	Description
bx (Assigns Value to   Name)	Specifies that this formula assigns a value to a name.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
ca (Calculate Cell)	Indicates that this formula needs to be recalculated the next time calculation is   performed. [Example: This is always set on volatile functions, like =RAND(), and circular   references. end example]   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
del1 (Input 1   Deleted)	Whether the first input cell for data table has been deleted. Applies to data table formula   only. Written on master cell of data table formula only.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	


Attributes	Description				
	The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).	$	$	Si (Shared Group	
:---	:---				
Index)	Optional attribute to optimize load performance by sharing formulas.   When a formula is a shared formula (t value is shared) then this value indicates the   group to which this particular cell's formula belongs. The first formula in a group of   shared formulas is saved in the felement. This is considered the 'master' formula cell.   Subsequent cells sharing this formula need not have the formula written in their f   element. Instead, the attribute si value for a particular cell is used to figure what the   formula expression should be based on the cell's relative location to the master formula   cell.   A cell is shared only when si is used and t is shared. The formula expression for a cell   that is specified to be part of a shared formula (and is not the master) shall be ignored,   and the master formula shall override.   If a master cell of a shared formula range specifies that a particular cell is part of the   shared formula range, and that particular cell does not use the si and t tattributes to   indicate that it is shared, then the particular cell's formula shall override the shared   master formula. If this cell occurs in the middle of a range of shared formula cells, the   earlier and later formulas shall continue sharing the master formula, and the cell in   question shall not share the formula of the master cell formula.   Loading and handling of a cell and formula using an si attribute and whose t value is				
shared, located outside the range specified in the master cell associated with the si					
group, is implementation defined.					
Master cell references on the same sheet shall not overlap with each other.					

[Note: The W3C XML Schema definition of this element’s content model (CT CellFormula) is located in §A.2. end note]

### 18.3.1.41 firstFooter (First Page Footer)

First page footer content. Only used when headerFooter@differentFirst is ' 1 '. Corresponds to first printed page. [Example:The first logical page in the sheet can not be printed if the print area is specified to be a range such that it falls outside the first page's scope. end example]

See evenHeader (§18.3.1.39) description for full discussion of value content.
The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:	
http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element's content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.42 firstHeader (First Page Header)

First page header content. Only used when headerFooter@differentFirst is 1 . Corresponds to first printed page. [Example: The first logical page in the sheet can not be printed if the print area is specified to be a range such that it falls outside the first page's scope. end example]

See evenHeader (§18.3.1.39) description for full discussion of value content.
The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by §2.10 of the XML 1.0 specification.
Namespace:   http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element's content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.43 formula (Formula)

The content of this element is a formula whose calculated value specifies the criteria for the conditional formatting rule.

The possible values for this element are defined by the ST_Formula simple type (§18.18.35).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:   http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element's content model (ST Formula) is located in §A.2. end note]

### 18.3.1.44 formula1 (Formula 1)

The first formula in the Data Validation dropdown. It is used as a bounds for 'between' and 'notBetween' relational operators, and the only formula used for other relational operators (equal, notEqual, lessThan, lessThanOrEqual, greaterThan, greaterThanOrEqual), or for custom or list type data validation. The content can be a formula or a constant or a list series (comma separated values).

The possible values for this element are defined by the ST_Formula simple type (§18.18.35).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:	
http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element's content model (ST Formula) is located in §A.2. end note]

### 18.3.1.45 formula2 (Formula 2)

The second formula in the DataValidation dropdown. It is used as a bounds for 'between' and 'notBetween' relational operators only.

The possible values for this element are defined by the ST_Formula simple type (§18.18.35).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:   http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element's content model (ST Formula) is located in §A.2. end note]

### 18.3.1.46 headerFooter (Header Footer Settings)

Header and footer settings.

## [Example:

This example demonstrates "Header" at the top and "Footer" at the bottom of a page.

```
<headerFooter>
 <oddHeader>&CHeader</oddHeader>
 <oddFooter>&CFooter</oddFooter>
</headerFooter>
```

end example]

The tokens in the header \& footer elements can be localized. An application can decide which locales are supported. Even when a locale is not supported, the header and footer text shall be loaded, and only the formatting is discarded.

Attributes	Description
alignWithMargins   (Align Margins)	Align header footer margins with page margins. When true, as left/right margins grow   and shrink, the header and footer edges stay aligned with the margins. When false,   headers and footers are aligned on the paper edges, regardless of margins.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
differentFirst   (Different First   Page)	Different first page header and footer. When true then firstHeader and firstFooter   specify first page header and footer values. If false and firstHeader / firstFooter are   present, they are ignored.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT HeaderFooter) is located in §A.2. end note]

### 18.3.1.47 hyperlink (Hyperlink)

A single hyperlink

Attributes	Description
display (Display	Display string, if different from string in string table. This is a property on the hyperlink


Attributes	Description		
String)	object, but does not need to appear in the spreadsheet application UI.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).		
id (Relationship Id)	Relationship Id in this sheet's relationships part, expressing the target location of the   resource.		
Nttp://purl.oclc.or   g/ooxml/officeDoc   ument/relationshi   ps	The possible values for this attribute are defined by the ST_RelationshipId simple type   (§22.8.2.1).		
location (Location)	Location within target. If target is a workbook (or this workbook) this shall refer to a   sheet and cell or a defined name. Can also be an HTML anchor if target is HTML file.		
The possible values for this attribute are defined by the ST_Xstring simple type			
(§22.9.2.19).			Cell location of hyperlink on worksheet.
:---			
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).			

[Note: The W3C XML Schema definition of this element's content model (CT Hyperlink) is located in §A.2. end note]

### 18.3.1.48 hyperlinks (Hyperlinks)

Collection of hyperlinks.

## [Example:

This example shows a hyperlink in cell A11, with hover text displaying "Search Page". The relationship Id references a relationship from the sheet to the external target resource.
<hyperlinks>
<hyperlink ref="A11" r:id="rId1" tooltip="Search Page"/>
</hyperlinks>
end example]
[Note: The W3C XML Schema definition of this element's content model (CT Hyperlinks) is located in §A.2. end note]

### 18.3.1.49 iconSet (Icon Set)

Describes an icon set conditional formatting rule.
[Example: This example demonstrates the "3Arrows" style of icons. The first icon in the set must be shown if the cell's value is less than the 33 rd percentile. The second icon in the set must be shown if the cell's value is less than the 67th percentile, and greater than or equal to the 33rd percentile. The third icon in the set must be shown if the cell's value is greater than or equal to the 67th percentile.

```
<iconSet iconSet="3Arrows">
 <cfvo type="percentile" val="0"/>
 <cfvo type="percentile" val="33"/>
 <cfvo type="percentile" val="67"/>
</iconSet>
```

end example]

Attributes	Description
iconSet (Icon Set)	The icon set to display.   The possible values for this attribute are defined by the ST_IconSetType simple type   (§18.18.42).
percent (Percent)	Indicates whether the thresholds indicate percentile values, instead of number values.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
reverse (Reverse   Icons)	If 1, reverses the default order of the icons in this icon set.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
showValue (Show   Value)	Indicates whether to show the values of the cells on which this icon set is applied.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT IconSet) is located in §A.2. end note]

### 18.3.1.50 ignoredError (Ignored Error)

A single ignored error for a range of cells.

A cell is considered to have an error condition when it meets one of the conditions specified in the attribute descriptions below. [Example: If a cell is formatted as text but contains a numeric value, this is considered to be a potential error because the number won't be treated as a number, for example, in calculations. end example]

This is simply a guess by the implementing application, and a recommendation to the user. Cells with the errors specified below might be deliberately defined as such. [Example: A cell formatted as text which contains numeric Postal Codes or Order numbers. It is useful to format these cells as text so that leading zeros remain as part of the value instead of being removed. end example]

An <ignoreError> element is not written in the file unless the user has specifically reviewed the error and decided to keep the cell state as it is, and no longer wishes to be alerted about it for this cell. This can be helpful for the application to decide which errors should be surfaced to the user vs kept quiet because the user doesn't want these to be surfaced (e.g., because they are legitimate cell states).
[Example: This example shows that cells A1 and B2 both contain numbers stored as text, and this error has been reviewed and specifically flagged to be no longer surfaced as an error to the user.
<ignoredErrors>
<ignoredError sqref="A1 B2" numberStoredAsText="1"/>
</ignoredErrors>
end example]
More than one kind of error can exist on a cell. These flags are not mutually exclusive.

Attributes	Description		
calculatedColumn   (Calculated Column)	Ignore errors when cells contain a value different from a calculated column formula. In   other words, for a calculated column, a cell in that column is considered to have an error   if its formula is different from the calculated column formula, or doesn't contain a   formula at all.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.		
emptyCellReferenc   e (Empty Cell   Reference)	Ignore errors when formulas refer to empty cells.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.		
evalError   (Evaluation Error)	Ignore errors when cells contain formulas that result in an error.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.		
formula (Formula)	Ignore errors when a formula in a region of your worksheet differs from other formulas in   the same region.		
The possible values for this attribute are defined by the W3C XML Schema boolean		$\quad$	
:---			


Attributes	Description
	datatype.
formulaRange   (Formula Range)	Ignore errors when formulas omit certain cells in a region.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
listDataValidation   (List Data   Validation)	Ignore errors when a cell's value in a Table does not comply with the Data Validation   rules specified.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
numberStoredAsT   ext (Number Stored   As Text)	Ignore errors when numbers are formatted as text or are preceded by an apostrophe.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
sqref (Sequence of   References)	Reference to a range of cells that have this ignored error.   The possible values for this attribute are defined by the ST_Sqref simple type   (§18.18.76).
twoDigitTextYear   (Two Digit Text   Year)	Ignore errors when formulas contain text formatted cells with years represented as 2   digits.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element’s content model (CT IgnoredError) is located in §A.2. end note]

### 18.3.1.51 ignoredErrors (Ignored Errors)

A collection of ignored errors, by cell range.
[Note: The W3C XML Schema definition of this element's content model (CT IgnoredErrors) is located in §A.2. end note]

### 18.3.1.52 inputCells (Input Cells)

This collection describes each input cell for the scenario.

Attributes	Description
deleted (Deleted)	Input cell was deleted. This input cell shall be present in the file format, but shall not be   presented to the user as part of the scenario inputs, nor run as part of the scenario.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
numFmtId   (Number Format Id)	This number format Id is used only when displaying the scenario manager input UI, and is   used to properly format for display the cached input values (see val attribute) for the   scenario.   The possible values for this attribute are defined by the ST_NumFmtId simple type   (§18.18.47).
r (Reference)	Cell reference indicating the input cell address.   The possible values for this attribute are defined by the ST_CellRef simple type   (§18.18.7).
undone (Undone)	Cell's deletion was undone. When true the $r$ (reference) value shall not adjust in response   to the cell moving due to row / column insert or delete,or cell move.
val (Value)	The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
Value that should be used for the cell when this scenario is run.   val does not need a corresponding data type, the value is put into the cell when the   scenario is run.   The possible values for this attribute are defined by the ST_Xstring simple type   (\$22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT InputCells) is located in §A.2. end note]

### 18.3.1.53 is (Rich Text Inline)

This element allows for strings to be expressed directly in the cell definition instead of implementing the shared string table.

## [Example:

```
<c r="A1">
 <is>
 <t>String</t>
 </is>
</c>
```

end example]
[Note: The W3C XML Schema definition of this element’s content model (CT Rst) is located in §A.2. end note]

### 18.3.1.54 mergeCell (Merged Cell)

A single merged cell
[Note: The W3C XML Schema definition of this element's content model (CT MergeCell) is located in §A.2. end note]

### 18.3.1.55 mergeCells (Merge Cells)

This collection expresses all the merged cells in the sheet.

## [Example:

This example shows that three ranges are merged. The formatting and content for the merged range is always stored in the top left cell.

```
<mergeCells>
 <mergeCell ref="C2:F2"/>
 <mergeCell ref="B19:C20"/>
 <mergeCell ref="E19:G19"/>
</mergeCells>
```

end example]

Attributes	Description
count (Count)	A count of merged cell collections.
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MergeCells) is located in §A.2. end note]

### 18.3.1.56 objectPr (Embedded Object Properties)

This element specifies the visual, positional and cell linkage properties of an embedded object.
[Example: The following example demonstrates an embedded object that does not print and that is resized when the cells underlying it are resized:

```
<oleObjects>
 <oleObject ... >
 <objectPr print="false" autoLine="false" r:id="rId5">
 <anchor sizeWithCells="true">
```

```
 <from> ... </from>
 <to> ... </to>
 </anchor>
 </objectPr>
 </oleObject>
</oleObjects>
```

end example]

Attributes	Description
altText (Alternative Text)	Specifies alternative text for the object, for use by assistive technologies or applications.   [Example:   <objectPr altText="Alternate text" ... />   end example]   The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
autoFill (Automatic Fill Flag)	Specifies whether the object's fill formatting is provided automatically by the application.   [Example:   <objectPr autoFill="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
autoLine (Automatic Line Flag)	Specifies whether the object's line formatting is provided automatically by the application.   [Example:   <objectPr autoLine="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
autoPict (Automatic Size Flag)	Specifies whether the object's size is formatted automatically by the application.   [Example:   <objectPr autoPict="false" ... />


Attributes	Description
	end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
dde (Dynamic Data Exchange Flag)	Specifies whether the object is a Dynamic Data Exchange link.   [Example:   <objectPr dde="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
defaultSize (Default Size Flag)	Specifies whether the object is at its default size.   [Example:   <objectPr defaultSize="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
disabled (Disabled Flag)	Specifies whether the object is allowed to run an attached macro.   [Example:   <objectPr disabled="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
id (Relationship ID to Embedded Object Data)   Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps	Specifies the relationship ID for the relationship which targets the Embedded Object Part containing the embedded object data.   The specified relationship shall be of type http://purl.oclc.org/ooxml/officeDocument/relationships/oleObject or the document shall be considered non-conformant.   [Example: Consider an XML element which has the following id attribute: <... r:id="rId1" />


Attributes	Description
	The markup specifies the associated relationship part with relationship ID rId1 targets the part containing the corresponding embedded object information. end example]   The possible values for this attribute are defined by the ST_RelationshipId simple type ( $\$ 22.8 .2 .1$ ).
locked (Locked Flag)	Specifies that the object is locked when the sheet is protected.   [Example:   <objectPr locked="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
macro (Custom Function)	Specifies the custom function associated with the object. [Example: A macro script, addin function, and so on. end example]   [Example:   <objectPr macro="Button1_Click()" ... />   end example]   The possible values for this attribute are defined by the ST_Formula simple type (§18.18.35).
print (Print Flag)	Specifies whether the object is printed when the document is printed.   [Example:   <objectPr print="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
uiObject (UI Object Flag)	Specifies whether the object is a UI-only object. Applications should prevent UI-only objects from being selected and edited in their user interface.   [Example:   <objectPr uiObject="true" ... />   end example]


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT ObjectPr) is located in §A.2. end note]

### 18.3.1.57 oddFooter (Odd Page Footer)

Odd page footer value. Corresponds to odd printed pages. [Example: Odd page(s) in the sheet can not be printed if the print area is specified to be a range such that it falls outside an odd page's scope. end example]

See evenHeader (§18.3.1.39) description for full discussion of value content.
The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content   Contains Significant	Specifies how white space should be handled for the contents of this element using the   Whitespace)
W3C space preservation rules.	
Namespace:	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
http://www.w3.or	
g/XML/1998/nam	
espace	

[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.58 oddHeader (Odd Header)

Odd page header value. Corresponds to odd printed pages. [Example: Odd page(s) in the sheet can not be printed if the print area is specified to be a range such that it falls outside an odd page's scope. end example]

See evenHeader (§18.3.1.39) description for full discussion of value content.
The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:   http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.59 oleObject (Embedded Object)

Information for an individual embedded object.

Attributes	Description
autoLoad (Auto   Load)	Specifies whether the host application for the embedded object shall be called to load   the object data automatically when the parent workbook is opened.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
dvAspect (Data or   View Aspect)	Specifies the desired Data or View Aspect of the object when drawing or getting data   The possible values for this attribute are defined by the ST_DvAspect simple type   ( 18.18 .24$).$
Namespace:   http://purl.oclc.or   g/ooxml/officeDoc   ument/relationshi   ps	The possible values for this attribute are defined by the ST_RelationshipId simple type   (§22.8.2.1).
link (Embedded   Object's Link   Moniker)	The embedded object's link moniker.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).
oleUpdate (Linked   Embedded Object   Update)	Indicates whether the linked object updates the cached data automatically or only when   the container requests an update, only present if the embedded object is linked.
The possible values for this attribute are defined by the ST_OleUpdate simple type	
( $\$ 18.18 .49$ ).	


Attributes	Description
progId (Embedded   Object Progld)	Progld of the embedded object.   The possible values for this attribute are defined by the W3C XML Schema string   datatype.
shapeId (Shape Id)	Id of the shape this object is associated with. Corresponds with the shape @id in the   drawingML part.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.	

[Note: The W3C XML Schema definition of this element’s content model (CT OleObject) is located in §A.2. end note]

### 18.3.1.60 oleObjects (Embedded Objects)

Embedded objects collection in this worksheet.
[Example:
This example shows two embedded objects.

```
<oleObjects>
 <oleObject progId="Word.Document.12" shapeId="1025" r:id="rId4"/>
 <oleObject progId="PowerPoint.Show.12" shapeId="1026" r:id="rId5"/>
</oleObjects>
end example]
```

[Note: The W3C XML Schema definition of this element’s content model (CT OleObjects) is located in §A.2. end note]

### 18.3.1.61 outlinePr (Outline Properties)

Outline properties of the worksheet.
[Example: This example indicates that when an outline is applied to data, formatting must be applied to the outline result.
<sheetPr>
<outlinePr applyStyles="1"/>
</sheetPr>
end example]

Attributes	Description
$\begin{array}{l}\text { applyStyles (Apply } \\ \text { Styles in Outline) }\end{array}$	$\begin{array}{l}\text { Flag indicating whether to apply styles in an outline, when outline is applied. Outline } \\ \text { styles are described in Styles (§18.8). } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$
$\begin{array}{l}\text { showOutlineSymb } \\ \text { ols (Show Outline } \\ \text { Symbols) }\end{array}$	$\begin{array}{l}\text { Flag indicating whether the sheet has outline symbols visible. This flag shall always be } \\ \text { overridden by the showOutlineSymbols attribute on sheetView when there is a conflict. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$
$\begin{array}{l}\text { summaryBelow } \\ \text { (Summary Below) }\end{array}$	$\begin{array}{l}\text { Flag indicating whether summary rows appear below detail in an outline, when applying } \\ \text { an outline. }\end{array}$
When true a summary row is inserted below the detailed data being summarized and a	
new outline level is established on that row.	
When false a summary row is inserted above the detailed data being summarized and a	
new outline level is established on that row.	

specifically, putting the summary functions in the proper rows, and flagging these rows as <br>

new outline levels, and possibly resetting their collapsed state.\end{array}\right\}\)| The possible values for this attribute are defined by the W3C XML Schema boolean |
| :--- |
| datatype. |

[Note: The W3C XML Schema definition of this element's content model (CT OutlinePr) is located in §A.2. end note]

### 18.3.1.62 pageMargins (Page Margins)

Page margins for a sheet or a custom sheet view.

## [Example:

```
 <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3"
 footer="0.3"/>
end example]
```

Attributes	Description
bottom (Bottom   Page Margin)	Bottom Page Margin in inches.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.
footer (Footer Page   Margin)	Footer Page Margin in inches.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.
header (Header   Page Margin)	Header Page Margin in inches.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.
left (Left Page   Margin)	Left Page Margin in inches.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.
right (Right Page   Margin)	Right page margin in inches.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.
top (Top Page   Margin)	Top Page Margin in inches.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PageMargins) is located in §A.2. end note]

### 18.3.1.63 pageSetup (Page Setup Settings)

Page setup settings for the worksheet.
[Example: The following example shows the pageSetup element for ISO AO paper, printed in black and white, with graphics:

```
 <pageSetup blackAndWhite="true" draft="false" paperHeight="1189mm"
paperWidth="841mm" />
end example]
```

Attributes	Description
blackAndWhite   (Black And White)	Print black and white.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
cellComments   (Print Cell   Comments)	This attribute specifies how to print cell comments.   The possible values for this attribute are defined by the ST_CellComments simple type   (§18.18.5).
copies (Number Of   Copies)	Number of copies to print.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
draft (Draft)	Print without graphics.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
errors (Print Error   Handling)	Specifies how to print cell values for cells with errors.   The possible values for this attribute are defined by the ST_PrintError simple type   (§18.18.60).
firstPageNumber   (First Page Number)	Page number for first printed page. If no value is specified, then 'automatic' is assumed.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
fitToHeight (Fit To   Height)	Number of vertical pages to fit on.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
fitToWidth (Fit To   Width)	Number of horizontal pages to fit on.   (Horizontal DPI)   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
Horizontal print resolution of the device.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.	
Relationship Id of the devMode printer settings part.	


Attributes	
Namespace:   http://purl.oclc.or   g/ooxm//officeDoc   ument/relationshi   ps	The possible values for this attribute are defined by the ST_RelationshipId simple type   (§22.8.2.1).
orientation   (Orientation)	Orientation of the page.   The possible values for this attribute are defined by the ST_Orientation simple type   (§18.18.50).
pageOrder (Page	Order of printed pages.   Order)
The possible values for this attribute are defined by the ST_PageOrder simple type	
(§18.18.51).	


Attributes	Description
	```25 = D paper ( 22 in. by 34 in .) \(26=\) E paper ( 34 in . by 44 in .) 27 = DL envelope ( 110 mm by 220 mm ) \(28=\) C5 envelope ( 162 mm by 229 mm ) 29 = C3 envelope ( 324 mm by 458 mm ) \(30=\) C4 envelope ( 229 mm by 324 mm ) 31 = C6 envelope ( 114 mm by 162 mm ) \(32=\) C65 envelope ( 114 mm by 229 mm ) \(33=\) B4 envelope ( 250 mm by 353 mm ) \(34=\) B5 envelope ( 176 mm by 250 mm ) \(35=\) B6 envelope ( 176 mm by 125 mm ) 36 = Italy envelope ( 110 mm by 230 mm ) 37 = Monarch envelope ( 3.875 in. by 7.5 in .). \(38=63 / 4\) envelope ( 3.625 in. by 6.5 in .) \(39=\) US standard fanfold (14.875 in. by 11 in .) \(40=\) German standard fanfold ( 8.5 in . by 12 in .) 41 = German legal fanfold ( 8.5 in . by 13 in .) \(42=\) ISO B4 ( 250 mm by 353 mm ) 43 = Japanese double postcard ( 200 mm by 148 mm ) 44 = Standard paper ( 9 in . by 11 in .) 45 = Standard paper ( 10 in . by 11 in .) 46 = Standard paper ( 15 in . by 11 in .) 47 = Invite envelope ( 220 mm by 220 mm ) 50 = Letter extra paper ( 9.275 in . by 12 in .) 51 = Legal extra paper ( 9.275 in . by 15 in .) 52 = Tabloid extra paper ( 11.69 in. by 18 in .) 53 = A4 extra paper ( 236 mm by 322 mm ) 54 = Letter transverse paper ( 8.275 in . by 11 in .) 55 = A4 transverse paper ( 210 mm by 297 mm ) \(56=\) Letter extra transverse paper ( 9.275 in . by 12 in .) 57 = SuperA/SuperA/A4 paper ( 227 mm by 356 mm ) 58 = SuperB/SuperB/A3 paper ( 305 mm by 487 mm ) \(59=\) Letter plus paper (8.5 in. by 12.69 in .) \(60=\) A4 plus paper ( 210 mm by 330 mm ) 61 = A5 transverse paper ( 148 mm by 210 mm ) 62 = JIS B5 transverse paper ( 182 mm by 257 mm ) 63 = A3 extra paper ( 322 mm by 445 mm ) 64 = A5 extra paper ( 174 mm by 235 mm ) 65 = ISO B5 extra paper ( 201 mm by 276 mm ) 66 = A2 paper ( 420 mm by 594 mm ) 67 = A3 transverse paper ( 297 mm by 420 mm ) 68 = A3 extra transverse paper ( 322 mm by 445 mm ) 69 = Japanese Double Postcard ( \(200 \mathrm{~mm} \times 148 \mathrm{~mm}\) ) 70 = A6 ( \(105 \mathrm{~mm} \times 148 \mathrm{~mm}\) ) 71 = Japanese Envelope Kaku \#2 72 = Japanese Envelope Kaku \#3```


Attributes	Description
	```73 = Japanese Envelope Chou \#3 74 = Japanese Envelope Chou \#4 75 = Letter Rotated (11in x 8 1/2 11 in) \(76=\) A3 Rotated ( \(420 \mathrm{~mm} \times 297 \mathrm{~mm}\) ) 77 = A4 Rotated ( \(297 \mathrm{~mm} \times 210 \mathrm{~mm}\) ) \(78=\) A5 Rotated ( \(210 \mathrm{~mm} \times 148 \mathrm{~mm}\) ) 79 = B4 (JIS) Rotated ( \(364 \mathrm{~mm} \times 257 \mathrm{~mm}\) ) \(80=\) B5 (JIS) Rotated ( \(257 \mathrm{~mm} \times 182 \mathrm{~mm}\) ) 81 = Japanese Postcard Rotated ( \(148 \mathrm{~mm} \times 100 \mathrm{~mm}\) ) 82 = Double Japanese Postcard Rotated ( \(148 \mathrm{~mm} \times 200 \mathrm{~mm}\) ) 83 = A6 Rotated ( \(148 \mathrm{~mm} \times 105 \mathrm{~mm}\) ) 84 = Japanese Envelope Kaku \#2 Rotated 85 = Japanese Envelope Kaku \#3 Rotated 86 = Japanese Envelope Chou \#3 Rotated 87 = Japanese Envelope Chou \#4 Rotated \(88=\) B6 (JIS) ( \(128 \mathrm{~mm} \times 182 \mathrm{~mm}\) ) \(89=\) B6 (JIS) Rotated ( \(182 \mathrm{~mm} \times 128 \mathrm{~mm}\) ) \(90=(12 \mathrm{in} \times 11 \mathrm{in})\) 91 = Japanese Envelope You \#4 92 = Japanese Envelope You \#4 Rotated \(93=\) PRC 16K ( \(146 \mathrm{~mm} \times 215 \mathrm{~mm}\) ) \(94=\) PRC \(32 \mathrm{~K}(97 \mathrm{~mm} \times 151 \mathrm{~mm})\) \(95=\) PRC \(32 \mathrm{~K}(\mathrm{Big})(97 \mathrm{~mm} \times 151 \mathrm{~mm})\) 96 = PRC Envelope \#1 (102 mm x 165 mm ) 97 = PRC Envelope \#2 ( \(102 \mathrm{~mm} \times 176 \mathrm{~mm}\) ) \(98=\) PRC Envelope \#3 ( \(125 \mathrm{~mm} \times 176 \mathrm{~mm}\) ) 99 = PRC Envelope \#4 ( \(110 \mathrm{~mm} \times 208 \mathrm{~mm}\) ) 100 = PRC Envelope \#5 ( \(110 \mathrm{~mm} \times 220 \mathrm{~mm}\) ) 101 = PRC Envelope \#6 ( \(120 \mathrm{~mm} \times 230 \mathrm{~mm}\) ) \(102=\) PRC Envelope \#7 ( \(160 \mathrm{~mm} \times 230 \mathrm{~mm}\) ) 103 = PRC Envelope \#8 ( \(120 \mathrm{~mm} \times 309 \mathrm{~mm}\) ) 104 = PRC Envelope \#9 ( \(229 \mathrm{~mm} \times 324 \mathrm{~mm}\) ) 105 = PRC Envelope \#10 ( \(324 \mathrm{~mm} \times 458 \mathrm{~mm}\) ) 106 = PRC 16K Rotated 107 = PRC 32K Rotated \(108=\) PRC 32K(Big) Rotated 109 = PRC Envelope \#1 Rotated ( \(165 \mathrm{~mm} \times 102 \mathrm{~mm}\) ) 110 = PRC Envelope \#2 Rotated ( \(176 \mathrm{~mm} \times 102 \mathrm{~mm}\) ) 111 = PRC Envelope \#3 Rotated ( \(176 \mathrm{~mm} \times 125 \mathrm{~mm}\) ) \(112=\) PRC Envelope \#4 Rotated ( \(208 \mathrm{~mm} \times 110 \mathrm{~mm}\) ) 113 = PRC Envelope \#5 Rotated ( \(220 \mathrm{~mm} \times 110 \mathrm{~mm}\) ) 114 = PRC Envelope \#6 Rotated ( \(230 \mathrm{~mm} \times 120 \mathrm{~mm}\) ) 115 = PRC Envelope \#7 Rotated ( \(230 \mathrm{~mm} \times 160 \mathrm{~mm}\) ) 116 = PRC Envelope \#8 Rotated ( \(309 \mathrm{~mm} \times 120 \mathrm{~mm}\) ) 117 = PRC Envelope \#9 Rotated ( \(324 \mathrm{~mm} \times 229 \mathrm{~mm}\) ) 118 = PRC Envelope \#10 Rotated ( \(458 \mathrm{~mm} \times 324 \mathrm{~mm}\) )```


Attributes	Description
	When paperHeight and paperWidth are specified, paperSize should be ignored.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
paperWidth (Paper Width)	Width of custom paper as a number followed by a unit identifier. [Example: $21 \mathrm{~cm}, 8.5 \mathrm{in}$ end example]   When paperHeight and paperWidth are specified, paperSize shall be ignored.   The possible values for this attribute are defined by the ST_PositiveUniversalMeasure simple type (§22.9.2.12).
scale (Print Scale)	Print scaling. This attribute is restricted to values ranging from 10 to 400 .   [Example: $\begin{aligned} & 10-10 \% \\ & 20-20 \% \end{aligned}$ 100-100\% $400-400 \%$   end example]   This setting is overridden when fitToWidth and/or fitToHeight are in use.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
useFirstPageNumb er (Use First Page Number)	Use firstPageNumber value for first page number, and do not auto number the pages.   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
usePrinterDefaults (Use Printer Defaults)	Use the printer's defaults settings for page setup values and don't use the default values specified in the schema. [Example: If dpi is not present or specified in the XML, the application must not assume 600dpi as specified in the schema as a default and instead must let the printer specify the default dpi. end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
verticalDpi (Vertical DPI)	Vertical print resolution of the device.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PageSetup) is located in §A.2. end note]

### 18.3.1.64 pageSetup (Chart Sheet Page Setup)

This element provides page setup properties for chart sheets.
[Example: The following example shows the pageSetup element for ISO AO paper, printed in black and white, with graphics:

```
 <pageSetup blackAndWhite="true" draft="false" paperHeight="1189mm"
paperWidth="841mm" />
end example]
```

Attributes	Description
blackAndWhite   (Black And White)	Print black and white.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
copies (Number Of   Copies)	Number of copies to print.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
draft (Draft)	Print draft quality.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
firstPageNumber   (First Page Number)	Page number for first printed page. If no value is specified, then 'automatic' is assumed.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
horizontalDpi   (Horizontal DPI)	Horizontal print resolution of the device.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
id (Id)	Relationship Id of the devMode printer settings part.   Namespace:   http://purl.oclc.or   g/ooxml/officeDoc   ument/relationshi   ps
(\$22.8.2.1).	


Attributes	Description
(Orientation)	The possible values for this attribute are defined by the ST_Orientation simple type (§18.18.50).
paperHeight (Paper Height)	Height of custom paper as a number followed by a unit identifier. [Example: 297mm, 11in end example]   When paperHeight and paperWidth are specified, paperSize shall be ignored.   The possible values for this attribute are defined by the ST_PositiveUniversalMeasure simple type (§22.9.2.12).
paperSize (Paper Size)	1 = Letter paper (8.5 in. by 11 in .)   2 = Letter small paper (8.5 in. by 11 in .)   3 = Tabloid paper ( 11 in . by 17 in .)   4 = Ledger paper ( 17 in . by 11 in .)   5 = Legal paper ( 8.5 in . by 14 in .)   $6=$ Statement paper ( 5.5 in . by 8.5 in .)   7 = Executive paper ( 7.25 in . by 10.5 in .)   $8=$ A3 paper ( 297 mm by 420 mm )   $9=$ A4 paper ( 210 mm by 297 mm )   $10=$ A4 small paper ( 210 mm by 297 mm )   11 = A5 paper ( 148 mm by 210 mm )   $12=$ B4 paper ( 250 mm by 353 mm )   $13=$ B5 paper ( 176 mm by 250 mm )   14 = Folio paper ( 8.5 in. by 13 in .)   $15=$ Quarto paper ( 215 mm by 275 mm )   16 = Standard paper (10 in. by 14 in .)   17 = Standard paper (11 in. by 17 in .)   $18=$ Note paper (8.5 in. by 11 in .)   19 = \#9 envelope ( 3.875 in . by 8.875 in .)   $20=\# 10$ envelope ( 4.125 in . by 9.5 in .)   21 = \#11 envelope ( 4.5 in . by 10.375 in .)   $22=\# 12$ envelope ( 4.75 in . by 11 in .)   23 = \#14 envelope ( 5 in. by 11.5 in .)   $24=$ C paper ( 17 in . by 22 in .)   $25=$ D paper ( 22 in. by 34 in .)   $26=$ E paper ( $34 \mathrm{in}$. by 44 in .)   27 = DL envelope ( 110 mm by 220 mm )   $28=$ C5 envelope ( 162 mm by 229 mm )   $29=$ C3 envelope ( 324 mm by 458 mm )   $30=$ C4 envelope ( 229 mm by 324 mm )   31 = C6 envelope ( 114 mm by 162 mm )   $32=$ C65 envelope ( 114 mm by 229 mm )   $33=$ B4 envelope ( 250 mm by 353 mm )   $34=$ B5 envelope ( 176 mm by 250 mm )   $35=$ B6 envelope ( 176 mm by 125 mm )


Attributes	Description
	```36 = Italy envelope ( 110 mm by 230 mm ) 37 = Monarch envelope ( 3.875 in. by 7.5 in .). \(38=63 / 4\) envelope ( 3.625 in . by 6.5 in .) \(39=\) US standard fanfold ( 14.875 in . by 11 in .) \(40=\) German standard fanfold ( 8.5 in . by 12 in .) \(41=\) German legal fanfold ( 8.5 in . by 13 in .) 42 = ISO B4 ( 250 mm by 353 mm ) 43 = Japanese double postcard ( 200 mm by 148 mm ) 44 = Standard paper (9 in. by 11 in .) 45 = Standard paper (10 in. by 11 in.) 46 = Standard paper (15 in. by 11 in .) 47 = Invite envelope ( 220 mm by 220 mm ) 50 = Letter extra paper ( 9.275 in. by 12 in .) 51 = Legal extra paper ( 9.275 in . by 15 in .) 52 = Tabloid extra paper ( 11.69 in . by 18 in .) 53 = A4 extra paper ( 236 mm by 322 mm ) 54 = Letter transverse paper (8.275 in. by 11 in .) 55 = A4 transverse paper ( 210 mm by 297 mm ) 56 = Letter extra transverse paper ( 9.275 in. by 12 in .) 57 = SuperA/SuperA/A4 paper ( 227 mm by 356 mm ) 58 = SuperB/SuperB/A3 paper ( 305 mm by 487 mm ) 59 = Letter plus paper ( 8.5 in . by 12.69 in .) 60 = A4 plus paper ( 210 mm by 330 mm ) \(61=\) A5 transverse paper ( 148 mm by 210 mm ) \(62=\) JIS B5 transverse paper ( 182 mm by 257 mm ) 63 = A3 extra paper ( 322 mm by 445 mm ) 64 = A5 extra paper ( 174 mm by 235 mm ) 65 = ISO B5 extra paper ( 201 mm by 276 mm ) 66 = A2 paper ( 420 mm by 594 mm ) 67 = A3 transverse paper ( 297 mm by 420 mm ) 68 = A3 extra transverse paper ( 322 mm by 445 mm )```   When paperHeight and paperWidth are specified, paperSize should be ignored.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
paperWidth (Paper Width)	Width of custom paper as a number followed by a unit identifier. [Example: $21 \mathrm{~cm}, 8.5 \mathrm{in}$ end example] When paperHeight and paperWidth are specified, paperSize shall be ignored. The possible values for this attribute are defined by the ST_PositiveUniversalMeasure simple type (§22.9.2.12).
useFirstPageNumb er (Use First Page	Use firstPageNumber value for first page number, and do not auto number the pages.

Attributes	\quad Description		
Number)	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.		
usePrinterDefaults (Use Printer Defaults)	Use the printer's defaults settings for page setup values and don't use the default values specified in the schema. [Example: If dpi is not present or specified in the XML, the application must not assume 600dpi as specified in the schema as a default and instead must let the printer specify the default dpi. end example]		
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		\quad	Vertical print resolution of the device.
:---			
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.			

[Note: The W3C XML Schema definition of this element's content model (CT CsPageSetup) is located in §A.2. end note]

18.3.1.65 pageSetUpPr (Page Setup Properties)

Page setup properties of the worksheet

Attributes	Description
autoPageBreaks (Show Auto Page Breaks)	Flag indicating whether the sheet displays Automatic Page Breaks. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
fitToPage (Fit To Page)	Flag indicating whether the Fit to Page print option is enabled. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT PageSetUpPr) is located in §A.2. end note]

18.3.1.66 pane (View Pane)

Worksheet view pane

Attributes	Description
activePane (Active Pane)	The pane that is active.
	The possible values for this attribute are defined by the ST_Pane simple type (§18.18.52).

Attributes	Description
state (Split State)	Indicates whether the pane has horizontal / vertical splits, and whether those splits are frozen. The possible values for this attribute are defined by the ST_PaneState simple type (§18.18.53).
topLeftCell (Top Left Visible Cell)	Location of the top left visible cell in the bottom right pane (when in Left-To-Right mode). The possible values for this attribute are defined by the ST_CellRef simple type (§18.18.7).
xSplit (Horizontal Split Position)	Horizontal position of the split, in 1/20th of a point; 0 (zero) if none. If the pane is frozen, this value indicates the number of columns visible in the top pane. The possible values for this attribute are defined by the W3C XML Schema double datatype.
ySplit (Vertical Split Position)	Vertical position of the split, in 1/20th of a point; 0 (zero) if none. If the pane is frozen, this value indicates the number of rows visible in the left pane. The possible values for this attribute are defined by the W3C XML Schema double datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Pane) is located in §A.2. end note]

18.3.1.67 picture (Background Image)

Background sheet image.

[Example:

```
    <picture r:id="rId1"/>
end example]
```

Attributes	Description
id (Relationship Id)	Relationship Id pointing to the image part.
Namespace:	The possible values for this attribute are defined by the ST_RelationshipId simple type
http://purl.oclc.or	(§22.8.2.1).
g/ooxml/officeDoc	
ument/relationshi	
ps	

[Note: The W3C XML Schema definition of this element's content model (CT SheetBackgroundPicture) is located in §A.2. end note]

Rule describing a PivotTable selection.

Attributes	Description
axis (Axis)	The region of the PivotTable to which this rule applies. The possible values for this attribute are defined by the ST_Axis simple type (§18.18.1).
cacheIndex (Cache Index)	Flag indicating whether any indexes refer to fields or items in the Pivot cache and not the view. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
collapsedLevelsAre Subtotals (Collapsed Levels Are Subtotals)	Flag indicating if collapsed levels/dimensions are considered subtotals. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
dataOnly (Data Only)	Flag indicating whether only the data values (in the data area of the view) for an item selection are selected and does not include the item labels. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
field (Field Index)	Index of the field that this selection rule refers to. The possible values for this attribute are defined by the W3C XML Schema int datatype.
fieldPosition (Field Position)	Position of the field within the axis to which this rule applies. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
grandCol (Include Column Grand Total)	Flag indicating whether the column grand total is included. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
grandRow (Include Row Grand Total)	Flag indicating whether the row grand total is included. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
Only)	
Reference) (Offset	Flag indicating whether only the item labels for an item selection are selected and does not include the data values (in the data area of the view).
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description			
	The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).		outline (Outline)	Flag indicating whether the rule refers to an area that is in outline mode. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
:---	:---			
type (Rule Type)	Indicates the type of selection rule. The possible values for this attribute are defined by the ST_PivotAreaType simple type (§18.18.58).			

[Note: The W3C XML Schema definition of this element's content model (CT PivotArea) is located in §A.2. end note]

18.3.1.69 pivotSelection (PivotTable Selection)

A collection of PivotTable structure selections. A PivotTable structure selection is a way of specifying what cells in the PivotTable are selected. Instead of specifying cell addresses in a sqref, a particular area or structure within the PivotTable is specified. In this way there is semantic meaning regarding what is selected, rather than simply a list of cell or ranges contained in the selection. Typically fields on the row or column axis are selected.
[Example: For example, the innermost field (Product SubCategory) is selected in this PivotTable:

\square	A	B	C		
1 边					
2		State	$\{A \\|\}$		
3		City	[All]	\checkmark	
4					
5			Column Labels		
6			-2001		
7			$\bullet 3$		
8			July		
9		Row Labels	Sum of Sales Amount		
10		- Bikes	209652.9046		
11		\bullet Mountain Bikes	64424.81		
12		Mountain-100 Black, 38	3374.99		
13		Mountain-100 Black, 42	3374.99		
14		Mountain-100 Black, 44	13499.96		
15		Mountain-100 Black, 48	3374.99		
16		Mountain-100 Silver, 38	6799.98		
17		Mountain-100 Silver, 42	6799.98		
18		Mountain-100 Silver, 44	16999.95		
19		Mountain-100 Silver, 48	10199.97145228.0946		
20		\square Road Bikes			
21		Road-150 Red, 44	25047.89		
22		Road-150 Red, 48	42939.24		
23		Road-150Red, 52	21469.62		
24		Road-150Red, 56	25047.89		
25		Road-150Red, 62	28626.16		
26		Road-650 Black, 44	699.0982		
27		Road-650 Black, 52			
28		Road-650 Black, 62	699.0982		
29		Road-650Red, 44	699.0982		
30		Road-650Red, 48			
31		Road-650 Red, 52			
32		Road-650Red, 58			
33		Road-650Red, 60			
34		Grand Total	209652.9046		

The corresponding pivotSelection XML should look like this:
<pivotSelection pane="bottomRight" showHeader="1" axis="axisRow" dimension="2" activeRow="11" activeCol="1" previousRow="11" previousCol="1" click="1" r:id="rId1">

```
    <pivotArea dataOnly="0" labelOnly="1" fieldPosition="0">
        <references count="1">
            <reference field="9" count="0"/>
        </references>
        </pivotArea>
</pivotSelection>
```

axis indicates that this selection is on the row axis, dimension indicates the field level within the row axis that is selected (zero-based index), activeCol and activeRow respectively indicate where in the grid the selection is located, and reference field indicates to which particular field the selection corresponds.
end example]

Attributes	Description
activeCol (Active Column)	The column (zero-based) of active cell for structure selection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
activeRow (Active Row)	The row (zero-based) of active cell for structure selection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
axis (Axis)	Axis of the PivotTable on which this selection lies. The possible values for this attribute are defined by the ST_Axis simple type (§18.18.1).
click (Click Count)	Number of clicks for this structure selection. For some selection combinations, subsequent clicks on the same target area cycles the actual selection through some variances. Therefore number of clicks on the selection shall be recorded, if it is desirable to restore this state of the selection cycle on load.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.	
count (Selection	Number of selections for the structure selection. Count)
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.	
Selection)	Flag indicating whether the structure selection is for data only. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
dimension (Dimension)	Indicates the field level within the axis that is selected (zero-based index). The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

Attributes	Description
extendable (Extendable)	Flag indicating whether the structure selection can have additional selections added to it. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
id (Relationship Id)	Relationship Id pointing to the particular PivotTable Part corresponding to this selection. Namespace: http://purl.oclc.or g/ooxml/officeDoc ument/relationshi ps
label (Label)	Flag indicating whether the structure selection is for labels only (e.g., a grand total row is attribute are defined by the ST_RelationshipId simple type selected). The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
max (Maximum)	The maximum line the structure selection contains. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
min (Minimum)	The minimum line the structure selection contains. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
pane (Pane)	The pane to which this PivotTable structure selection belongs. The possible values for this attribute are defined by the ST_Pane simple type (§18.18.52).
previousCol (Previous Column Selection)	1-based index to the column immediately left of the structure selection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
previousRow (Previous Row)	1-based index to the row immediately above the structure selection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt structure selection. datatype.
showHeader (Show	Flag indicating whether selection toggle from data only to header only to both is enabled. False means disabled. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PivotSelection) is located in §A.2. end note]

18.3.1.70 printOptions (Print Options)

Print options for the sheet. Printer-specific settings are stored separately in the Printer Settings part as defined in §15.2.15.

Attributes	Description
gridLines (Print Grid Lines)	Used in conjunction with gridLinesSet. If both gridLines and gridlinesSet are true, then grid lines shall print. Otherwise, they shall not (i.e., one or both have false values). The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
gridLinesSet (Grid Lines Set)	Used in conjunction with gridLines. If both gridLines and gridLinesSet are true, then grid lines shall print. Otherwise, they shall not (i.e., one or both have false values). The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
headings (Print Headings)	Print row and column headings. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
horizontalCentered (Horizontal Centered)	Center on page horizontally when printing. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
verticalCentered (Vertical Centered)	Center on page vertically when printing. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PrintOptions) is located in §A.2. end note]

18.3.1.71 protectedRange (Protected Range)

A specified range to be protected. Ranges listed here are protected only when the sheet protection is ON and the cell is flagged as being locked. If no password is specified here, then read/write permissions are automatically given to all users, regardless of additional security descriptor information. In other words, the
security descriptor information (specific types of access) at the user level is only applied if a password for this range is specified.

When a password is to be hashed and stored in this element, it shall be hashed as defined below, starting from a UTF-16LE encoded string value. If there is a leading BOM character (U+FEFF) in the encoded password it is removed before hash calculation.

When a password is specified, then users not listed specifically as having access should be prompted with a password. If that user supplies the correct password, then they can edit the range or cell in question. This protection is optional and can be ignored by applications that choose not to support this functionality.

Attributes	Description	
algorithmName (Cryptographic Algorithm Name)	Specifies the specific cryptographic hashing algorithm which shall be used along with the salt attribute and input password in order to compute the hash value. The following values are reserved:	
	Value	Algorithm
	MD2	Specifies that the MD2 algorithm, as defined by RFC 1319, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	MD4	Specifies that the MD4 algorithm, as defined by RFC 1320, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	MD5	Specifies that the MD5 algorithm, as defined by RFC 1321, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-128	Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-160	Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-1	Specifies that the SHA-1 algorithm, as defined by ISO/IEC 10118-

Attributes	Description
	3:2004 shall be used.
	SHA-256 Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-384 Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-512 Specifies that the SHA-512 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	WHIRLPOOL Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC $10118-3: 2004$ shall be used.
	[Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```< ... algorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The algorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm must be used to generate a hash from the user-defined password. end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
hashValue (Password Hash Value)	Specifies the hash value for the password required to edit this range. This value shall be compared with the resulting hash value after hashing the user-supplied password using the algorithm specified by the preceding attributes and parent XML element, and if the two values match, the protection shall no longer be enforced. If this value is omitted, then the reservationPassword attribute shall contain the password hash for the workbook. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```<... AlgorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The hashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies that the user-supplied password must be hashed using the pre-processing defined by the parent element (if any) followed by the SHA-1 algorithm (specified via the algorithmName attribute value of SHA-1) and that the resulting has value must be 9oN7nWkCAyEZib1RomSJTjmPpCY= for the protection to be disabled. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.

Attributes	\quad Description
name (Name)	$\begin{array}{l}\text { Range title. This is used as a descriptor, not as a named range definition. } \\ \text { The possible values for this attribute are defined by the ST_Xstring simple type } \\ \text { (§22.9.2.19). }\end{array}$
$\begin{array}{l}\text { saltValue (Salt } \\ \text { Value for Password } \\ \text { Verifier) }\end{array}$	$\begin{array}{l}\text { Specifies the salt which was prepended to the user-supplied password before it was } \\ \text { hashed using the hashing algorithm defined by the preceding attribute values to generate } \\ \text { the hashValue attribute, and which shall also be prepended to the user-supplied } \\ \text { password before attempting to generate a hash value for comparison. A salt is a random } \\ \text { string which is added to a user-supplied password before it is hashed in order to prevent } \\ \text { a malicious party from pre-calculating all possible password/hash combinations and } \\ \text { simply using those pre-calculated values (often referred to as a "dictionary attack"). } \\ \text { If this attribute is omitted, then no salt shall be prepended to the user-supplied password } \\ \text { before it is hashed for comparison with the stored hash value. }\end{array}$
[Example: Consider an Office Open XML document with the following information stored	
in one of its protection elements:	
<... saltValue="ZUdHa+D8F/OAKP3I7ssUnQ=="	
hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />	

supplied password must have this value prepended before it is run through the specified

hashing algorithm to generate a resulting hash value for comparison. end example]\end{array}\right\}\)

Attributes	\quad Description
	hashValue attribute. end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
sqref (Sequence of References)	The range to be protected. The possible values for this attribute are defined by the ST_Sqref simple type (§18.18.76).

[Note: The W3C XML Schema definition of this element’s content model (CT ProtectedRange) is located in §A.2. end note]

18.3.1.72 protectedRanges (Protected Ranges)

This collection specifies all protected ranges on this worksheet.

[Example:

This example demonstrates that A1:C5 have been protected, with no password specified.
<protectedRanges>
<protectedRange sqref="A1:C5" name="Range1"/>
</protectedRanges>
end example]
[Note: The W3C XML Schema definition of this element's content model (CT ProtectedRanges) is located in §A.2. end note]

18.3.1.73 row (Row)

The element expresses information about an entire row of a worksheet, and contains all cell definitions for a particular row in the worksheet.
[Example:
This row expresses information about row 2 in the worksheet, and contains 3 cell definitions.

```
<row r="2" spans="2:12">
    <c r="C2" s="1">
        <f>PMT(B3/12,B4,-B5)</f>
        <v>672.68336574300008</v>
    </c>
    <c r="D2">
        <v>180</v>
    </c>
```

```
        <c r="E2">
            <v>360</v>
        </c>
    </row>
```

end example]

Attributes	Description
collapsed (Collapsed)	1 if the rows 1 level of outlining deeper than the current row are in the collapsed outline state. It means that the rows which are 1 outline level deeper (numerically higher value) than the current row are currently hidden due to a collapsed outline state. It is possible for collapsed to be false and yet still have the rows in question hidden. This can be achieved by having a lower outline level collapsed, thus hiding all the child rows. [Example: This example shows 3 levels of outlining: In the XML must be: <sheetData> <row r="6" outlineLevel="3"/> <row r="7" outlineLevel="3"/> <row r="8" outlineLevel="2"/> <row r="9" outlineLevel="1"/> </sheetData> end example] [Example: This example shows the same outline feature, with the middle level collapsed:

Attributes	Description
	collapsed due to collapsed being true on row 9 . end example] See description of outlinePr element's summaryBelow and summaryRight attributes for detailed information. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
customFormat (Custom Format)	1 if the row style should be applied. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
customHeight (Custom Height)	1 if the row height has been manually set. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
hidden (Hidden)	1 if the row is hidden, e.g., due to a collapsed outline or by manually selecting and hiding a row. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
ht (Row Height)	Row height measured in point size. There is no margin padding on row height. The possible values for this attribute are defined by the W3C XML Schema double datatype.
outlineLevel (Outline Level)	Outlining level of the row, when outlining is on. See description of outlinePr element's summaryBelow and summaryRight attributes for detailed information. The possible values for this attribute are defined by the W3C XML Schema unsignedByte datatype.
ph (Show Phonetic)	1 if the row should show phonetic. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
r (Row Index)	Row index. Indicates to which row in the sheet this <row> definition corresponds. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
s (Style Index)	Index to style record for the row (only applied if customFormat attribute is ' 1 ') The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

Attributes	Description
spans (Spans)	Optimization only, and not required. Specifies the range of non-empty columns (in the format $X: Y$) for the block of rows to which the current row belongs. To achieve the optimization, span attribute values in a single block should be the same. There are 16 rows per block, beginning with the first row. [Note: this is an optimization, and is purely optional. Different span values within the same row block is allowed. Not writing the span value at all is also allowed. end note] Blank rows are not required to write out span values. [Example: If cells F8, E9, and D10 have data in them and the rest of the sheet is empty, then for those three rows (8,9 , and 10), the spans value should each be "4:6": ```<sheetData> <row r="8" spans="4:6"> <c r="F8"> <v>1</v> </c> </row> <row r="9" spans="4:6"> <c r="E9"> <v>2</v> </c> </row> <row r="10" spans="4:6"> <c r="D10"> <v>3</v> </c> </row> </sheetData>``` If cells A 1 and J10 have data in them and the rest of the sheet is empty, then the rows should be written like this: ```<sheetData> <row r="1" spans="1:10"> <c r="A1"> <v>1</v> </c> </row> <row r="10" spans="1:10"> <c r="J10"> <v>2</v> </c> </row> </sheetData>```

Attributes	\quad Description
end example]	
The possible values for this attribute are defined by the ST_CellSpans simple type	
(§18.18.9).	

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Row) is located in §A.2. end note]

18.3.1.74 rowBreaks (Horizontal Page Breaks (Row))

Horizontal page break information used for print layout view, page layout view, drawing print breaks in normal view, and for printing the worksheet.
[Example: This example shows a break inserted at cell B25:
<rowBreaks count="1" manualBreakCount="1">
<brk id="24" max="16383" man="1"/>
</rowBreaks>
end example]

Attributes	Description
count (Page Break Count)	Number of breaks in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
manualBreakCount (Manual Break Count)	Number of manual breaks in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PageBreak) is located in §A.2. end note]

18.3.1.75 scenario (Scenario)

An individual scenario description. [Note: See parent element for an example. end note]

Attributes	Description
comment (Scenario Comment)	Comment for this scenario, rich text not supported. The possible values for this attribute are defined by the ST_Xstring simple type (\$22.9.2.19).
count (Changing Cell Count)	Number of input cells. The possible values for this attribute are defined by the W3C XML Schema unsignedInt

Attributes	Description
	datatype.
hidden (Hidden Scenario)	Scenario is hidden when the sheet is protected and 'edit scenarios' is not enabled in sheet protection options. If the scenario is marked as hidden but sheet protection options specify to allow editing scenarios, then the scenario shall not be hidden. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
locked (Scenario Locked)	Scenario is locked for editing when the sheet is protected. If sheet is protected and "edit scenarios" is enabled, then this setting is ignored. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
name (Scenario Name)	Scenario's name (user input). Shall be unique for the worksheet The possible values for this attribute are defined by the ST_Xstring simple type (\$22.9.2.19).
user (User Name)	Name of user who last changed the scenario. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT Scenario) is located in §A.2. end note]

18.3.1.76 scenarios (Scenarios)

A collection of Scenarios. A scenario is a named what-if model that includes variable cells linked together by one or more formulas.
[Example: For example, you might want to compare best-case and worst-case scenarios for sales in a coffee shop, based on the number of cups of coffee sold in a week.

```
<scenarios current="1" show="0" sqref="G4 G6 G7 G8">
    <scenario name="Best Case" locked="1" count="3" user="anonymous"
        comment="Created on 6/9/2006_x000a_Modified on 6/9/2006">
        <inputCells r="D5" val="151" numFmtId="37"/>
        <inputCells r="D9" val="226"/>
        <inputCells r="D13" val="126"/>
    </scenario>
```

```
    <scenario name="Worst Case" locked="1" count="3" user="anonymous"
        comment="Created on 6/9/2006">
    <inputCells r="D5" val="50" numFmtId="37"/>
        <inputCells r="D9" val="40"/>
        <inputCells r="D13" val="30"/>
        </scenario>
</scenarios>
end example]
```

Attributes	Description
current (Current Scenario)	Zero-based index to current scenario selected. Can correspond to selection UI. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
show (Last Shown Scenario)	Zero-based index to last shown scenario. Indicates which scenario was last selected by the user to be run/shown. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
sqref (Sequence of References)	Range or sequence of cells used for scenario results summary. The possible values for this attribute are defined by the ST_Sqref simple type (§18.18.76).

[Note: The W3C XML Schema definition of this element's content model (CT Scenarios) is located in §A.2. end note]

18.3.1.77 securityDescriptor (Security Descriptor)

Optional setting to specify the relative security descriptor. The security descriptor defines user accounts who may edit this range without providing a password to access the range.
[Note: The format of a securityDescriptor is application defined; however, it is recommended that the following format be used for interoperability between implementations: username@domain. This format follows the form of addr-spec as defined in RFC 822, Standard for ARPA Internet Text Messages. end note]
[Example: This example demonstrates two user accounts in the security descriptor attribute:

```
<protectedRanges>
    <protectedRange sqref="A1:C5" name="Range1">
            <securityDescriptor>user1@iso.org</securityDescriptor>
        <securityDescriptor>user2@iso.org</securityDescriptor>
    </protectedRange>
</protectedRanges>
```


end example]

The possible values for this element are defined by the W3C XML Schema string datatype.

18.3.1.78 selection (Selection)

Worksheet view selection.

Attributes	Description
activeCell (Active Cell Location)	Location of the active cell. The possible values for this attribute are defined by the ST_CellRef simple type (§18.18.7).
activeCellId (Active Cell Index)	0-based index of the range reference (in the array of references listed in sqref) containing the active cell. Only used when the selection in sqref is not contiguous. Therefore, this value needs to be aware of the order in which the range references are written in sqref. When this value is out of range then activeCell can be used. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
pane (Pane)	The pane to which this selection belongs. The possible values for this attribute are defined by the ST_Pane simple type (§18.18.52).
sqref (Sequence of References)	Range of the selection. Can be non-contiguous set of ranges. The possible values for this attribute are defined by the ST_Sqref simple type (§18.18.76).

[Note: The W3C XML Schema definition of this element's content model (CT Selection) is located in §A.2. end note]

18.3.1.79 sheetCalcPr (Sheet Calculation Properties)

This element contains calculation properties for the worksheet.

Attributes	Description
fullCalcOnLoad (Full Calculation On Load)	Indicates whether the application should do a full calculate on load due to contents on this sheet. After load and successful calc, the application shall set this value to false. Set this to true when the application should calculate the workbook on load.
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.	

[Note: The W3C XML Schema definition of this element’s content model (CT SheetCalcPr) is located in §A.2. end note]

18.3.1.80 sheetData (Sheet Data)

This collection represents the cell table itself. This collection expresses information about each cell, grouped together by rows in the worksheet.
[Note: The W3C XML Schema definition of this element's content model (CT SheetData) is located in §A.2. end note]

18.3.1.81 sheetFormatPr (Sheet Format Properties)

Sheet formatting properties.

Attributes	Description		
$\begin{array}{l}\text { baseColWidth } \\ \text { (Base Column } \\ \text { Width) }\end{array}$	$\begin{array}{l}\text { Specifies the number of characters of the maximum digit width of the normal style's font. } \\ \text { This value does not include margin padding or extra padding for gridlines. It is only the } \\ \text { number of characters. } \\ \text { See defaultColWidth description in this section for details on calculating this value. } \\ \text { See the col element description, particularly the width attribute description, for more } \\ \text { information on what is meant by "maximum digit width". } \\ \text { The possible values for this attribute are defined by the W3C XML Schema unsignedInt } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { customHeight } \\ \text { (Custom Height) }\end{array}$	$\begin{array}{l}\text { 'True' if defaultRowHeight value has been manually set, or is different from the default } \\ \text { value. }\end{array}$		
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		$\}$	defaultColWidth
:---			
(Default Column			
Width)			
of the normal style's font.			
If the user has not set this manually, then it can be calculated:			
defaultColWidth = baseColumnWidth + \{margin padding (2 pixels on each side, totalling			
4 pixels) $+\{$ \{gridline (1pixel) $\}$			
If the user has set this manually, then there is no calculation, and simply a value is			
specified.			

Attributes	Description
	When the row height of all rows in a sheet is the default value, then that value is written here, and customHeight is not set. If a few rows have a different height, that information is written directly on each row. However, if most or all of the rows in the sheet have the same height, but that height isn't the default height, then that height value should be written here (as an optimization), and the customHeight flag should also be set. In this case, all rows having this height do not need to express the height, only rows whose height differs from this value need to be explicitly expressed. The possible values for this attribute are defined by the W3C XML Schema double datatype.
outlineLevelCol (Column Outline Level)	Highest number of outline levels for columns in this sheet. These values shall be in synch with the actual sheet outline levels.
outlineLevelRow (Maximum Outline Row)	Highest number of outline level for rows in this sheet. These values shall be in synch with the actual sheet outline levels.
The possible values for this attribute are defined by the W3C XML Schema unsignedByte	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT SheetFormatPr) is located in §A.2. end note]

18.3.1.82 sheetPr (Sheet Properties)

Sheet-level properties.

Attributes	\quad Description			
codeName (Code Name)	Specifies a stable name of the sheet, which should not change over time, and does not change from user input. This name should be used by code to reference a particular sheet. The possible values for this attribute are defined by the W3C XML Schema string datatype.			
enableFormatCond itionsCalculation (Enable Conditional Formatting Calculations)	Flag indicating whether the conditional formatting calculations shall be evaluated. If set to false, then the min/max values of color scales or databars or threshold values in Top N rules shall not be updated. Essentially the conditional formatting "calc" is off.			
This is useful when conditional formats are being set programmatically at runtime,				
recalculation of the conditional formatting does not need to be done until the program				
execution has finished setting all the conditional formatting properties.		$	$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---				
datatype.				

Attributes	Description
transitionEvaluatio n (Transition Formula Evaluation)	Flag indicating whether the Transition Formula Evaluation (Lotus compatibility) option is enabled.
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT SheetPr) is located in §A.2. end note]

18.3.1.83 sheetPr (Chart Sheet Properties)

This element specifies chart sheet properties.

Attributes	Description
codeName (Code Name)	Specifies a stable name of the sheet, which should not change over time, and does not change from user input. This name should be used by code to reference a particular sheet. The possible values for this attribute are defined by the W3C XML Schema string datatype.
published (Published)	Flag indicating whether the chart sheet is published. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ChartsheetPr) is located in §A.2. end note]

18.3.1.84 sheetProtection (Chart Sheet Protection)

This collection expresses the chart sheet protection options to enforce when the chart sheet is protected.

Attributes	Description	
algorithmName (Cryptographic Algorithm Name)	Specifies the specific cryptographic hashing algorithm which shall be used along with the salt attribute and input password in order to compute the hash value.	
	The following values are reserved:	
	Value	Algorithm
	Specifies that the MD2 algorithm, as defined by RFC 1319, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known	

Attributes	Description	
		breaks. end note]
	MD4	Specifies that the MD4 algorithm, as defined by RFC 1320, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	MD5	Specifies that the MD5 algorithm, as defined by RFC 1321, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-128	Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-160	Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-1	Specifies that the SHA-1 algorithm, as defined by ISO/IEC 101183:2004 shall be used.
	SHA-256	Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-384	Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-512	Specifies that the SHA-512 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	WHIRLPOOL	Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	[Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```< ... algorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The algorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm must be used to generate a hash from the user-defined password. end example]	

Attributes	\quad Description		
	$\begin{array}{l}\text { The possible values for this attribute are defined by the ST_Xstring simple type } \\ \text { (§22.9.2.19). }\end{array}$		
content (Contents)	$\begin{array}{l}\text { When true prevents users from making changes to items that are part of the chart, such } \\ \text { as data series, axes, and legends. The chart continues to reflect changes made to its } \\ \text { source data. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { hashValue } \\ \text { (Password Hash } \\ \text { Value) }\end{array}$	$\begin{array}{l}\text { Specifies the hash value for the password required to edit this chartsheet. This value shall } \\ \text { be compared with the resulting hash value after hashing the user-supplied password } \\ \text { using the algorithm specified by the preceding attributes and parent XML element, and if } \\ \text { the two values match, the protection shall no longer be enforced. }\end{array}$		
If this value is omitted, then the reservationPassword attribute shall contain the			
password hash for the workbook.			
[Example: Consider an Office Open XML document with the following information stored			
in one of its protection elements:			
<... algorithmName="SHA-1"			
hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />		$\}$	The hashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies that the
:---			
user-supplied password shall be hashed using the pre-processing defined by the parent			
element (if any) followed by the SHA-1 algorithm (specified via the algorithmName			
attribute value of SHA-1) and that the resulting has value must be			
9oN7nWkCAyEZib1RomSJTjmPpCY= for the protection to be disabled. end example]			

Attributes	Description
	before it is hashed for comparison with the stored hash value. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: $\begin{aligned} & \text { <... saltValue="ZUdHa+D8F/OAKP3I7ssUnQ==" } \\ & \text { hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" /> } \end{aligned}$ The saltValue attribute value of ZUdHa+D8F/OAKP3I7ssUnQ== specifies that the usersupplied password must have this value prepended before it is run through the specified hashing algorithm to generate a resulting hash value for comparison. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.
spinCount (Iterations to Run Hashing Algorithm)	Specifies the number of times the hashing function shall be iteratively run (runs using each iteration's result plus a 4 byte value (0 -based, little endian) containing the number of the iteration as the input for the next iteration) when attempting to compare a usersupplied password with the value stored in the hashValue attribute. [Rationale: Running the algorithm many times increases the cost of exhaustive search attacks correspondingly. Storing this value allows for the number of iterations to be increased over time to accommodate faster hardware (and hence the ability to run more iterations in less time). end rationale] [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```<... spinCount="100000" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The spinCount attribute value of 100000 specifies that the hashing function must be run one hundred thousand times to generate a hash value for comparison with the hashValue attribute. end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ChartsheetProtection) is located in §A.2. end note]

18.3.1.85 sheetProtection (Sheet Protection Options)

This collection expresses the sheet protection options to enforce when the sheet is protected.

[Example:

This example demonstrates that the sheet is protected, objects and scenarios can be edited, cell formatting is allowed, and selection of locked cells is not allowed:

```
<sheetProtection sheet="1" objects="1" scenarios="1" formatCells="0"
    selectLockedCells="1"/>
```

end example]

Attributes		Description
algorithmName (Cryptographic Algorithm Name)	Specifies the specific cryptographic hashing algorithm which shall be used along with the salt attribute and input password in order to compute the hash value. The following values are reserved:	
	Value	Algorithm
	MD2	Specifies that the MD2 algorithm, as defined by RFC 1319, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	MD4	Specifies that the MD4 algorithm, as defined by RFC 1320, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	MD5	Specifies that the MD5 algorithm, as defined by RFC 1321, shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-128	Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. [Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
	RIPEMD-160	Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-1	Specifies that the SHA-1 algorithm, as defined by ISO/IEC 101183:2004 shall be used.
	SHA-256	Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.

Attributes	Description
	SHA-384 Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used.
	SHA-512 $\begin{array}{l}\text { Specifies that the SHA-512 algorithm, as defined by ISO/IEC } \\ \text { 10118-3:2004 shall be used. }\end{array}$
	WHIRLPOOL Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC $10118-3: 2004$ shall be used.
	[Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```< ... algorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The algorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm must be used to generate a hash from the user-defined password. end example] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
autoFilter (AutoFilter Locked)	If 1 or true then AutoFilters should not be allowed to operate when the sheet is protected. If θ or false then AutoFilters should be allowed to operate when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
deleteColumns (Delete Columns Locked)	If 1 or true then deleting columns should not be allowed when the sheet is protected. If θ or false then deleting columns should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
deleteRows (Delete Rows Locked)	If 1 or true then deleting rows should not be allowed when the sheet is protected. If 0 or false then deleting rows should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
formatCells (Format Cells Locked)	If 1 or true then formatting cells should not be allowed when the sheet is protected. If θ or false then formatting cells should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean

Attributes	Description
	datatype.
formatColumns (Format Columns Locked)	If 1 or true then formatting columns should not be allowed when the sheet is protected. If θ or false then formatting columns should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
formatRows (Format Rows Locked)	If 1 or true then formatting rows should not be allowed when the sheet is protected. If 0 or false then formatting rows should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
hashValue (Password Hash Value)	Specifies the hash value for the password required to edit this worksheet. This value shall be compared with the resulting hash value after hashing the user-supplied password using the algorithm specified by the preceding attributes and parent XML element, and if the two values match, the protection shall no longer be enforced. If this value is omitted, then the reservationPassword attribute shall contain the password hash for the workbook. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: ```<... algorithmName="SHA-1" hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />``` The hashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies that the user-supplied password must be hashed using the pre-processing defined by the parent element (if any) followed by the SHA-1 algorithm (specified via the algorithmName attribute value of SHA-1) and that the resulting hash value must be $90 N 7 n W k C A y E Z i b 1 R o m S J T j m P p C Y=$ for the protection to be disabled. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary datatype.
insertColumns (Insert Columns Locked)	If 1 or true then inserting columns should not be allowed when the sheet is protected. If 0 or false then inserting columns should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
insertHyperlinks (Insert Hyperlinks	If 1 or true then inserting hyperlinks should not be allowed when the sheet is protected.

Attributes	Description
Locked)	If 0 or false then inserting hyperlinks should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
insertRows (Insert Rows Locked)	If 1 or true then inserting rows should not be allowed when the sheet is protected. If 0 or false then inserting rows should be allowed when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
objects (Objects Locked)	If 1 or true then editing of objects should not be allowed when the sheet is protected. If θ or false then objects are allowed to be edited when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
pivotTables (Pivot Tables Locked)	If 1 or true then PivotTables should not be allowed to operate when the sheet is protected. If 0 or false then PivotTables should be allowed to operate when the sheet is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
saltValue (Salt Value for Password Verifier)	Specifies the salt which was prepended to the user-supplied password before it was hashed using the hashing algorithm defined by the preceding attribute values to generate the hashValue attribute, and which shall also be prepended to the user-supplied password before attempting to generate a hash value for comparison. A salt is a random string which is added to a user-supplied password before it is hashed in order to prevent a malicious party from pre-calculating all possible password/hash combinations and simply using those pre-calculated values (often referred to as a "dictionary attack"). If this attribute is omitted, then no salt shall be prepended to the user-supplied password before it is hashed for comparison with the stored hash value. [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: $\begin{aligned} & \text { <... saltValue="ZUdHa+D8F/OAKP3I7ssUnQ==" } \\ & \text { hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" /> } \end{aligned}$ The saltValue attribute value of ZUdHa+D8F/OAKP3I7ssUnQ== specifies that the usersupplied password must have this value prepended before it is run through the specified hashing algorithm to generate a resulting hash value for comparison. end example] The possible values for this attribute are defined by the W3C XML Schema base64Binary

Attributes	Description		
	datatype.		
$\begin{array}{l}\text { scenarios } \\ \text { (Scenarios Locked) }\end{array}$	$\begin{array}{l}\text { If } 1 \text { or true then Scenarios should not be edited when the sheet is protected. } \\ \text { If } 0 \text { or false then Scenarios are allowed to be edited when the sheet is protected. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { selectLockedCells } \\ \text { (Select Locked Cells } \\ \text { Locked) }\end{array}$	$\begin{array}{l}\text { If } 1 \text { or true then selection of locked cells should not be allowed when the sheet is } \\ \text { protected. }\end{array}$		
If 0 or false then selection of locked cells should be allowed when the sheet is protected.		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description
	attacks correspondingly. Storing this value allows for the number of iterations to be increased over time to accommodate faster hardware (and hence the ability to run more iterations in less time). end rationale] [Example: Consider an Office Open XML document with the following information stored in one of its protection elements: <... spinCount="1000000" hashValue="90N7nWkCAyEZib1RomSJTjmPpCY=" /> The spinCount attribute value of 100000 specifies that the hashing function must be run one hundred thousand times to generate a hash value for comparison with the hashValue attribute. end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT SheetProtection) is located in §A.2. end note]

18.3.1.86 sheetView (Chart Sheet View)

This element specifies a chart sheet view. [Note: See sheetView (\$18.3.1.87) for an example. end note]

Attributes	Description
tabSelected (Sheet Tab Selected)	Flag indicating whether the sheet tab is selected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
workbookViewId (Workbook View Id)	Zero-based index of this workbook view, pointing to a workbookView element in the bookViews collection.
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
zoomScale (Window Zoom Scale)	Window zoom magnification, representing percent values. This attribute is restricted to values ranging from 10 to 400. Horizontal \& Vertical scale together.
[Example:	
	$10-10 \%$ $20-20 \%$ \ldots $100-100 \%$

Attributes	Description
	(.. end example]
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
zoomToFit (Zoom To Fit)	Flag indicating whether chart sheet is zoom to fit window. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ChartsheetView) is located in §A.2. end note]

18.3.1.87 sheetView (Worksheet View)

A single sheet view definition. When more than one sheet view is defined in the file, it means that when opening the workbook, each sheet view corresponds to a separate window within the spreadsheet application, where each window is showing the particular sheet containing the same workbookViewId value, the last sheetView definition is loaded, and the others are discarded. When multiple windows are viewing the same sheet, multiple sheetView elements (with corresponding workbookView entries) are saved.

Attributes	Description
colorId (Color Id)	Index to the color value for row/column text headings and gridlines. This is an 'index color value' (ICV) rather than rgb value. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
defaultGridColor (Default Grid Color)	Flag indicating that the consuming application should use the default grid lines color (system dependent). Overrides any color specified in colorId. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
rightToLeft (Right To Left)	Flag indicating whether the sheet is in 'right to left' display mode. When in this mode, Column A is on the far right, Column B ;is one column left of Column A, and so on. Also, information in cells is displayed in the Right to Left format. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showFormulas (Show Formulas)	Flag indicating whether this sheet should display formulas. The possible values for this attribute are defined by the W3C XML Schema boolean

Attributes	Description
	datatype.
showGridLines (Show Grid Lines)	Flag indicating whether this sheet should display gridlines. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showOutlineSymb ols (Show Outline Symbols)	Flag indicating whether the sheet has outline symbols visible. This flag shall always override SheetPr element's outlinePr child element whose attribute is named showOutlineSymbols when there is a conflict. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showRowColHeade rs (Show Headers)	Flag indicating whether the sheet should display row and column headings. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showRuler (Show Ruler)	Show the ruler in Page Layout View. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
showWhiteSpace (Show White Space)	Flag indicating whether page layout view shall display margins. False means do not display left, right, top (header), and bottom (footer) margins (even when there is data in the header or footer).
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
view (View Type)	Indicates the view type. The possible values for this attribute are defined by the ST_SheetViewType simple type (§18.18.69).
windowProtection (Window Protection)	Flag indicating whether the panes in the window are locked due to workbook protection. This is an option when the workbook structure is protected. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
workbookViewId (Workbook View Index)	Zero-based index of this workbook view, pointing to a workbookView element in the bookViews collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
zoomScale (Zoom Scale)	Window zoom magnification for current view representing percent values. This attribute is restricted to values ranging from 10 to 400 . Horizontal \& Vertical scale together. [Example: 10-10\% 20-20\% 100-100\% 400-400\% end example] Current view can be Normal, Page Layout, or Page Break Preview. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
zoomScaleNormal (Zoom Scale Normal View)	Zoom magnification to use when in normal view, representing percent values. This attribute is restricted to values ranging from 10 to 400 . Horizontal \& Vertical scale together. [Example: 10-10\% 20-20\% 100-100\% 400-400\% end example]

Attributes	Description
	Applies for worksheets only; zero implies the automatic setting. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
zoomScalePageLay outView (Zoom Scale Page Layout View)	Zoom magnification to use when in page layout view, representing percent values. This attribute is restricted to values ranging from 10 to 400 . Horizontal \& Vertical scale together. [Example: 10-10\% 20-20\% ... 100-100\% 400-400\% end example] Applies for worksheets only; zero implies the automatic setting. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
zoomScaleSheetLa youtView (Zoom Scale Page Break Preview)	Zoom magnification to use when in page break preview, representing percent values. This attribute is restricted to values ranging from 10 to 400 . Horizontal \& Vertical scale together. [Example: 10-10\% 20-20\% ... 100-100\% 400-400\% end example] Applies for worksheet only; zero implies the automatic setting. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT SheetView) is located in §A.2. end note]

18.3.1.88 sheetViews (Sheet Views)

Worksheet views collection.

[Example:

This example shows one sheet view definition. The definition indicates that the current sheet is the active/selected sheet, and that there is a split pane applied to the view. This definition also indicates for each of the four window panes of the split which cell is the active cell for that pane.

```
<sheetViews>
    <sheetView tabSelected="1" workbookViewId="0">
        <pane xSplit="2310" ySplit="2070" topLeftCell="C1"
            activePane="bottomRight"/>
        <selection/>
        <selection pane="bottomLeft" activeCell="A6" sqref="A6"/>
        <selection pane="topRight" activeCell="C1" sqref="C1"/>
        <selection pane="bottomRight" activeCell="E13" sqref="E13"/>
    </sheetView>
</sheetViews>
end example]
```

[Note: The W3C XML Schema definition of this element's content model (CT SheetViews) is located in §A.2. end note]

18.3.1.89 sheetViews (Chart Sheet Views)

This element specifies chart sheet views.
[Note: The W3C XML Schema definition of this element's content model (CT ChartsheetViews) is located in §A.2. end note]

18.3.1.90 smartTags (Smart Tags)

This collection expresses all smart tags associated with cells on this sheet. There can be multiple smart tags associated with a particular cell, and many cells with smart tags for a given worksheet.

[Example:

This example shows three smart tags, each one associated with a unique cell on the worksheet.

```
<smartTags>
    <cellSmartTags r="A1">
        <cellSmartTag type="0"/>
    </cellSmartTags>
    <cellSmartTags r="B1">
        <cellSmartTag type="0"/>
    </cellSmartTags>
    <cellSmartTags r="B2">
        <cellSmartTag type="0"/>
    </cellSmartTags>
</smartTags>
end example]
```

[Note: The W3C XML Schema definition of this element’s content model (CT SmartTags) is located in §A.2. end note]

18.3.1.91 sortCondition (Sort Condition)

Sort condition. When more than one sortCondition is specified, the first condition is applied first, then the second condition is applied, and so on.

Attributes	Description
customList (Custom List)	Sort by a custom list. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
descending (Descending)	Sort descending. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
dxfld (Format Id)	Format Id when sortBy=cellColor or fontColor The possible values for this attribute are defined by the ST_DxfId simple type (§18.18.25).
iconId (Icon Id)	Zero-based index of an icon in an icon set. The absence of this attribute means "no icon" The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
iconSet (Icon Set)	Icon set index when sortBy=icon. The possible values for this attribute are defined by the ST_IconSetType simple type (§18.18.42).
ref (Reference)	Column/Row that this sort condition applies to. This shall be contained within the ref in CT_SortState.

Attributes	Description
	The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
sortBy (Sort By)	Type of sort. The possible values for this attribute are defined by the ST_SortBy simple type (§18.18.72).

[Note: The W3C XML Schema definition of this element's content model (CT SortCondition) is located in §A.2. end note]

18.3.1.92 sortState (Sort State)

This collection preserves the AutoFilter sort state.
[Example: This example shows a sort which is case-sensitive, descending sort. While the range of data to sort is $\mathrm{B} 4: \mathrm{E} 8$, the range to sort by is $\mathrm{B} 4: \mathrm{B8}$.
<sortState caseSensitive="1" ref="B4:E8">
<sortCondition descending="1" ref="B4:B8"/>
</sortState>
end example]

Attributes	Description
caseSensitive (Case Sensitive)	Flag indicating whether or not the sort is case-sensitive. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
columnSort (Sort by Columns)	Flag indicating whether or not to sort by columns. Only applies to ranges that don't have AutoFilter applied. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
ref (Sort Range)	The whole range of data to sort (not just the sort-by column). The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
sortMethod (Sort Method)	Strokes or PinYin sort method. Applies only to these application UI languages: \bullet \bullet - Chinese Simplified
- Japanese Traditional	

Attributes	Description
	The possible values for this attribute are defined by the ST_SortMethod simple type (§18.18.73).

[Note: The W3C XML Schema definition of this element's content model (CT SortState) is located in §A.2. end note]

18.3.1.93 tabColor (Sheet Tab Color)

Background color of the sheet tab.

Attributes	Description
auto (Automatic)	A boolean value indicating the color is automatic and system color dependent. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
indexed (Index)	Indexed color value. Only used for backwards compatibility. References a color in indexedColors. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
rgb (Alpha Red Green Blue Color Value)	Standard Alpha Red Green Blue color value (ARGB). The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
theme (Theme Color)	A zero-based index into the <clrScheme> collection (§20.1.6.2), referencing a particular <sysClr> or <srgbClr> value expressed in the Theme part. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
tint (Tint)	Specifies the tint value applied to the color. If tint is supplied, then it is applied to the RGB value of the color to determine the final color applied. The tint value is stored as a double from -1.0 .. 1.0, where -1.0 means 100\% darken and 1.0 means 100\% lighten. Also, 0.0 means no change. In loading the RGB value, it is converted to HLS where HLS values are (0..HLSMAX), where HLSMAX is currently 255. [Example:

Attributes	Description
	```Here are some examples of how to apply tint to color: If (tint < 0) Lum \({ }^{\prime}=\) Lum * (1.0 + tint) For example: Lum = 200; tint =-0.5; Darken 50\% Lum \({ }^{\prime}=200 *(0.5)=>100\)``` For example: Lum = 200; tint =-1.0; Darken 100\% (make black) Lum' $=200$ * (1.0-1.0) $=>0$ If (tint $>\mathbf{0}$ ) Lum ${ }^{\prime}=$ Lum * (1.0-tint) $+($ HLSMAX - HLSMAX * (1.0-tint) $)$ For example: Lum = 100; tint = 0.75; Lighten 75\% Lum ${ }^{\prime}=100$ * (1-.75) + (HLSMAX - HLSMAX*(1-.75)) $=100$ *. $25+(255-255$ * .25) $=25+(255-63)=25+192=217$   For example: Lum = 100; tint = 1.0; Lighten 100\% (make white)   Lum $^{\prime}=100^{*}(1-1)+\left(\operatorname{HLSMAX}-\operatorname{HLSMAX}^{*}(1-1)\right)$ $=100 * 0+(255-255 * 0)$ $=0+(255-0)=255$   end example]   The possible values for this attribute are defined by the W3C XML Schema double datatype.



### 18.3.1.94 tablePart (Table Part)

A single Table Part reference.

Attributes	Description
id (Relationship Id)	This relationship Id is used to locate a particular table definition part.
Namespace:	The possible values for this attribute are defined by the ST_RelationshipId simple type
http://purl.oclc.or	(§22.8.2.1).
g/ooxml/officeDoc	
ument/relationshi	
ps	

[Note: The W3C XML Schema definition of this element's content model (CT TablePart) is located in §A.2. end note]

### 18.3.1.95 tableParts (Table Parts)

This collection expresses a relationship Id pointing to every table on this sheet.
[Example: This example indicates that the current sheet has two tables, and their definitions can be found by locating the appropriate relationships from the sheet:

```
<tableParts count="2">
 <tablePart r:id="rId1"/>
 <tablePart r:id="rId2"/>
</tableParts>
```

end example]

Attributes	Description
count (Count)	A count of table elements in the collection.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT TableParts) is located in §A.2. end note]

### 18.3.1.96 v (Cell Value)

This element expresses the value contained in a cell. If the cell contains a string, then this value is an index into the shared string table, pointing to the actual string value. Otherwise, the value of the cell is expressed directly in this element. Cells containing formulas express the last calculated result of the formula in this element.

For applications not wanting to implement the shared string table, an 'inline string' can be expressed in an <is> element under <c> (instead of a <v> element under <c>), in the same way a string would be expressed in the shared string table. [Note: See <is> for an example. end note]
[Example: In this example, cell B4 contains the number " 360 ", cell C4 contains the local date and time 22 November 1976, 08:30, and cell C5 contains the 1900 date system serial date-time for the date-time in cell C4.

```
<c r="B4">
 <v>360</v>
</c>
<c r="C4" t="d">
 <v>1976-11-22T08:30</v>
</c>
```

```
 <c r="C5">
 <f>C4</f>
 <v>28086.3541666667</v>
</c>
```

end example]

The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:	
http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.3.1.97 webPublishItem (Web Publishing Item)

This element represents information for a single item or object which can be published to HTML.

Attributes	Description
autoRepublish   (Automatically   Publish)	Automatically publish this item every time the workbook is saved.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
destinationFile   (Destination File   Name)	Destination file name. Indicates where to save the HTML publish file.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).
divId (Destination   Bookmark)	Destination bookmark. Identifies a specific <div> section in the published HTML file when   a subset of the workbook is published to HTML. Each item that has been published from   a workbook is written to a unique <div>element in HTML. On re-publishing a particular   item from the workbook, only that item's corresponding <div> content is updated.   Therefore each publish item corresponds to a unique <div> element. It is possible to add   new publish items to an existing published page, and it is possible to re-publish individual   items without republishing the entire workbook.
The possible values for this attribute are defined by the ST_Xstring simple type	


Attributes	Description		
	(§22.9.2.19).		
id (Id)	$\begin{array}{l}\text { This is a unique number "nnnnn" of the webPublishltem. This value is used to generate } \\ \text { the divId and styleId values. }\end{array}$		
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.		$]$	Source object name (required for sourceType = pivotTable, query, or label).
:---			
The possible values for this attribute are defined by the ST_Xstring simple type			
(§22.9.2.19).			

[Note: The W3C XML Schema definition of this element’s content model (CT WebPublishltem) is located in §A.2. end note]

### 18.3.1.98 webPublishItems (Web Publishing Items)

This represents a listing of individual objects in this workbook that have been published (to HTML).
When one of these objects is selected to be published, just the object is published to HTML, not the entire workbook contents.
[Example: This example shows two items which have been previously selected for publishing. One is a range (A6:C6), the other is a chart, named "Chart 1".

```
<webPublishItems count="2">
 <webPublishItem id="11289" divId="Views_11289" sourceType="range"
 sourceRef="A6:C6" destinationFile="D:\Publish.htm" published="0"/>
 <webPublishItem id="6433" divId="Views_6433" sourceType="chart"
 sourceObject="Chart 1" destinationFile="D:\Publish.mht" published="0"/>
</webPublishItems>
```

end example]

Attributes	Description
count (Web   Publishing Items   Count)	Number of items.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT WebPublishltems) is located in §A.2. end note]

### 18.3.1.99 worksheet (Worksheet)

This is the root element of Worksheet parts within a SpreadsheetML document.
[Note: The W3C XML Schema definition of this element's content model (CT Worksheet) is located in §A.2. end note]

### 18.3.2 AutoFilter Settings

The following subclause defines the settings which can be specified as part of an AutoFilter definition. An AutoFilter temporarily hides rows based on a filter criteria, which is applied column by column to a table of data in the worksheet.

### 18.3.2.1 colorFilter (Color Filter Criteria)

This element specifies the color to filter by and whether to use the cell's fill or font color in the filter criteria. If the cell's font or fill color does not match the color specified in the criteria, the rows corresponding to those cells are hidden from view.
[Example:

```
<filterColumn colId="1">
 <colorFilter dxfId="0" cellColor="0"/>
</filterColumn>
```

end example]

Attributes	Description
cellColor (Filter By   Cell Color)	Flag indicating whether or not to filter by the cell's fill color. 1 indicates to filter by cell   fill. 0 indicates to filter by the cell's font color.
For rich text in cells, if the color specified appears in the cell at all, it shall be included in   the filter.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.	


Attributes	Description
dxfld (Differential   Format Record Id)	Id of differential format record (dxf) in the Styles Part which expresses the color value to   filter by.
	The possible values for this attribute are defined by the ST_DxfId simple type   (§18.18.25).

[Note: The W3C XML Schema definition of this element's content model (CT ColorFilter) is located in §A.2. end note]

### 18.3.2.2 customFilter (Custom Filter Criteria)

A custom AutoFilter specifies an operator and a value. There can be at most two customFilters specified, and in that case the parent element specifies whether the two conditions are joined by 'and' or 'or'. For any cells whose values do not meet the specified criteria, the corresponding rows shall be hidden from view when the filter is applied.
[Example:

```
 <customFilters and="1">
 <customFilter operator="greaterThanOrEqual" val="0.2"/>
 <customFilter operator="lessThanOrEqual" val="0.5"/>
</customFilters>
```

end example]

Attributes	Description
operator (Filter   Comparison   Operator)	Operator used by the filter comparison.   The possible values for this attribute are defined by the ST_FilterOperator simple type   $(\S 18.18 .31)$.
val (Top or Bottom   Value)	Top or bottom value used in the filter criteria.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT CustomFilter) is located in §A.2. end note]

### 18.3.2.3 customFilters (Custom Filters)

When there is more than one custom filter criteria to apply (an 'and' or 'or' joining two criteria), then this element groups the customFilter elements together.

Attributes	Description
and (And)	Flag indicating whether the two criteria have an "and" relationship. 1 indicates "and", 0   indicates "or".
The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT CustomFilters) is located in §A.2. end note]

### 18.3.2.4 dateGroupItem (Date Grouping)

This collection is used to express a group of dates or times which are used in an AutoFilter criteria. [Note: See parent element for an example. end note] Values are always written in the calendar type of the first date encountered in the filter range, so that all subsequent dates, even when formatted or represented by other calendar types, can be correctly compared for the purposes of filtering.

Attributes	Description
dateTimeGrouping   (Date Time   Grouping)	Grouping level.   The possible values for this attribute are defined by the ST_DateTimeGrouping simple   type (§18.18.22).
day (Day)	Day (1-31)   The possible values for this attribute are defined by the W3C XML Schema   unsignedShort datatype.
hour (Hour)	Hour (0-23)   The possible values for this attribute are defined by the W3C XML Schema   unsignedShort datatype.
minute (Minute)	Minute (0-59)   The possible values for this attribute are defined by the W3C XML Schema   unsignedShort datatype.
month (Month)	Month (1-12)   The possible values for this attribute are defined by the W3C XML Schema   unsignedShort datatype.
second (Second)	Second (0-59)   The possible values for this attribute are defined by the W3C XML Schema   unsignedShort datatype.
year (Year)	Year (4 digits)


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema   unsignedShort datatype.

[Note: The W3C XML Schema definition of this element's content model (CT DateGroupltem) is located in §A.2. end note]

### 18.3.2.5 dynamicFilter (Dynamic Filter)

This collection specifies dynamic filter criteria. These criteria are considered dynamic because they can change, either with the data itself (e.g., "above average") or with the current system date (e.g., show values for "today"). For any cells whose values do not meet the specified criteria, the corresponding rows shall be hidden from view when the filter is applied.

## [Example:

<filterColumn colId="0">
<dynamicFilter type="today"/>
</filterColumn>
end example]

Attributes	Description		
$\begin{array}{l}\text { maxValIso (Max } \\ \text { ISO Value) }\end{array}$	$\begin{array}{l}\text { A maximum value for dynamic filter. maxValIso shall be required for today, yesterday, } \\ \text { tomorrow, nextWeek, thisWeek, lastWeek, nextMonth, thisMonth, lastMonth, } \\ \text { nextQuarter, thisQuarter, lastQuarter, nextYear, thisYear, lastYear, and yearToDate. }\end{array}$		
	$\begin{array}{l}\text { The above criteria are based on a value range; that is, if today's date is September 22nd, } \\ \text { then the range for thisWeek is the values greater than or equal to September 17 and less } \\ \text { than September 24. In the thisWeek range, the lower value is expressed valIso. The } \\ \text { higher value is expressed using maxValIso. }\end{array}$		
These dynamic filters shall not require valIso or maxValIso:			
Q1, Q2, Q3, Q4, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11 and M12.			
The above criteria shall not specify the range using valIso and maxValIso because Q1			
always starts from M1 to M3, and M1 is always January.		$\}$	These types of dynamic filters shall use valIso and shall not use maxValIso:aboveAverage and belowAverage
:---			
The possible values for this attribute are defined by the W3C XML Schema dateTime			
datatype.			


Attributes	Description   type (Dynamic filter   type)   val (Value)   Dynamic filter type, e.g., "today" or "nextWeek".   The possible values for this attribute are defined by the ST_DynamicFilterType simple   type (§18.18.26).   valIso (ISO Value)   A minimum numeric value for dynamic filter. (See description of valIso to understand   when val is required.)   The possible values for this attribute are defined by the W3C XML Schema double   datatype.   A minimum value for dynamic filter. (See description of maxValIso to understand when   val/valIso is required.)   Only these types of dynamic filters use numeric data, and therefore shall use val and shall   not use vallso:   $\bullet$   The possible values for this attribute are defined by the W3C XML Schema dateTime   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT DynamicFilter) is located in §A.2. end note]

### 18.3.2.6 filter (Filter)

This element expresses a filter criteria value.
[Example:
<filters>
<filter val="0.316588716"/>
<filter val="0.667439395"/>
<filter val="0.823086999"/>
</filters>
end example]

Attributes	Description
val (Filter Value)	Filter value used in the criteria.
	The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT Filter) is located in §A.2. end note]

### 18.3.2.7 filterColumn (AutoFilter Column)

The filterColumn collection identifies a particular column in the AutoFilter range and specifies filter information that has been applied to this column. If a column in the AutoFilter range has no criteria specified, then there is no corresponding filterColumn collection expressed for that column.

Attributes	Description   colId (Filter Column   Data)   Zero-based index indicating the AutoFilter column to which this filter information applies.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.   hiddenButton   (Hidden AutoFilter   Button)   Flag indicating whether the AutoFilter button for this column is hidden.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.   Filter Button)Flag indicating whether the filter button is visible. [Example: When the cell containing the   filter button is merged with another cell, the filter button can be hidden, and not drawn.   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT FilterColumn) is located in §A. 2. end note]

### 18.3.2.8 filters (Filter Criteria)

When multiple values are chosen to filter by, or when a group of date values are chosen to filter by, this element groups those criteria together.
[Example:
<filters>
<dateGroupItem year="2006" month="1" day="2" dateTimeGrouping="day"/>
<dateGroupItem year="2005" month="1" day="2" dateTimeGrouping="day"/>
</filters>
end example]

Attributes	Description
blank (Filter by   Blank)	Flag indicating whether to filter by blank.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
calendarType	Calendar type for date grouped items. Used to interpret the values in dateGroupItem.


Attributes	Description
(Calendar Type)	This is the calendar type used to evaluate all dates in the filter column, even when those   dates are not using the same calendar system / date formatting.
	The possible values for this attribute are defined by the ST_CalendarType simple type   (§22.9.2.1).

[Note: The W3C XML Schema definition of this element's content model (CT Filters) is located in §A.2. end note]

### 18.3.2.9 iconFilter (Icon Filter)

This element specifies the icon set and particular icon within that set to filter by. For any cells whose icon does not match the specified criteria, the corresponding rows shall be hidden from view when the filter is applied.

## [Example:

```
 <filterColumn colId="3">
 <iconFilter iconSet="3Arrows" iconId="0"/>
 </filterColumn>
```

end example]

Attributes	Description
iconId (Icon Id)	Zero-based index of an icon in an icon set. The absence of this attribute means "no icon"   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
iconSet (Icon Set)	Specifies which icon set is used in the filter criteria.   The possible values for this attribute are defined by the ST_IconSetType simple type   (§18.18.42).

[Note: The W3C XML Schema definition of this element's content model (CT IconFilter) is located in §A.2. end note]

### 18.3.2.10 top10 (Top 10)

This element specifies the top N (percent or number of items) to filter by.
[Example: This example filters the first column by the top 10 percent of the values in that column. For all cells in the column whose value falls outside the top 10 percent of the value in that column, the rows corresponding to those cells are hidden from the view. In this example, there are 6 cells in the range, containing 1, 2, 3, 4, 5, 6 respectively.
<filterColumn colId="0">
<top10 percent="1" val="5" filterVal="6"/>
</filterColumn
end example]

Attributes	Description
filterVal (Filter   Value)	The actual cell value in the range which is used to perform the comparison for this filter.   The possible values for this attribute are defined by the W3C XML Schema double   datatype.
percent (Filter by   Percent)	Flag indicating whether or not to filter by percent value of the column. A false value   filters by number of items.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
top (Top)	Flag indicating whether or not to filter by top order. A false value filters by bottom order.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
val (Top or Bottom   Value)	Top or bottom value to use as the filter criteria. [Example: "Filter by Top 10 Percent" or   "Filter by Top 5 Items". end example]   The possible values for this attribute are defined by the W3C XML Schema double   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Top10) is located in §A.2. end note]

### 18.4 Shared String Table

A workbook can contain thousands of cells containing string (non-numeric) data. Furthermore this data is very likely to be repeated across many rows or columns. The goal of implementing a single string table that is shared across the workbook is to improve performance in opening and saving the file by only reading and writing the repetitive information once.
[Example: Consider for example a workbook summarizing information for cities within various countries. There can be a column for the name of the country, a column for the name of each city in that country, and a column containing the data for each city. In this case the country name is repetitive, being duplicated in many cells. end example] In many cases the repetition is extensive, and significant savings are realized by making use of a shared string table when saving the workbook. When displaying text in the spreadsheet, the cell table will just contain an index into the string table as the value of a cell, instead of the full string.

The shared string table is permitted to contain all the necessary information for displaying the string: the text, formatting properties, and phonetic properties (for East Asian languages).

Most strings in a workbook have formatting applied at the cell level, that is, the entire string in the cell has the same formatting applied. In these cases, the formatting for the cell is stored in the styles part, and the string for the cell can be stored in the shared strings table. In this case, the strings stored in the shared strings table are very simple text elements.

## [Example:

```
<sst xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main"
 count="8" uniqueCount="4">
 <si>
 <t>United States</t>
 </si>
 <si>
 <t>Seattle</t>
 </si>
 <si>
 <t>Denver</t>
 </si>
 <si>
 <t>New York</t>
 </si>
</sst>
```

In the above example we can see that the string table is just a collection of string items that consist of simple text elements. Note that any numeric data in the workbook is not shown in the shared string table. end example]

Some strings in the workbook can have formatting applied at a level that is more granular than the cell level. For instance, specific characters within the string can be bolded, have coloring, italicizing, etc. In these cases, the formatting is stored along with the text in the string table, and is treated as a unique entry in the table.

## [Example:

```
<sst xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main"
 count="8" uniqueCount="4">
 <si>
 <r>
 <t xml:space="preserve">United </t>
 </r>
```

```
 <r>
 <rPr>
 <sz val="11"/>
 <color rgb="FFFF0000"/>
 <rFont val="Calibri"/>
 <family val="2"/>
 <scheme val="minor"/>
 </rPr>
 <t>States</t>
 </r>
 </si>
 <si>
 <t>Seattle</t>
 </si>
 <si>
 <t>Denver</t>
 </si>
 <si>
 <t>New York</t>
 </si>
</sst>
```

In the above example you can see that this time, the text "United States" has specific, colored, formatting applied to the text, "States." end example]

### 18.4.1 charset (Character Set)

This element defines the font character set of this font.
This field is used in font creation and selection if a font of the given facename is not available on the system. Although it is not required to have around when resolving font facename, the information can be stored for when needed to help resolve which font face to use of all available fonts on a system.

Charset represents the basic set of characters associated with a font (that it can display), and roughly corresponds to the ANSI codepage (8-bit or DBCS) of that character set used by a given language. Given more common use of Unicode where many fonts support more than one of the traditional charset categories, and the use of font linking, using charset to resolve font name is less and less common, but still can be useful.

These are operating-system-dependent values.
[Note: The following are some of the possible the character sets:

INT   Value	Character Set
0	ANSI_CHARSET


INT   Value	Character Set
1	DEFAULT_CHARSET
2	SYMBOL_CHARSET
77	MAC_CHARSET
128	SHIFTJIS_CHARSET
129	HANGUL_CHARSET
130	JOHAB_CHARSET
134	GB2312_CHARSET
136	CHINESEBIG5_CHARSET
161	GREEK_CHARSET
162	TURKISH_CHARSET
163	VIETNAMESE_CHARSET
177	HEBREW_CHARSET
178	ARABIC_CHARSET
186	BALTIC_CHARSET
204	RUSSIAN_CHARSET
222	THAI_CHARSET
238	EASTEUROPE_CHARSET
255	OEM_CHARSET

The OEM_CHARSET value specifies a character set that is operating-system dependent. end note]
Fonts with other character sets can exist in the operating system. If an application uses a font with an unknown character set, it should not attempt to translate or interpret strings that are rendered with that font.

Attributes	Description
val (Value)	The value of an integer, where each value corresponds to a different character set. This   attribute is restricted to values ranging from 0 to 255.
	The possible values for this attribute are defined by the W3C XML Schema int datatype.

[Note: The W3C XML Schema definition of this element's content model (CT IntProperty) is located in §A.2. end note]

### 18.4.2 outline (Outline)

This element displays only the inner and outer borders of each character. This is very similar to Bold in behavior.

Attributes	Description
val（Value）	A boolean value for the property specified by the parent XML element．   If omitted，the default value is true．   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype．

［Note：The W3C XML Schema definition of this element＇s content model（CT BooleanProperty）is located in §A．2．end note］

## 18．4．3 phoneticPr（Phonetic Properties）

This element represents a collection of phonetic properties that affect the display of phonetic text for this String Item（si）．

Phonetic text is used to give hints as to the pronunciation of an East Asian language，and the hints are displayed as text within the spreadsheet cells across the top portion of the cell．Since the phonetic hints are text，every phonetic hint is expressed as a phonetic run（rPh），and these properties specify how to display that phonetic run．
［Example：

```
<si>
 <t>䜅<毛く/t>
 <rPh sb="0" eb="1">
 <t>张/t>
 </rPh>
 <rPh sb="4" eb="5">
 <t>久/t>
 </rPh>
 <phoneticPr fontId="1"/>
 </si>
```

The above example shows a String Item that displays some Japanese text＂課きく 毛こ．＂It also displays some phonetic text across the top of the cell．The phonetic text character，＂カ＂is displayed over the＂課＂character and the phonetic text＂ケ＂is displayed above the＂毛＂character，using the font record in the style sheet at index 1．end example］

Attributes	Description
alignment   （Alignment）	Specifies how the text for the phonetic run is aligned across the top of the cells，with   respect to the main text in the body of the cell．   The possible values for this attribute are defined by the ST＿PhoneticAlignment simple


Attributes	Description		
fontId (Font Id)	$\begin{array}{l}\text { An integer that is a zero-based index into the font record in the style sheet. Represents } \\ \text { the font to be used to display this phonetic run. }\end{array}$		
If this index is out of bounds, then the default font of the Normal style should be used in			
its place. This default font should be at index 0.		$\}$	The possible values for this attribute are defined by the ST_FontId simple type
:---			
(§18.18.32).			

[Note: The W3C XML Schema definition of this element's content model (CT PhoneticPr) is located in §A.2. end note]

### 18.4.4 r (Rich Text Run)

This element represents a run of rich text. A rich text run is a region of text that share a common set of properties, such as formatting properties. The properties are defined in the rPr element, and the text displayed to the user is defined in the Text ( t ) element.
[Note: The W3C XML Schema definition of this element's content model (CT REIt) is located in §A.2. end note]

### 18.4.5 rFont (Font)

This element is a string representing the name of the font assigned to display this run.

Attributes	Description
val (String Value)	A string representing the name of the font. If the font doesn't exist (because it isn't   installed on the system), or the charset not supported by that font, then another font   should be substituted.
The string length for this attribute shall be 0 to 31 characters.	
The possible values for this attribute are defined by the ST_Xstring simple type	
(§22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT FontName) is located in §A.2. end note]

### 18.4.6 rPh (Phonetic Run)

This element represents a run of text which displays a phonetic hint for this String Item (si).
Phonetic hints are used to give information about the pronunciation of an East Asian language. The hints are displayed as text within the spreadsheet cells across the top portion of the cell.

Attributes	Description
eb (Base Text End   Index)	An integer used as a zero-based index representing the ending offset into the base text   for this phonetic run. This represents the ending point in the base text the phonetic hint   applies to.   This value shall be between 0 and the total length of the base text. The following   condition shall be true: sb < eb.   It is recommended that the following condition also be satisfied:   That for any two consecutive phonetic runs, sb1 < eb1 <= sb2 < eb2 to avoid overlapping   phonetic runs
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT PhoneticRun) is located in §A.2. end note]

### 18.4.7 rPr (Run Properties)

This element represents a set of properties to apply to the contents of this rich text run.
[Note: The W3C XML Schema definition of this element's content model (CT RPrElt) is located in §A.2. end note]

### 18.4.8 si (String Item)

This element is the representation of an individual string in the Shared String table.

If the string is just a simple string with formatting applied at the cell level, then the String Item (si) should contain a single text element used to express the string. However, if the string in the cell is more complex - i.e., has formatting applied at the character level - then the string item shall consist of multiple rich text runs which collectively are used to express the string.
[Note: The W3C XML Schema definition of this element’s content model (CT Rst) is located in §A.2. end note]

### 18.4.9 sst (Shared String Table)

This element is the root of the Shared String Table, which serves as a collection of individual String Items (si).

Attributes	Description		
count (String Count)	$\begin{array}{l}\text { An integer representing the total count of strings in the workbook. This count does not } \\ \text { include any numbers, it counts only the total of text strings in the workbook. } \\ \text { This attribute is optional unless uniqueCount is used, in which case it is required. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema unsignedInt } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { uniqueCount } \\ \text { (Unique String } \\ \text { Count) }\end{array}$	$\begin{array}{l}\text { An integer representing the total count of unique strings in the Shared String Table. A } \\ \text { string is unique even if it is a copy of another string, but has different formatting applied } \\ \text { at the character level. }\end{array}$		
[Example:			
World, World, and World.			
The count would be 3, and the uniqueCount would be 2. Only one entry for "World"			
would show in the table because it is the same string, just with different formatting			
applied at the cell level (i.e., applied to the entire string in the cell). The "World" string			
would get a separate unique entry in the shared string table because it has different			
formatting applied to specific characters.			
end example]		$\}$	This attribute is optional unless count is used, in which case it is required.
:---			
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.			

[Note: The W3C XML Schema definition of this element’s content model (CT Sst) is located in §A.2. end note]

### 18.4.10 strike (Strike Through)

This element draws a strikethrough line through the horizontal middle of the text.

Attributes	Description
val (Value)	A boolean value for the property specified by the parent XML element.


Attributes	Description
	If omitted, the default value is true.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT BooleanProperty) is located in §A.2. end note]

### 18.4.11 sz (Font Size)

This element represents the point size (1/72 of an inch) of the Latin and East Asian text.

Attributes	Description
val (Value)	A double representing the value of a positive measurement in points (1/72 of an inch).      The possible values for this attribute are defined by the W3C XML Schema double   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT FontSize) is located in §A.2. end note]

### 18.4.12 t (Text)

This element represents the text content shown as part of a string.
The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:	
http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.4.13 u (Underline)

This element represents the underline formatting style.

Attributes	Description
val (Underline   Value)	An enumeration representing the style of underlining that is used.   The none style is equivalent to not using underlining at all.
	The possible values for this attribute are defined by the ST_UnderlineValues simple type   (§18.18.85).

[Note: The W3C XML Schema definition of this element's content model (CT UnderlineProperty) is located in §A.2. end note]

### 18.4.14 vertAlign (Vertical Alignment)

This element adjusts the vertical position of the text relative to the text's default appearance for this run. It is used to get 'superscript' or 'subscript' texts, and shall reduce the font size (if a smaller size is available) accordingly.

Attributes	Description
val (Value)	An enumeration representing the vertical-alignment setting.   Setting this to either subscript or superscript shall make the font size smaller if a   smaller font size is available.
The possible values for this attribute are defined by the ST_VerticalAlignRun simple type   (§22.9.2.17).	

[Note: The W3C XML Schema definition of this element's content model (CT VerticalAlignFontProperty) is located in §A.2. end note]

### 18.5 Tables

A table helps organize and provide structure to lists of information in a worksheet. Tables have clearly labeled columns, rows, and data regions. Tables make it easier for users to sort, analyze, format, manage, add, and delete information.

If a region of data is designated as a Table, then special behaviors can be applied which help the user perform useful actions. [Example: if the user types additional data in the row adjacent to the bottom of the table, the table can expand and automatically add that data to the data region of the table. Similarly, adding a column is as easy as typing a new column heading to the right or left of the current column headings. Filter and sort abilities can automatically be surfaced to the user via the drop down arrows. Special calculated columns can be created
which summarize or calculate data in the table. These columns have the ability to expand and shrink according to size of the table, and maintain proper formula referencing. end example]

Tables can be created from data already present in the worksheet, from an external data query, or from mapping a collection of repeating XML elements to a worksheet range.

The sheet XML stores the numeric and textual data. The table XML records the various attributes for the particular table object.

## [Example:

```
<table xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main"
 id="1" name="MarginTable" displayName="MarginTable" ref="D3:G6"
 totalsRowShown="0">
 <autoFilter ref="D3:G6"/>
 <tableColumns count="4">
 <tableColumn id="1" name="Product"/>
 <tableColumn id="2" name="Wholesale"/>
 <tableColumn id="3" name="Retail"/>
 <tableColumn id="4" name="Margin" dataDxfId="0">
 <calculatedColumnFormula d="1">[Retail]-
 [Wholesale]</calculatedColumnFormula>
 </tableColumn>
 </tableColumns>
 <tableStyleInfo name="TableStyleMedium9" showFirstColumn="0"
 showLastColumn="0" showRowStripes="1" showColumnStripes="0"/>
</table>
```

The above xml example shows a table that spans cells D3 through G6, and has four columns: Product, Wholesale, Retail, and Margin. Margin is a column where each cell has its values calculated based on the formula (Retail - Wholesale), where those values are taken from the cells in the table columns on the corresponding row. The table has a style applied, "TableStyleMedium9", but the styles formatting isn't applied to the first column and the column striping isn't shown. Note that all the data and text values are stored in the sheet xml ; the table xml just stores the properties that are specific to this table, and it is referenced by the sheet. end example]

### 18.5.1 Tables

Tables are ranges of data in the worksheet that have special behavior applied which allow users to better sort, analyze, format, manage, add, and delete data. Tables and table columns can also be referenced through formulas by the spreadsheet application using friendly names, making formula calculations that use tables much easier to understand and maintain. Tables provide a natural way for working with large sets of tabular data.

The tables described in this section are of the multi cell variety, as opposed to single cell tables created from XML mappings.

Each table gets its own xml part, and the relationship between a table part and the sheet is defined in the sheet's _rels directory. The sheet xml also references this id since there can be more than one table on a sheet. The sheet $x m l$ contains all the numeric and textual data, and the table xml records properties of the table as well as some formatting rules for data and text displayed in the table cells.

### 18.5.1.1 calculatedColumnFormula (Calculated Column Formula)

Columns in a table can have cells that are calculated, usually based on values in other cells in the table. This element stores the formula that is used to perform the calculation for each cell in this column.

It shall be understood that formulas which reference columns of this table, shall be calculated using the cells in those columns on the same row of the table as the cell that the formula resides in.

See $\S 18.17$ for details on the format required for formulas.

Attributes	Description		
array (Array)	A Boolean value that indicates whether this formula is an array style formula.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.		
xml:space (Content   Contains Significant	Specifies how white space should be handled for the contents of this element using the   Whitespace)		
W3C space preservation rules.   Namespace:   http://www.w3.or   T/XML/1998/nam			
espace		$\quad$	
:---			

[Note: The W3C XML Schema definition of this element's content model (CT TableFormula) is located in §A.2. end note]

### 18.5.1.2 table (Table)

This element is the root element for a table that is not a single cell XML table.

Attributes	Description
comment (Table   Comment)	A string representing a textual comment about the table.   [Note: This can be used by the spreadsheet application in other Ul. end note] [Example:   There can be name UI that is used to organize defined names and function references, if   tables are listed in that UI the comment can give more information about the table. end   example]
The maximum length of this string should be 32767 characters.	
The possible values for this attribute are defined by the ST_Xstring simple type	


Attributes	Description				
	(§22.9.2.19).				
connectionId   (Connection ID)	An integer representing an ID to indicate which connection from the connections   collection is used by this table.   This shall only be used for tables that are based off of xml maps.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.				
dataCellStyle (Data   Style Name)	A string representing the name of the cell style that is applied to the data area cells of the   table.   If this string is missing or does not correspond to the name of a cell style, then the data   cell style specified by the current table style should be applied.				
dataDxfId (Data   Area Format Id)	The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).				
A zero based integer index into the differential formatting records <dxfs> in the					
styleSheet indicating which format to apply to the data area of this table.		$\left	\begin{array}{l}\text { The spreadsheet should fail to load if this index is out of bounds. }\end{array}\right	$	The possible values for this attribute are defined by the ST_Dxfld simple type
:---					
(§18.18.25).					


Attributes	Description
	row style specified by the current table style should be applied.   The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
headerRowCount (Header Row Count)	An integer representing the number of header rows showing at the top of the table. 0 means that the header row is not shown.   It is up to the spreadsheet application to determine if numbers greater than 1 are allowed. Unless the spreadsheet application has a feature where there might ever be more than one header row, this number should not be higher than 1.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
headerRowDxfld   (Header Row   Format Id)	A zero based integer index into the differential formatting records <dxfs >in the styleSheet indicating which format to apply to the header row of this table.   The spreadsheet should fail to load if this index is out of bounds.   The possible values for this attribute are defined by the ST_DxfId simple type (§18.18.25).
id (Table Id)	A non zero integer representing the unique identifier for this table. Each table in the workbook shall have a unique id.   Ids can be used to refer to the specific table in the workbook. [Note: For instance a future records bucket could refer to the table using this id. end note]   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
insertRow (Insert Row Showing)	A Boolean value indicating whether the insert row is showing. True when the insert row is showing, false otherwise.   The insert row should only be shown if the table has no data.   When a user clicks the insert row in the UI, it provides them an easy way to enter data into a table.   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
insertRowShift (Insert Row Shift)	A Boolean that indicates whether cells in the sheet had to be inserted when the insert row was shown for this table. True if the cells were shifted, false otherwise.   [Note: This happens when there are values in cells immediately below the table when the table is created and the insert row is shown. In this case blank cells for the insert row are inserted, and the existing values in the sheet are shifted down by one row to make


Attributes	Description		
	$\begin{array}{l}\text { room. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
name (Name)	$\begin{array}{l}\text { A string representing the name of the table that is used to reference the table } \\ \text { programmatically through the spreadsheet applications object model. This string shall be } \\ \text { unique per table per sheet. It has the same length and character restrictions as for } \\ \text { displayName. }\end{array}$		
$\begin{array}{l}\text { By default this should be the same as the table's displayName. This name should also be } \\ \text { kept in synch with the displayName when the displayName is updated in the Ul by the } \\ \text { spreadsheet user. }\end{array}$			
$\begin{array}{l}\text { published } \\ \text { (Published) } \\ \text { (\$22.9.2.19). }\end{array}$	$\begin{array}{l}\text { A Boolean representing whether this table is marked as published for viewing by a server } \\ \text { based spreadsheet application. True if it should be viewed by the server spreadsheet } \\ \text { application, false otherwise. }\end{array}$		
[Note: Such an application might only display objects from the workbook that are			
marked as published, thus being able to load and calculate the entire workbook but only			
show the specific items that are marked as published. This can allow the server			
spreadsheet rendering to provide a more restricted view of the workbook. end note]		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			


Attributes	Description		
	The possible values for this attribute are defined by the ST_TableType simple type   (§18.18.78).		
totalsRowBorderD   xfId (Totals Row   Border Format Id)	A zero based integer index into the differential formatting records <dxfs> in the   styleSheet indicating what border formatting to apply to the totals row of this table.   The spreadsheet should fail to load if this index is out of bounds.   The possible values for this attribute are defined by the ST_Dxfld simple type   (§18.18.25).		
totalsRowCellStyle   (Totals Row Style)	A string representing the name of the cell style that is applied to the totals row cells of   the table.   If this string is missing or does not correspond to the name of a cell style, then the totals   row style specified by the current table style should be applied.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).		
totalsRowCount   (Totals Row Count)	An integer representing the number of totals rows that shall be shown at the bottom of   the table.		
0 means that the totals row is not shown. It is up to the spreadsheet application to			
determine if numbers greater than 1 are allowed. Unless the spreadsheet application has			
a feature where their might ever be more than one totals row, this number should not be			
higher than 1.		$\quad$	The possible values for this attribute are defined by the W3C XML Schema unsignedInt
:---			
datatype.			



### 18.5.1.3 tableColumn (Table Column)

An element representing a single column for this table.

Attributes	Description
dataCellStyle (Data Area Style Name)	A string representing the name of the cell style that is applied to the cells in the data area of this table column.   If this string is missing or does not correspond to the name of a cell style, then the data cell style specified by the current table style should be applied.   This cell style should get precedence over the dataCellStyle defined by the table.   The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
dataDxfid (Data \& Insert Row Format Id)	A zero based integer index into the differential formatting records <dxfs> in the styleSheet indicating which format to apply to the data area of this column. This formatting shall also apply to cells on the insert row for this column.   The spreadsheet should fail to load if this index is out of bounds.   The possible values for this attribute are defined by the ST_Dxfld simple type (§18.18.25).
headerRowCellStyl e (Header Row Cell Style)	A string representing the name of the cell style that is applied to the header row cell of this column.   If this string is missing or does not correspond to the name of a cell style, then header row style specified by the current table style should be applied.   This cell style should get precedence over the headerRowCellStyle defined by the table.   The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
headerRowDxfld (Header Row Cell Format Id)	A zero based integer index into the differential formatting records <dxfs> in the styleSheet indicating which format to apply to the header cell of this column.   The possible values for this attribute are defined by the ST_DxfId simple type (§18.18.25).
id (Table Field Id)	An integer representing the unique identifier of this column. This shall be unique per table.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
name (Column name)	A string representing the unique caption of the table column. This is what shall be displayed in the header row in the UI , and is referenced through functions. This name


Attributes	Description		
	shall be unique per table.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).		
queryTableFieldId   (Query Table Field   Id)	An integer representing the query table field ID corresponding to this table column.   The relationship between this table and the corresponding query table is expressed in   rels part for this table. Each queryTableField has a unique id attribute, and this id is   what is referenced here.		
The possible values for this attribute are defined by the W3C XML Schema unsignedInt			
datatype.		$\quad$	A string representing the name of the cell style that is applied to the Totals Row cell of
:---			
this column.			
If this string is missing or does not correspond to the name of a cell style, then the totals			
row cell style specified by the current table style should be applied.			
totalsRowCellStyle			
(Totals Row Style			
Name)			


Attributes	Description
	tableType is queryTable or xml.   This name shall be unique per table when it is used.   For tables created from xml mappings, by default this should be the same as the name of   the column, and should be kept in synch with the name of the column if that name is   altered by the spreadsheet application.
The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT TableColumn) is located in §A.2. end note]

### 18.5.1.4 tableColumns (Table Columns)

An element representing the collection of all table columns for this table.

Attributes	Description
count (Column   Count)	An integer representing the total count of how many columns there are in this Table.   This count shall include both query-defined and user-defined columns.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT TableColumns) is located in §A.2. end note]

### 18.5.1.5 tableStyleInfo (Table Style)

This element describes which style is used to display this table, and specifies which portions of the table have the style applied.

Styles define a set of formatting properties that can be easily referenced by cells or other objects in the spreadsheet application. A style can be applied to a table, but tables can define specific parts of the table that should not have the style applied independently of other table parts. For instance a table can not apply the row striping of the style, and can not show the style's formatting of the last column, but will apply the column striping and the formatting to the first column.

Attributes	Description
name (Style Name)	A string representing the name of the table style to use with this table.
	If the style name does not correspond to the name of a table style then the spreadsheet


Attributes	Description
	application should use default style.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).
showColumnStripe   s (Show Column   Stripes)	A Boolean indicating whether column stripe formatting is applied. True when style   column stripe formatting is applied, false otherwise.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
showFirstColumn   (Show First Column)	A Boolean indicating whether the first column in the table should have the style applied.   True if the first column has the style applied, false otherwise.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
showLastColumn   (Show Last Column)	A Boolean indicating whether the last column in the table should have the style applied.   True if the last column has the style applied, false otherwise.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
showRowStripes   (Show Row Stripes)	A Boolean indicating whether row stripe formatting is applied. True when style row   stripe formatting is applied, false otherwise.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT TableStylelnfo) is located in §A.2. end note]

### 18.5.1.6 totalsRowFormula (Totals Row Formula)

This element contains a custom formula for aggregating values from the column.
Each tableColumn has a totalsRowFunction that can be used for simple aggregations such as average, standard deviation, min, max, count, and others. If a more custom calculation is desired, then this element should be used, and the totalsRowFunction shall be set to "custom".

Attributes	Description
array (Array)	A Boolean value that indicates whether this formula is an array style formula.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT TableFormula) is located in §A.2. end note]

### 18.5.1.7 $\quad$ xmlColumnPr (XML Column Properties)

An element defining the XML column properties for a column. This is only used for tables created from XML mappings.
[Example: Here is a simple example showing a table column that has an xmlColumPr.

```
<tableColumn id="1" uniqueName="SomeElement" name="SomeElement">
 <xmlColumnPr mapId="1" xpath="/xml/foo/element" xmlDataType="string"/>
</tableColumn>
```

end example]

Attributes	Description
denormalized (Denormalized)	A Boolean that indicates whether the contents of the column have been filled down due to flattening. True if it has been filled down (denormilized), fal se otherwise.   This should be used when an XML mapping parent value has many children, and both the parent and child fields are mapped to their own column in the table. ```[Example: <Order ID="3"> <Item>Milk</Item> <Item>Bread</Item> <Item>Cheese</Item> </Order>```   The resulting table in the spreadsheet application would have two columns, the first with the item ID, filled down for each item in the table as follows:   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
mapId (XML Map   Id)	An integer representing the ID of the XML map this table field is associated with.   The XML map is defined in the xml maps part, and the Map element should have the corresponding id.


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
xmlDataType (XML Data Type)	An enumeration indicating which XML data type is used by this column.   The possible values for this attribute are defined by the ST_XmlDataType simple type (§18.18.93).
xpath (XPath)	A string representing the XML path to the element this column is associated with.   The spreadsheet application should support XPath limited to the following   - The XPath is an absolute path to a simple-content element or attribute   -   [Example:   "/ns1:root/ns1:row/ns1:column1" is supported if 'column1' is a child-most node, but not   "/ns1:root/ns1:row" for the same document since 'row' is not a child.   end example]   - The XPath does not express axes, but uses the default child axes   -   [Example:   "/ns1:root/ns1:row" is supported but not "/ns1:root/child::ns1:row   end example]   - An optional filter can be expressed at the end of the xpath   -   [Example:   "/ns1:root/ns1:row/ns1:column1[@foo='abc']" is supported but not   "/ns1:root/ns1:row[@foo='abc']/ns1:column1"   end example]   - The filter can only contain a single expression comparing a named attribute to a specific value   - Filters are only supported on XPaths that resolve to a simple-content element (not attributes)   - The named attribute shall be defined as an attribute of the simple-content element   - The attribute name shall be preceded by the short-hand (@) symbol representing the axes 'attribute'   [Example:   "/ns1:root/ns1:row/ns1:column1[@foo='abc']" is supported not   "/ns1:root/ns1:row/ns1:column1[attribute::foo='abc']"   end example]


Attributes	Description
• An arbitrary amount of white-space can be embedded between filter tokens   [Example:   "/ns1:root/ns1:row/ns1:column1[ @ foo='abc']" is permittedend example]   The possible values for this attribute are defined by the ST_Xstring simple type   ( $\$ 22.9 .2 .19)$.	

[Note: The W3C XML Schema definition of this element's content model (CT XmlColumnPr) is located in §A.2. end note]

### 18.5.2 Single Cell Tables

A single cell table is generated from an XML mapping. These really just look like regular cells to the spreadsheet user, but shall be implemented as Tables "under the covers."

These tables don't have the full set of properties that multi cell tables do. They only have the various XML properties, and core table properties (such as id and name) that are needed to create a table and XML mapping. For instance the formatting properties, totals row, and headers row don't exist for the single cell XML tables. The formatting for these cells is maintained in the style sheet.

### 18.5.2.1 singleXmlCell (Table Properties)

This element represents the table properties for a single cell XML table.

Attributes	Description
connectionId   (Connection ID)	An integer representing an ID to indicate which connection from the connections   collection is used by this table.   This is only used for tables that are based off of xml maps   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
id (Table Id)	An integer representing the unique identifier of the table.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
r (Reference)	An A1 cell style reference to the cell that the single cell xml table occupies.   The possible values for this attribute are defined by the ST_CellRef simple type   (\$18.18.7).

[Note: The W3C XML Schema definition of this element’s content model (CT SingleXmICell) is located in §A.2. end note]

### 18.5.2.2 singleXmlCells (Single Cells)

This element is a container for a collection of singleXmlCell tables.
[Note: The W3C XML Schema definition of this element's content model (CT SingleXmlCells) is located in §A.2. end note]

### 18.5.2.3 xmlCellPr (Cell Properties)

This element stores the XML properties for the cell of a single cell xml table.

Attributes	Description
id (Table Field Id)	The unique identifier of the XML properties for the cell.   This should always be set to the value of 1 since this id is always meant to be for a single   cell xml table.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
uniqueName   (Unique Table   Name)	An optional string representing the unique name of the table column. By default this is   the same as the name of the column.
This should hold the name of the element or attribute that this cell is referring to in the	
XML.	
The possible values for this attribute are defined by the ST_Xstring simple type	
(§22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT XmlCellPr) is located in §A.2. end note]

### 18.5.2.4 xmlPr (Column XML Properties)

This element represents the column properties for single cell XML tables.

Attributes	Description
mapId (XML Map   Id)	An integer representing the ID of the XML map this table field is associated with.   The XML map is defined in the xml maps part, and the Map element should have the   corresponding id.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.


Attributes	Description
xmlDataType (XML Data Type)	An enumeration indicating which XML data type is used by this column.   The possible values for this attribute are defined by the ST_XmIDataType simple type (§18.18.93).
xpath (XPath)	A string representing the XML path to the element this column is associated with.   The spreadsheet application should support XPath limited to the following:   - The XPath is an absolute path to a simple-content element or attribute   [Example:   "/ns1:root/ns1:row/ns1:column1" is supported if 'column1' is a child-most node, but not "/ns1:root/ns1:row" for the same document since 'row' is not a child.   end example]   - The XPath does not express axes, but uses the default child axes   [Example:   "/ns1:root/ns1:row" is supported but not "/ns1:root/child::ns1:row   end example]   - An optional filter can be expressed at the end of the xpath   [Example:   "/ns1:root/ns1:row/ns1:column1[@foo='abc']" is supported but not   "/ns1:root/ns1:row[@foo='abc']/ns1:column1"   end example]   - The filter can only contain a single expression comparing a named attribute to a specific value   - Filters are only supported on XPaths that resolve to a simple-content element (not attributes)   - The named attribute shall be defined as an attribute of the simple-content element   - The attribute name shall be preceded by the short-hand (@) symbol representing the axes 'attribute'   [Example:   "/ns1:root/ns1:row/ns1:column1[@foo='abc']" is supported not   "/ns1:root/ns1:row/ns1:column1[attribute::foo='abc']"   end example]   - An arbitrary amount of white-space can be embedded between filter tokens   [Example:


Attributes	Description
	"/ns1:root/ns1:row/ns1:column1[ @ foo='abc']" is permitted   end example]
The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT XmIPr) is located in §A.2. end note]

### 18.6 Calculation Chain

The cells in a workbook can be calculated in different orders depending on various optimizations and dependencies. The calculation chain specifies the order in which the cells in a workbook were last calculated.

The calculation chain only deals with cells that require calculation - i.e., it only deals with cells that contain formulas. It does not track or express dependencies amongst the formulas, but rather only records the order in which the cells were last calculated.

The calculation chain order can change over time. One obvious way this can happen is that new formulas can be added, formulas can be removed or updated. The spreadsheet application can also optionally implement partial calculation as an optimization. Partial calculation is when the spreadsheet only recalculates cells that have had their dependencies or values changed. This way, when a number in a cell is changed, requiring an update to a dependent formula, only the cells that are affected by the update is recalculated, as opposed to recalculating the entire workbook.

The calculation chain described in this section is not required by the spreadsheet application, but can be used if the spreadsheet application finds it useful. It can be loaded by a spreadsheet application, or the application can optionally construct it at run time in memory based on formula dependencies. Since the xml data described in this section is not strictly required, the spreadsheet application is free to ignore the order in which the calculation chain specifies calculations - i.e., even if the calculation chain is loaded, the spreadsheet application is free to perform calculations in a different order at run time.

## [Example:

Consider the following workbook (the formulas shown instead of cell values):

	A	B	C	D	E
1	$1=\mathrm{A} 1$	$=\mathrm{B} 1+\mathrm{A} 1$	$=\mathrm{C} 1+\mathrm{B} 1+\mathrm{A} 1$	$=\mathrm{D} 1+\mathrm{C} 1+\mathrm{B} 1+\mathrm{A} 1$	
2					
3					
4					
5	$1=\mathrm{A} 5$	$=\mathrm{B} 5+\mathrm{A} 5$	$=\mathrm{C} 5+\mathrm{B} 5+\mathrm{A} 5$	$=\mathrm{D} 5+\mathrm{C} 5+\mathrm{B} 5+\mathrm{A} 5$	
6					
7					

There is a constant entered in A1 and A5, and next to each of those cells are a series of cells which contain formulas that depend on those cells.

After entering the cells on the first row, and then the cells on the 5th row, the calc chain xml looks like this:

```
<calcChain xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main">
 <c r="E5" i="1"/>
 <c r="D5"/>
 <c r="C5"/>
 <c r="B5"/>
 <c r="E1"/>
 <c r="D1"/>
 <c r="C1"/>
 <c r="B1"/>
</calcChain>
```

It is in this order because B1 was calced first (it was the first formula enterd in the workbook), followed by C1, D1, and so on. Then B5 was entered in the 5th row, followed by the other cells in the 5th row, ending with E5.

But, after a full recalculation, the spreadsheet application has realized that cells $B 5$ :E5 are on the same child chain, and cells B1:E1 are likewise on their own child chain. The xml now looks like this:

```
<calcChain xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main">
 <c r="B1" i="1"/>
 <c r="C1" s="1"/>
 <c r="D1" s="1"/>
 <c r="E1" s="1"/>
 <c r="B5"/>
 <c r="C5" s="1"/>
 <c r="D5" s="1"/>
 <c r="E5" s="1"/>
</calcChain>
```

end example]

### 18.6.1 c (Cell)

This element represents a single cell, which shall contain a formula, in the calc chain. Cells are calculated in the same order as the c elements appear in the Calculation Chain part.

Attributes	Description
a (Array)	A Boolean flag indicating whether the cell's formula is an array formula. True if this cell's   formula is an array formula, false otherwise. If there is a conflict between this attribute   and the t attribute of the f element (§18.3.1.40), the $t$ attribute takes precedence.
The possible values for this attribute are defined by the W3C XML Schema boolean	


Attributes	Description		
i (Sheet Id)	$\begin{array}{l}\text { datatype. } \\ \text { A sheet Id of a sheet the cell belongs to. If this is omitted, it is assumed to be the same as } \\ \text { the value of the previous cell. }\end{array}$		
$\begin{array}{l}\text { l (New Dependency } \\ \text { Level) }\end{array}$	$\begin{array}{l}\text { A Boolean flag indicating that the cell's formula starts a new dependency level. True if } \\ \text { the formula starts a new dependency level, false otherwise. }\end{array}$		
Starting a new dependency level means that all concurrent calculations, and child			
calculations, shall be completed - and the cells have new values - before the calc chain			
can continue. In other words, this dependency level might depend on levels that came			
before it, and any later dependency levels might depend on this level; but not later			
dependency levels can have any calculations started until this dependency level			
completes.		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

[Note: The W3C XML Schema definition of this element's content model (CT CalcCell) is located in §A.2. end note]

### 18.6.2 calcChain (Calculation Chain Info)

This element represents the root of the calculation chain.
[Note: The W3C XML Schema definition of this element's content model (CT CalcChain) is located in §A.2. end note]

### 18.7 Comments

A comment is a rich text note that is attached to and associated with a cell, separate from other cell content. Comment content is stored separate from the cell, and is displayed in a drawing object (like a text box) that is separate from, but associated with, a cell. Comments are used as reminders, such as noting how a complex formula works, or to provide feedback to other users. Comments can also be used to explain assumptions made in a formula or to call out something special about the cell.

## [Example:

```
<comments>
 <authors>
 <author>Bob</author>
 <author>CBR</author>
 </authors>
 <commentList>
 <comment ref="D4" authorId="0">
 <text>
 <r>
 <rPr>

 <sz val="8"/>
 <color indexed="81"/>
 <rFont val="Calibri"/>
 <charset val="1"/>
 <scheme val="minor"/>
 </rPr>
 <t>Bob:</t>
 </r>
 <r>
 <rPr>
 <sz val="8"/>
 <color indexed="81"/>
 <rFont val="Calibri"/>
 <charset val="1"/>
 <scheme val="minor"/>
 </rPr>
```

```
 <t xml:space="preserve">Why such high expense?</t>
 </r>
 </text>
 </comment>
 </commentList>
</comments>
end example]
```

This xml sample displays a comment by "Bob" (bolded) that says, "Why such high expense?" (non bolded).

### 18.7.1 author (Author)

This element holds a string representing the name of a single author of comments. Every comment shall have an author. The maximum length of the author string is an implementation detail, but a good guideline is 255 chars.

The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).

Attributes	Description
xml:space (Content	Specifies how white space should be handled for the contents of this element using the
Contains Significant	W3C space preservation rules.
Whitespace)	The possible values for this attribute are defined by $\S 2.10$ of the XML 1.0 specification.
Namespace:	
http://www.w3.or   g/XML/1998/nam   espace	

[Note: The W3C XML Schema definition of this element’s content model (ST Xstring) is located in §A.6.9. end note]

### 18.7.2 authors (Authors)

This element is a container that holds a list of comment author names. There can be many comment authors per sheet, but each author name shall be unique per sheet. The information for each author is stored only once for that sheet, and comments refer to the author by zero based index.

Note that there can be multiple lists of authors per workbook since each sheet contains its own comments part, and each comments part defines a list of authors for comments on that sheet.
[Note: The W3C XML Schema definition of this element's content model (CT Authors) is located in §A.2. end note]

### 18.7.3 comment (Comment)

This element represents a single user entered comment. Each comment shall have an author and can optionally contain richly formatted text.

Attributes	$\quad$ Description
authorId (Author   Id)	Required. An unsigned integer which is used as the zero based index into the list of   authors for this set of comments.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
guid (Unique   Identifier for   Comment)	Unique identifier for this comment. The attribute is required and shall be unique across   all comments in shared workbooks.   The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
ref (Cell Reference)	Required. A string that serves as the A1 style reference to the cell that the comment is   associated with. Shall only reference a single cell, not a range of cells, since comments   are on a per cell basis.   The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
shapeId (Shape ID)	Specifies the ID of the DrawingML shape that provides the visual representation of the   comment.   [Example:   <comment shapeId="10 "... >   end example]   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Comment) is located in §A.2. end note]

### 18.7.4 commentList (List of Comments)

This element is a container that holds a list of comments for the sheet.
[Note: The W3C XML Schema definition of this element's content model (CT CommentList) is located in §A.2. end note]

### 18.7.5 commentPr (Comment Properties)

This element specifies the visual and positional properties of a comment.
[Example: In the following example, the comment's visual representation resizes with the

```
<comment ... >
 <text> ... </text>
 <commentPr autoFill="false">
 <anchor moveWithCells="true" sizeWithCells="true">
 <from> ... </from>
 <to> ... </to>
 <anchor>
 </commentPr>
</comment>
```

end example]

Attributes	Description
altText (Alternative Text)	Specifies alternative text for the object, for use by assistive technologies or applications.   [Example:   <commentPr altText="Alternate text" ... />   end example]   The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
autoFill (Automatic   Fill Flag)	Specifies whether the object's fill formatting is provided automatically by the application. ```[Example: <commentPr autoFill="false" ... /> end example]```   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
autoLine (Automatic Line Flag)	Specifies whether the object's line formatting is provided automatically by the application.   [Example:   <commentPr autoLine="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.


Attributes	Description
autoScale   (Automatic Text Scaling Flag)	Specifies whether the object's font is automatically scaled by the application when the object is resized.   [Example:   <commentPr autoScale="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
colHidden (Hidden Column Flag)	Specifies that the column of the cell to which this comment points is hidden.   [Example:   <commentPr colHidden="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
defaultSize (Default Size Flag)	Specifies whether the object is at its default size.   [Example:   <commentPr defaultSize="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
disabled (Disabled Flag)	Specifies whether the object is allowed to run an attached macro.   [Example:   <commentPr disabled="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
justLastX (Far East Alignment Flag)	Specifies that Far East alignment is set for the last line in the comment's text. Typically, justified text in Far East environments leaves the last line unjustified. Specifying this element also justifies the last line.


Attributes	Description
	[Example:   <commentPr justLastX="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
locked (Locked Flag)	Specifies that the object is locked when the sheet is protected.   [Example:   <commentPr locked="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
lockText (Text Lock Flag)	Specifies that the object's text is locked.   [Example:   <commentPr lockText="true" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
print (Print Flag)	Specifies whether the object is printed when the document is printed.   [Example:   <commentPr print="false" ... />   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
rowHidden (Hidden Row Flag)	Specifies that the row of the cell to which this comment points is hidden.   [Example:   <commentPr rowHidden="true" ... />   end example]


Attributes	Description		
	The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.		
textHAlign (Text   Horizontal   Alignment)	Specifies the horizontal alignment of the comment's text field.   [Example:   <commentPr textHAlign=" center" ... />   end example]		
The possible values for this attribute are defined by the ST_TextHAlign simple type			
(§18.18.80).		$\quad$	Specifies the vertical alignment of the comment's text field.
:---			
[Example:			
<commentPr textVAlign="center" ... />			
textVAlign (ext			
Vertical Alignment)			
end example]			
The possible values for this attribute are defined by the ST_TextVAlign simple type			
(§18.18.81).			

[Note: The W3C XML Schema definition of this element’s content model (CT CommentPr) is located in §A.2. end note]

### 18.7.6 comments (Comments)

This element is the root container of a set of comments and comment authors for a particular sheet. Each set of comments for a sheet is stored in a separate xml part. The relationship part for a sheet defines a link to the correct comment part for that sheet.
[Note: The W3C XML Schema definition of this element's content model (CT Comments) is located in §A.2. end note]

### 18.7.7 text (Comment Text)

This element contains rich text which represents the text of a comment. The maximum length for this text is a spreadsheet application implementation detail. A recommended guideline is 32767 chars.
[Note: The W3C XML Schema definition of this element’s content model (CT Rst) is located in §A.2. end note]

### 18.8 Styles

This subclause specifies the possible formatting information for the contents of the cells on a sheet in a SpreadsheetML document.

### 18.8.1 alignment (Alignment)

Formatting information pertaining to text alignment in cells. There are a variety of choices for how text is aligned both horizontally and vertically, as well as indentation settings, and so on.

Attributes	Description   horizontal   (Horizontal   Alignment)   indent (Indent)   Specifies the type of horizontal alignment in cells.   The possible values for this attribute are defined by the ST_HorizontalAlignment simple   type (§18.18.40).   An integer value, where an increment of 1 represents 3 spaces. Indicates the number of   spaces (of the normal style font) of indentation for text in a cell. The number of spaces to   indent is calculated as following:   Number of spaces to indent = indent value *3   [Example:For example, an indent value of 1 means that the text begins 3 space widths (of   the normal style font) from the edge of the cell.   end example]   [Note: The width of one space character is defined by the font. end note]
Only left, right, and distributed horizontal alignments are supported.	
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
readingOrder (Reading Order)	An integer value indicating whether the reading order (bidirectionality) of the cell is left-to-right, right-to-left, or context dependent.   0 - Context Dependent - reading order is determined by scanning the text for the first non-whitespace character: if it is a strong right-to-left character, the reading order is right-to-left; otherwise, the reading order left-to-right.   1 - Left-to-Right- reading order is left-to-right in the cell, as in English.   2 - Right-to-Left - reading order is right-to-left in the cell, as in Hebrew.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
relativeIndent   (Relative Indent)	An integer value (used only in a dxf element) to indicate the additional number of spaces of indentation to adjust for text in a cell.   The possible values for this attribute are defined by the W3C XML Schema int datatype.
shrinkToFit (Shrink To Fit)	A boolean value indicating if the displayed text in the cell should be shrunk to fit the cell width. Not applicable when a cell contains multiple lines of text.   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
textRotation (Text Rotation)	Text rotation in cells. Expressed in degrees. Values are in the range 0 to 180 . The first letter of the text is considered the center-point of the arc.   For 0-90, the value represents degrees above horizon. For 91-180 the degrees below the horizon is calculated as:   [degrees below horizon] = 90 - textRotation.   0   abcdefghijklmnopqrstuvwxyz   45


Attributes	Description
	90
	abcdefghijklmnopqrstuvwxyz   135
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
vertical (Vertical Alignment)	Vertical alignment in cells.


Attributes	Description
	The possible values for this attribute are defined by the ST_VerticalAlignment simple   type (§18.18.88).
wrapText (Wrap   Text)	A boolean value indicating if the text in a cell should be line-wrapped within the cell.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CellAlignment) is located in §A.2. end note]

### 18.8.2 b (Bold)

Displays characters in bold face font style.

Attributes	Description
val (Value)	A boolean value for the property specified by the parent XML element.   If omitted, the default value is true.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT BooleanProperty) is located in §A.2. end note]

### 18.8.3 bgColor (Background Color)

Background color of the cell fill pattern. Cell fill patterns operate with two colors: a background color and a foreground color. These combine together to make a patterned cell fill.

Attributes	Description
auto (Automatic)	A boolean value indicating the color is automatic and system color dependent.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
indexed (Index)	Indexed color value. Only used for backwards compatibility. References a color in   indexedColors.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
rgb (Alpha Red   Green Blue Color	Standard Alpha Red Green Blue color value (ARGB).


Attributes	Description
Value)	The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
theme (Theme Color)	A zero-based index into the <clrScheme> collection (§20.1.6.2), referencing a particular <sysClr> or <srgbClr> value expressed in the Theme part.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
tint (Tint)	Specifies the tint value applied to the color.   If tint is supplied, then it is applied to the RGB value of the color to determine the final color applied.   The tint value is stored as a double from -1.0 .. 1.0, where - 1.0 means $100 \%$ darken and 1.0 means $100 \%$ lighten. Also, 0.0 means no change.   In loading the RGB value, it is converted to HLS where HLS values are ( $0 . . \mathrm{HLSMAX}$ ), where HLSMAX is currently 255.   [Example:   Here are some examples of how to apply tint to color: $\begin{aligned} & \text { If }(\text { tint }<\mathbf{0}) \\ & \text { Lum }=\text { Lum * }(1.0+\text { tint }) \end{aligned}$   For example: Lum = 200; tint =-0.5; Darken $50 \%$ $\text { Lum }{ }^{\prime}=200 \text { * (0.5) => } 100$   For example: Lum = 200; tint = -1.0; Darken 100\% (make black) $\text { Lum }^{\prime}=200 *(1.0-1.0)=>0$   If (tint > $\mathbf{0}$ )   Lum ${ }^{\prime}=$ Lum * (1.0-tint) + (HLSMAX - HLSMAX * (1.0-tint $)$ )   For example: Lum $=100$; tint $=0.75$; Lighten $75 \%$   Lum ${ }^{\prime}=100^{*}(1-.75)+\left(\right.$ HLSMAX - HLSMAX $\left.^{*}(1-.75)\right)$   $=100 * .25+(255-255 * .25)$   $=25+(255-63)=25+192=217$   For example: Lum = 100; tint = 1.0; Lighten $100 \%$ (make white)   Lum $^{\prime}=100^{*}(1-1)+\left(\right.$ HLSMAX $\left.-\operatorname{HLSMAX}^{*}(1-1)\right)$ $=100 * 0+(255-255 * 0)$   $=0+(255-0)=255$   end example]


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema double   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Color) is located in §A.2. end note]

### 18.8.4 border (Border)

Expresses a single set of cell border formats (left, right, top, bottom, diagonal). Color is optional. When missing, 'automatic' is implied.

Attributes	Description
diagonalDown (Diagonal Down)	A boolean value indicating if the cell's diagonal border includes a diagonal line, starting at the top left corner of the cell and moving down to the bottom right corner of the cell.   [Example:   This example shows a thin diagonal down line: $\qquad$   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
diagonalUp   (Diagonal Up)	A boolean value indicating if the cell's diagonal border includes a diagonal line, starting at the bottom left corner of the cell and moving up to the top right corner of the cell.   [Example:   This example shows a thin diagonal up line:   end example]   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
outline (Outline)	A boolean value indicating if left, right, top, and bottom borders should be applied only to outside borders of a cell range.   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Border) is located in §A.2. end note]

### 18.8.5 borders (Borders)

This element contains borders formatting information, specifying all border definitions for all cells in the workbook.
[Example: In this example the first border definition specifies that there are no borders, the second definition specifies that a there is a thin bottom border and medium right border, and the third definition specifies that there is a double top border.

```
 <borders count="3">
 <border>
 <begin/>
 <end/>
 <top/>
 <bottom/>
 <diagonal/>
 </border>
 <border>
 <begin/>
 <end style="medium">
 <color indexed="64"/>
 </end>
 <top/>
 <bottom style="thin">
 <color indexed="64"/>
 </bottom>
 <diagonal/>
 </border>
 <border>
 <begin/>
 <end/>
 <top style="double">
 <color auto="1"/>
 </top>
 <bottom/>
 <diagonal/>
 </border>
</borders>
```

end example]

Attributes	Description
count (Border   Count)	Count of border elements.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Borders) is located in §A.2. end note]

### 18.8.6 bottom (Bottom Border)

This element specifies the color and line style for the bottom border of a cell.

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type   (§18.18.3).

[Note: The W3C XML Schema definition of this element's content model (CT BorderPr) is located in §A.2. end note]

### 18.8.7 cellStyle (Cell Style)

This element represents the name and related formatting records for a named cell style in this workbook.
Annex $G$ contains a listing of cellStyles whose corresponding formatting records are implied rather than explicitly saved in the file. In this case, a builtinId attribute is written on the cellStyle record, but no corresponding formatting records are written.

For all built-in cell styles, the builtinId determines the style, not the name. For all cell styles, Normal is applied by default.

Attributes	Description
builtinId (Built-In   Style Id)	The index of a built-in cell style:   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
customBuiltin   (Custom Built In)	True indicates that this built-in cell style has been customized.   By default built-in styles are not persisted when not in use. This flag indicates that a   built-in style has been modified, and therefore should be saved with the workbook, even   if not currently in use.


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
hidden (Hidden   Style)	If 'true ' do not show this style in the application UI.   The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.
iLevel (Outline   Style)	Indicates that this formatting is for an outline style . When styles are applied to outline   levels (using the outline feature), this value is set and the formatting specified on this cell   style is applied to the corresponding level of the outline.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.
name (User Defined   Cell Style)	The name of the cell style.   The possible values for this attribute are defined by the ST_Xstring simple type   (§22.9.2.19).
xfId (Format Id)	Zero-based index referencing an xf record in the cellStyleXfs collection. This is used to   determine the formatting defined for this named cell style.
The possible values for this attribute are defined by the ST_CellStyleXfld simple type	
(§18.18.10).	

[Note: The W3C XML Schema definition of this element's content model (CT CellStyle) is located in §A.2. end note]

### 18.8.8 cellStyles (Cell Styles)

This element contains the named cell styles, consisting of a sequence of named style records. A named cell style is a collection of direct or themed formatting (e.g., cell border, cell fill, and font type/size/style) grouped together into a single named style, and can be applied to a cell.
[Example: For example, "Normal", "Heading 1", "Title", and "20\% Accent1" are named cell styles expressed below. They have builtInId's associated with them, and use xfId to reference the specific formatting elements pertaining to the particular style. The xfId is a zero-based index, referencing an xf record in the cellStyleXfs collection.

```
<cellStyles count="4">
 <cellStyle name="20% - Accent1" xfId="3" builtinId="30"/>
 <cellStyle name="Heading 1" xfId="2" builtinId="16"/>
 <cellStyle name="Normal" xfId="0" builtinId="0"/>
 <cellStyle name="Title" xfId="1" builtinId="15"/>
</cellStyles>
```

end example]

Attributes	Description
count (Style Count)	Count of style elements.         The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT CellStyles) is located in §A.2. end note]

### 18.8.9 cellStyleXfs (Formatting Records)

This element contains the master formatting records (xf's) which define the formatting for all named cell styles in this workbook. Master formatting records reference individual elements of formatting (e.g., number format, font definitions, cell fills, etc) by specifying a zero-based index into those collections. Master formatting records also specify whether to apply or ignore particular aspects of formatting. [Example: Whether to apply a border or not. end example]

A cell can have both direct formatting (e.g., bold) and a cell style (e.g., Explanatory) applied to it. Therefore, both the cell style xf records and cell xf records shall be read to understand the full set of formatting applied to a cell.
[Example: This example shows 4 master formatting records, each defining formatting for a named cell style (expressed in the cellStyles collection). Note that Oth record does not express any "apply" attributes, while the other records do express "apply" attribute values. For example, the last record specifies that number format, alignment, and protection formatting will not be applied to the cell, even when that information is specified in related formatting records.

```
<cellStyleXfs count="4">
 <xf numFmtId="0" fontId="0" fillId="0" borderId="0"/>
 <xf numFmtId="0" fontId="2" fillId="0" borderId="0" applyNumberFormat="0"
 applyFill="0" applyBorder="0" applyAlignment="0" applyProtection="0"/>
 <xf numFmtId="0" fontId="3" fillId="0" borderId="1" applyNumberFormat="0"
 applyFill="0" applyAlignment="0" applyProtection="0"/>
 <xf numFmtId="0" fontId="4" fillId="2" borderId="2" applyNumberFormat="0"
 applyAlignment="0" applyProtection="0"/>
</cellStyleXfs>
```

end example]

Attributes	Description
count (Style Count)	Count of cell style (xf) elements.      The possible values for this attribute are defined by the W3C XML Schema unsignedInt


Attributes	
	datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CellStyleXfs) is located in §A.2. end note]

### 18.8.10 cellXfs (Cell Formats)

This element contains the master formatting records (xf) which define the formatting applied to cells in this workbook. These records are the starting point for determining the formatting for a cell. Cells in the Sheet Part reference the xf records by zero-based index.

A cell can have both direct formatting (e.g., bold) and a cell style (e.g., Explanatory) applied to it. Therefore, both the cell style xf records and cell xf records shall be read to understand the full set of formatting applied to a cell.

Attributes	Description
count (Format   Count)	Count of xf elements.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CellXfs) is located in §A.2. end note]

### 18.8.11 colors (Colors)

Color information associated with this stylesheet. This collection is written whenever the legacy color palette has been modified (backwards compatibility settings) or a custom color has been selected while using this workbook.

When the color palette is modified, the indexedColors collection is written. When a custom color has been selected, the mruColors collection is written.
[Note: The W3C XML Schema definition of this element's content model (CT Colors) is located in §A.2. end note]

### 18.8.12 condense (Condense)

Macintosh compatibility setting. Represents special word/character rendering on Macintosh, when this flag is set. The effect is to condense the text (squeeze it together). SpreadsheetML applications are not required to render according to this flag.

Attributes	Description
val (Value)	A boolean value for the property specified by the parent XML element.   If omitted, the default value is true.


Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT BooleanProperty) is located in §A.2. end note]

### 18.8.13 diagonal (Diagonal)

This element specifies the color and line style for the diagonal border(s) of a cell, possibly including diagonally up and diagonally down. The line style for diagonal up and diagonal down lines shall be the same.

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type   (§18.18.3).

[Note: The W3C XML Schema definition of this element’s content model (CT BorderPr) is located in §A.2. end note]

### 18.8.14 dxf (Formatting)

A single dxf record, expressing incremental formatting to be applied.
[Note: The W3C XML Schema definition of this element's content model (CT Dxf) is located in §A.2. end note]

### 18.8.15 dxfs (Formats)

This element contains the master differential formatting records (dxf's) which define formatting for all non-cell formatting in this workbook. Whereas xf records fully specify a particular aspect of formatting (e.g., cell borders) by referencing those formatting definitions elsewhere in the Styles part, dxf records specify incremental (or differential) aspects of formatting directly inline within the dxf element. The dxf formatting is to be applied on top of or in addition to any formatting already present on the object using the dxf record.

Attributes	Description
count (Format   Count)	Count of dxf elements.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Dxfs) is located in §A.2. end note]

### 18.8.16 end (Trailing Edge Border)

This element specifies the color and line style for the trailing edge border of a cell (i.e., the right border for left-to-right cells and the left border for right-to-left cells)..

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type   (§18.18.3).

[Note: The W3C XML Schema definition of this element’s content model (CT BorderPr) is located in §A.2. end note]

### 18.8.17 extend (Extend)

This element specifies a compatibility setting used for previous spreadsheet applications, resulting in special word/character rendering on those legacy applications, when this flag is set. The effect extends or stretches out the text. SpreadsheetML applications are not required to render according to this flag.

Attributes	Description
val (Value)	A boolean value for the property specified by the parent XML element.   If omitted, the default value is true.
	The possible values for this attribute are defined by the W3C XML Schema boolean   datatype.

[Note: The W3C XML Schema definition of this element's content model (CT BooleanProperty) is located in §A.2. end note]

### 18.8.18 family (Font Family)

The font family this font belongs to. The font name overrides when there are conflicting values.

Attributes	Description
val (Value)	The font family this font belongs to.
	The possible values for this attribute are defined by the ST_FontFamily simple type
	(§18.18.94).

[Note: The W3C XML Schema definition of this element's content model (ST_FontFamily) is located in §A.2. end note]

### 18.8.19 fgColor (Foreground Color)

Foreground color of the cell fill pattern. Cell fill patterns operate with two colors: a background color and a foreground color. These combine together to make a patterned cell fill.

Attributes	Description
auto (Automatic)	A boolean value indicating the color is automatic and system color dependent.   The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
indexed (Index)	Indexed color value. Only used for backwards compatibility. References a color in indexedColors.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
rgb (Alpha Red Green Blue Color Value)	Standard Alpha Red Green Blue color value (ARGB).   The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
theme (Theme Color)	A zero-based index into the <clrScheme> collection (§20.1.6.2), referencing a particular <sysClr> or <srgbClr> value expressed in the Theme part.   The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
tint (Tint)	Specifies the tint value applied to the color.   If tint is supplied, then it is applied to the RGB value of the color to determine the final color applied.   The tint value is stored as a double from -1.0 .. 1.0, where -1.0 means $100 \%$ darken and 1.0 means $100 \%$ lighten. Also, 0.0 means no change.   In loading the RGB value, it is converted to HLS where HLS values are (0..HLSMAX), where HLSMAX is currently 255.   [Example:   Here are some examples of how to apply tint to color: $\begin{aligned} & \text { If }(\text { tint }<\mathbf{0}) \\ & \text { Lum }^{\prime}=\text { Lum }^{*}(1.0+\text { tint }) \end{aligned}$   For example: Lum = 200; tint $=-0.5$; Darken $50 \%$ $\text { Lum' }=200 *(0.5)=>100$   For example: Lum = 200; tint = -1.0; Darken 100\% (make black)


Attributes	Description
	```Lum' = 200 * (1.0-1.0) => 0 If (tint > 0) Lum' = Lum * (1.0-tint) + (HLSMAX - HLSMAX * (1.0-tint))```   For example: Lum $=100$; tint $=0.75$; Lighten $75 \%$   Lum ${ }^{\prime}=100$ * (1-.75) + (HLSMAX - HLSMAX*(1-.75))   $=100$ *. $25+(255-255 * .25)$   $=25+(255-63)=25+192=217$   For example: Lum = 100; tint = 1.0; Lighten $100 \%$ (make white)   Lum $^{\prime}=100^{*}(1-1)+\left(\right.$ HLSMAX $\left.-\operatorname{HLSMAX}^{*}(1-1)\right)$   $=100$ * $0+(255-255 * 0)$   $=0+(255-0)=255$   end example]   The possible values for this attribute are defined by the W3C XML Schema double datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Color) is located in §A.2. end note]

18.8.20 fill (Fill)

This element specifies fill formatting.
[Note: The W3C XML Schema definition of this element's content model (CT Fill) is located in §A.2. end note]

18.8.21 fills (Fills)

This element defines the cell fills portion of the Styles part, consisting of a sequence of fill records. A cell fill consists of a background color, foreground color, and pattern to be applied across the cell.
[Example: This cell has a yellow fill:

This is the corresponding XML:

```
<fill>
    <patternFill patternType="solid">
        <fgColor rgb="FFFFFF00"/>
        <bgColor indexed="64"/>
    </patternFill>
</fill>
```

This cell has a yellow fill with a thin horizontal crosshatch pattern applied (patternType = lightGrid):

\#\#\# \#

This is the corresponding XML:

```
<fill>
    <patternFill patternType="lightGrid">
    <bgColor rgb="FFFFFFF00"/>
    </patternFill>
</fill>
```

end example]

Attributes	Description
count (Fill Count)	Count of fill elements. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype. \mathbf{l}

[Note: The W3C XML Schema definition of this element’s content model (CT Fills) is located in §A.2. end note]

18.8.22 font (Font)

This element defines the properties for one of the fonts used in this workbook.
[Note: The W3C XML Schema definition of this element's content model (CT Font) is located in §A.2. end note]

18.8.23 fonts (Fonts)

This element contains all font definitions for this workbook.
[Example: This example expresses two fonts in the workbook. A Calibri family font, with font size of 11, and an Arial family font, with font size 12. The second font has strikethrough applied.

```
<fonts count="2">
    <font>
        <sz val="11"/>
        <color theme="1"/>
        <name val="Calibri"/>
        <family val="2"/>
        <scheme val="minor"/>
    </font>
```


<strike/>
<sz val="12"/>
<color theme="1"/>
<name val="Arial"/>
<family val="2"/>

</fonts>
end example]

Attributes	Description
count (Font Count)	Count of font elements. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype. \mathbf{l}

[Note: The W3C XML Schema definition of this element's content model (CT Fonts) is located in §A.2. end note]

18.8.24 gradientFill (Gradient)

This element defines a gradient-style cell fill. Gradient cell fills can use one or two colors as the end points of color interpolation.
[Example:
This example shows a gradient cell fill, with color green at the top transitioning into blue at the bottom.

This is the XML:

```
<fill>
    <gradientFill degree="90">
        <stop position="0">
            <color rgb="FF92D050"/>
        </stop>
        <stop position="1">
            <color rgb="FF0070C0"/>
        </stop>
    </gradientFill>
</fill>
```

This example shows a gradient cell fill, from the center. Note the left, right, top, and bottom values (and see explanation in the attribute section):

end example]

Attributes	Description bottom (Bottom Convergence) degree (Linear Gradient Degree) This attribute is restricted to values ranging from 0 to 1. Specifies in percentage format (from the top to the bottom) the position of the bottom edge of the inner rectangle (color 1). For bottom, 0 means the bottom edge of the inner rectangle is on the top edge of the cell, and 1 means it is on the bottom edge of the cell. The possible values for this attribute are defined by the W3C XML Schema double datatype. [Example: In these examples, color 1 is white and color 2 is blue. $90=$ Horizontal \& color 1 to color 2
$270=$ Horizontal \& color 1 to color 2 gradient - vertical, horizontal, diagonal.	

Attributes	Description
	$180=$ Vertical \& color 1 to color 2 $45=$ Diagonal Up \& top to bottom (color 1 to color 2) 225 = Diagonal Up \& bottom to top (color 1 to color 2) 135 = Diagonal Down \& top to bottom (color 1 to color 2) 315 = Diagonal Down \& bottom to top (color 1 to color 2) end example] The possible values for this attribute are defined by the W3C XML Schema double datatype.
left (Left Convergence)	This attribute is restricted to values ranging from 0 to 1 . Specifies in percentage format (from the left to the right) the position of the left edge of the inner rectangle (color 1). For left, 0 means the left edge of the inner rectangle is on the left edge of the cell, and 1 means it is on the right edge of the cell. (applies to From Corner and From Center gradients). The possible values for this attribute are defined by the W3C XML Schema double datatype.
right (Right Convergence)	This attribute is restricted to values ranging from 0 to 1 . Specifies in percentage format (from the left to the right) the position of the right edge of the inner rectangle (color 1). For right, 0 means the right edge of the inner rectangle is on the left edge of the cell, and 1 means it is on the right edge of the cell. (applies to From Corner and From Center gradients). The possible values for this attribute are defined by the W3C XML Schema double datatype.
top (Top Gradient Convergence)	This attribute is restricted to values ranging from 0 to 1 . Specifies in percentage format (from the top to the bottom) the position of the top edge of the inner rectangle (color 1). For top, 0 means the top edge of the inner rectangle is on the top edge of the cell, and 1 means it is on the bottom edge of the cell. (applies to From Corner and From Center gradients). The possible values for this attribute are defined by the W3C XML Schema double datatype.
type (Gradient Fill	Type of this gradient fill.

Attributes	Description
Type)	The possible values for this attribute are defined by the ST_GradientType simple type (§18.18.37).

[Note: The W3C XML Schema definition of this element’s content model (CT GradientFill) is located in §A.2. end note]

18.8.25 horizontal (Horizontal Inner Borders)

This element specifies the color and line style for the horizontal inner border(s) of a range of cells. Used in the context of dxf elements only. [Example: see the borders definitions for TableStyleMedium28. end example]

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type (§18.18.3).

[Note: The W3C XML Schema definition of this element’s content model (CT BorderPr) is located in §A.2. end note]

18.8.26 i (Italic)

Displays characters in italic font style. The italic style is defined by the font at a system level and is not specified by ISO/IEC 29500.

Attributes	Description
val (Value)	A boolean value for the property specified by the parent XML element. If omitted, the default value is true.
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT BooleanProperty) is located in §A.2. end note]

18.8.27 indexedColors (Color Indexes)

A legacy indexing scheme for colors that is still required for some records, and for backwards compatibility with legacy formats.

This element contains a sequence of RGB color values that correspond to color indexes (zero-based). When using the default indexed color palette, the values are not written out, but instead are implied. When the color palette has been modified from default, then the entire color palette is written out.

Here is the table of default mappings from indexed color value to ARGB value. Note that 0-7 are redundant of 815 to preserve backwards compatibility.

indexed="44"	0099CCFF	
indexed="45"	00FF99CC	
indexed="46"	00CC99FF	
indexed="47"	00FFCC99	
indexed="48"	003366FF	
indexed="49"	0033CCCC	
indexed="50"	0099CC00	
indexed="51"	00FFCCO0	
indexed="52"	00FF9900	
indexed="53"	00FF6600	
indexed="54"	00666699	
indexed="55"	00969696	
indexed="56"	00003366	
indexed="57"	00339966	
indexed="58"	00003300	
indexed="59"	00333300	
indexed="60"	00993300	
indexed="61"	00993366	
indexed="62"	00333399	
indexed="63"	00333333	
indexed="64"	System Foreground	n/a
indexed="65"	System Background	n/a

[Note: The W3C XML Schema definition of this element's content model (CT IndexedColors) is located in §A.2. end note]

18.8.28 mruColors (MRU Colors)

This element contains sequence of RGB values that correspond to custom colors selected by the user for this workbook.
[Note: The W3C XML Schema definition of this element's content model (CT MRUColors) is located in §A.2. end note]

18.8.29 name (Font Name)

This element specifies the face name of this font.

Attributes	Description
val (String Value)	A string representing the name of the font. If the font doesn't exist (because it isn't installed on the system), or the charset not supported by that font, then another font should be substituted.
The string length for this attribute shall be 0 to 31 Unicode scalar values.	
The possible values for this attribute are defined by the ST_Xstring simple type	
(§22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT FontName) is located in §A.2. end note]

18.8.30 numFmt (Number Format)

This element specifies number format properties which indicate how to format and render the numeric value of a cell.

Following is a listing of number formats whose formatCode value is implied rather than explicitly saved in the file. In this case a numFmtId value is written on the xf record, but no corresponding numFmt element is written. Some of these Ids can be interpreted differently, depending on the UI language of the implementing application.

Ids not specified in the listing, such as $5,6,7$, and 8 , shall follow the number format specified by the formatCode attribute.

All Languages

ID	formatCode
0	General
1	0
2	0.00
3	$\#, \# \# 0$

ID	formatCode
4	\#,\#\#0.00
9	0\%
10	0.00\%
11	0.00E+00
12	\# ?/?
13	\# ??/??
14	mm-dd-yy
15	d-mmm-yy
16	d-mmm
17	mmm-yy
18	h:mm AM/PM
19	h:mm:ss AM/PM
20	$\mathrm{h}: \mathrm{mm}$
21	h:mm:ss
22	m/d/yy h:mm
37	\#,\#\#0 ;(\#,\#\#0)
38	\#,\#\#0 ; [Red](#,##0)
39	\#,\#\#0.00; (\#,\#\#0.00)
40	\#,\#\#0.00;[Red](#,##0.00)
45	mm:ss
46	[h]:mm:ss
47	mmss. 0
48	\#\#0.0E+0
49	@

"General" Format

Some additional comments about the "General" number format are appropriate.

The primary goal when a cell is using "General" formatting is to render the cell content without user-specified guidance to the best ability of the application.

Alignment

（Specified for Left－to－Right mode）

－Strings：left aligned
－Boolean／error values：centered
－Numbers：right aligned
－Dates：do not follow the＂General＂format，instead automatically convert to date formatting．

Numbers

The application shall attempt to display the full number up to 11 digits（inc．decimal point）．If the number is too large，the application shall attempt to show exponential format．If the number has too many significant digits， the display shall be truncated．The optimal method of display is based on the available cell width．If the number cannot be displayed using any of these formats in the available width，the application shall show＂\＃＂across the width of the cell．

Conditions for switching to exponential format：
3．The cell value shall have at least five digits for $x E-x x$
4．If the exponent is bigger than the size allowed，a floating point number cannot fit，so try exponential notation．
5．Similarly，for negative exponents，check if there is space for even one（non－zero）digit in floating point format．
6．Finally，if there isn＇t room for all of the significant digits in floating point format（for a negative exponent），exponential format shall display more digits if the exponent is less than -3 ．（The 3 is because E－xx takes 4 characters，and the leading 0 in floating point takes only 1 character．Thus，for an exponent less than -3 ，there is more than 3 additional leading 0 ＇s，more than enough to compensate for the size of the E－xx．）

Floating point rule：
For general formatting in cells，max overall length for cell display is 11 ，not including negative sign，but includes leading zeros and decimal separator．

zh－tw and zh－cn

ID	zh－tw formatCode	zh－cn formatCode
27	［\＄－404］e／m／d	yyyy＂年＂m＂月＂
28	［\＄－404］e＂年＂m＂月＂d＂日＂	m＂月＂d＂日＂
29	［\＄－404］e＂年＂m＂月＂d＂日＂	m＂月＂d＂日＂
30	m／d／yy	m－d－yy
31	yyyy＂年＂m＂月＂d＂日＂	yyyy＂年＂m＂月＂d＂日＂
32	hh＂時＂mm＂分＂	h＂时＂mm＂分＂

ID	zh－tw formatCode	zh－cn formatCode
33	hh＂時＂mm＂分＂ss＂秒＂	
34	上午／下午 hh ＂時＂mm＂分＂	上午／下午 h ＂时＂mm＂分＂
35	上午／下午 hh＂時＂mm＂分＂ss＂秒	上午／下午 h＂时＂mm＂分＂ss＂秒
36	［\＄－404］e／m／d	yyyy＂年＂m＂月＂
50	［\＄－404］e／m／d	yyyy＂年＂m＂月＂
51	［\＄－404］e＂年＂m＂月＂d＂日＂	m＂月＂d＂日＂
52	上午／下午 hh ＂時＂mm＂分＂	yyyy＂年＂m＂月＂
53	上午／下午 hh ＂時＂mm＂分＂ss＂秒	m＂月＂d＂日＂
54	［\＄－404］e＂年＂m＂月＂d＂日＂	m＂月＂d＂日＂
55	上午／下午 hh ＂時＂mm＂分＂	上午／下午 h ＂时＂mm＂分＂
56	上午／下午 hh＂時＂mm＂分＂ss＂秒	上午／下午 h＂时＂mm＂分＂ss＂秒
57	［\＄－404］e／m／d	yyyy＂年＂m＂月＂
58	［\＄－404］e＂年＂m＂月＂d＂日＂	m＂月＂d＂日＂

zh－tw and zh－cn（with unicode values provided for language glyphs where they occur）

ID	zh－tw formatCode	zh－cn formatCode
27	［\＄－404］e／m／d	yyyy＂5E74＂m＂6708＂
28	［\＄－404］e＂5E74＂m＂6708＂d＂65E5＂	m＂6708＂d＂65E5＂
29	［\＄－404］e＂5E74＂m＂6708＂d＂65E5＂	m＂6708＂d＂65E5＂
30	m／d／yy	m－d－yy
31	yyyy＂5E74＂m＂6708＂d＂65E5＂	yyyy＂5E74＂m＂6708＂d＂65E5＂
32	hh＂6642＂mm＂5206＂	h＂65F6＂mm＂5206＂
33	hh＂6642＂mm＂5206＂ss＂79D2＂	h＂65F6＂mm＂5206＂ss＂79D2＂
34	4EOA5348／4EOB5348hh＂6642＂mm＂5206＂	4EOA5348／4EOB5348h＂65F6＂mm＂5206＂
35	4EOA5348／4EOB5348hh＂6642＂mm＂5206＂ss＂79 D2＂	4EOA5348／4EOB5348h＂65F6＂mm＂5206＂ss＂79 D2＂
36	［\＄－404］e／m／d	yyyy＂5E74＂m＂6708＂
50	［ $\$$－404］e／m／d	yyyy＂5E74＂m＂6708＂
51	［\＄－404］e＂5E74＂m＂6708＂d＂65E5＂	m＂6708＂d＂65E5＂

ID	zh－tw formatCode	zh－cn formatCode
52	4EOA5348／4EOB5348hh＂6642＂mm＂5206＂	yyyy＂5E74＂m＂6708＂
53	4EOA5348／4EOB5348hh＂6642＂mm＂5206＂ss＂79 D2＂	m＂6708＂d＂65E5＂
54	［\＄－404］e＂5E74＂m＂6708＂d＂65E5＂	m＂6708＂d＂65E5＂
55	4EOA5348／4EOB5348hh＂6642＂mm＂5206＂	4EOA5348／4E0B5348h＂65F6＂mm＂5206＂
56	4EOA5348／4EOB5348hh＂6642＂mm＂5206＂ss＂79 D2＂	4EOA5348／4E0B5348h＂65F6＂mm＂5206＂ss＂79 D2＂
57	［\＄－404］e／m／d	yyyy＂5E74＂m＂6708＂
58	［\＄－404］e＂5E74＂m＂6708＂d＂65E5＂	m＂6708＂d＂65E5＂

ja－jp and ko－kr

ID	ja－jp formatCode	ko－kr formatCode
27	［\＄－411］ge．m．d	yyyy＂年＂mm＂月＂dd＂日＂
28	［\＄－411］ggge＂年＂m＂月＂d＂日＂	mm－dd
29	［\＄－411］ggge＂年＂m＂月＂d＂日＂	mm－dd
30	m／d／yy	mm－dd－yy
31	yyyy＂年＂m＂月＂d＂日＂	yyyy＂년＂mm＂월＂dd＂일＂
32	h＂時＂mm＂分＂	h＂人l＂mm＂분＂
33	h＂時＂mm＂分＂ss＂秒＂	h＂人l＂mm＂분＂ss＂초＂
34	yyy＂年＂m＂月＂	yyyy－mm－dd
35	m＂月＂d＂日＂	yyyy－mm－dd
36	［\＄－411］ge．m．d	yyyy＂年＂mm＂月＂dd＂日＂
50	［\＄－411］ge．m．d	yyyy＂年＂mm＂月＂dd＂日＂
51	［\＄－411］ggge＂年＂m＂月＂d＂日＂	$m m-d d$
52	yyyy＂年＂m＂月＂	yyyy－mm－dd
53	m＂月＂d＂日＂	yyyy－mm－dd
54	［\＄－411］ggge＂年＂m＂月＂d＂日＂	mm－dd
55	yyyy＂年＂m＂月＂	yyyy－mm－dd
56	m＂月＂d＂日＂	yyyy－mm－dd
57	［\＄－411］ge．m．d	yyyy＂年＂mm＂月＂dd＂日＂
58	［\＄－411］ggge＂年＂m＂月＂d＂日＂	$m m-d d ~$

ja-jp and ko-kr (with unicode values provided for language glyphs where they occur)

ID	ja-jp formatCode	ko-kr formatCode
27	[\$-411]ge.m.d	yyyy"5E74" mm"6708" dd"65E5"
28	[\$-411]ggge"5E74"m"6708"d"65E5"	mm-dd
29	[\$-411]ggge"5E74"m"6708"d"65E5"	mm-dd
30	m/d/yy	mm-dd-yy
31	yyyy"5E74"m"6708"d"65E5"	yyyy"B144" mm"C6D4" dd"C77C"
32	h"6642"mm"5206"	h"C2DC" mm"BD84"
33	h"6642"mm"5206"ss"79D2"	h"C2DC" mm"BD84" ss"CD08"
34	yyyy"5E74"m"6708"	yyyy-mm-dd
35	m"6708"d"65E5"	yyyy-mm-dd
36	[\$-411]ge.m.d	yyyy"5E74" mm"6708" dd"65E5"
50	[\$-411]ge.m.d	yyyy"5E74" mm"6708" dd"65E5"
51	[\$-411]ggge"5E74"m"6708"d"65E5"	mm-dd
52	yyyy"5E74"m"6708"	yyyy-mm-dd
53	m"6708"d"65E5"	yyyy-mm-dd
54	[\$-411]ggge"5E74"m"6708"d"65E5"	mm-dd
55	yyyy"5E74"m"6708"	yyyy-mm-dd
56	m"6708"d"65E5"	yyyy-mm-dd
57	[\$-411]ge.m.d	yyyy"5E74" mm"6708" dd"65E5"
58	[\$-411]ggge"5E74"m"6708"d"65E5"	mm-dd

th-th

ID	th-th formatCode
59	t0
60	t0.00
61	t\#,\#\#0
62	$\mathrm{t} \#, \# \# 0.00$
67	$\mathrm{t} 0 \%$
68	$\mathrm{t} 0.00 \%$
69	$\mathrm{t} \#$?/?

ID	th-th formatCode
70	t\# ??/??
71	ว/ด/ปปปป
72	ว-ดดด-ปป
73	ว-ดดด
74	ดดด-ปป
75	ช:นน
76	ช:นน:ทท
77	ว/ด/ปปปป ช:นน
78	นน:ทท
79	[ช]:นน:ทท
80	นน:ทท. 0
81	$\mathrm{d} / \mathrm{m} / \mathrm{bb}$

th-th (with unicode values provided for language glyphs where they occur)

ID	th-th formatCode
59	t0
60	t0.00
61	t\#,\#\#0
62	t\#,\#\#0.00
67	t0\%
68	t0.00\%
69	t\# ?/?
70	t\# ??/??
71	OE27/OE14/OE1B0E1B0E1B0E1B
72	OE27-0E140E140E14-0E1B0E1B
73	OE27-0E140E140E14
74	OE140E140E14-OE1B0E1B
75	OEOA:OE190E19
76	OEOA:0E190E19:0E170E17
77	OE27/0E14/OE1B0E1B0E1B0E1B OEOA:OE190E19

ID	th-th formatCode
78	0E190E19:0E170E17
79	[0E0A]:0E190E19:0E170E17
80	0E190E19:0E170E17.0
81	$d / m / b b$

Attributes	Description
formatCode (Number Format Code)	The number format code for this number format. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
numFmtId (Number Format Id)	Id used by the master style records (xf's) to reference this number format. The possible values for this attribute are defined by the ST_NumFmtId simple type (§18.18.47).

[Note: The W3C XML Schema definition of this element's content model (CT NumFmt) is located in §A.2. end note]

18.8.31 numFmts (Number Formats)

This element defines the number formats in this workbook, consisting of a sequence of numFmt records, where each numFmt record defines a particular number format, indicating how to format and render the numeric value of a cell.
[Example:
This cell is formatting as US currency:

$$
\$ 1.23
$$

The XML expressing this format shows that the formatId is "166" and the decoded formatCode is $\$ \#$, ,\#\#0.00
<numFmts count="1">
<numFmt numFmtId="166" formatCode="\"\$\"\#,\#\#0.00"/>
</numFmts>
end example]

Number Format Codes

Up to four sections of format codes can be specified. The format codes, separated by semicolons, define the formats for positive numbers, negative numbers, zero values, and text, in that order. If only two sections are specified, the first is used for positive numbers and zeros, and the second is used for negative numbers. If only one section is specified, it is used for all numbers. To skip a section, the ending semicolon for that section shall be written.

The first section, "Format for positive numbers", is the format code that applies to the cell when the cell value contains a positive number.

The second section, "Format for negative numbers", is the format code that applies to the cell when the cell value contains a negative number.

The third section, "Format for zeros", is the format code that applies to the cell when the cell value is zero.

The fourth, and last, section, "Format for text", is the format code that applies to the cell when the cell value is text.

The \& (ampersand) text operator is used to join, or concatenate, two values.

The following table describes the different symbols that are available for use in custom number formats.

Format symbol	Description and result
0	Digit placeholder. [Example: If the value 8.9 is to be displayed as 8.90 , use the format \#. 00 end example]
\#	Digit placeholder. This symbol follows the same rules as the 0 symbol. However, the application shall not display extra zeros when the number typed has fewer digits on either side of the decimal than there are \# symbols in the format. [Example: If the custom format is \#.\#\#, and 8.9 is in the cell, the number 8.9 is displayed. end example]
?	Digit placeholder. This symbol follows the same rules as the 0 symbol. However, the application shall put a space for insignificant zeros on either side of the decimal point so that decimal points are aligned in the column. [Example: The custom format 0.0 ? aligns the decimal points for the numbers 8.9 and 88.99 in a column. end example]
. (period)	Decimal point.
\%	Percentage. If the cell contains a number between 0 and 1 , and the custom format 0% is used, the application shall multiply the number by 100 and add the percentage symbol in the cell.
, (comma)	Thousands separator. The application shall separate thousands by commas if the format contains a comma that is enclosed by number signs (\#) or by zeros. A comma that follows a placeholder scales the number by one thousand. [Example: If the format is \#.0,, and the cell value is $12,200,000$ then the number 12.2 is displayed. end example]

Format symbol	Description and result
E-E+e-e+	Scientific format. The application shall display a number to the right of the "E" symbol that corresponds to the number of places that the decimal point was moved. [Example: If the format is $0.00 \mathrm{E}+00$, and the value $12,200,000$ is in the cell, the number $1.22 \mathrm{E}+07$ is displayed. If the number format is $\# 0.0 \mathrm{E}+0$, then the number $12.2 \mathrm{E}+6$ is displayed. end example]
\$-+():space	Displays the symbol. If it is desired to display a character that differs from one of these symbols, precede the character with a backslash (\backslash). Alternatively, enclose the character in quotation marks. [Example: If the number format is (000), and the value 12 is in the cell, the number (012) is displayed. end example]
/	If this symbol is preceded and followed by a number symbol ($0, \#$, and ?), it is interpreted as the fraction format symbol and will display the number in the format of a fraction. Otherwise, it is interpreted as the forward slash character and is displayed as such.
\backslash	Displays the next character in the format. The application shall not display the backslash. [Example: If the number format is $0 \backslash$!, and the value 3 is in the cell, the value 3 ! is displayed. end example]
*	Repeats the next character in the format enough times to fill the column to its current width. There shall not be more than one asterisk in one section of the format. If more than one asterisk appears in one section of the format, all but the last asterisk shall be ignored. [Example: if the number format is $0^{*} x$, and the value 3 is in the cell, the value $3 x x x x x x$ is displayed. The number of x characters that are displayed in the cell varies based on the width of the column. end example]
(underline)	Skips the width of the next character. This is useful for lining up negative and positive values in different cells of the same column. [Example: The number format_(0.0_);(0.0) aligns the numbers 2.3 and -4.5 in the column even though the negative number is enclosed by parentheses. end example]
"text"	Displays whatever text is inside the quotation marks. [Example: The format 0.00 "dollars" displays 1.23 dollars when the value 1.23 is in the cell. end example]
@	Text placeholder. If text is typed in the cell, the text from the cell is placed in the format where the at symbol (@) appears. [Example: If the number format is "Bob "@" Smith" (including quotation marks), and the value "John" is in the cell, the value Bob John Smith is displayed. end example]

Text and spacing

Display both text and numbers

To display both text and numbers in a cell, enclose the text characters in double quotation marks (" ") or precede a single character with a backslash (\backslash). Single quotation marks shall not be used to denote text. Characters inside double quotes, or immediately following backslash shall never be interpreted as part of the format code lexicon; instead they shall always be treated as literal strings. Remember to include the characters
in the appropriate section of the format codes. [Example: Use the format $\$ 0.00$ " Surplus"; $\$-0.00$ " Shortage" to display a positive amount as "\$125.74 Surplus" and a negative amount as "\$-125.74 Shortage." end example]

The following characters are displayed without the use of quotation marks.

$\$$	Dollar sign			-	Minus sign
+	Plus sign			$/$	Slash mark
$($	Left parenthesis			$)$	Right parenthesis
$:$	Colon			$!$	Exclamation point
\wedge	Circumflex accent (caret)			$\&$	Ampersand
'	Apostrophe		\sim	Tilde	
\{	Left curly bracket		$\}$	Right curly bracket	
$<$	Less-than sign		$>$	Greater-than sign	
$=$	Equal sign			Space character	

Include a section for text entry
If included, a text section shall be the last section in the number format. Include an "at" sign (@) in the section, precisely where the cell's text value should be displayed. If the @ character is omitted from the text section, text typed in the cell will not be displayed. To always display specific text characters with the typed text, enclose the additional text in double quotation marks (" "). [Example: If "June" is typed into the cell, and the text format is "gross receipts for "@ , then the cell will display "gross receipts for June". end example]

If the format does not include a text section, text entered in a cell is not affected by the format code.

Add spaces

To create a space that is the width of a character in a number format, include an underscore, followed by the character. [Example: When an underscore is followed with a right parenthesis, such as _), positive numbers line up correctly with negative numbers that are enclosed in parentheses because positive numbers are displayed with a blank space after them exactly the width of the right parenthesis character. end example]

Repeat characters

To repeat the next character in the format to fill the column width, include an asterisk (*) in the number format. [Example: Use 0^{*} - to include enough dashes after a number to fill the cell, or use *0 before any format to include leading zeros. end example]

Decimal places, spaces, colors, and conditions

Include decimal places and significant digits

To format fractions or numbers with decimal points, include the following digit placeholders in a section. If a number has more digits to the right of the decimal point than there are placeholders in the format, the number rounds to as many decimal places as there are placeholders. If there are more digits to the left of the decimal
point than there are placeholders, the extra digits are displayed. If the format contains only number signs (\#) to the left of the decimal point, numbers less than 1 begin with a decimal point.
\# (number sign) displays only significant digits and does not display insignificant zeros.
0 (zero) displays insignificant zeros if a number has fewer digits than there are zeros in the format.
? (question mark) adds spaces for insignificant zeros on either side of the decimal point so that decimal points align when they are formatted with a fixed-width font, such as Courier New. ? can also be used for fractions that have varying numbers of digits.

To display	As	Use this code
1234.59	1234.6	\#\#\#\#.\#
8.9	8.900	$\# .000$
.631	0.6	$0 . \#$
12	12.0	
1234.568	1234.57	\#.0\#
44.398	$\begin{array}{l}44.398 \\ 102.65 \\ 2.8\end{array}$	$\begin{array}{l}2.8 \\ \text { (with aligned decimals) }\end{array}$
5.25	$\begin{array}{l}51 / 4 \\ 5\end{array}$	3/10 ? ???/???
(with aligned fractions)		

Display a thousands separator

To display a comma as a thousands separator or to scale a number by a multiple of 1,000, include a comma in the number format.

To display	As	Use this code
12000	12,000	$\#, \# \# \#$
12000	12	$\#$,
12200000	12.2	$0.0,$,

Specify colors

To set the text color for a section of the format, use the name of one of the following eight colors in square brackets in the section. The color code shall be the first item in the section.

[Black]		[Blue]		[Cyan]

[Green]		[Magenta]		[Red]
[White]		[Yellow]		

Instead of using the name of the color, the color index can be used, like this [Color3] for Red. Numeric indexes for color are restircted to the range from 1 to 56, which reference by index to the legacy color palette.
[Note: the default legacy color palette values are listed in §18.8.27. In the format codes, [Color1] refers to the color associated with indexed="8", or black (by default), [Color2] refers to the color associated with indexed=" 9 ", or white (by default), and so on up to [Color56] referring to the color associated with indexed="63". If the color palette has been customized from default values, then the colors associated with these indexes will reflect those customizations.

Specify conditions

To set number formats that are applied only if a number meets a specified condition, enclose the condition in square brackets. The condition consists of a comparison operator and a value. Comparison operators include: = Equal to; > Greater than; < Less than; >= Greater than or equal to, <= Less than or equal to, and <> Not equal to. [Example: The following format displays numbers that are less than or equal to 100 in a red font and numbers that are greater than 100 in a blue font.
[Red][<=100]; [Blue][>100]
end example]
If the cell value does not meet any of the criteria, then pound signs ("\#") are displayed across the width of the cell.

Currency, percentages, and scientific notation

Include currency symbols
To include currency symbols, place the currency symbol in the location it should when displayed.

Display percentages

To display numbers as a percentage of 100 - [Example: To display .08 as 8% or 2.8 as 280% end example]include the percent sign (\%) in the number format.

Display scientific notations

To display numbers in scientific format, use exponent codes in a section - [Example: $\mathrm{E}-\mathrm{E}+, \mathrm{e}-$, or $\mathrm{e}+$. end example]

If a format contains a zero (0) or number sign (\#) to the right of an exponent code, the application displays the number in scientific format and inserts an "E" or "e". The number of zeros or number signs to the right of a code
determines the number of digits in the exponent. "E-" or "e-" places a minus sign by negative exponents. "E+" or "e+" places a minus sign by negative exponents and a plus sign by positive exponents.

Dates and times

Display days, months, and years

To display As	Use this code	
Months	$1-12$	m
Months	$01-12$	mm
Months	Jan-Dec	mmm
Months	January-December	mmmm
Months	J-D	mmmmm
Days	$1-31$	d
Days	01-31	dd
Days	Sun-Sat	ddd
Days	Sunday-Saturday	dddd
Years	00-99	yy
Years	date-base minimum value -9999 yyyy	

See §18.17.4.1 for details on possible date systems.
Month versus minutes
If "m" or "mm" code is used immediately after the " h " or " hh " code (for hours) or immediately before the "ss" code (for seconds), the application shall display minutes instead of the month.

Display hours, minutes, and seconds

To display	As	Use this code
Hours	$0-23$	h

Hours	$00-23$	hh
Minutes	$0-59$	m
Minutes	$00-59$	mm
Seconds	$0-59$	s
Seconds	$00-59$	ss
Time	4 AM	h AM/PM
Time	$4: 36$ PM	h:mm AM/PM
Time	$4: 36: 03 \mathrm{P}$	$\mathrm{h}: \mathrm{mm}: \mathrm{ss} \mathrm{A} / \mathrm{P}$
Time	$4: 36: 03.75$	$\mathrm{~h}: \mathrm{mm}: \mathrm{ss} .00$
Elapsed time (hours and minutes)	$1: 02$	[h]:mm
Elapsed time (minutes and seconds)	$62: 16$	[mm]:ss
Elapsed time (seconds and hundredths)	3735.80	[ss].00

Minutes versus month

The " m " or "mm" code shall appear immediately after the " h " or " hh " code or immediately before the "ss" code; otherwise, these will display as the month instead of minutes.

$A M$ and $P M$

If the format contains AM or PM, the hour is based on the 12 -hour clock, where "AM" or "A" indicates times from midnight until noon and "PM" or "P" indicates times from noon until midnight. Otherwise, the hour is based on the 24 -hour clock.

Illegal date and time values
Cells formatted with a date or time format and which contain date or time values which do not meet the requirements specified shall show the pound sign ("\#") across the width of the cell.

International Considerations

Format Code	Description
r	ja-jp/zh-tw only. When loading in ja-jp locale, code becomes "ee". When loading in zh-tw locale, code becomes "e".
rr	ja-jp/zh-tw only. When loading in ja-jp locale, code becomes "gggee". When loading in zh-tw locale, code becomes "e".
g	When loading in ja-jp locale: Single Roman character emperor reign When loading in zh-tw (Taiwan only) locale: treat same as "gg".
gg	When loading in ja-jp locale: Single Kanji character emperor reign When loading in zh-tw locale: Last era short name (since 1911)
ggg	When loading in ja-jp locale: Tow Kanji character emperor reign When loading in zh-tw locale: Last era long name (since 1911)
e	When loading in ja-jp locale: Era year When lading in zh-tw (Taiwan only) locale: Era year since 1912. If preceded by " g ", "gg", or "ggg" then year of 1912, and years before 1912 are special, otherwise years before 1912 are Gregorian. OTHER locales: becomes "yyyy"
ee	When loading in ja-jp locale: Era year w/ leading zero When loading in zh-tw (Taiwan only) locale: Era year since 1911 OTHER locales: becomes "yy"
b2	Hijri calander
b1	Gregorian calendar
[\$USD-409]	Specifies currency and locale/date system/number system information. Syntax is [$\$<$ Currency String>-<language info>]. Currency string is a string to use as a currency symbol. Language info is a 32 -bit value entered in hexidecimal format. Language info format (byte 3 is most significant byte): Bytes 0,1: 16 -bit Language ID (LID). Byte 2: Calendar type. High bit indicates that input is parsed using specified calendar. Byte 3: Number system type. High bit indicates that input is parsed using specified number system.

Format Code		Description
	Special language info values:	
	Oxf800: System long date format	
0xf400: System time format		

Attributes	Description
count (Number Format Count)	Count of number format elements. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT NumFmts) is located in §A.2. end note]

18.8.32 patternFill (Pattern)

This element is used to specify cell fill information for pattern and solid color cell fills. For solid cell fills (no pattern), fgColor is used. For cell fills with patterns specified, then the cell fill color is specified by the bgColor element.

Attributes	Description
patternType (Pattern Type)	Specifies the fill pattern type (including solid and none) Default is none, when missing. The possible values for this attribute are defined by the ST_PatternType simple type (§18.18.55).

[Note: The W3C XML Schema definition of this element's content model (CT PatternFill) is located in §A.2. end note]

18.8.33 protection (Protection Properties)

Contains protection properties associated with the cell. Each cell has protection properties that can be set. The cell protection properties do not take effect unless the sheet has been protected.

Attributes	Description
hidden (Hidden Cell)	A boolean value indicating if the cell is hidden. When the cell is hidden and the sheet on which the cell resides is protected, then the cell value is displayed in the cell grid location, but the contents of the cell will not be displayed in the formula bar. This is true for all types of cell content, including formula, text, or numbers. Therefore the cell A4 can contain a formula "=SUM(A1:A3)", but if the cell protection

Attributes	Description
	property of A4 is marked as hidden, and the sheet is protected, then the cell should display the calculated result [Example: "6" end example], but will not display the formula used to calculate the result.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT CellProtection) is located in §A.2. end note]

18.8.34 rgbColor (RGB Color)

A single ARGB entry for the corresponding color index.

Attributes	Description
rgb (Alpha Red Green Blue)	Color value expressed in Alpha Red Green Blue format (ARGB). The possible values for this attribute are defined by the ST_UnsignedIntHex simple type $(\S 18.186)$.

[Note: The W3C XML Schema definition of this element's content model (CT RgbColor) is located in §A.2. end note]

18.8.35 scheme (Scheme)

Defines the font scheme, if any, to which this font belongs. When a font definition is part of a theme definition, then the font is categorized as either a major or minor font scheme component. When a new theme is chosen, every font that is part of a theme definition is updated to use the new major or minor font definition for that theme. Usually major fonts are used for styles like headings, and minor fonts are used for body and paragraph text.

Attributes	Description
val (Font Scheme)	Sets font scheme property.
	The possible values for this attribute are defined by the ST_FontScheme simple type (§18.18.33).

[Note: The W3C XML Schema definition of this element's content model (CT FontScheme) is located in §A.2. end note]

18.8.36 shadow (Shadow)

Macintosh compatibility setting. Represents special word/character rendering on Macintosh, when this flag is set. The effect is to render a shadow behind, beneath and to the right of the text. SpreadsheetML applications are not required to render according to this flag.

Attributes	Description
val (Value)	A boolean value for the property specified by the parent XML element. If omitted, the default value is true. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT BooleanProperty) is located in §A.2. end note]

18.8.37 start (Leading Edge Border)

This element specifies the color and line style for the leading edge border of a cell (i.e., the left border for left-to-right cells and the right border for right-to-left cells).

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type (§18.18.3).

[Note: The W3C XML Schema definition of this element’s content model (CT BorderPr) is located in §A.2. end note]

18.8.38 stop (Gradient Stop)

One of a sequence of two or more gradient stops, constituting this gradient fill.

Attributes	Description
position (Gradient Stop Position)	Position information for this gradient stop. Interpreted exactly like gradientFill left, right, bottom, top. The position indicated here indicates the point where the color is pure. Before and and after this position the color can be in transition (or pure, depending on if this is the last stop or not). The possible values for this attribute are defined by the W3C XML Schema double

Attributes	
	datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT GradientStop) is located in §A.2. end note]

18.8.39 styleSheet (Style Sheet)

This is the root element of the Styles part.
[Note: The W3C XML Schema definition of this element's content model (CT Stylesheet) is located in §A.2. end note]

18.8.40 tableStyle (Table Style)

This element represents a single table style definition that indicates how a spreadsheet application should format and display a table.

Each of the tableStyle elements contains a collection of tableStyleElement elements that define formatting for a particular region of the table.

Annex G contains a listing of table styles whose tableStyleElement elements are implied rather than explicitly saved in the file. In this case, a name attribute is written on the tableStyle record, but no corresponding tableStyleElement elements are written.

All of the built-in, named table styles defined in Annex D shall be supported by applications that implement table styles.
[Note: Each of the table styles is made up of a collection of formatting definitions, each of which corresponds to a particular structured region of the table. An application can decide to support these built-in types, and can also decide to define more styles, each with their own definitions. An application can also decide whether the user is allowed to customize or further define additional table styles. end note]

Attributes	Description
count (Table Style Count)	Count of table style elements defined for this table style. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
name (Table Style Name)	Name of this table style. The possible values for this attribute are defined by the W3C XML Schema string datatype.
pivot (Pivot Style)	'True' if this table style should be shown as an available pivot table style. Not mutually exclusive with table - both can be true.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
table (Table)	True if this table style should be shown as an available table style. Not mutually exclusive with pivot - both can be true.
	The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT TableStyle) is located in §A.2. end note]

18.8.41 tableStyleElement (Table Style)

This element specifies formatting for one area of a table or PivotTable. Together the sequence of these elements makes up one entire Table style or PivotTable style definition.

The order in which table style element formatting is applied is as follows:
Table Style Element Order

- Whole Table
- First Column Stripe
- Second Column Stripe
- First Row Stripe
- Second Row Stripe
- Last Column
- First Column
- Header Row
- Total Row
- First Header Cell
- Last Header Cell
- First Total Cell
- Last Total Cell

1. For instance, row stripe formatting 'wins' over column stripe formatting, and both 'win' over whole table formatting.
2.
3. PivotTable Style Element Order

- Whole Table
- Page Field Labels
- Page Field Values
- First Column Stripe
- Second Column Stripe
- First Row Stripe
- Second Row Stripe
- First Column
- Header Row
- First Header Cell
- Subtotal Column 1
- Subtotal Column 2
- Subtotal Column 3
- Blank Row
- Subtotal Row 1
- Subtotal Row 2
- Subtotal Row 3
- Column Subheading 1
- Column Subheading 2
- Column Subheading 3
- Row Subheading 1
- Row Subheading 2
- Row Subheading 3
- Grand Total Column
- Grand Total Row

Attributes	Description
dxfId (Formatting Id)	Zero-based index to a dxf record in the dxfs collection, specifying differential formatting to use with this Table or PivotTable style element. The possible values for this attribute are defined by the ST_DxfId simple type (§18.18.25).
size (Band Size)	Number of rows or columns in a single band of striping. Applies only when type is firstRowStripe, secondRowStripe, firstColumnStripe, or secondColumnStripe. [Example: In this example, the firstRowStripe size is set to 2, and the secondRowStripe size is set to 1:

Attributes	Description
	Column1 \sim Column2 \sim Column3 \sim Column4 ${ }^{\text {a }}$
	$\begin{array}{llll}0.67 & 0.5 & 0.93 & 0.1\end{array}$
	$\begin{array}{llll}0.36 & 1 & 0.3 & 0.3\end{array}$
	$\begin{array}{llll}0.84 & 0.73 & 0.31 & 0.19\end{array}$
	$\begin{array}{llll}0.64 & 0.06 & 0.11 & 0.92\end{array}$
	$\begin{array}{llll}0.26 & 0.23 & 0.51 & 0.95\end{array}$
	0.83 0.56 0.26 0.88
	$\begin{array}{llll}0.94 & 0.11 & 0.59 & 0.18\end{array}$
	$\begin{array}{llll}0.06 & 0.74 & 0.22 & 0.13\end{array}$
	end example] The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
type (Table Style Type)	Identifies this table style element's type. The possible values for this attribute are defined by the ST_TableStyleType simple type (§18.18.77).

[Note: The W3C XML Schema definition of this element's content model (CT TableStyleElement) is located in §A.2. end note]

18.8.42 tableStyles (Table Styles)

This element represents a collection of Table style definitions for Table styles and PivotTable styles used in this workbook. It consists of a sequence of tableStyle records, each defining a single Table style.

A Table style is a collection of formatting that applies to structured regions of a Table or PivotTable [Example: make the header row \& totals bold face, and apply light gray fill to alternating rows in the data portion of the table to achieve striped or banded rows. end example]

See the enumeration values in ST_TableStyleType for a listing of structured Table regions to which formatting can be applied, and which together make up a single Table style definition.

Attributes	Description
count (Table Style Count)	Count of table styles defined in this collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
defaultPivotStyle (Default Pivot Style)	Name of the default table style to apply to new PivotTables. This can be set by the user interface.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema string datatype.
defaultTableStyle (Default Table Style)	Name of default table style to apply to new Tables. This can be set by the user interface. The possible values for this attribute are defined by the W3C XML Schema string datatype.

[Note: The W3C XML Schema definition of this element's content model (CT TableStyles) is located in §A.2. end note]

18.8.43 top (Top Border)

This element specifies the color and line style for the top border of a cell.

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type (§18.18.3).

[Note: The W3C XML Schema definition of this element's content model (CT BorderPr) is located in §A.2. end note]

18.8.44 vertical (Vertical Inner Border)

This element specifies the color and line style for the vertical inner border(s) of a range of cells. Used in the context of dxf elements only. [Example: see the borders definitions for TableStyleMedium28. end example]

Attributes	Description
style (Line Style)	The line style for this border.
	The possible values for this attribute are defined by the ST_BorderStyle simple type (§18.18.3).

[Note: The W3C XML Schema definition of this element's content model (CT BorderPr) is located in §A.2. end note]

18.8.45 $x f$ (Format)

A single xf element describes all of the formatting for a cell.

Attributes	Description
applyAlignment (Apply Alignment)	A boolean value indicating whether the alignment formatting specified for this xf should be applied. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
applyBorder (Apply Border)	A boolean value indicating whether the border formatting specified for this xf should be applied. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
applyFill (Apply Fill)	A boolean value indicating whether the fill formatting specified for this xf should be applied.
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.	
Font)	A boolean value indicating whether the font formatting specified for this xf should be applied.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
(Number Format Id)	The possible values for this attribute are defined by the ST_NumFmtId simple type (§18.18.47).
pivotButton (Pivot Button)	A boolean value indicating whether the cell rendering includes a pivot table dropdown button. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
quotePrefix (Quote Prefix)	A boolean value indicating whether the text string in a cell should be prefixed by a single quote mark (e.g., 'text). In these cases, the quote is not stored in the Shared Strings Part. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
xfId (Format Id)	For xf records contained in cellXfs this is the zero-based index of an xf record contained in cellStyleXfs corresponding to the cell style applied to the cell. Not present for xf records contained in cellStyleXfs.

18.9 Metadata

A cell in a spreadsheet application can have metadata associated with it. Metadata is just a set of additional properties about the particular cell, and this metadata is stored in the metadata xml part.

There are two types of metadata: cell metadata and value metadata. Cell metadata contains information about the cell itself, and this metadata can be carried along with the cell as it moves (insert, shift, copy/paste, merge, unmerge, etc). Value metadata is information about the value of a particular cell. Value metadata properties can be propagated along with the value as it is referenced in formulas.

The file format is architected such that it supports both value and cell metadata, as well as even allowing for future extensions. Formulas, such as CUBEMEMBER() or CUBE*, shall make use of value metadata as part of the SpreadsheetML standard. So, only value metadata shall be implemented as it is used by MDX cube functions for retrieving data from OLAP data sources. The other parts are allowed for future extensibility.

See the informative material for background information on OLAP and the various CUBE* functions.
[Example: The CUBEMEMBER() function is used to return a specific member from an OLAP cube. The metadata will express the connection name (used as a friendly identifier for the external data connection to the OLAP server and cube), the MDX statement retrieving that member, and a set of operational attributes of the
metadata that sepcify how it behaves in the spreadsheet application (i.e., whether it propagates through formula assignment, is able to be copy/pasted, etc).

```
<metadata xmlns="http://purl.oclc.org/ooxml/spreadsheetml/main">
    <metadataTypes count="1">
        <metadataType name="XLMDX" minSupportedVersion="120000" copy="1"
            pasteAll="1" pasteValues="1" merge="1" splitFirst="1" rowColShift="1"
            clearFormats="1" clearComments="1" assign="1" coerce="1"/>
    </metadataTypes>
    <metadataStrings count="2">
        <s v="My Connection"/>
        <s v="[Measures].[Internet Sales Amount]"/>
    </metadataStrings>
    <mdxMetadata count="1">
        <mdx n="0" f="m">
            <t c="1">
                    <n x="1"/>
            </t>
        </mdx>
    </mdxMetadata>
    <valueMetadata count="1">
        <bk>
            <rc t="1" v="0"/>
        </bk>
    </valueMetadata>
</metadata>
```

As seen above, the metadata string table contains two entries: the name of the connection (My Connection), and the expression that returns the Internet Sales Amount member from the cube. The metadataType specifies that the metadata persists with assignment, cell merging, copy/pasting, shifting rows/columns, when the formatting or comments are deleted from the cell, and is assigned to the upper left most cell if a merged cell is split. In the valueMetadata collection, the metadata block specifies that the first metadataType is used, and indexes the first (Oth) entry in the mdxMetadata collection. This MDX element in the mdxMetadata collection in turn specifies the cube function type ($m=$ cube member) and an index into the string table that specifies the connection name. It also contains a tuple (t) element which specifies, via index into the string table, which tuple is returned. end example]
[Note: When copying a cell with metadata, and the cell contains an array formula, each pasted cell must contain the value from the corresponding position in the array and should contain the metadata corresponding to that cell. end note]

18.9.1 bk (Metadata Block)

This element represents a block of metadata records.
[Note: The W3C XML Schema definition of this element's content model (CT MetadataBlock) is located in §A.2. end note]

18.9.2 bk (Future Metadata Block)

This element represents a block of future metadata information. This is a location for storing feature extension information.
[Note: The W3C XML Schema definition of this element's content model (CT FutureMetadataBlock) is located in §A.2. end note]

18.9.3 cellMetadata (Cell Metadata)

This element represents cell metadata information. Cell metadata is information metadata about a specific cell, and it stays tied to that cell position.
[Note: Applications should not use this for storing metadata, but instead us valueMetadata. Cell metadata is included for storing information from future application. end note]

Attributes	Description
count (Metadata Block Count)	Number of blocks of metadata records. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT MetadataBlocks) is located in §A.2. end note]

18.9.4 futureMetadata (Future Metadata)

This element represents future metadata information.
Future data storage areas are xml storage areas that a later version of the spreadsheet application can store data into. So a V2 spreadsheet application can store data for new features that don't exist in the V1 version in a future storage area when saving to a format that the V1 version can open. The V1 version might be able to open the file, but won't necessarily be able to understand data that is stored in a future storage area. So the V1 version might ignore this data, but still round trip it in the file format so that V2 and V1 users can collaborate on the same spreadsheet.

Attributes	Description
count (Future Metadata Block Count)	Number of future metadata blocks. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
name (Metadata	Metadata type name.

Attributes	Description
Type Name)	The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element’s content model (CT FutureMetadata) is located in §A.2. end note]

18.9.5 k (KPI MDX Metadata)

This element represents key performance indicator (KPI) MDX metadata. A KPI is typically an image that represents the state of some specific business measure at a given point in time. For instance, an image of a green traffic light indicating that customer satisfaction is good.

Attributes	Description
n (Member Unique Name Index)	Index of member unique name in string store. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
np (KPI Index)	Index of key performance indicator name in string store. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
p (KPI Property)	Key performance indicator property. The possible values for this attribute are defined by the ST_MdxKPIProperty simple type (§18.18.45).

[Note: The W3C XML Schema definition of this element's content model (CT MdxKPI) is located in §A.2. end note]

18.9.6 mdx (MDX Metadata Record)

This element represents a single record of MDX metadata information which can express a tuple, KPI, set, or member property.

Attributes	Description
f (Cube Function $\mathrm{Tag})$	This is an enumeration representing the function type of the calling cube function from the spreadsheet. The possible values for this attribute are defined by the ST_MdxFunctionType simple type (§18.18.44).
n (Connection	The zero based index of connection name in metadata string store, metadataStrings.

Attributes	Description
Name Index)	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Mdx) is located in §A.2. end note]

18.9.7 mdxMetadata (MDX Metadata Information)

This element represents a collection of specific MDX metadata records for the spreadsheet. This is used to build up the members, sets, tuples, KPIs, and member properties for the spreadsheet.

Attributes	Description
count (MDX Metadata Record Count)	Number of MDX metadata metadata records. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MdxMetadata) is located in §A.2. end note]

18.9.8 metadata (Metadata)

This element represents the root node for all metadata information in the spreadsheet.
[Note: The W3C XML Schema definition of this element's content model (CT Metadata) is located in §A.2. end note]

18.9.9 metadataStrings (Metadata String Store)

This element represents the metadata string store. This is a collection of strings that are used as a resource for the rest of the metadata part. It contains all the required OLAP strings used in the spreadsheet including the connection name, as well as MDX expressions identifying specific members and sets. It is indexed from individual metadata records so that the records can use these strings to build up the necessary MDX statements to retrieve the correct data from the OLAP cube.

Attributes	Description
count (MDX Metadata String Count)	Number of records in the string store. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MetadataStrings) is located in §A.2. end note]

18.9.10 metadataType (Metadata Type Information)

This element represents information about metadata on cells - it defines a specific set of behaviors that the metadata shall adhere to when subject to other spreadsheet operations.

In general, many of these attributes represent operations that can be performed on a cell that allow the metadata to remain associated with the cell. Operations that are set to 0 or false, will cause the metadata to be disassociated from the cell when that operation is performed.

Attributes	Description		
$\begin{array}{l}\text { adjust (Adjust } \\ \text { Metadata) }\end{array}$	$\begin{array}{l}\text { A Boolean flag indicating that metadata corresponding to a particular cell needs to be } \\ \text { notified when that cell's location is changed. } \\ \text { [Note: This is included in the file format for future extensibility.end note] }\end{array}$		
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		$\}$	A Boolean flag indicating whether metadata is propagated by formula assignment
:---			
operation. True when metadata should be propagated by assignment, false otherwise.			
Formula			
Assignment)		The possible values for this attribute are defined by the W3C XML Schema boolean	
:---			
datatype.			

Attributes	Description
	(Clear: Comments), only remove formats (Clear: Formats), or only remove the contents but leave the comments and formatting (Clear: Contents). Note these operations can also be performed by the user manually deleting each item.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description		
	$\begin{array}{l}\text { This attribute is equivalent to the clearContents attribute. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
edit (Metadata Edit)	$\begin{array}{l}\text { A Boolean flag indicating whether metadata survives the editing of the cell's value. True } \\ \text { if the metadata remains unchanged after the cell's value edit, false otherwise. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { ghostCol (Metadata } \\ \text { Ghost Column) }\end{array}$	$\begin{array}{l}\text { A Boolean flag indicating whether metadata is copied to/from a ghost column. True } \\ \text { when the metadata is copied to/from a ghost column, false otherwise. }\end{array}$		
A ghost column is a single column that exists for the row header. It is not displayed to			
the end user. It is used to store default formatting for an entire row (i.e. the row gets the			
formatting for the corresponding cell in the ghost column). For instance, when an entire			
row is selected and a cell color is applied, this is stored once for the cell in the ghost			
column instead of for each cell in the row.		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description
	datatype.
name (Metadata Type Name)	Represents the name of this particular metadata type. This name shall be unique amongst all other metadataTypes. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
pasteAll (Metadata Paste All)	A Boolean flag indicating whether metadata is populated to a new cell by "Paste: All". True when the metadata is populated on a Paste:All, false otherwise. Paste:All and regular paste should be implemented so that they are equivalent by the spreadsheet application. The copy flag shall be set to true for this paste behavior to be respected.
[Note: the spreadsheet application can implement special pasting behavior, such as	
pasting everything from a cell (paste all/normal paste), pasting only borders, pasting only	
comments, or pasting only any other specific cell property. end note]	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	$\begin{array}{l}\text { The copy flag shall be set to true for this paste behavior to be respected. } \\ \text { [Note: the spreadsheet application can implement special pasting behavior, such as } \\ \text { pasting everything from a cell (paste all/normal paste), pasting only borders, pasting only } \\ \text { comments, or pasting only any other specific cell property. end note] } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$
$\begin{array}{l}\text { pasteDataValidatio } \\ \text { n (Metadata Paste } \\ \text { Data Validation) }\end{array}$	$\begin{array}{l}\text { A Boolean flag indicating whether metadata is populated by Paste: Validation. True when } \\ \text { metadata is populated when only data validation is pasted, false otherwise. }\end{array}$
The copy flag shall be set to true for this paste behavior to be respected.	
[Note: the spreadsheet application can implement special pasting behavior, such as	
pasting everything from a cell (paste all/normal paste), pasting only borders, pasting only	
comments, or pasting only any other specific cell property. end note]	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

when metadata is populated when only formatting is pasted, false otherwise.

The copy flag shall be set to true for this paste behavior to be respected.\end{array}\right\}\)| [Note: the spreadsheet application can implement special pasting behavior, such as |
| :--- |
| pasting everything from a cell (paste all/normal paste), pasting only borders, pasting only |
| comments, or pasting only any other specific cell property. end note] |
| pasteFormats |
| (Metadata Paste |
| Formats) |
| The possible values for this attribute are defined by the W3C XML Schema boolean |

Attributes	Description
	The copy flag shall be set to true for this paste behavior to be respected. [Note: the spreadsheet application can implement special pasting behavior, such as pasting everything from a cell (paste all/normal paste), pasting only borders, pasting only comments, or pasting only any other specific cell property. end note] The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
pasteValues (Metadata Paste Special Values)	A Boolean flag indicating whether metadata is populated by Paste: Values. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
rowColShift (Metadata Insert Delete)	A Boolean flag indicating whether metadata survives shifting due to row/column insertion/deletion. True if the metadata persists after the cell has been shifted, false otherwise. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
splitAll (Metadata Split All)	A Boolean flag indicating whether a merged cell split action has its metadata copied to all of the resulting cells. True if the metadata is copied to all new cells resulting from a split, false otherwise. If splitFirst is also set to true, splitAll wins - that is all the cells shall have the metadata copied to them.
splitFirst (Meatadata Split First)	A Be possible values for this attribute are defined by the W3C XML Schema boolean datatype. only the first resulting cell. True when the metadata from a split cell is only copied to the first resulting cell, false otherwise.
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT MetadataType) is located in §A.2. end note]

18.9.11 metadataTypes (Metadata Types Collection)

This element is a collection of metadata types.

Attributes		Description
count (Metadata	Number of metadata types.	

Attributes	Description
Type Count)	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MetadataTypes) is located in §A.2. end note]

18.9.12 ms (Set MDX Metadata)

This element represents an MDX set.

Attributes	Description c (Sort By Member Index Count) Number of sort-by member indices. This is essentially the number of coordinates in the cube that this member is defined by. The possible values for this attribute are defined by the W3C XML Schema unsignedInt Indatatype. o (Set Sort Order) Zero based index of the set definition in the metadata string store. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype. An enumeration specifying what sort order is used to sort the set. The possible values for this attribute are defined by the ST_MdxSetOrder simple type (§18.18.46).

[Note: The W3C XML Schema definition of this element's content model (CT MdxSet) is located in §A.2. end note]

18.9.13 n (Member Unique Name Index)

This element represents an index of a member unique name in metadata string store that is used to define the sort-by set.

Attributes	Description
s (String is a Set)	A Boolean flag indicating whether this string represents a set. True if the string represents a set, false otherwise. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
x (Index Value)	Value of the zero based index.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MetadataStringIndex) is located in §A.2. end note]

18.9.14 p (Member Property MDX Metadata)

This element represents an MDX member property.

Attributes	Description
n (Member Unique Name Index)	The zero based index of member unique name in the metadata string store. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
np (Property Name Index)	The zero based index of the property name in metadata string store. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MdxMemeberProp) is located in §A.2. end note]

18.9.15 rc (Metadata Record)

This element represents a reference to a specific metadata record.

Attributes	Description
t (Metadata Record Type Index)	A 1-based index to the metadata record type in metadataTypes. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
v (Metadata Record Value Index)	A zero based index to a specific metadata record. If the corresponding metadataType has name="XLMDX", then this is an index to a record in mdxMetadata, otherwise this is an index to a record in the futureMetadata section whose name matches the name of the metadataType.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT MetadataRecord) is located in §A.2. end note]

18.9.16 t (Tuple MDX Metadata)

This element represents an MDX tuple. A tuple is the intersection of two or more members of distinct dimensions in the cube. For instance, the three members (product, City, month) that are used to show the data point for how many products were sold.

The spreadsheet application should allow the values for the attributes of this element to be specified by the OLAP server.

Attributes	Description
b (Server Formatting Bold Font)	A Boolean flag indicating whether the bold style is applied. True if bold shall be applied, false otherwise. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
bc (Server Formatting Background Color)	Specifies the background color in RGB values. It is in hex and is read in the form of Ox00RRGGBB. The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
c (Member Index Count)	The number of member expressions in the tuple.
ct (Server Formatting Culture Currency)	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).	
formatting Foreground Color)	Represents the foreground color in RGB. It is in hex and is read in the form of Ox00RRGGB.
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type	
(§18.18.86).	

Attributes	Description
Index)	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
st (Server Formatting Strikethrough Font)	A Boolean flag indicating whether the strikethrough font style is applied. True if strikethrough shall be applied, false otherwise. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
u (Server Formatting Underline Font)	A Boolean flag indicating whether the underline font style is applied. True if underline shall be applied, false otherwise. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MdxTuple) is located in §A.2. end note]

18.9.17 valueMetadata (Value Metadata)

This element represents the value metadata information for the spreadsheet. It is essentially a collection of block elements that each define the value metadata for a particular cell. Cells in the workbook index into this collection, and each block element in this collection in turn references the mdxMetadata records.

Attributes	Description
count (Metadata Block Count)	Number of blocks of metadata records. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT MetadataBlocks) is located in §A.2. end note]

18.10 Pivot Tables

PivotTables display aggregated views of data easily and in an understandable layout. Hundreds or thousands of pieces of underlying information can be aggregated on row and column axes, revealing the meanings behind the data. PivotTable reports are used to organize and summarize your data in different ways. Creating a PivotTable report is about moving pieces of information around to see how they fit together. In a few gestures the pivot rows and columns can be moved into different arrangements and layouts.

A PivotTable object has a row axis area, a column axis area, a data area, and a page/report filter area. Additionally, PivotTables have a corresponding field list pane, or similar user interface, that displays all the fields
of data that can be placed on one of the PivotTable areas. In SpreadsheetML, each PivotTable area maps to a collection of fields in the PivotTableDefinition that correspond to each area.

The following image shows the layout for the PivotTable areas.

Page/Filter Fields	
	Column Fields
0	
\sum_{2}	Data Items
$\frac{7}{\bar{D}}$	
$\frac{\omega}{\omega}$	

[Example:

The following image shows a table of data in a worksheet.

	A	C	F	H	1	0	P	Q	Z	AA	AB
1	Customer Name -	Country ${ }^{\text {r }}$	City	Product Category	Product Subcategory	Year	\checkmark Quarter *	Month V	Sales Amount	Tax Amount -	reight ${ }^{\text {- }}$
2	Michele Raman	Australia	Bendigo	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
3	Misty Raji	Australia	Bendigo	Bikes	Road Bikes	2001		3 July	3578.27	286.2616	89.4568
4	Tabitha E Arthur	Australia	Bendigo	Bikes	Road Bikes	2001		July	3578.27	286.2616	89.4568
5	Clarence D Rai	Australia	Bendigo	Bikes	Mountain Bikes	2001		3 July	3399.99	271.9992	84.9998
6	Jimmy L Moreno	Australia	Bendigo	Bikes	Mountain Bikes	2001		July	3399.99	271.9992	84.9998
7	Rob Verhoff	Australia	Bendigo	Bikes	Mountain Bikes	2001		July	3374.99	269.9992	84.3748
8	Levi Sai	Australia	Bendigo	Bikes	Road Bikes	2001		July	3578.27	286.2616	89.4568
9	Logan Gonzales	Australia	Brisbane	Bikes	Road Bikes	2001		July	3578.27	286.2616	89.4568
10	Dalton J Lee	Australia	Brisbane	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
11	Jessie J Ortega	Australia	Brisbane	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
12	Paul J. Shakespear	Australia	Caloundra	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
13	Joan R Martin	Australia	Caloundra	Bikes	Road Bikes	2001		3 September	699.0982	55.9279	17.4775
14	Casey Pal	Australia	Caloundra	Bikes	Road Bikes	2001		July	3578.27	286.2616	89.4568
15	Ethan G Coleman	Australia	Caloundra	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
16	Kendra Rubio	Australia	Caloundra	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
17	Bethany G Yuan	Australia	Cloverdal	Bikes	Mountain Bikes	2001		August	3399.99	271.9992	84.9998
18	Jasmine Wilson	Australia	Coffs Hark	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
19	Micah Wu	Australia	Coffs Hart	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
20	Warren LZhang	Australia	Coffs Hark	Bikes	Road Bikes	2001		July	699.0982	55.9279	17.4775
21	Ariana Stewart	Australia	Coffs Hart	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
22	Suzanne K Lu	Australia	Coffs Hart	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
23	Randall M Rubio	Australia	Cranbourr	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
24	Deborah K Kumar	Australia	Cranbourr	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
25	Krystal Holt	Australia	Cranbourr	Bikes	Road Bikes	2001		July	3578.27	286.2616	89.4568
26	Patricia T Raman	Australia	Cranbourr	Bikes	Road Bikes	2001		August	3578.27	286.2616	89.4568
27	Wendy Dominguez	Australia	Cranbourr	Bikes	Mountain Bikes	2001		August	3374.99	269.9992	84.3748
28	Willie She	Australia	Darlinghu	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
29	Alan Zhu	Australia	Darlinghu	Bikes	Road Bikes	2001		3 September	3578.27	286.2616	89.4568
30	Dawn R Tang	Australia	Darlinghu	Bikes	Road Bikes	2001		Julv	3578.27	286.2616	89.4568

The following image shows a PivotTable summary of the worksheet table data.

4	A	B		C	D	E	F	G
1								
2		Country	(All)	\checkmark				
3		State	(AII)	\checkmark				
4		City	(AII)	\checkmark				
5								
6		Sum of Sales Amount	t Colu	mn Labels V				
7			± 20					2001 Total
8				-3			3 Total	
9		Row Labels	\checkmark July		August	September		
10		- Bikes		209652.9046	222538.2892	173993.5128	606184.7066	606184.7066
11		Mountain Bikes	[1]	64424.81	\| 60899.82	10174.97	135499.6	135499.6
12		Road Bikes		145228.0946	161638.4692	163818.5428	470685.1066	470685.1066
13		Grand Total		209652.9046	222538.2892	173993.5128	606184.7066	606184.7066

The filter area consists of the "Country", "State", and "City" fields. The row area consists of the "Product Category" and "Product Subcategory" fields. "Bikes" belongs to the "Product Category" field and both "Mountain Bikes" and "Road Bikes" belong to the "Product Subcategory" field. The column consists of the "Year" ("2001"), "Quarter" ("3"), and "Month" ("July", "August", and "September") fields.

The following image shows the field list for the PivotTable in the previous image.

[^0]

The workbook points to (and owns the longevity of) the pivotCacheDefinition part, which in turn points to and owns the pivotCacheRecords part. The workbook also points to and owns the sheet part, which in turn points to and owns a pivotTable part definition, when a PivotTable is on the sheet. There can be multiple PivotTables on a sheet. The pivotTable part points to the appropriate pivotCacheDefinition which it is using. Since multiple PivotTables can use the same cache, the pivotTable part does not own the longevity of the pivotCacheDefinition.

The pivotTable part describes the particulars of the layout of the PivotTable on the sheet. It indicates what fields are on the row axis, the column axis, report filter, and values areas of the PivotTable. It also indicates formatting information about the PivotTable. If conditional formatting has been applied to the PivotTable, that is also expressed in the pivotTable part.

Outline of XML for pivotTableDefinition

```
<pivotTableDefinition>
    <location/>
    <pivotFields/>
    <rowFields/>
    <rowItems/>
    <colFields/>
    <colItems/>
    <pageFields/>
    <dataFields/>
    <conditionalFormats/>
    <pivotTableStyleInfo/>
</pivotTableDefinition>
```

The pivotCacheRecords part contains the underlying data to be aggregated. It is a cache of the source data.

Outline of XML for pivotCacheRecords

```
<pivotCacheRecords/>
    <r/>
</pivotCacheRecords>
```

The pivotCacheDefinition part defines each field in the pivotCacheRecords part, including field name and information about the data contained in the field. The pivotCacheDefinition part also defines pivot items that are shared among the pivotTableDefinition and pivotCacheRecords parts.

Outline of XML for pivotCacheDefinition

```
<pivotCacheDefinition>
    <cacheSource/>
    <cacheFields>
        <cacheField>
            <sharedItems>
                <d/>
            </sharedItems>
            <fieldGroup/>
        </cacheField>
    </cacheFields>
</pivotCacheDefinition>
```


18.10.1 Pivot Tables

This section describes the definition of PivotTables in SpreadsheetML.

18.10.1.1 autoSortScope (AutoSort Scope)

Represents the sorting scope for the PivotTable.
[Note: The W3C XML Schema definition of this element's content model (CT AutoSortScope) is located in §A.2. end note]

18.10.1.2 b (Boolean)

Represents a boolean value for an item in the PivotTable.

Attributes	Description
c (Caption)	Specifies the caption for the item. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
cp (Member Property Count)	Specifies the number of property values for this item. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
f (Calculated Item)	Specifies a boolean value that indicates whether this item has a calculated value.

Attributes	Description		
	A value of 1 or true indicates the item has a calculated value. A value of θ or false indicates the item does not have a calculated value. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.		
u (Unused Item)	Specifies a boolean value that indicates whether this is an unused item. The application marks an item as unused when an item is deleted from the data source. The item and associated metadata are retained in the cache until the threshold for unused items specified in missingltemsLimit is reached.		
A value of 1 or true indicates this item is unused.			
A value of θ or false indicates this item is used.			
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		\quad	Specifies the value of the item. This attribute is required.
:---			
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.			

[Note: The W3C XML Schema definition of this element's content model ($\underline{\text { CT Boolean) }) \text { is located in §A.2. end }}$ note]

18.10.1.3 cacheField (PivotCache Field)

Represent a single field in the PivotCache. This definition contains information about the field, such as its source, data type, and location within a level or hierarchy. The sharedItems element stores additional information about the data in this field. If there are no shared items, then values are stored directly in the pivotCacheRecords part.
[Example:

```
    <cacheField name="Group" numFmtId="0">
    <sharedItems count="3">
            <s v="Pacific"/>
            <s v="North America"/>
            <s v="Europe"/>
    </sharedItems>
</cacheField>
```

end example]

Attributes	Description		
$\begin{array}{l}\text { caption (PivotCache } \\ \text { Field Caption) }\end{array}$	$\begin{array}{l}\text { Specifies the caption of the cache field. } \\ \text { The possible values for this attribute are defined by the ST_Xstring simple type } \\ \text { (§22.9.2.19). }\end{array}$		
$\begin{array}{l}\text { databaseField } \\ \text { (Database Field) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether this field came from the source } \\ \text { database rather having been created by the application. } \\ \text { A value of 1 or true indicates the field is from the source database. }\end{array}$		
A value of 0 or false indicates the field was created by the application.			
[Note: This attribute could be used for a defined grouped or calculated field. In this case,			
source database fields should precede defined grouped or calculated fields. end note]		$\}$	The possible values for this attribute are defined by the W3C XML Schema boolean
:---			
datatype.			

Attributes	Description
	datatype.
mappingCount (Member Property Count)	Specifies the number of property mappings for this field. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
memberPropertyFi eld (Member Property Field)	Specifies a boolean value that indicates whether the field contains OLAP member property information. A value of 1 or true indicates this field contains OLAP member property information.
A value of θ or false indicates this field does not contain OLAP member property	
information.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	attribute only if it is provided to the application. The following are data types supported by ODBC. For a more information, see the ODBC specification. - 0 SQL_UNKNOWN_TYPE - 1 SQL_CHAR - 2 SQL_VARCHAR - -1 SQL_LONGVARCHAR - -8 SQL_WCHAR - -9 SQL_WVARCHAR - -10 SQL_WLONGVARCHAR - 3 SQL_DECIMAL - 2 SQL_NUMERIC - 5 SQL_SMALLINT - 4 SQL_INTEGER - 7 SQL_REAL - 6 SQL_FLOAT - 8 SQL_DOUBLE - -7 SQL_BIT - -6 SQL_TINYINT - -5 SQL_BIGINT - -2 SQL_BINARY - -3 SQL_VARBINARY - -4 SQL_LONGVARBINARY - 9 SQL_TYPE_DATE or SQL_DATE - 10 SQL_TYPE_TIME or SQL_TIME - 11 SQL_TYPE_TIMESTAMP or SQL_TIMESTAMP - 102 SQL_INTERVAL_MONTH - 101 SQL_INTERVAL_YEAR - 107 SQL_INTERVAL_YEAR_TO_MONTH - 103 SQL_INTERVAL_DAY - 104 SQL_INTERVAL_HOUR - 105 SQL_INTERVAL_MINUTE - 106 SQL_INTERVAL_SECOND - 108 SQL_INTERVAL_DAY_TO_HOUR - 109 SQL_INTERVAL_DAY_TO_MINUTE - 110 SQL_INTERVAL_DAY_TO_SECOND - 111 SQL_INTERVAL_HOUR_TO_MINUTE - 112 SQL_INTERVAL_HOUR_TO_SECOND - 113 SQL_INTERVAL_MINUTE_TO_SECOND - -11 SQL_GUID - - 20 SQL_SIGNED_OFFSET - - 22 SQL_UNSIGNED_OFFSET

Attributes	Description
uniqueList (Unique List Retrieved)	The possible values for this attribute are defined by the W3C XML Schema int datatype. unique items for the field. The attribute only applies to PivotTables that use ODBC and is intended to be used in conjunction with optimization features in the application. [Example: the application can optimize memory usage when populating PivotCache records if it has a list of unique items for a field before all the records are retrieved from ODBC. end example]
A value of 1 or true indicates the application was able to get a list of unique values for	
the field.	
A value of 0 or false indicates the application was unable to get a list of unique values	
for the field.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT CacheField) is located in §A.2. end note]

18.10.1.4 cacheFields (PivotCache Fields)

Represents the collection of field definitions in the source data.
[Example:

```
<cacheFields count="1">
    <cacheField name="Group" numFmtId="0">
            <sharedItems count="3">
                <s v="One"/>
                <s v="Two"/>
                <s v="Three"/>
        </sharedItems>
    </cacheField>
</cacheFields>
```

end example]

Attributes	Description
count (Field Count)	Specifies the number of fields in the cache. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT CacheFields) is located in §A.2. end note]

18.10.1.5 cacheHierarchies (PivotCache Hierarchies)

Represents the collection of OLAP hierarchies in the PivotCache.
[Example:

```
<cacheHierarchies count="2">
    <cacheHierarchy uniqueName="[Account].[Account]" caption="Account"
        attribute="1" keyAttribute="1"
        defaultMemberUniqueName="[Account].[Account].[All Accounts]"
        allUniqueName="[Account].[Account].[All Accounts]"
        dimensionUniqueName="[Account]" count="0"/>
    <cacheHierarchy uniqueName="[Account].[Account Number]" caption="Account
        Number" attribute="1" defaultMemberUniqueName="[Account].[Account
        Number].[All Accounts]" allUniqueName="[Account].[Account Number].[All
        Accounts]" dimensionUniqueName="[Account]" count="0"/>
</cacheHierarchies>
```

end example]

Attributes	Description
count (Hierarchy Count)	Specifies the number of OLAP hierarchies in the cache. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CacheHierarchies) is located in §A.2. end note]

18.10.1.6 cacheHierarchy (PivotCache Hierarchy)

Represents an OLAP hierarchy in the PivotCache.

[Example:

<cacheHierarchy uniqueName="[Account].[Account Number]" caption="Account Number" attribute="1" defaultMemberUniqueName="[Account].[Account Number].[All Accounts]" allUniqueName="[Account].[Account Number].[All Accounts]" dimensionUniqueName="[Account]" count="0"/>
end example]

Attributes	
allCaption (Display Name of 'All')	Specifies the display name of the "all" member of this hierarchy. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
allUniqueName (Unique Name of 'All')	Specifies the unique name of the "all" member of this hierarchy. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
attribute (Attribute Hierarchy)	Specifies a boolean value that indicates whether this hierarchy is an attribute hierarchy. An attribute hierarchy is an OLAP member that is exposed as a flat, single-level hierarchy on the OLAP server.
A value of 1 or true indicates this hierarchy is an attribute hierarchy.	
A value of 0 or false indicates this hierarchy is not an attribute hierarchy.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

Attributes	Description
	datatype.
iconSet (KPI Icon Set)	Specifies the icon set to use to visualize a KPI trend or status expression. PivotTables use the icon sets available for conditional formatting in SpreadsheetML. See associated simple type definition for details. The following values are used by PivotTables: - no value: default iconset. For status KPI this corresponds to 3 traffic lights. For trend KPI this corresponds to 3-arrows. - 1: Variance Arrow - 3 arrow. - 2: 3 arrows - 3: Status Arrow Ascending - 5 arrows. - 4: Status Arrow Descending - 5 arrows - 5: Standard Arrow - 5 arrows gray. - 6: Traffic Light Single - 3 traffic lights 1. - 7: Traffic Light, Traffic Light Multiple - 3 traffic lights 2. - 8: Gauge Ascending - 5 quarters. - 9: Gauge Descending - 5 quarters. - 10: Thermometer, Cylinder, Smiley Face - 3 signs. - 11: Road Signs - 3 symbols. The possible values for this attribute are defined by the W3C XML Schema int datatype.
keyAttribute (Key Attribute Hierarchy)	Specifies a boolean value that indicates whether this hierarchy is the key attribute hierarchy in an OLAP dimension. A value of 1 or true indicates this hierarchy is the key attribute hierarchy in an OLAP dimension. A value of 0 or false indicates this hierarchy is not a key attribute hierarchy. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
measure (Measure Hierarchy)	Specifies a boolean value that indicates whether this hierarchy is a measure. A value of 1 or true indicates this hierarchy is a measure. A value of 0 or false indicates this hierarchy is not a measure. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
measureGroup (Measure Group Name)	Specifies the name of the measure group to which this hierarchy belongs. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
measures (Measures)	Specifies a boolean value that indicates whether this hierarchy contains all the measures. A value of 1 or true indicates this hierarchy contains all the measures.

Attributes	Description
	A value of θ or false indicates this hierarchy does not contain all the measures. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
memberValueDatat ype (Member Value Data Type)	Specifies the data type of the member value. This attribute stores an OLEDB data type. [Note: Data connectivity can use a number of different technologies. One example of potential values stored in this attribute can be found at: http://msdn.microsoft.com/library/default.asp?url=/library/en- us/oledb/htm/oledbtype_indicators.asp end note]
memberValueDataType is stored for key attribute hierarchies in order to tell when the	
application will offer date filtering instead of label filtering in OLAP PivotTables. Date	
filtering is only offered when the data type is Date/Time. memberValueDatatype="7"	
indicates a date/time data type.	
The possible values for this attribute are defined by the W3C XML Schema	
unsignedShort datatype.	

Attributes	Description		
	$\begin{array}{l}\text { A value of } 1 \text { or true indicates this hierarchy is of type time. } \\ \text { A value of } \theta \text { or false indicates is of a different type. } \\ \text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\ \text { datatype. }\end{array}$		
$\begin{array}{l}\text { unbalanced } \\ \text { (Unbalanced) }\end{array}$	$\begin{array}{l}\text { Specifies a boolean value that indicates whether this hierarchy is an unbalanced } \\ \text { hierarchy. If value is not written, then this attribute either cannot be determined or does } \\ \text { not apply to the current hierarchy. }\end{array}$		
A value of 1 or true indicates this hierarchy is unbalanced.			
A value of θ or false indicates is balanced.		$\}$	For more information on balanced hierarchies, see the documentation provided for your
:---			
OLAP server.			
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.			

[Note: The W3C XML Schema definition of this element's content model (CT CacheHierarchy) is located in §A.2. end note]

18.10.1.7 cacheSource (PivotCache Source Description)

Represents the description of data source whose data is stored in the pivot cache. The data source refers to the underlying rows or database records that provide the data for a PivotTable. You can create a PivotTable report
from a SpreadsheetML table, an external database (including OLAP cubes), multiple SpreadsheetML worksheets, or another PivotTable.

Quarter	Region	Sport	Sales
Qtr 1	East	Golf	\$5,000
Qtr 1	East	Safari	\$9,000
Qtr 1	East	Tennis	\$1,500
Qtr2	East	Golf	\$2,000
Qtr2	East	Safari	\$6,000
Qtr2	East	Tennis	\$500
Qtr 1	West	Golf	\$3,500
Qtr 1	West	Tennis	\$6,000
Qtr2	West	Golf	\$2,500
Qtr2	West	Tennis	\$3,200

Information about the data source is stored in the connection element and is retrieved using the connectionId attribute.
[Example:

```
    <cacheSource type="external" connectionId="1"/>
end example]
```

OLAP data sources are distinguished from other data sources in SpreadsheetML. OLAP records are not stored in the pivotCacheRecords part, whereas all records for non-OLAP data sources are stored in the cache.

Attributes	Description
connectionId (Connection Index)	Specifies the index to the workbook connection. This attribute is used when the cache type is 'External.' See §18.13.1 for more information about the connection element. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
type (Cache Type)	Specifies the cache type. The possible values for this attribute are defined by the ST_SourceType simple type (§18.18.75).

[Note: The W3C XML Schema definition of this element's content model (CT CacheSource) is located in §A.2. end note]

18.10.1.8 calculatedItem (Calculated Item)

Represents an item within a PivotTable field that uses a formula. The formula is specified in the formula attribute.

Calculations and options available for a PivotTable depend on whether the source data came from an OLAP database or another type of database. This complex type applies to non-OLAP external data or on worksheet data. See calculatedMember for information on calculations on OLAP data sources.

Attributes	Description
field (Field Index)	Specifies the index of the pivotField with which this calculated item is associated. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
formula (Calculated Item Formula)	Specifies the formula of the calculated item. In formulas you create for calculated items, you can use operators and expressions as you do in other worksheet formulas. You can use constants and refer to data from the PivotTable, but you cannot use cell references or defined names. You cannot use worksheet functions that require cell references or defined names as arguments, and you cannot use array functions.
Further behaviors and restrictions apply to formulas for calculatedItems: - Formulas for calculated items operate on the individual records; the calculated item formula =Dairy *115\% multiplies each individual sale of Dairy times 115\%, after which the multiplied amounts are summarized together in the data area. - Formulas cannot refer to totals. You can include the field name in a reference to an item. The item name shall be in square brackets. Use this format to avoid \#NAME? errors when two items in two different fields in a report have the same name. - You can refer to an item by its position in the PivotTable as currently sorted and displayed. The item referred to in this way can change whenever the positions of items change or different items are displayed or hidden. Hidden items are not counted in this index. - You can use relative positions to refer to items. The positions are determined relative to the calculated item that contains the formula. If the position you give is before the first item or after the last item in the field, the formula results in a \#REF! error.	
For more information about formulas see §18.17 in Formulas. For more information about defined names see §18.2.6 in Workbook.	
The possible values for this attribute are defined by the ST_Xstring simple type	
(\$22.9.2.19).	

[Note: The W3C XML Schema definition of this element's content model (CT Calculatedltem) is located in §A.2. end note]

18.10.1.9 calculatedItems (Calculated Items)

Represents the collection of calculated items.

Attributes	Description
count (Calculated Item Formula Count)	Specifies the number of calculated item formulas in the cache.

Attributes	
	datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT CalculatedItems) is located in §A.2. end note]

18.10.1.10 calculatedMember (Calculated Member)

A calculated member is a member in an OLAP hierarchy for which the value is calculated by an OLAP server using a Multidimensional Expressions (MDX) expression. For PivotTables that are created from OLAP cubes the summarized values are calculated by an OLAP server before the SpreadsheetML application displays the results. In OLAP PivotTables, the consuming application cannot change the summary function used to calculate totals and subtotals.
Calculated members are defined by the Multidimensional Expressions (MDX) expression in the mdx attribute.

[Example:

```
<calculatedMembers count="1">
    <calculatedMember name="[Product].[Product Categories].[All
        Products].[Calculated Member]" mdx="'[Product].[Product Categories].[All
        Products].[Accessories]'" memberName="Calculated Member"
        hierarchy="[Product].[Product Categories]" parent="[Product].[Product
        Categories].[All Products]"/>
</calculatedMembers>
```

end example]

Attributes	Description
hierarchy (Hierarchy Name)	Specifies the name of the hierarchy to which the calculated member belongs. The possible values for this attribute are defined by the ST_Xstring simple type (\$22.9.2.19).
mdx (Calculated Member MDX Formula)	Specifies the MDX formula for the calculated member. [Note: Data connectivity can use a number of different technologies. One example of potential values stored in this attribute can be found at: http://msdn2.microsoft.com/en- us/library/ms145595.aspx end note]
memberName (OLAP Calculated (§22.9.2.19).	Specifies the OLAP member name for the calculated member.
The possible values for this attribute are defined by the ST_Xstring simple type	

Attributes	Description
name (Calculated Member Name)	Specifies the name of the calculated member. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
parent (Parent Name)	Specifies the name of the parent of the calculated member. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
set (Set)	Specifies a boolean value that indicates whether this calculated member describes a calculated set rather than a calculated member.
A value of 1 or true indicates this is a calculated set.	
A value of θ or false indicates this is a calculated member.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT CalculatedMember) is located in §A.2. end note]

18.10.1.11 calculatedMembers (Calculated Members)

Represents the collection of calculated members in an OLAP PivotTable.

[Example:

```
    <calculatedMembers count="1">
    <calculatedMember name="[Product].[Product Categories].[All
            Products].[Calculated Member]" mdx="'[Product].[Product Categories].[All
        Products].[Accessories]'" memberName="Calculated Member"
        hierarchy="[Product].[Product Categories]" parent="[Product].[Product
        Categories].[All Products]"/>
    </calculatedMembers>
end example]
```

Attributes	Description
count (Calculated Members Count)	Specifies the number of calculated members.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT CalculatedMembers) is located in §A.2. end note]

18.10.1.12 chartFormat (PivotChart Format)

Represents the format defined in the PivotChart that is associated with this PivotTable.

[Example:

<sh:pivotTableDefinition xmlns:sh="..." name="PivotTable1" cacheId="0"
applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="0"
applyPatternFormats="0" applyAlignmentFormats="0" applyWidthHeightFormats="1"
dataCaption="Values" updatedVersion="3" minRefreshableVersion="3"
showCalcMbrs="0" useAutoFormatting="1" colGrandTotals="0" itemPrintTitles="1"
createdVersion="3" indent="0" outline="1" outlineData="1"
multipleFieldFilters="0" chartFormat="1" fieldListSortAscending="1">
end example]

Attributes	Description
chart (Chart Index)	Specifies the index of the chart part to which the formatting applies. For more information see the DrawingML specification for more information on the chart part. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
format (Pivot Format Id)	Specifies the index of the pivot format that is currently in use. This index corresponds to a dxf element in the Styles part. For more information see the Styles section (§18.8). The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
series (Series Format)	Specifies a boolean value that indicates whether format applies to a series.
A value of 1 or true indicates this format applies to a series.	
A value of θ or false indicates this format applies to a data point.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT ChartFormat) is located in §A.2. end note]

18.10.1.13 chartFormats (PivotChart Formats)

Represents the collection of formats applied to PivotChart.
[Example:

```
<sh:chartFormats count="4">
    <sh:chartFormat chart="0" format="0" series="1">
        <sh:pivotArea type="data" outline="0">
            <sh:references count="3">
            <sh:reference field="4294967294" count="1" selected="0">
                    <sh:x v="0"/>
            </sh:reference>
            <sh:reference field="14" count="1" selected="0">
                    <sh:x v="0"/>
                </sh:reference>
                <sh:reference field="15" count="1" selected="0">
                    <sh:x v="2"/>
                </sh:reference>
            </sh:references>
        </sh:pivotArea>
    </sh:chartFormat>
    <sh:chartFormat chart="0" format="1" series="1">
        <sh:pivotArea type="data" outline="0">
            <sh:references count="3">
                <sh:reference field="4294967294" count="1" selected="0">
                    <sh:x v="0"/>
            </sh:reference>
            <sh:reference field="14" count="1" selected="0">
                <sh:x v="0"/>
            </sh:reference>
            <sh:reference field="15" count="1" selected="0">
                <sh:x v="3"/>
            </sh:reference>
            </sh:references>
        </sh:pivotArea>
    </sh:chartFormat>
```

```
    <sh:chartFormat chart="0" format="2" series="1">
        <sh:pivotArea type="data" outline="0">
            <sh:references count="3">
                <sh:reference field="4294967294" count="1" selected="0">
                    <sh:x v="1"/>
                </sh:reference>
                <sh:reference field="14" count="1" selected="0">
                    <sh:x v="0"/>
                </sh:reference>
                <sh:reference field="15" count="1" selected="0">
                <sh:x v="2"/>
            </sh:reference>
            </sh:references>
        </sh:pivotArea>
        </sh:chartFormat>
        <sh:chartFormat chart="0" format="3" series="1">
        <sh:pivotArea type="data" outline="0">
            <sh:references count="3">
                    <sh:reference field="4294967294" count="1" selected="0">
                    <sh:x v="1"/>
                </sh:reference>
                <sh:reference field="14" count="1" selected="0">
                    <sh:x v="0"/>
                </sh:reference>
                <sh:reference field="15" count="1" selected="0">
                    <sh:x v="3"/>
                </sh:reference>
            </sh:references>
        </sh:pivotArea>
    </sh:chartFormat>
</sh:chartFormats>
```

end example]

Attributes	Description
count (Format Count)	Specifies the number of formats in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ChartFormats) is located in §A.2. end note]

18.10.1.14 colFields (Column Fields)

Represents the collection of fields that are on the column axis of the PivotTable.

	A	B	C	
1	Region	(All)	-	
2				
3	Sum of Sales	Quarter		
4	Sport	Qtr1		
5	Golf	Qtr2		

In the image above, the blue field is a column field.
[Example: In the following SpreadsheetML example, "Year", "Quarter" and "Month" are on the column axis of the PivotTable, in that order.

```
<colFields count="3">
    <field x="14"/>
    <field x="15"/>
    <field x="16"/>
</colFields>
end example]
```

Attributes	Description
count (Repeated Items Count)	Specifies the number of items in this collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT ColFields) is located in §A.2. end note]

18.10.1.15 colHierarchiesUsage (Column OLAP Hierarchy References)

Represents the collection of references to OLAP hierarchies on the column axis of a PivotTable.
[Example:

```
<sh:colHierarchiesUsage count="2">
    <sh:colHierarchyUsage hierarchyUsage="33"/>
    <sh:colHierarchyUsage hierarchyUsage="-2"/>
</sh:colHierarchiesUsage>
```

end example]

Attributes	Description
count (Items Count)	Specifies the number of items in the collection.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ColHierarchiesUsage) is located in §A.2. end note]

18.10.1.16 colHierarchyUsage (Column OLAP Hierarchies)

Represents the collection of references to OLAP Hierarchies on the column axis of a PivotTable.

[Example:

<sh:colHierarchyUsage hierarchyUsage="33"/>
end example]

Attributes	Description
hierarchyUsage (Hierarchy Usage)	Specifies the reference to an OLAP hierarchy in a PivotTable. The possible values for this attribute are defined by the W3C XML Schema int datatype.

[Note: The W3C XML Schema definition of this element's content model (CT HierarchyUsage) is located in §A.2. end note]

18.10.1.17 colItems (Column Items)

Represents the collection of column items of the PivotTable.
[Example: In the following SpreadsheetML example the item values are found in cells $\mathrm{C} 6: \mathrm{H} 8$. For example "2001" / "3" / "July" values are in C7:C9. Those are the first column item values and are referenced by the first <i> element below.

```
<colItems count="5">
    <i>
        <x/>
        <x/>
        <x/>
    </i>
    <i r="2">
        <x v="1"/>
    </i>
```

```
    <i r="2">
        <x v="2"/>
        </i>
        <i t="default" r="1">
            <x/>
        </i>
        <i t="default">
            <x/>
        </i>
</colItems>
end example]
```

The first <i>collection represents all item values for the first column in the column axis area of the PivotTable. The first $\langle\mathrm{x}\rangle$ in the first <i> corresponds to the first field in the columns area of the PivotTable, namely "Year". The implied index value of ' 0 ' on this $\langle x\rangle$ indicates that the item value for this first item in the column is the 0th item for this pivotField. The 0th item for this pivotField is itself an index to an item value into this field's shared items collection in the pivotCacheDefinition part, namely "2001".

The item values corresponding to the second and third $\langle x\rangle$ elements can be found in the same way, arriving at " 3 " for the second item value, and arriving at "July" for the third item value for this first column.

The second <i> collection expresses all 3 item values for the second column in the column axis area. The @r value of ' 2 ' indicates that the first two item values from the previous column is repeated here, which means that the first item value for this second column is "2001" again and the second item value for this second column is " 3 ". The third item value is expressed by the only < x > element under this second <i> element, and without further explanation is understood to reference the item value "August".

Attributes	Description
count (Column Item Count)	Specifies the number of items on the column axis of the PivotTable. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT colltems) is located in §A.2. end note]

18.10.1.18 conditionalFormat (Conditional Formatting)

Represents the conditional formatting defined in the PivotTable.

Attributes	Description
priority (Priority)	Specifies the priority of PivotTable conditional formatting rule. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
scope (Conditional Formatting Scope)	Specifies the scope of PivotTable conditional formatting rule. The possible values for this attribute are defined by the ST_Scope simple type (§18.18.67).
type (Conditional Formatting Rule Type)	Specifies the type of PivotTable conditional formatting rule. See associated simple type definition for details.
The possible values for this attribute are defined by the ST_Type simple type (§18.18.84).	

[Note: The W3C XML Schema definition of this element's content model (CT ConditionalFormat) is located in §A.2. end note]

18.10.1.19 conditionalFormats (Conditional Formats)

Represents the collection of conditional formats applied to a PivotTable.

[Example:

```
<sh:conditionalFormats count="1">
    <sh:conditionalFormat priority="1">
        <sh:pivotAreas count="1">
            <sh:pivotArea type="data" collapsedLevelsAreSubtotals="1">
                <sh:references count="5">
                    <sh:reference field="4294967294" count="1" selected="0">
                    <sh:x v="0"/>
                    </sh:reference>
                    <sh:reference field="2" count="1" selected="0">
                    <sh:x v="0"/>
                    </sh:reference>
                    <sh:reference field="14" count="1" selected="0">
                    <sh:x v="0"/>
                    </sh:reference>
```

```
                <sh:reference field="15" count="2" selected="0">
                    <sh:x v="2"/>
                        <sh:x v="3"/>
                </sh:reference>
                </sh:references>
                </sh:pivotArea>
        </sh:pivotAreas>
        </sh:conditionalFormat>
    </sh:conditionalFormats>
```

end example]

Attributes	Description
count (Conditional Format Count)	Specifies the number of conditional formats defined for the PivotTable. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT ConditionalFormats) is located in §A.2. end note]

18.10.1.20 consolidation (Consolidation Source)

Represents the description of the PivotCache source using multiple consolidation ranges. This element is used when the source of the PivotTable is a collection of ranges in the workbook. The ranges are specified in the rangeSets collection. The logic for how the application consolidates the data in the ranges is applicationdefined. [Example: the application might consolidate data based on its position in the worksheet that the enduser specifies. end example]

Attributes	Description
autoPage (Auto Page)	Specifies a boolean value that indicates whether the application will automatically create one additional page field to describe/qualify the source ranges. A value of 1 or true indicates the application will create an additional page field. A value of θ or false indicates will not create an additional page field. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Consolidation) is located in §A.2. end note]

18.10.1.21 d (Date Time)

Represents a date-time value in the PivotTable.

Attributes	Description		
c (Caption)	Specifies the caption for the item. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).		
cp (Member Property Count)	Specifies the number of member property values. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.		
f (Calculated Item Value)	Specifies a boolean value that indicates whether this is a calculated item value. A value of 1 or true indicates this is a calculated item value.		
A value of θ or false indicates this is not a calculated item value.			
The possible values for this attribute are defined by the W3C XML Schema boolean			
datatype.		\quad	Specifies a boolean value that indicates whether this is an unused item. The application
:---			
marks an item as unused when an item is deleted from the data source. The item and			
associated metadata are retained in the cache until the threshold for unused items			
specified in missingltemsLimit is reached.			
A value of 1 or true indicates this is an unused item.	.		

[Note: The W3C XML Schema definition of this element's content model (CT DateTime) is located in §A.2. end note]

18.10.1.22 dataField (Data Field Item)

Represents a field from a source list, table, or database that contains data that is summarized in a PivotTable.

A data field represents data that is derived from a field in the source list or database. [Example: The Sport field, for example, might come from a column in the source list that is labeled Sport and contains the names of various sports (Golf, Tennis) for which the source list has sales figures. end example]

Source data can be taken from an SpreadsheetML list or range, an external database or cube, or another PivotTable. Data fields use summary functions to combine values from the underlying source data. You can also use custom calculations to compare data values, or add your own formulas that use elements of the report or other worksheet data.
[Example:
<dataFields count="1">
<dataField name="Sum of Sales Amount" fld="25" baseField="0" baseItem="0"/> </dataFields>
end example]

Attributes	Description
baseField ('Show Data As' Base Field)	Specifies the index to the base field when the ShowDataAs calculation is in use. The possible values for this attribute are defined by the W3C XML Schema int datatype.
baseItem ('Show Data As' Base Setting)	Specifies the index to the base item when the ShowDataAs calculation is in use. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
fld (Field)	Specifies the index to the field (<r>) in the pivotCacheRecords part that this data item summarizes. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
name (Data Field Name)	Specifies the name of the data field. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
numFmtId (Number Format Id)	Specifies the index to the number format applied to this data field. Number formats are written to the styles part. See the Styles section(§18.8) for more information on number formats.
Formatting information provided by cell table and by PivotTable need not agree. If the	
two formats differ, the cell-level formatting takes precedence. If you change the layout	

Attributes	Description
	the PivotTable, the PivotTable formatting will then take precedence. The possible values for this attribute are defined by the ST_NumFmtId simple type (§18.18.47).
showDataAs (Show Data As Display Format)	Specifies the display format for this data field. Formatting information provided by cell table and by PivotTable need not agree. If the two formats differ, the cell-level formatting takes precedence. If you change the layout the PivotTable, the PivotTable formatting will then take precedence.
The possible values for this attribute are defined by the ST_ShowDataAs simple type	
(§18.18.70).	

[Note: The W3C XML Schema definition of this element's content model (CT DataField) is located in §A.2. end note]

18.10.1.23 dataFields (Data Fields)

Represents the collection of items in the data region of the PivotTable.
[Example:
<dataFields count="1">
<dataField name="Sum of Sales Amount" fld="25" baseField="0" baseItem="0"/> </dataFields>
end example]

Attributes	Description
count (Data Items Count)	Specifies the number of items in the data region of the PivotTable. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT DataFields) is located in §A.2. end note]

18.10.1.24 dimension (OLAP Dimension)

Represents a PivotTable OLAP Dimension. A dimension is a field that organizes a single type of data into a hierarchy with levels of detail. [Example: An OLAP database could contain a Time dimension providing data for levels Year, Month, Week, and Day, allowing you to create reports that let you compare day-to-day sales results or view a summary of your sales for an entire year. end example]

Attributes	Description caption (Dimension Display Name) measure (Measure) Specifies the display name of the dimension. The possible values for this attribute are defined by the ST_Xstring simple type (\$22.9.2.19).
Specifies a boolean value that indicates whether this is a measure dimension. A value of 1 or true indicates this dimension is a measure dimension. A value of 0 or false indicates this dimension is not a measure dimension. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.	
name (Dimension Name)	Specifies the name of the dimension. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
uniqueName (Dimension Unique Name)	Specifies the unique name of the dimension. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT PivotDimension) is located in §A.2. end note]

18.10.1.25 dimensions (OLAP Dimensions)

Represents the collection of PivotTable OLAP dimensions.
[Example:

```
<dimensions count="22">
    <dimension name="Account" uniqueName="[Account]" caption="Account"/>
    <dimension name="Customer" uniqueName="[Customer]" caption="Customer"/>
    <dimension name="Date" uniqueName="[Date]" caption="Date"/>
    <dimension name="Delivery Date" uniqueName="[Delivery Date]"
        caption="Delivery Date"/>
```

```
    <dimension name="Department" uniqueName="[Department]" caption="Department"/>
<dimension name="Destination Currency" uniqueName="[Destination Currency]"
    caption="Destination Currency"/>
    <dimension name="Employee" uniqueName="[Employee]" caption="Employee"/>
    <dimension name="Geography" uniqueName="[Geography]" caption="Geography"/>
    <dimension name="Internet Sales Order Details" uniqueName="[Internet Sales
    Order Details]" caption="Internet Sales Order Details"/>
    <dimension measure="1" name="Measures" uniqueName="[Measures]"
    caption="Measures"/>
    <dimension name="Organization" uniqueName="[Organization]"
    caption="Organization"/>
    <dimension name="Product" uniqueName="[Product]" caption="Product"/>
    <dimension name="Promotion" uniqueName="[Promotion]" caption="Promotion"/>
    <dimension name="Reseller" uniqueName="[Reseller]" caption="Reseller"/>
    <dimension name="Reseller Sales Order Details" uniqueName="[Reseller Sales
        Order Details]" caption="Reseller Sales Order Details"/>
        <dimension name="Sales Channel" uniqueName="[Sales Channel]" caption="Sales
        Channel"/>
        <dimension name="Sales Reason" uniqueName="[Sales Reason]" caption="Sales
        Reason"/>
        <dimension name="Sales Summary Order Details" uniqueName="[Sales Summary Order
        Details]" caption="Sales Summary Order Details"/>
        <dimension name="Sales Territory" uniqueName="[Sales Territory]"
        caption="Sales Territory"/>
        <dimension name="Scenario" uniqueName="[Scenario]" caption="Scenario"/>
        <dimension name="Ship Date" uniqueName="[Ship Date]" caption="Ship Date"/>
        <dimension name="Source Currency" uniqueName="[Source Currency]"
        caption="Source Currency"/>
</dimensions>
```

end example]

Attributes	Description
count (OLAP Dimensions Count)	Specifies the number of OLAP dimensions in the PivotTable. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT Dimensions) is located in §A.2. end note]

18.10.1.26
 discretePr (Discrete Grouping Properties)

Represents the collection of discrete grouping properties for a field group.

[Example:

```
    <fieldGroup par="6" base="0">
            <rangePr groupBy="months" startDate="2002-01-01T00:00:00"
            endDate="2006-05-06T00:00:00"/>
            <groupItems count="14">
            <s v="&lt;1/1/2002"/>
            <s v="Jan"/>
            <s v="Feb"/>
            <s v="Mar"/>
            <s v="Apr"/>
            <s v="May"/>
            <s v="Jun"/>
            <s v="Jul"/>
            <s v="Aug"/>
            <s v="Sep"/>
            <s v="Oct"/>
            <s v="Nov"/>
            <s v="Dec"/>
            <s v="&gt;5/6/2006"/>
        </groupItems>
    </fieldGroup>
</cacheField>
<cacheField name="Name" numFmtId="0">
    <sharedItems count="4">
        <s v="Joe"/>
        <s v="John"/>
        <s v="Bob"/>
        <s v="Robert"/>
    </sharedItems>
    <fieldGroup par="4"/>
</cacheField>
<cacheField name="ProductID" numFmtId="0">
    <sharedItems containsSemiMixedTypes="0" containsString="0" containsNumber="1"
        containsInteger="1" minValue="1" maxValue="4" count="4">
        <n v="1"/>
        <n v="2"/>
        <n v="3"/>
        <n v="4"/>
    </sharedItems>
```

```
    <fieldGroup base="2">
    <rangePr startNum="1" endNum="4" groupInterval="2"/>
    <groupItems count="4">
                <s v="&lt;1"/>
        <s v="1-2"/>
        <s v="3-4"/>
        <s v="&gt;5"/>
        </groupItems>
        </fieldGroup>
</cacheField>
end example]
```

Attributes	Description
count (Mapping Index Count)	Specifies the number of mapping indexes for this grouped field. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT DiscretePr) is located in §A.2. end note]

18.10.1.27 e (Error Value)

Represents an error value. The use of this item indicates that an error value is present in the PivotTable source. The error is recorded in the value attribute.

Attributes	Description
b (Bold)	Specifies a boolean value that indicates whether the value contains bold formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. A value of 1 or true indicates this value contains bold formatting on the server. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
bc (background Color)	Specifies the background color for this value that was provided by the OLAP server. This attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in RGB space.
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type	
(§18.18.86).	

Attributes	Description
	(§22.9.2.19).
cp (Member Property Count)	Specifies the number of member property values. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
f (Calculated Item)	Specifies a boolean value that indicates whether this is a calculated item value. A value of 1 or true indicates value is a calculated item value. A value of θ or false indicates this value is not a calculated item value. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
fc (Foreground Color)	Specifies the foreground color for this value that was provided by the OLAP server. This attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in RGB space. The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
i (Italic)	Specifies a boolean value that indicates whether the value contains italic formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. A value of 1 or true indicates this value contains italic formatting on the server. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
in (Format Index)	Specifies the index to the OLAP serverformat element where the format string for this entry is stored. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
st (Strikethrough)	Specifies a boolean value that indicates whether the value contains strikethrough formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. A value of 1 or true indicates this value contains strikethrough formatting on the server. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
u (Unused Item)	Specifies a boolean value that indicates whether this is an unused item. The application marks an item as unused when an item is deleted from the data source. The item and associated metadata are retained in the cache until the threshold for unused items specified in missingItemsLimit is reached. A value of 1 or true indicates this item is not used.

Attributes	Description
	A value of θ or false indicates this item is used. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
un (Underline)	Specifies a boolean value that indicates whether the value contains underline formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. A value of 1 or true indicates this value contains underline formatting on the server. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
v (Value)	Specifies the value of the item. This attribute depends on how the application records errors. [Note: While the error values are determined by the application, the following are some example error values that could be used: - \#DIV/O! - \#NAME? - \#VALUE! - \#NULL! - \#NUM! - \#REF! - \#N/A - \#GETTING_DATA end note] The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element's content model (CT Error) is located in §A.2. end note]

18.10.1.28 entries (Entries)

Represents the collection of OLAP sheet data entries.

Attributes	Description
count (Tuple Count)	Specifies the number of tuple entries. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT PCDSDTCEntries) is located in §A.2. end note]

18.10.1.29 field (Field)

Represents a generic field that can appear either on the column or the row region of the PivotTable. There areas many <x> elements as there are item values in any particular column or row.
[Example:
<sh:field x="2"/>
end example]

Attributes	Description
x (Field Index)	Specifies the index to a pivotField item value. There are as many x elements as there are item values in any particular column. Note that these x elements sometimes are not explicitly written, but instead "inherited" from the previous column or i element, via the value of @r. The pivotField items don't list values explicitly, but instead reference a shared item value in the pivotCacheDefinition part. The first instance of x has no attribute value @v associated with it, so the default value for @v is assumed to be "0". The possible values for this attribute are defined by the W3C XML Schema int datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Field) is located in §A.2. end note]

18.10.1.30 fieldGroup (Field Group Properties)

Represents the collection of properties for a field group.

[Example:

```
<fieldGroup par="6" base="0">
    <rangePr groupBy="months" startDate="2002-01-01T00:00:00"
        endDate="2006-05-06T00:00:00"/>
        <groupItems count="14">
            <s v="&lt;1/1/2002"/>
            <s v="Jan"/>
            <s v="Feb"/>
            <s v="Mar"/>
            <s v="Apr"/>
            <s v="May"/>
            <s v="Jun"/>
            <s v="Jul"/>
            <s v="Aug"/>
            <s v="Sep"/>
```

```
            <s v="Oct"/>
            <s v="Nov"/>
            <s v="Dec"/>
            <s v="&gt;5/6/2006"/>
        </groupItems>
    </fieldGroup>
</cacheField>
<cacheField name="Name" numFmtId="0">
    <sharedItems count="4">
            <s v="Joe"/>
            <s v="John"/>
            <s v="Bob"/>
            <s v="Robert"/>
    </sharedItems>
    <fieldGroup par="4"/>
</cacheField>
<cacheField name="ProductID" numFmtId="0">
    <sharedItems containsSemiMixedTypes="0" containsString="0" containsNumber="1"
            containsInteger="1" minValue="1" maxValue="4" count="4">
            <n v="1"/>
            <n v="2"/>
            <n v="3"/>
            <n v="4"/>
    </sharedItems>
    <fieldGroup base="2">
        <rangePr startNum="1" endNum="4" groupInterval="2"/>
        <groupItems count="4">
            <s v="&lt;1"/>
            <s v="1-2"/>
            <s v="3-4"/>
            <s v="&gt;5"/>
        </groupItems>
    </fieldGroup>
```

end example]

Attributes	Description
base (Field Base)	Specifies the base of this field, if any. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
par (Parent)	Specifies the parent of this field, if any.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT FieldGroup) is located in §A.2. end note]

18.10.1.31 fieldsUsage (Fields Usage)

Represents the fields in the cache that are being used by this hierarchy.
[Example:
<fieldsUsage count="6">
<fieldUsage x="-1"/>
<fieldUsage x="2"/>
<fieldUsage x="3"/>
<fieldUsage x="4"/>
<fieldUsage x="5"/>
<fieldUsage x="6"/>
</fieldsUsage>
end example]

Attributes	Description
count (Field Count)	Specifies the number of fields that are being used by this hierarchy. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT FieldsUsage) is located in §A.2. end note]

18.10.1.32 fieldUsage (PivotCache Field Id)

Represents a cache field used in this hierarchy.
[Example:
<fieldUsage x="-1"/>
end example]

Attributes	
x (Field Index)	Specifies the index of a field.

Attributes	Description
	The possible values for this attribute are defined by the W3C XML Schema int datatype.

[Note: The W3C XML Schema definition of this element's content model (CT FieldUsage) is located in §A.2. end note]

18.10.1.33 filter (PivotTable Advanced Filter)

Represents a PivotTable advanced filter.

[Example:

```
<sh:filter fld="3" type="count" id="1" iMeasureHier="187">
    <sh:autoFilter ref="A1">
        <sh:filterColumn colId="0">
            <sh:top10 val="5"/>
        </sh:filterColumn>
    </sh:autoFilter>
</sh:filter>
end example]
```

Attributes	Description
description (Pivot Filter Description)	Specifies the description of the pivot filter. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
evalOrder (Evaluation Order)	Specifies the evaluation order of the pivot filter. This attribute is zero-based. The possible values for this attribute are defined by the W3C XML Schema int datatype.
fld (Field Index)	Specifies the index of the field to which this pivot filter belongs. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
id (Pivot Filter Id)	Specifies the unique identifier of the pivot filter as assigned by the PivotTable. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
iMeasureFld (Measure Field Index)	Specifies the index of the measure field. This attribute is used only by filters in Relational pivots and specifies on which measure a value filter should apply.
The possible values for this attribute are defined by the W3C XML Schema unsignedInt	
datatype.	

Attributes	Description
iMMeasureHier (Measure Index)	Specifies the index of the measure cube field. This attribute is used only by filters in OLAP pivots and specifies on which measure a value filter should apply. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
mpFld (Member Property Field Id)	Specifies the index of the field representing the member property field on which this pivot filter is defined. This attribute is used only by label pivot filters. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
name (Pivot Filter Name)	Specifies the name of the pivot filter. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
stringValue1 (Label Pivot)	Specifies the string value "1" used by label pivot filters. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
stringValue2 (Label Pivot Filter String Value 2)	Specifies the string value "2" used by label pivot filters. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
type (Pivot Filter Type)	Specifies the type of the pivot filter. The possible values for this attribute are defined by the ST_PivotFilterType simple type ($\$ 18.18 .59) . ~$

[Note: The W3C XML Schema definition of this element's content model (CT PivotFilter) is located in §A.2. end note]

18.10.1.34 filters (Filters)

Represents the collection of filters that apply to this PivotTable.

[Example:

```
<sh:filters count="1">
    <sh:filter fld="3" type="count" id="1" iMeasureHier="187">
        <sh:autoFilter ref="A1">
            <sh:filterColumn colId="0">
            <sh:top10 val="5"/>
                </sh:filterColumn>
        </sh:autoFilter>
    </sh:filter>
</sh:filters>
```

end example]

Attributes	Description
count (Pivot Filter Count)	Specifies the number of pivot filters in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT PivotFilters) is located in §A.2. end note]

18.10.1.35 format (PivotTable Format)

Represents the format defined in the PivotTable.

Attributes	Description
action (Format Action)	Specifies the formatting behavior for the area indicated in the pivotArea element. The default value for this attribute is "formatting," which indicates that the specified cells have some formatting applied. The format is specified in the dxfId attribute. If the formatting is cleared from the cells, then the value of this attribute becomes "blank." The possible values for this attribute are defined by the ST_FormatAction simple type (§18.18.34).
dxfld (Format Id)	Specifies the identifier of the format the application is currently using for the PivotTable. Formatting information is written to the styles part. See the Styles section (§18.8) for more information on formats.
Formatting information provided by cell table and by PivotTable need not agree. If the two formats differ, the cell-level formatting takes precedence. If you change the layout the PivotTable, the PivotTable formatting will then take precedence.	
The possible values for this attribute are defined by the ST_Dxfld simple type (§18.18.25).	

[Note: The W3C XML Schema definition of this element’s content model (CT Format) is located in §A.2. end note]

18.10.1.36 formats (PivotTable Formats)

Represents the collection of formats applied to PivotTable.

Attributes	Description
count (Formats Count)	Specifies the number of formats in the collection. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT Formats) is located in §A.2. end note]

18.10.1.37 group (OLAP Group)

Represents an OLAP level group.
[Example:

```
<group name="CategoryXl_Grp_1" uniqueName="[Product].[Product Categories].
    [Product Categories1].[GROUPMEMBER.[CategoryXl_Grp_1]].[Product]].
    [Product Categories]].[All Products]]]" caption="Group1"
    uniqueParent="[Product].[Product Categories].[All Products]" id="1">
    <groupMembers count="2">
        <groupMember
            uniqueName="[Product].[Product Categories].[Category].&amp;[4]"/>
            <groupMember
                uniqueName="[Product].[Product Categories].[Category].&amp;[1]"/>
        </groupMembers>
    </group>
```

end example]

Attributes	Description
caption (Group Caption)	Specifies the caption for this group. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
id (Group Id)	Specifies the unique number for this group within the level. The possible values for this attribute are defined by the W3C XML Schema int datatype.
name (Group	Specifies the name of this group.

Attributes	Description
Name)	The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
uniqueName (Unique Group Name)	Specifies the unique name of this group. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
uniqueParent (Parent Unique Name)	Specifies the unique name of the parent of this group. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).

[Note: The W3C XML Schema definition of this element’s content model (CT LevelGroup) is located in §A.2. end note]

18.10.1.3 groupItems (OLAP Group Items)

Represents the collection of items in a field group.

[Example:

```
    <fieldGroup par="6" base="0">
        <rangePr groupBy="months" startDate="2002-01-01T00:00:00"
            endDate="2006-05-06T00:00:00"/>
        <groupItems count="14">
            <s v="&lt;1/1/2002"/>
            <s v="Jan"/>
            <s v="Feb"/>
            <s v="Mar"/>
            <s v="Apr"/>
            <s v="May"/>
            <s v="Jun"/>
            <s v="Jul"/>
            <s v="Aug"/>
            <s v="Sep"/>
            <s v="Oct"/>
            <s v="Nov"/>
            <s v="Dec"/>
            <s v="&gt;5/6/2006"/>
        </groupItems>
    </fieldGroup>
</cacheField>
```

```
<cacheField name="Name" numFmtId="0">
    <sharedItems count="4">
        <s v="Joe"/>
        <s v="John"/>
        <s v="Bob"/>
        <s v="Robert"/>
    </sharedItems>
    <fieldGroup par="4"/>
</cacheField>
<cacheField name="ProductID" numFmtId="0">
    <sharedItems containsSemiMixedTypes="0" containsString="0" containsNumber="1"
        containsInteger="1" minValue="1" maxValue="4" count="4">
        <n v="1"/>
        <n v="2"/>
        <n v="3"/>
        <n v="4"/>
    </sharedItems>
    <fieldGroup base="2">
        <rangePr startNum="1" endNum="4" groupInterval="2"/>
        <groupItems count="4">
            <s v="&lt;1"/>
            <s v="1-2"/>
            <s v="3-4"/>
            <s v="&gt;5"/>
        </groupItems>
    </fieldGroup>
...
```

end example]

Attributes	Description
count (Items Created Count)	Specifies the number of items created for this grouped field. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element’s content model (CT Groupltems) is located in §A.2. end note]

18.10.1.39 groupLevel (OLAP Grouping Levels)

Represents the collection of OLAP grouping levels.

[Example:

```
<groupLevel uniqueName="[Product].[Product Categories].[Category]"
    caption="Category">
    <groups count="1">
        <group name="CategoryXl_Grp_1" uniqueName="[Product].[Product
            Categories].[Product Categories1].
            [GROUPMEMBER.[CategoryXl_Grp_1]].[Product]].[Product Categories]].
            [All Products]]]" caption="Group1" uniqueParent="[Product].
            [Product Categories].[All Products]" id="1">
            <groupMembers count="2">
                <groupMember
                    uniqueName="[Product].[Product Categories].[Category].&amp;[4]"/>
                <groupMember
                    uniqueName="[Product].[Product Categories].[Category].&amp;[1]"/>
                </groupMembers>
        </group>
    </groups>
</groupLevel>
```

end example]

Attributes	Description
caption (Grouping Level Display Name)	Specifies the display name for this grouping level. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
customRollUp (Custom Roll Up)	Specifies a boolean value that indicates whether this group level has a custom roll up. A value of 1 or true indicates this group level has a custom roll up. A value of θ or false indicates this group level does not have a custom roll up. The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
uniqueName (Unique Name)	Specifies the unique name for this grouping level. The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
user (User-Defined Group Level)	Specifies a boolean value that indicates whether this is a user-defined group level. A value of 1 or true indicates this is a user-defined group.

[Note: The W3C XML Schema definition of this element's content model (CT GroupLevel) is located in §A.2. end note]

18.10.1.4 groupLevels (OLAP Grouping Levels)

Represents the collection of OLAP grouping levels.
[Example:

```
    <groupLevels count="5">
    <groupLevel uniqueName="[Product].[Product Categories].[(All)]"
        caption="(All)"/>
    <groupLevel uniqueName="[Product].[Product Categories].[Product Categories1]"
        caption="Product Categories1" user="1"/>
    <groupLevel uniqueName="[Product].[Product Categories].[Category]"
        caption="Category">
        <groups count="1">
            <group name="CategoryXl_Grp_1" uniqueName="[Product].[Product Categories].
                    [Product Categories1].[GROUPMEMBER.[CategoryXl_Grp_1]].
                    [Product]].[Product Categories]].[All Products]]]" caption="Group1"
                    uniqueParent="[Product].[Product Categories].[All Products]" id="1">
                    <groupMembers count="2">
                    <groupMember
                            uniqueName="[Product].[Product Categories].[Category].&amp;[4]"/>
                    <groupMember
                        uniqueName="[Product].[Product Categories].[Category].&amp;[1]"/>
                </groupMembers>
                </group>
        </groups>
    </groupLevel>
    <groupLevel uniqueName="[Product].[Product Categories].[Subcategory]"
        caption="Subcategory"/>
    <groupLevel uniqueName="[Product].[Product Categories].[Product]"
        caption="Product"/>
</groupLevels>
end example]
```

Attributes	Description
count (Grouping Level Count)	Specifies the number of grouping levels. The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.

[Note: The W3C XML Schema definition of this element's content model (CT GroupLevels) is located in §A.2. end note]

18.10.1.41 groupMember (OLAP Group Member)

Represents an OLAP group member.
[Example:
<groupMember uniqueName="[Product].[Product Categories].[Category].\&[1]"/> end example]

Attributes	Description
group (Group)	Specifies a boolean value that indicates whether this member represents a group. A value of 1 or true indicates this member represents a group.
A value of θ or false indicates this member does not represent a group.	
The possible values for this attribute are defined by the W3C XML Schema boolean	
datatype.	

[Note: The W3C XML Schema definition of this element's content model (CT GroupMember) is located in §A.2. end note]

18.10.1.4 groupMembers (OLAP Group Members)

Represents the collection of OLAP group members.

[Example:

<groupMembers count="2">
<groupMember uniqueName="[Product].[Product Categories].[Category].\&[4]"/> <groupMember uniqueName="[Product].[Product Categories].[Category].\&[1]"/> </groupMembers>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Group \\
Member Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of group members in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Attributes & \\
\hline & datatype. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT GroupMembers) is located in §A.2. end note]

\subsection*{18.10.1.43 groups (OLAP Level Groups)}

Represents the collection of OLAP level groups.
[Example:
```
<groups count="1">
    <group name="CategoryXl_Grp_1" uniqueName="[Product].[Product Categories].
        [Product Categories1].[GROUPMEMBER.[CategoryXl_Grp_1]].[Product]].
        [Product Categories]].[All Products]]]" caption="Group1"
        uniqueParent="[Product].[Product Categories].[All Products]" id="1">
        <groupMembers count="2">
            <groupMember
                    uniqueName="[Product].[Product Categories].[Category].&amp;[4]"/>
            <groupMember
                uniqueName="[Product].[Product Categories].[Category].&amp;[1]"/>
        </groupMembers>
    </group>
    </groups>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Level Group \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of level groups in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Groups) is located in §A.2. end note]

\subsection*{18.10.1.44 i (Row Items)}

Represents the collection of items in the row region of the PivotTable.
[Example: In this example the item values are found in cells B10:B13. For example "Bikes" is in B10, and corresponds to the first <i> element below.
```

<rowItems count="4">
    <i>
        <x/>
    </i>
    <i r="1">
        <x/>
    </i>
    <i r="1">
            <x v="1"/>
    </i>
    <i t="grand">
            <x/>
        </i>
</rowItems>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline i (Data Field Index) & \begin{tabular}{l}
Specifies a zero-based index indicating the referenced data item it in a data field with \\
multiple data items. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
r (Repeated Items \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of items to repeat from the previous row item. The first item has no \\
@r explicitly written. Since a default of "0" is specified in the schema, for any item whose \\
@r is missing, a default value of "0" is implied.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}\(\quad\)\begin{tabular}{l}
Specifies the type of the item. Value of 'default' indicates a grand total as the last row \\
item value \\
t (Item Type) \\
\begin{tabular}{l}
The possible values for this attribute are defined by the ST_ItemType simple type \\
(§18.18.43).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT I) is located in §A.2. end note]

\subsection*{18.10.1.45 item (PivotTable Field Item)}

Represents a single item in PivotTable field.

\section*{[Example:}
<sh:item x="66"/>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline c (Child Items) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the approximate number of child items \\
for this item is greater than zero. \\
A value of 1 or true indicates the approximate number of child items for this item is \\
greater than zero. \\
A value of \(\theta\) or false indicates the approximate number of child items for this item is \\
zero. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline d (Expanded) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this item has been expanded in the \\
PivotTable view.
\end{tabular} \\
A value of 1 or true indicates this item has been expanded. \\
A value of \(\theta\) or false indicates this item is collapsed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
A value of 1 or true indicates item is hidden. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline m (Missing) & \begin{tabular}{l}
Specifies a boolean value that indicate whether the item has a missing value. \\
A value of 1 or true indicates the item value is missing. The application should still retain the item settings in case the item reappears during a later refresh. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline n (Item User Caption) & \begin{tabular}{l}
Specifies the user caption of the item. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline s (Character) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the item has a character value. \\
A value of 1 or true indicates the item has a string/character value. \\
A value of 0 or false indicates item the item has a value of a different type. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline sd (Hide Details) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the details are hidden for this item. \\
A value of 1 or true indicates item details are hidden. \\
A value of 0 or false indicates item details are shown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline t (Item Type) & \begin{tabular}{l}
Specifies the type of this item. A value of 'default' indicates the subtotal or total item. \\
The possible values for this attribute are defined by the ST_ItemType simple type (§18.18.43).
\end{tabular} \\
\hline x (Item Index) & \begin{tabular}{l}
Specifies the item index in pivotFields collection in the PivotCache. \\
[Example: In the following example, "Product Category" and "Product Subcategory" are on the row axis of the PivotTable, in that order.
```

<rowFields count="2">
        <field x="7"/>
        <x="8"/>
    </rowFieldsfield >
```
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
end example] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Item) is located in §A.2. end note]

\subsection*{18.10.1.46 items (Field Items)}

Represents the collection of items in a PivotTable field. The items in the collection are ordered by index. Items represent the unique entries from the field in the source data.

In the following image, the item Golf represents all rows of data in the source list for which the Sport field contains the entry Golf.
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{|c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & Region & (All) & - & \\
\hline 2 & \multicolumn{4}{|l|}{} \\
\hline 3 & Sum of Sales & Quarter & \\
\hline 4 & Sport & - & Qtr1 & Qtr2 \\
\hline 5 & Golf & & 8,500 & 4,500 \\
\hline
\end{tabular}

The order in which the items are listed is the order they would appear on a particular axis [Example: Row or column. end example]
[Example: In the following SpreadsheetML example, the first field is "Customer Name" and the first item referenced here is <item \(x=" 66\) "/>, which references the value "Adam L Flores" in the pivotCacheDefinition. Therefore, if you added "Customer Name" to the row axis, "Adam L Flores" would be the first row item listed.
```
<pivotFields count="28">
    <pivotField showAll="0" includeNewItemsInFilter="1">
        <items count="8">
            <item x="66"/>
            <item x="133"/>
            <item x="74"/>
            <item x="27"/>
            <item x="118"/>
            <item x="63"/>
            <item x="141"/>
            <item t="default"/>
        </items>
    </pivotField>
    <pivotField showAll="0" includeNewItemsInFilter="1"/>
```
```
    <pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1">
        <items count="2">
            <item x="0"/>
            <item t="default"/>
        </items>
    </pivotField>
    <pivotField showAll="0" includeNewItemsInFilter="1"/>
end example]
```
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline count (Field Count) & \begin{tabular}{l}
Specifies the number of fields in the PivotTable. \\
\\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Items) is located in §A.2. end note]

\subsection*{18.10.1.47 kpi (OLAP KPI)}

Represents the KPI defined on the OLAP server and stored in the PivotCache.

\section*{[Example:}
<kpi uniqueName="Growth in Customer Base" caption="Growth in Customer Base" displayFolder="Customer Perspective\Expand Customer Base"
measureGroup="Internet Sales" value="[Measures].[Growth in Customer Base]" goal="[Measures].[Growth in Customer Base Goal]"
status="[Measures].[Growth in Customer Base Status]"
trend="[Measures].[Growth in Customer Base Trend]"/>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
caption (KPI Display \\
Name)
\end{tabular} & \begin{tabular}{l}
Specifies the display name of the KPI. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
displayFolder (KPI \\
Display Folder)
\end{tabular} & \begin{tabular}{l}
Specifies the folder where this KPI is displayed in a list of fields for the PivotTable. This \\
attribute depends on how the application exposes a list of fields in the user interface. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
goal (KPI Goal \\
Unique Name)
\end{tabular} & Specifies the unique name of the KPI goal measure. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
measureGroup (KPI \\
Measure Group \\
Name)
\end{tabular} & \begin{tabular}{l}
Specifies the name of the measure group to which this KPI belongs. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline parent (Parent KPI) & \begin{tabular}{l}
Specifies the name of the parent KPI for this KPI. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
status (KPI Status \\
Unique Name)
\end{tabular} & \begin{tabular}{l}
Specifies the unique name of the KPI status measure.
\end{tabular} \\
\hline The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PCDKPI) is located in §A.2. end note]

\subsection*{18.10.1.48 kpis (OLAP KPIs)}

Represents the collection of Key Performance Indicators (KPIs) defined on the OLAP server and stored in the PivotCache.

\section*{[Example:}
```
<kpis count="3">
    <kpi uniqueName="Growth in Customer Base" caption="Growth in Customer Base"
        displayFolder="Customer Perspective\Expand Customer Base"
        measureGroup="Internet Sales" value="[Measures].[Growth in Customer Base]"
        goal="[Measures].[Growth in Customer Base Goal]"
        status="[Measures].[Growth in Customer Base Status]"
        trend="[Measures].[Growth in Customer Base Trend]"/>
    <kpi uniqueName="Net Income" caption="Net Income"
        displayFolder="Financial Perspective\Maintain Overall Margins"
        measureGroup="Financial Reporting" value="[Measures].[Net Income Value]"
        goal="[Measures].[Net Income Goal]" status="[Measures].[Net Income Status]"
        trend="[Measures].[Net Income Trend]"/>
    <kpi uniqueName="Operating Profit" caption="Operating Profit"
        displayFolder="Financial Perspective\Maintain Overall Margins"
        measureGroup="Financial Reporting" parent="Net Income"
        value="[Measures].[Operating Profit Value]"
        goal="[Measures].[Operating Profit Goal]"
        status="[Measures].[Operating Profit Status]"
        trend="[Measures].[Operating Profit Trend]"/>
...
```
end example]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline count (KPI Count) & \begin{tabular}{l}
Specifies the number of KPIs stored in the PivotCache. \\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PCDKPIs) is located in §A.2. end note]

\subsection*{18.10.1.49 location (PivotTable Location)}

Represents location information for the PivotTable.

\section*{[Example:}
```
<location ref="B6:G13" firstHeaderRow="1" firstDataRow="4" firstDataCol="1"
    rowPageCount="3" colPageCount="1"/>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
colPageCount \\
(Columns Per Page)
\end{tabular} & \begin{tabular}{l}
Specifies the number of columns per page for this PivotTable that the filter area will \\
occupy. By default there is a single column of filter fields per page and the fields occupy \\
as many rows as there are fields. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
firstDataCol (First \\
Data Column)
\end{tabular} & \begin{tabular}{l}
Specifies the first column of the PivotTable data, relative to the top left cell in the ref \\
value. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
firstDataRow \\
(PivotTable Data \\
First Row)
\end{tabular} & \begin{tabular}{l}
Specifies the first row of the PivotTable data, relative to the top left cell in the ref value. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
firstHeaderRow \\
(First Header Row)
\end{tabular} & \begin{tabular}{l}
Specifies the first row of the PivotTable header, relative to the top left cell in the ref \\
value. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline ref (Reference) & \begin{tabular}{l}
Specifies the first row of the PivotTable. \\
The possible values for this attribute are defined by the ST_Ref simple type (\&18.18.62).
\end{tabular} \\
\hline \begin{tabular}{l}
rowPageCount \\
(Rows Per Page \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of rows per page for this PivotTable that the filter area will occupy. \\
By default there is a single column of filter fields per page and the fields occupy as many \\
rows as there are fields.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Location) is located in §A.2. end note]

\subsection*{18.10.1.50 m (No Value)}

Represents a value that was not specified.
[Example:
<sharedItems containsString="0" containsBlank="1" count="1">
<m/>
</sharedItems>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline b (Bold) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the value contains bold formatting on \\
the OLAP server. This attribute applies to OLAP-based PivotTables only. \\
A value of 1 or true indicates this value contains bold formatting on the server. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
bc (background \\
Color)
\end{tabular} & \begin{tabular}{l}
Specifies the background color for this value that was provided by the OLAP server. This \\
attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in \\
RGB space.
\end{tabular} \\
\hline c (Caption) & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type \\
(§18.18.86).
\end{tabular} \\
\hline Specifies the caption for this item. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
entry is stored. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline st (Strikethrough) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the value contains strikethrough \\
formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. \\
A value of 1 or true indicates this value contains underline formatting on the server. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline u (Unused Item) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this is an unused item. The application \\
marks an item as unused when an item is deleted from the data source. The item and \\
associated metadata are retained in the cache until the threshold for unused items \\
specified in missingItemsLimit is reached. \\
A value of 1 or true indicates this item is unused.
\end{tabular} \\
\hline un (Underline) & \begin{tabular}{l}
A value of \(\theta\) or false indicates this item is used. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\begin{tabular}{l}
Specifies a boolean value that indicates whether the value contains underline formatting \\
on the OLAP server. This attribute applies to OLAP-based PivotTables only.
\end{tabular} \\
A value of 1 or true indicates this value contains underline formatting on the server. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Missing) is located in §A.2. end note]

\subsection*{18.10.1.51 map (OLAP Measure Group)}

Represents a PivotTable OLAP measure group - Dimension map.

\section*{[Example:}
```
    <map measureGroup="0" dimension="2"/>
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
dimension \\
(Dimension Id)
\end{tabular} & \begin{tabular}{l}
Specifies the identifier for the dimension. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
measureGroup \\
(Measure Group Id)
\end{tabular} & \begin{tabular}{l}
Specifies the identifier of the measure group. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT MeasureDimensionMap) is located in §A.2. end note]

\subsection*{18.10.1.52 maps (OLAP Measure Group)}

Represents the PivotTable OLAP measure group - Dimension maps.
[Example:
```
    <maps count="3">
    <map measureGroup="0" dimension="2"/>
    <map measureGroup="1" dimension="19"/>
    <map measureGroup="2" dimension="8"/>
        </maps>
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Measure \\
Group Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of measure groups, or dimension maps, in the PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT MeasureDimensionMaps) is located in §A.2. end note]

\subsection*{18.10.1.53 measureGroup (OLAP Measure Group)}

Represents a PivotTable OLAP measure group.

\section*{[Example:}
```
    <measureGroup name="Sales Orders" caption="Sales Orders"/>
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
caption (Measure \\
Group Display \\
Name)
\end{tabular} & \begin{tabular}{l}
Specifies the display name of the measure group. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
name (Measure \\
Group Name)
\end{tabular} & \begin{tabular}{l}
Specifies the name of the measure group. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT MeasureGroup) is located in §A.2. end note]

\subsection*{18.10.1.54 measureGroups (OLAP Measure Groups)}

Represents the collection of PivotTable OLAP measure groups.
[Example:
```
<measureGroups count="11">
    <measureGroup name="Exchange Rates" caption="Exchange Rates"/>
    <measureGroup name="Financial Reporting" caption="Financial Reporting"/>
    <measureGroup name="Internet Customers" caption="Internet Customers"/>
    <measureGroup name="Internet Orders" caption="Internet Orders"/>
    <measureGroup name="Internet Sales" caption="Internet Sales"/>
    <measureGroup name="Reseller Orders" caption="Reseller Orders"/>
    <measureGroup name="Reseller Sales" caption="Reseller Sales"/>
    <measureGroup name="Sales Orders" caption="Sales Orders"/>
    <measureGroup name="Sales Reasons" caption="Sales Reasons"/>
    <measureGroup name="Sales Summary" caption="Sales Summary"/>
    <measureGroup name="Sales Targets" caption="Sales Targets"/>
</measureGroups>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Measure \\
Group Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of measure groups in the PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT MeasureGroups) is located in §A.2. end note]

\subsection*{18.10.1.55 member (Member)}

Represents an item that can be included or excluded.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
name (Hidden Item \\
Name)
\end{tabular} & \begin{tabular}{l}
Specifies the name of a hidden item. \\
\\
\\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Member) is located in §A.2. end note]

\subsection*{18.10.1.56 members (Members)}

Represents the collection of items that can be included or excluded.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline count (Item Count) & \begin{tabular}{l}
Specifies the number of items in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
level (Hierarchy \\
Level)
\end{tabular} & \begin{tabular}{l}
Specifies the hierarchy level with which these items are associated. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Members) is located in §A.2. end note]

\subsection*{18.10.1.57 mp (OLAP Member Property)}

Represents an OLAP member property.

\section*{[Example:}
```
    <sh:mp field="7"/>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline field (Field Index) & \begin{tabular}{l}
Specifies the index of the field with which this member property is associated. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline level (Level Index) & \begin{tabular}{l}
Specifies the index of the level to which this member property applies. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
name (OLAP \\
Member Property \\
Unique Name)
\end{tabular} & \begin{tabular}{l}
Specifies the unique name of the OLAP member property. The following attributes depend on the name attribute: \\
- nameLen \\
- pLen \\
- pPos \\
These attributes consist of metadata about a member in an OLAP cube and are usually displayed in a tooltip or mechanism in the user interface. \\
[Example: If the value for name equals "[Store].[Store Name].[Store Manager]": \\
- nameLen will equal 20. This would refer to "[Store].[Store Name]" \\
- pPos will equal 22. This would refer to starting character of "Store Manager" \\
- plen will equal 13. This would to length of "Store Manager" \\
end example] \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline nameLen (Name Length) & \begin{tabular}{l}
Specifies the length of the unique name portion of name. [Example: If the value for name equals "[Store].[Store Name].[Store Manager]", nameLen will equal 20. This would refer to "[Store].[Store Name]". end example] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline pLen (Property Name Length) & \begin{tabular}{l}
Specifies the length of the property name portion of name. [Example: If the value for name equals "[Store].[Store Name].[Store Manager]", plen will equal 13. This would to length of "Store Manager". end example] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline pPos (Property Name Character Index) & \begin{tabular}{l}
Specifies the index of the character where the property name portion begins in name. [Example: If the value for name equals "[Store].[Store Name].[Store Manager]", pPos will equal 22. This would refer to starting character of "Store Manager". end example] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline showAsCaption (Show As Caption) & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show the property a member caption. \\
A value of 1 or true indicates member property value is shown in as a caption.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
A value of 0 or false indicates member property value will not be shown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showCell (Show \\
Cell)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show the member property value in a \\
PivotTable cell. \\
A value of 1 or true indicates member property value is shown in a cell. \\
A value of 0 or false indicates member property value will not be shown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showTip (Show \\
Tooltip)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show the member property value in a \\
tooltip on the appropriate PivotTable view cells. \\
A value of 1 or true indicates member property value is shown in a tooltip.
\end{tabular} \\
A value of 0 or false indicates member property value will not be shown. This attribute \\
depends on whether the application employs tooltips or similar mechanism in the user \\
interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT MemberProperty) is located in §A.2. end note]

\subsection*{18.10.1.58 mpMap (Member Properties Map)}

Represents a mapping to cached member properties.
[Example:

> <mpMap v="7"/>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
v (Shared Items \\
Index)
\end{tabular} & \begin{tabular}{l}
Specifies the index into the shared items table in the PivotCache that identifies this item. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype. \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT X) is located in §A.2. end note]

\subsection*{18.10.1.59 mps (OLAP Member Properties)}

Represents the collection of OLAP member property. Member properties contain additional information that is available about the items in an OLAP dimension field. [Example: If a Geography dimension has property fields Population and Average Income available, you could create a PivotTable report that displays the sales figures for cities where your products are selling well. By displaying and analyzing the population and income figures for these cities, you could target cities with similar demographics for your marketing campaign. end example]
[Example:
```
<sh:mps count="3">
    <sh:mp field="7"/>
    <sh:mp field="8"/>
    <sh:mp field="9"/>
</sh:mps>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (OLAP \\
Member Properties \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of OLAP member properties in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT MemberProperties) is located in §A.2. end note]

\subsection*{18.10.1.60 n (Numeric)}

Represents a numeric value in the PivotTable.
[Example:
<sharedItems containsSemiMixedTypes="0" containsString="0" containsNumber="1"
containsInteger="1" minValue="3" maxValue="3" count="1">
<n v="3"/>
</sharedItems>
end example]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline b (Bold) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this value contains bold formatting on \\
the OLAP server. This attribute applies to OLAP-based PivotTables only.
\end{tabular} \\
A value of 1 or true indicates this value contains italic formatting on the server. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & The possible values for this attribute are defined by the W3C XML Schema boolean datatype. \\
\hline bc (Background Color) & \begin{tabular}{l}
Specifies the background color for this value that was provided by the OLAP server. This attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in RGB space. \\
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
\end{tabular} \\
\hline c (Caption) & \begin{tabular}{l}
Specifies the caption for this item. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline cp (Member Property Count) & \begin{tabular}{l}
Specifies the number of member property values for this item. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline f (Calculated Item) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this is a calculated item value. \\
A value of 1 or true indicates this item is a calculated value. \\
A value of 0 or false indicates this item is not calculated. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline fc (Foreground Color) & \begin{tabular}{l}
Specifies the foreground color for this value that was provided by the OLAP server. This attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in RGB space. \\
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type (§18.18.86).
\end{tabular} \\
\hline i (Italic) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the value contains italic formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. \\
A value of 1 or true indicates this value contains italic formatting on the server. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline in (Format Index) & \begin{tabular}{l}
Specifies the index to the OLAP serverformat element where the format string for this entry is stored. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline st (Strikethrough) & Specifies a boolean value that indicates whether the value contains strikethrough \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. \\
A value of 1 or true indicates this value contains strikethrough formatting on the server. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline u (Unused Item) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this is an unused item. The application \\
marks an item as unused when an item is deleted from the data source. The item and \\
associated metadata are retained in the cache until the threshold for unused items \\
specified in missingltemsLimit is reached.
\end{tabular} \\
A value of 1 or true indicates this item is not used. \\
A value of 0 or false indicates this item is used. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(\quad\)\begin{tabular}{l}
Specifies a boolean value that indicates whether the value contains underline formatting \\
on the OLAP server. This attribute applies to OLAP-based PivotTables only. \\
A value of 1 or true indicates this value contains underline formatting on the server. \\
un (Underline) \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline v (Value) \\
\begin{tabular}{l}
Specified the value of this item. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Number) is located in §A.2. end note]

\subsection*{18.10.1.61 page (Page Items)}

Represents the collection of page item values for a page field.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Page Item \\
String Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of page item strings in the collectoin. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PCDSCPage) is located in §A.2. end note]

\subsection*{18.10.1.62 pageField (Page Field)}

Represents a field on the page or report filter of the PivotTable.

In the image above, the blue field is a page or report filter field. Page/filter fields allow you to filter the entire PivotTable to display data for a single item or all the items.

\section*{[Example:}
```
    <sh:pageField fld="43" hier="103"
    name="[Product].[Product Categories].[All Products]" cap="All Products"/>
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
cap (Hierarchy \\
Display Name)
\end{tabular} & \begin{tabular}{l}
Specifies the display name of the hierarchy. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline fld (Field) & \begin{tabular}{l}
Specifies the index of the field that appears on the page or filter report area of the \\
PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
hier (OLAP \\
Hierarchy Index)
\end{tabular} & \begin{tabular}{l}
Specifies the index of the OLAP hierarchy to which this item belongs. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline item (Item Index) & \begin{tabular}{l}
Specifies the index of the item in the PivotCache. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
name (Hierarchy \\
Unique Name)
\end{tabular} & \begin{tabular}{l}
Specifies the unique name of the hierarchy. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PageField) is located in §A.2. end note]

\subsection*{18.10.1.63 pageFields (Page Field Items)}

Represents the collection of items in the page or report filter region of the PivotTable.

\section*{[Example:}
```
<sh:pageFields count="2">
    <sh:pageField fld="43" hier="103"
        name="[Product].[Product Categories].[All Products]" cap="All Products"/>
    <sh:pageField fld="66" hier="126"
        name="[Promotion].[Promotions].[All Promotions]" cap="All Promotions"/>
</sh:pageFields>
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Page Item \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of items in the page region of the PivotTable. \\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PageFields) is located in §A.2. end note]

\subsection*{18.10.1.64 \\ pageItem (Page Item)}

Represents an item value for a PivotTable page.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
name (Page Item \\
Name)
\end{tabular} & \begin{tabular}{l}
Specifies the name of this page item. \\
\\
\\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Pageltem) is located in §A.2. end note]

\subsection*{18.10.1.65 pages (Page Item Values)}

Represents the collection of page item values for each page field.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Page Item \\
String Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of page item strings in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Attributes & \\
\hline & datatype. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Pages) is located in §A.2. end note]

\subsection*{18.10.1.66 pivotAreas (Pivot Areas)}

Represents the collection of pivot areas that comprise the PivotTable location.

\section*{[Example:}
```
    <sh:pivotAreas count="1">
    <sh:pivotArea field="2" dataOnly="0" outline="0"/>
</sh:pivotAreas>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Pivot Area \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of PivotAreas for the PivotTable location. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotAreas) is located in §A.2. end note]

\subsection*{18.10.1.67 pivotCacheDefinition (PivotCache Definition)}

Represents the pivotCacheDefinition part. This part defines each field in the source data, including the name, the string resources of the instance data (for shared items), and information about the type of data that appears in the field.

\section*{[Example:}
```
<pivotCacheDefinition xmlns="..." xmlns:r="..." r:id="rId1" refreshedBy="AnonUser"
    refreshedDateIso="2006-05-22T10:07:16Z" createdVersion="3"
refreshedVersion="3"
    minRefreshableVersion="3" recordCount="182">
    <cacheSource type="worksheet">
        <worksheetSource name="Table1"/>
    </cacheSource>
```
```
    <cacheFields count="28">
        <cacheField name="Customer Name" numFmtId="0">
        <cacheField name="Postal Code" numFmtId="0">
            <sharedItems/>
        </cacheField>
        <cacheField name="Product Category" numFmtId="0">
            <sharedItems count="1">
                <s v="Bikes"/>
            </sharedItems>
        </cacheField>
        <cacheField name="Year" numFmtId="0">
            <sharedItems count="1">
                <s v="2001"/>
            </sharedItems>
        </cacheField>
        <cacheField name="Quarter" numFmtId="0">
            <sharedItems containsSemiMixedTypes="0" containsString="0"
                containsNumber="1" containsInteger="1" minValue="3" maxValue="3"
                count="1">
                <n v="3"/>
            </sharedItems>
        </cacheField>
        </cacheFields>
    </pivotCacheDefinition>
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
backgroundQuery \\
(Background Query)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the application should query and \\
retrieve records asynchronously from the cache.
\end{tabular} \\
A value of 1 or true indicates the application will retrieve records asynchronously from \\
the cache. \\
A value of \(\theta\) or false indicates the application will retrieve records synchronously. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \\
\hline \begin{tabular}{l}
(Enable PivotCache \\
Refresh)
\end{tabular} & \begin{tabular}{l}
attribute depends on whether the application exposes a method for allowing end-users \\
control over refreshing the cache via the user interface.
\end{tabular} \\
A value of 1 or true indicates the end-user can refresh the cache. \\
A value of 0 or false indicates the end-user cannot refresh the cache. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
A value of 0 or false indicates the application will not apply optimizations to the cache. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
recordCount \\
(PivotCache Record \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of records in the cache. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
refreshedBy (Last \\
Refreshed By)
\end{tabular} & \begin{tabular}{l}
Specifies the name of the end-user who last refreshed the cache. This attribute is \\
application-dependent and is specified by applications that track and store the identity of \\
the current user. This attribute also depends on whether the application exposes \\
mechanisms via the user interface whereby the end-user can refresh the cache.
\end{tabular} \\
\hline \begin{tabular}{l}
refreshedDateIso \\
(PivotCache Last \\
Refreshed Date ISO)
\end{tabular} & \begin{tabular}{l}
Spe possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19). \\
the application exposes mechanisms via the user interface whereby the end-user can \\
refresh the cache.
\end{tabular} \\
\hline The possible values for this attribute are defined by the W3C XML Schema dateTime \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
supportAdvancedD \\
rill (Supports \\
Attribute Drilldown)
\end{tabular} & \begin{tabular}{l}
Specifies whether the cache's data source supports attribute drilldown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
supportSubquery \\
(Supports \\
Subqueries)
\end{tabular} & \begin{tabular}{l}
Specifies whether the cache's data source supports subqueries. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
tupleCache (Stores \\
Cache for OLAP
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the PivotCache is used store information \\
for OLAP sheet data functions. \\
Functions)
\end{tabular} \\
\begin{tabular}{l}
A value of 1 or true indicates information about OLAP sheet data functions are stored in \\
the cache.
\end{tabular} \\
A value of \(\theta\) or false indicates the PivotCache does not contain information about OLAP \\
sheet data functions. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotCacheDefinition) is located in §A.2. end note]

\subsection*{18.10.1.68 pivotCacheRecords (PivotCache Records)}

Represents the collection of records in the PivotCache. This part stores the underlying source data that the PivotTable aggregates.

\section*{[Example:}
```
<pivotCacheRecords xmlns="..." xmlns:r="..." count="2">
    <r>
            <x v="0"/>
            <s v="Pacific"/>
            <x v="0"/>
            <s v="Australia"/>
            <x v="0"/>
            <x v="0"/>
            <s v="3550"/>
            <x v="0"/>
            <x v="0"/>
            <s v="Road-150 Red, 62"/>
            <s v="This bike is ridden by race winners. Developed with the Adventure
                    Works Cycles professional race team, it has a extremely light
            heat-treated aluminum frame, and steering that allows precision
            control."/>
            <s v="No Discount"/>
            <n v="89.4568000000000001"/>
    </r>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (PivotCache \\
Records Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of records in the cache. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotCacheRecords) is located in §A.2. end note]

\subsection*{18.10.1.69 pivotField (PivotTable Field)}

Represents a single field in the PivotTable. This element contains information about the field, including the collection of items in the field.

\section*{[Example:}
```
<pivotField axis="axisRow" allDrilled="1" showAll="0" measureFilter="1"
    sortType="descending">
```
```
    <items count="8">
        <item s="1" c="1" x="0"/>
        <item s="1" c="1" x="1"/>
        <item c="1" x="2"/>
        <item c="1" x="3"/>
        <item c="1" x="4"/>
        <item c="1" x="5"/>
        <item c="1" x="6"/>
        <item t="default"/>
        </items>
        <autoSortScope>
        <pivotArea dataOnly="0" outline="0" fieldPosition="0">
            <references count="2">
                    <reference field="4294967294" count="1" selected="0">
                    <x v="0"/>
            </reference>
            <reference field="25" count="1" selected="0">
                        <x v="0"/>
            </reference>
            </references>
        </pivotArea>
        </autoSortScope>
</pivotField>
```
```
end example]
```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
allDrilled (All Items \\
Expanded)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether all items in the field are expanded. \\
Applies only to OLAP PivotTables. \\
A value of 1 or true indicates all items in the field are expanded. \\
A value of 0 or false indicates all items are not expanded. However some items might be \\
expanded. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
autoShow (Auto \\
Show)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether an "AutoShow" filter is applied to this \\
field. This attribute depends on the implementation of filtering in the application.
\end{tabular} \\
A value of 1 or true indicates an "AutoShow" filter is applied to the field. \\
A value of \(\theta\) or false indicates an "AutoShow" filter is not applied. \\
The possible values for this attribute are defined by the W3C XML Schema boolean
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
avgSubtotal \\
(Average)
\end{tabular} & \begin{tabular}{l}
datatype. \\
Specifies a boolean value that indicates whether to apply the 'Average' aggregation \\
function in the subtotal of this field.
\end{tabular} \\
A value of 1 or true indicates the subtotal for this field is 'Average.' \\
A value of 0 or false indicates a different aggregation function is applied to the subtotal \\
for this field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(|\)\begin{tabular}{l}
Specifies the region of the PivotTable that this field is displayed. \\
The possible values for this attribute are defined by the ST_Axis simple type (§18.18.1).
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
dataField (Data \\
Field)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether this field appears in the data region of \\
the PivotTable. \\
A value of 1 or true indicates this field appears in the data region of the PivotTable. \\
A value of \(\theta\) or false indicates this field appears in another region of the PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
dataSourceSort \\
(Data Source Sort)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether sort is applied to this field in the data \\
source. \\
A value of 1 or true indicates this field is sorted in the data source.
\end{tabular} \\
\hline A value of 0 or false indicates this field is not sorted in the data source. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \(\begin{array}{l}\text { A value of } \theta \text { or false indicates the field cannot be removed from the PivotTable. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\
\text { datatype. }\end{array}\) \\
\hline \(\begin{array}{l}\text { dragToCol (Drag To } \\
\text { Column) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether the field can be dragged to the column } \\
\text { axis. } \\
\text { A value of } 1 \text { or true indicates the field can be dragged to the column axis. }\end{array}\) \\
A value of \(\theta\) or false indicates the field cannot be dragged to the column axis. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(\left.| \begin{array}{ll}\text { Specifies a boolean value that indicates whether the field can be dragged to the data } \\
\text { region. } \\
\text { A value of } 1 \text { or true indicates the field can be dragged to the data region. }\end{array}\right\}\)\begin{tabular}{l}
A value of \(\theta\) or false indicates the field cannot be dragged to the data region. \\
Can Drag to Data) \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \(\begin{array}{l}\text { A value of } \theta \text { or false indicates the OLAP PivotTable does not contain any hidden levels. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\
\text { datatype. }\end{array}\) \\
\hline \(\begin{array}{l}\text { hideNewItems } \\
\text { (Hide New Items) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether new items that appear after a refresh } \\
\text { should be hidden by default. } \\
\text { A value of } 1 \text { or true indicates that items that appear after a refresh should be hidden by } \\
\text { default. }\end{array}\) \\
A value of \(\theta\) or false indicates that items that appear after a refresh should be shown by \\
default. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(\}\)\begin{tabular}{l}
Specifies a boolean value that indicates whether manual filter is in inclusive mode. \\
A value of 1 or true indicates the manual filter is inclusive. \\
A value of \(\theta\) or false indicates the manual filter is not inclusive. \\
includeNewItemsI \\
nFilter (Inclusive \\
Manual Filter)
\end{tabular}\(\quad\)\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline \begin{tabular}{l}
maxSubtotal (Max \\
Subtotal)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to apply the 'max' aggregation function \\
in the subtotal of this field. \\
A value of 1 or true indicates that the 'max' aggregation function is applied in the \\
subtotal for this field. \\
A value of \(\theta\) or false indicates another aggregation function is applied in the subtotal for \\
this field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
measureFilter \\
(Measure Filter)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether field has a measure based filter. \\
A value of 1 or true indicates the field has a measure-based filter.
\end{tabular} \\
\hline A value of \(\theta\) or false indicates does not have a measure-based filter. \\
Substotal)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & (§22.9.2.19). \\
\hline nonAutoSortDefaul t (Auto Sort) & \begin{tabular}{l}
Specifies a boolean value that indicates whether sort operation that is applied to field should be AutoSort operation or simple data sort operation. \\
A value of 1 or true indicates that an AutoSort operation is applied to the field. \\
A value of \(\theta\) or false indicates a simple data sort operation is applied to the field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
numFmtId \\
(Number Format Id)
\end{tabular} & \begin{tabular}{l}
Specifies the identifier of the number format to apply to this field. Number formats are written to the styles part. See the Styles section (§18.8) for more information on number formats. \\
Formatting information provided by cell table and by PivotTable need not agree. If the two formats differ, the cell-level formatting takes precedence. If you change the layout the PivotTable, the PivotTable formatting will then take precedence. \\
The possible values for this attribute are defined by the ST_NumFmtId simple type (§18.18.47).
\end{tabular} \\
\hline outline (Outline Items) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the items in this field should be shown in Outline form. \\
A value of 1 or true indicates the items in this field is shown in Outline form. \\
A value of 0 or false indicates the items in this field will not be shown in Outline form. This attribute depends on the application support for displaying items in Outline form. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline productSubtotal (Product Subtotal) & \begin{tabular}{l}
Specifies a boolean value that indicates whether to apply 'product' aggregation function in the subtotal of this field. \\
A value of 1 or true indicates that the 'product' aggregation function is applied in the subtotal for this field. \\
A value of 0 or false indicates another aggregation function is applied in the subtotal for this field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline rankBy (Auto Show Rank By) & \begin{tabular}{l}
Specifies the index of the data field by which AutoShow will rank. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & datatype. \\
\hline \begin{tabular}{l}
serverField (Server- \\
based Page Field)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether this is a server-based page field. \\
A value of 1 or true indicates this is a server-based page field. \\
A value of \(\theta\) or false indicates this is a local page field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showAll (Show All \\
Items)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show all items for this field.
\end{tabular} \\
A value of 1 or true indicates that all items be shown. \\
A value of \(\theta\) or false indicates items be shown according to user specified criteria. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showPropTip \\
(Show Member \\
Property ToolTip)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show the member property value in a \\
tooltip on the appropriate PivotTable cells. \\
A value of 1 or true indicates the property value is shown in a tooltip in the user \\
interface. \\
A value of 0 or false indicates the property will not be shown in a tooltip. This attribute \\
depends on whether the application employs tooltips or similar mechanism in the user \\
interface.
\end{tabular} \\
\hline \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
Type) & \begin{tabular}{l}
Specifies the type of sort that is applied to this field. \\
The possible values for this attribute are defined by the ST_FieldSortType simple type \\
(§18.18.28).
\end{tabular} \\
\hline \begin{tabular}{l}
stdDevPSubtotal \\
(StdDevP Subtotal)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to apply the 'stdDevP' aggregation \\
function in the subtotal of this field.
\end{tabular} \\
A value of 1 or true indicates that the 'stdDevP' aggregation function is applied in the \\
subtotal for this field.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
(§22.9.2.19). \\
subtotalTop \\
Subtotals At Top)
\end{tabular} \\
\hline \begin{tabular}{l}
Specifies a boolean value that indicates whether to display subtotals at the top of the \\
group. Applies only when Outline its true. \\
A value of 1 or true indicates a subtotal is display at the top of the group. \\
A value of \(\theta\) or false indicates subtotal will not be displayed at the top of the group. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
sumSubtotal (Sum \\
Subtotal)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether apply the 'sum' aggregation function in \\
the subtotal of this field.
\end{tabular} \\
\hline A value of 1 or true indicates the 'sum' aggregation function is applied in the subtotal of \\
this field. \\
A value of \(\theta\) or false indicates another aggregation function is applied in the subtotal of \\
this field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}, \begin{tabular}{l}
Specifies a boolean value that indicates whether an AutoShow filter applied to this field is \\
set to show the top ranked values. \\
A value of 1 or true indicates whether an AutoShow filter will show top values for this \\
field. \\
Auto Show)
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
varSubtotal \\
(Variance Subtotal)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to apply the 'variance' aggregation \\
function in the subtotal of this field. \\
A value of 1 or true indicates the 'variance' aggregation function is applied in the \\
subtotal of this field.
\end{tabular} \\
A value of \(\theta\) or false indicates another aggregation function is applied in the subtotal of \\
this field. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotField) is located in §A.2. end note]

\subsection*{18.10.1.70 pivotFields (PivotTable Fields)}

Represents the collection of fields that appear on the PivotTable.

\section*{[Example:}
```
<pivotFields count="28">
    <pivotField showAll="0" includeNewItemsInFilter="1">
        <items count="8">
            <item x="66"/>
            <item x="133"/>
            <item x="74"/>
            <item x="27"/>
            <item x="118"/>
            <item x="63"/>
                <item x="141"/>
                <item t="default"/>
        </items>
    </pivotField>
    <pivotField showAll="0" includeNewItemsInFilter="1"/>
```
```
    <pivotField axis="axisPage" showAll="0" includeNewItemsInFilter="1">
        <items count="2">
            <item x="0"/>
            <item t="default"/>
        </items>
        </pivotField>
    <pivotField showAll="0" includeNewItemsInFilter="1"/>
end example]
```
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline count (Field Count) & \begin{tabular}{l}
Specifies the number of fields in the PivotTable. \\
\\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotFields) is located in §A.2. end note]

\subsection*{18.10.1.71 pivotHierarchies (PivotTable OLAP Hierarchies)}

Represents the collection of OLAP hierarchies associated with the PivotTable.
[Example:
```
    <sh:pivotHierarchies count="3">
```
 <sh:pivotHierarchy dragToRow="0" dragToCol="0" dragToPage="0" dragToData="1"/>
 </sh:pivotHierarchies>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (OLAP \\
Hierarchy Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of OLAP hierarchies in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT PivotHierarchies) is located in §A.2. end note]

\subsection*{18.10.1.72 pivotHierarchy (OLAP Hierarchy)}

Represents a OLAP hierarchy associated with the PivotTable. A hierarchy is a hierarchical representation of related OLAP dimensions. Hierarchies are defined on the OLAP server and cannot be changed in the PivotTable. [Example: Hierarchy "A" might be defined as follows:

Level 1 Country/Region
Level 2 State\Provence
Level 3 City
end example]

\section*{[Example:}
<sh:pivotHierarchy dragToRow="0" dragToCol="0" dragToPage="0" dragToData="1"/> end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \(\begin{array}{l}\text { caption (Hierarchy } \\
\text { Caption) }\end{array}\) & \(\begin{array}{l}\text { Specifies the user defined caption of the hierarchy. } \\
\text { The possible values for this attribute are defined by the ST_Xstring simple type } \\
\text { (§22.9.2.19). }\end{array}\) \\
\hline dragOff (Drag Off) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether the user is allowed to remove this } \\
\text { hierarchy from the PivotTable. }\end{array}\) \\
A value of 1 or true indicates the user can remove this hierarchy from the PivotTable. \\
A value of 0 or false indicates the user cannot remove the hierarchy from the \\
PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(\}\)\begin{tabular}{l}
Specifies a boolean value that indicates whether the user is allowed to put this hierarchy \\
into the column area of the PivotTable. \\
Column) \\
A value of 1 or true indicates the user can put this hierarchy into the column area of the \\
PivotTable. \\
A value of 0 or false indicates the user cannot remove this hierarchy.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
A value of 1 or true indicates \\
A value of \(\theta\) or false indicates \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline dragToPage (Drag to Page) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the user is allowed to put this hierarchy into the page area of the PivotTable. \\
A value of 1 or true indicates the user can put this hierarchy into the page area of the PivotTable. \\
A value of 0 or false indicates cannot put this hierarchy into the page area. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline dragToRow (Drag To Row) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the user is allowed to put this hierarchy into the row area of the PivotTable. \\
A value of 1 or true indicates the user can put this hierarchy into the row area of the PivotTable. \\
A value of 0 or false indicates cannot put this hierarchy into the row area. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline includeNewItemsI nFilter (Inclusive Manual Filter) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the application will show only the items the user has selected. \\
A value of 1 or true indicates the application will show only items the user has selected; all other items are hidden. \\
A value of 0 or false indicates the application will show all items. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline multipleItemSelect ionAllowed (Multiple Field Filters) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the user can select multiple members when the hierarchy is in the page field area of the view. \\
A value of 1 or true indicates the user can select multiple members. \\
A value of 0 or false indicates the user cannot select multiple members. \\
The possible values for this attribute are defined by the W3C XML Schema boolean
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
outline (Outline \\
New Levels)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether new levels added to the PivotTable are \\
shown in Outline mode. \\
A value of 1 or true indicates new levels are shown in Outline mode. \\
A value of \(\theta\) or false indicates new items are not shown in Outline mode. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showInFieldList \\
(Show In Field List)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether this hierarchy is omitted from the field \\
list. This attribute depends on how the application exposes a list of fields for PivotTables \\
in the user interface.
\end{tabular} \\
A value of 1 or true indicates this hierarchy is show in the field list or similar mechanism \\
in the user interface. \\
A value of \(\theta\) or false indicates is not shown in the field list. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(|\)\begin{tabular}{l}
Specifies a boolean value that indicates whether new levels added to the view will show \\
their subtotals at the top. \\
A value of 1 or true indicates new levels added to the view show their subtotals at the \\
top. \\
A value of 0 or false indicates new levels added to the view show their subtotals at the \\
bottom. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotHierarchy) is located in §A.2. end note]

\subsection*{18.10.1.73 pivotTableDefinition (PivotTable Definition)}

Represents the PivotTable root element for non-null PivotTables. There exists one pivotTableDefinition for each PivotTableDefinition part. The PivotTable definition encompasses the following information:

\section*{Structure}
- Top-level attributes
- Location information
- Collection of fields
- Fields on the row axis
- Items on the row axis (specific values)
- Fields on the column axis
- Items on the column axis (specific values)
- Fields on the report filter region
- Fields in the values region
- Style information

\section*{Outline of the XML for a pivotTableDefinition}
```
<pivotTableDefinition>
    <location/>
    <pivotFields/>
    <rowFields/>
    <rowItems/>
    <colFields/>
    <colItems/>
    <pageFields/>
    <dataFields/>
    <conditionalFormats/>
    <pivotTableStyleInfo/>
</pivotTableDefinition>
```

Layout

The reference specified in the ref attribute on the location element specifies the location of the PivotTable body. The data area, row, column, and data fields and value items are located in this area. More specifically, the row fields begin below the A1-most cell in the reference, and the column fields begin adjacent to that cell, in the same row, extending out into the PivotTable body away from column A. [Note: How far below or across the field labels begin are dependent upon how many row, column, and data fields are shown in the PivotTable. More detail is provided below. end note]
[Note: All layout discussion and examples are given for outline mode layout. There two additional layout modes: compact and tabular. See Other layout modes below for a discussion of how those differ from outline mode. end note]

When encountering sheet boundaries, the PivotTable is truncated rather than wrapped, and as much as possible shall be shown.

The graphics given in this section are meant to illustrate layout only, and do not require implementation of any implied controls, like dropdowns or expand/collapse functionality.

Page Field Layout
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4 & A & B & & & & D \\
\hline 1 & & & & & & \\
\hline 2 & & SSN & & (AII) & \(\checkmark\) & \\
\hline 3 & & & & & & \\
\hline 4 & & State & \(\checkmark\) & City & \(\checkmark\) & Sum of Amount \\
\hline 5 & & \multicolumn{2}{|l|}{-CA} & & & 195.51 \\
\hline 6 & & \multirow[b]{2}{*}{\(\boxminus \mathrm{OR}\)} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{San Diego}} & 195.51 \\
\hline 7 & & & & & & 54.97 \\
\hline 8 & & \multirow[b]{3}{*}{EWA} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Portland Tillamook}} & 12.54 \\
\hline 9 & & & & & & 42.43 \\
\hline 10 & & & & & & 244.12 \\
\hline 11 & & & & Seatt & & 96.72 \\
\hline 12 & & & & Taco & & 79.83 \\
\hline 13 & & & & Ever & & 67.57 \\
\hline 14 & & Grand & & & & 494.6 \\
\hline
\end{tabular}

In the above picture, SSN is a page field, State and City are row fields, and Amount is a data field. There are no column fields.

Page fields allow you to filter the entire PivotTable report to display data for a single item or all items.
The page field area always ends (vertically) so that there is always 1 row of space between the page field area and the top row of the PivotTable body, and always begins (horizontally) in the same column as the A1-most column of the PivotTable body. Each page field occupies two cells: the A1-most for displaying the field name, and the next cell over for displaying the selected item values. [Example: (see above picture) If the top row in the PivotTable body reference is row 4, then page field layout ends (vertically) in row 2, and if the A1-most column of the PivotTable body is column B, then page field layout begins (horizontally) in column B. end example]

Aside from the number of fields in the page field area, there are two attributes of pivotTableDefinition that affect page field layout: pageOverThenDown and pageWrap. pageOverThenDown \(=1\) specifies that when there is more than 1 page field, lay them out horizontally across the sheet (extending in the direction of the PivotTable body area, away from column A) until the maximum specified in pageWrap is reached, and then begin a new row. If the pageWrap value is high and there are many page fields, then it is possible (and allowed) for page fields to extend beyond the edge of the PivotTable body. When laying out page fields in the same row (side by side), each shall be separated by a single column. However, multiple rows of page fields are not separated by single rows between them. pageOverThenDown \(=0\) specifies that when there is more than 1 page
field, lay them out vertically down the sheet (always keeping 1 row of space between the PivotTable body and page field area) until the maximum specified in pageWrap is reached, and then begin a new column. Again, for multiple page fields, if they shall occupy more than 1 column, then each column of page fields is separated by a single column, and multiple rows of page fields are not separated by single rows between them.
[Example: This example shows a PivotTable body occupying \(\mathrm{B5}: \mathrm{B6}\) and 6 page fields in the page field area, where pageOverThenDown \(=0\) and pageWrap \(=2\). This means that the first column of the page field area contains 2 page fields, and then, because the pageWrap value only allows 2 page fields per column, a new column of page fields is started, and so on until all 6 page fields are shown.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & A & B & C & D & E & F & G & H & & 1 & J \\
\hline 1 & & & & & & & & & & & \\
\hline 2 & & Postal Code & (AII) \(\nabla\) & & City & (AII) & & Last Name & (AII) & \(\checkmark\) & \\
\hline 3 & & State & (All) - & & SSN & (AII) & & Home Phone & (AII) & \(\checkmark\) & \\
\hline 4 & & & & & & & & & & & \\
\hline 5 & & Sum of Amount & & & & & & & & & \\
\hline 6 & & 494.6 & & & & & & & & & \\
\hline 7 & & & & & & & & & & & \\
\hline
\end{tabular}

The order of assignment of position within page field layout for this example is:
- Postal Code
- State
- City
- SSN
- Last Name
- Home Phone

Aside from the 6 page fields, the only other field in this PivotTable example is a data field called Amount. end example]
[Note: When the user gestures to add a page field and there are not enough free cells above the PivotTable body area to allow for page fields to be added, the application must determine the best response. The application may decide to shift the PivotTable down some number of rows to make room, or overwrite existing data or features that might be above the PivotTable, or simply block the user gesture completely. In any result, however, the application should adhere to the layout principles given above. end note]

Row Field Layout
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & A & B & & \multicolumn{2}{|c|}{C} & D \\
\hline 1 & & & & & & \\
\hline 2 & & SSN & & (All) & \(\bullet\) & \\
\hline 3 & & & & & & \\
\hline 4 & & State & \(\checkmark\) & City & \(\checkmark\) & Sum of Amount \\
\hline 5 & & -CA & & & & 195.51 \\
\hline 6 & & & & San D & & 195.51 \\
\hline 7 & & \(\bigcirc \mathrm{OR}\) & & & & 54.97 \\
\hline 8 & & & & Portl & & 12.54 \\
\hline 9 & & & & Tillan & & 42.43 \\
\hline 10 & & -WA & & & & 244.12 \\
\hline 11 & & & & Seatt & & 96.72 \\
\hline 12 & & & & Taco & & 79.83 \\
\hline 13 & & & & Ever & & 67.57 \\
\hline 14 & & Grand T & & & & 494.6 \\
\hline
\end{tabular}

The State and City fields are row fields, SSN is a page field, there are no column fields, and Amount is a data field.

Row fields provide for and specify how the data is summarized, grouped, and viewed as rows in the PivotTable.
The row field area always begins in the A1-most column of the PivotTable body area. The layout of page fields does not affect the layout of row fields.

Row Field Layout - 1 Row Field and 0 Column Fields
When there is only 1 row field and 0 column fields,
the first row field is located in the A1-most cell of the PivotTable body, and
the values for that field are expressed in the cells directly under that row field, in the same column.
[Example:
\begin{tabular}{|l|r|l|}
\hline State & \(\nabla\) Sum of Amount & \\
\hline CA & 195.51 & \\
OR & 54.97 & In this example, there are no page fields, no column fields, State is a row field, \\
WA & 244.12 & \\
\hline Grand Total & 494.6 & \\
& & Row Field Layout - 2 or More Row Fields and 0 O Column Fields \\
\hline
\end{tabular}

When there are 2 or more row fields and 0 column fields to be displayed,
- the row field labels are located adjacent to each other and in the same row as the first row field label
- Each corresponding set of values for the row field in question are located in the cells under that row field (same column)
- Innermost row field values (the ones closest to the data summary area) are grouped and organized by values in the next outer row field, in the following fashion: starting with the outermost row field, the first value is listed. For the next innermost row field, starting on the next row and over one column (toward the data summary area), the value list for that field begins. If that is the innermost row field, all values are listed for that row field, and then moving down a row and back to the outer column, the next value for the outermost row field is listed. If there are more inner row fields, the same layout rules apply until the innermost row field is reached.
- In this case of 0 column fields, only the top row of the PivotTable body is used for row field labels.
[Example:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & & c & D & & E \\
\hline 1 & & & & & & & \\
\hline 2 & & & & & & & \\
\hline 3 & & & & & & & \\
\hline 4 & & Postal Cor & State & \(\checkmark\) & City & \(\checkmark\) & Sum of Amount \\
\hline 5 & & \(\bullet 09999\) & & & & & 54.97 \\
\hline 6 & & & \(\boxminus \mathrm{OR}\) & & & & 54.97 \\
\hline 7 & & & & & Portla & & 12.54 \\
\hline 8 & & & & & Tillan & ook & 42.43 \\
\hline 9 & & \(\boxminus 12345\) & & & & & 195.51 \\
\hline 10 & & & \(\square C A\) & & & & 195.51 \\
\hline 11 & & & & & San D & & 195.51 \\
\hline 12 & & \(\boxminus 456789\) & & & & & 244.12 \\
\hline 13 & & & -WA & & & & 244.12 \\
\hline 14 & & & & & Seatt & & 96.72 \\
\hline 15 & & & & & Tacom & & 79.83 \\
\hline 16 & & & & & Evere & & 67.57 \\
\hline 17 & & Grand Total & & & & & 494.6 \\
\hline
\end{tabular}

In this example Postal Code, State, and City are row fields and Amount is a data field. There are no page fields and no column fields. end example]

\section*{Row Field Layout - 1 or More Row Fields and 1 or More Column Fields}

When there are row fields and 1 or more column fields, the row fields are not located in the topmost row of the PivotTable body. Instead the row fields are located in the \(\mathrm{n}+1\) st topmost row of the PivotTable body, where n is the number of column fields in the PivotTable.

\section*{[Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & & C & & D & E \\
\hline 1 & & & & & & & \\
\hline 2 & & & & & & & \\
\hline 3 & & & & & & & \\
\hline 4 & & & & & & & \\
\hline 5 & & Sum of Amount & & Postal Code \(\square\) & State & \(\checkmark\) & City \\
\hline 6 & & & & \(\square 09999\) & & & \\
\hline 7 & & & & \(\square\) OR & & & OR Total \\
\hline 8 & & Last Name & \(\checkmark\) & Portland & Tillam & ook & \\
\hline 9 & & Cencini & & 12.54 & & & 12.54 \\
\hline 10 & & Freehafer & & & & & \\
\hline 11 & & Giussani & & & & & \\
\hline 12 & & Hellung-Larsen & & & & & \\
\hline 13 & & Kotas & & & & 42.43 & 42.43 \\
\hline 14 & & Neipper & & & & & \\
\hline 15 & & Sergienko & & & & & \\
\hline 16 & & Thorpe & & & & & \\
\hline 17 & & Zare & & & & & \\
\hline 18 & & Grand Total & & 12.54 & & 42.43 & 54.97 \\
\hline
\end{tabular}

This example shows 3 column fields in the PivotTable (Postal Code, State, and City), a single row field Last Name, and a single data field Amount. The PivotTable body area begins at B5 and the row field label Last Name is located in the 4th row of the PivotTable body area, in row 8 of the spreadsheet, cell B8. Since Last Name is the only row field in this example, its row field values begin and are listed directly under the label. end example]

Column Field Layout

State and City are column fields, Last Name is a row field, and Amount is a data field.
Column fields provide for and specify how the data is summarized, grouped, and viewed horizontally in the PivotTable.

The layout of page fields does not affect the layout of column fields.
The column field label area is always located in the top row of the PivotTable body.

\section*{Column Field Layout - 0 Row Fields and 0 Data Fields}
- When there are no row fields and no data fields, then the first column field is located in the A1-most column of the PivotTable body.
- When there are multiple column fields
- the labels are located adjacent to each other in the same row as the first column field label.
- Each corresponding set of values for each of the column fields are located in the rows directly below the column field label row and above the data area, one row of values for each column field.
- The first column field's values are located in the row directly under the column field row.
- Column field values are displayed starting directly underneath the first column field label's cell and filling adjacent cells in the same row. The second column field's values are located two rows under the column field label row, and values are again displayed starting directly underneath the first column field label's cell, filling adjacent cells in the same manner as the first set of values. The layout of column field values continues in this way until all column field values are displayed.

Inner column field values (the ones closer to the data summary area) are grouped and organized by values in the next outer column field, similarly to how row field values are grouped. [Example:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & C & D & E & F & G \\
\hline 1 & & & & & & & \\
\hline 2 & & & & & & & \\
\hline 3 & & & & & & & \\
\hline 4 & & & & & & & \\
\hline 5 & & State & City & & & & \\
\hline 6 & & \(\square\) CA & \(\square\) OR & & \(\square\) WA & & \\
\hline 7 & & San Diego & Portland & Tillamook & Seattle & Tacoma & Everett \\
\hline 8 & & & & & & & \\
\hline 9 & & & & & & & \\
\hline 10 & & & & & & & \\
\hline 11 & & & & & & & \\
\hline 12 & & & & & & & \\
\hline
\end{tabular}

In this example, State and City are column fields, and there are no row fields, no page fields, and no data fields. end example]

Column Field Layout - 1 or More Column Fields and 1 or More Row Fields
When there are 1 or more column fields and 1 or more row fields in the PivotTable, then:
- First, row fields are displayed according to the row field layout described earlier
- The first column field label is located in the top row of the PivotTable body area, and adjacent to any row field labels that are displayed.
- Multiple column fields shall be displayed as described earlier
[Example: In this example, State and City are column fields, Amount is a data field, and Last Name is a row field.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & & C & D & E & F & G & H \\
\hline 1 & & & & & & & & & \\
\hline 2 & & & & & & & & & \\
\hline 3 & & & & & & & & & \\
\hline 4 & & & & & & & & & \\
\hline 5 & & Sum of Amount & & State & City & & & & \\
\hline 6 & & & & \(\square C A\) & \(\square\) OR & & \(\square\) WA & & \\
\hline 7 & & Last Name & \(\checkmark\) & San Diego & Portland & Tillamook & Seattle & Tacoma & Everett \\
\hline 8 & & Cencini & & & 12.54 & & & & \\
\hline 9 & & Freehafer & & & & & 53.34 & & \\
\hline 10 & & Giussani & & & & & & 79.83 & \\
\hline 11 & & Hellung-Larsen & & & & & & & 67.57 \\
\hline 12 & & Kotas & & & & 42.43 & & & \\
\hline 13 & & Neipper & & 63.67 & & & & & \\
\hline 14 & & Sergienko & & 50.69 & & & & & \\
\hline 15 & & Thorpe & & 81.15 & & & & & \\
\hline 16 & & Zare & & & & & 43.38 & & \\
\hline
\end{tabular}
end example]

Data Field Layout
\begin{tabular}{|c|c|c|c|c|}
\hline 4 & A & B & & C \\
\hline 1 & & & & \\
\hline 2 & & & & \\
\hline 3 & & & & \\
\hline 4 & & & & \\
\hline 5 & & Last Name & \(\checkmark\) & Sum of Amount \\
\hline 6 & & Cencini & & 12.54 \\
\hline 7 & & Freehafer & & 53.34 \\
\hline 8 & & Giussani & & 79.83 \\
\hline 9 & & Hellung-Larsen & & 67.57 \\
\hline 10 & & Kotas & & 42.43 \\
\hline 11 & & Neipper & & 63.67 \\
\hline 12 & & Sergienko & & 50.69 \\
\hline 13 & & Thorpe & & 81.15 \\
\hline 14 & & Zare & & 43.38 \\
\hline 15 & & & & \\
\hline
\end{tabular}

Last Name is a row field, Sum of Amount is a data field label, and the data underneath Sum of Amount are the summarized data values.

Data fields specify which fields are summarized in the PivotTable report.

The summarized data always appears below the column field and value area, and any row field values are closer to column A than any of the summarized data. When there are no row fields and no column fields, the summarized data is located directly under the A1-most cell of the PivotTable body. Each cell in the summarized data area represents an aggregation of a set of records. The set of records that a particular cell is summarizing is determined by looking at the row field value(s) and column field value(s) that intersect on that particular cell, and then determining which records in the source data contain all of those row and column field values.

\section*{Data Field Layout - 0 Row Fields and 0 Column Fields and 1 Data Field}

When there are no row fields and no column fields and only 1 data field being summarized, the data field label is located in the A1-most cell of the PivotTable body.
[Example:
\begin{tabular}{|l|l|r|}
\hline & A & B \\
\hline 1 & & \\
\hline 2 & & Sum of Amount \\
\hline 3 & & 494.6 \\
\hline
\end{tabular}

In this example there is only 1 field in the PivotTable, a data field Amount. end example]

\section*{Data Field Layout - More Than 1 Data Field}

When there is more than 1 data field being summarized,
- An additional field (in these examples labeled "Values", but the label can be specified by the user) is added to the field list, located as either a row field label or a column field label (depending on user choice and behaviour as specified by the dataOnRows and dataPosition attributes), and
- each data field being summarized is displayed either in the row area (when the additional field is a row field) as if it were an item value of that row field (see row field layout description above), or in the column area (when the additional field is a column field) as if it were an item value of that column field (see column field layout description above).

\section*{[Example:}
\begin{tabular}{|r|r|r|r|}
\hline & A & \multicolumn{1}{c|}{ B } & C \\
\hline 1 & & & \\
\hline 2 & \multicolumn{2}{|c|}{ Values } & \\
\hline 3 & \multicolumn{2}{|c|}{ Sum of Amount Sum of Tax } \\
\hline 4 & & \multicolumn{2}{|c|}{494.6} \\
\hline
\end{tabular}

In this example there are 2 data fields Amount and Tax. There are no page fields, no column fields, no row fields, and the additional field labeled Values is placed on the column area.
\begin{tabular}{|c|l|c|}
\hline & A & \multicolumn{1}{|c|}{ B } \\
\hline 1 & & C \\
\hline 2 & Values & \\
\hline 3 & Sum of Amount & 494.6 \\
\hline 4 & Sum of Tax & 28.71 \\
\hline
\end{tabular}

Above is the same PivotTable, with the Values field placed on the row area.
end example]
Data Field Layout - 0 Row Fields, 1 or More Column Fields, and 1 Data Field
When there are no row fields, 1 or more column fields, and only 1 data field being summarized, the data field label is located in the A1-most column of the PivotTable body, directly under the column field area.
[Example:
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 & A & B & C & D & E \\
\hline 1 & & & & & \\
\hline 2 & & & State \(\square\) & & \\
\hline 3 & & & CA & OR & WA \\
\hline 4 & & Sum of Amount & 195.51 & 54.97 & 244.12 \\
\hline
\end{tabular}

In this example there is 1 column field State and 1 data field Amount. There are no row fields or page fields. end example]

Data Field Layout - 0 Column Fields, 1 or More Row Fields, and 1 Data Field
When there are no column fields, 1 or more row fields, and only 1 data field being summarized, the data field label is located in the same row as the row field labels, above the data summary area.

\section*{[Example:}
\begin{tabular}{|l|l|l|r|}
\hline & A & \multicolumn{1}{|c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & & \\
\hline 2 & State & Sum of Amount \\
\hline 3 & CA & 195.51 \\
\hline 4 & OR & 54.97 \\
\hline 5 & WA & 244.12 \\
\hline
\end{tabular}

In this example there is 1 data field Amount and 1 row field State. There are no column fields or page fields. end example]

Subtotal and grand total layout

If subtotals are on, the values for row subtotals are placed at either the top of each group of data being summarized or at the bottom of each group, as indicated by the subtotalTop attribute value on the pivotField element. Row subtotal values appear in the same column as the data being subtotalled. If placed at the top of the group, then the subtotal value for the group appears in the row above the group of values, in the same row as the group's parent row field value. When there is only a single row field, no subtotal is shown.
[Example:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & A & \multicolumn{2}{|l|}{B} & \multicolumn{2}{|l|}{C} & & D & E & \multirow[b]{4}{*}{Subtotal for Postal Code 09999} \\
\hline 1 & & & & & & & & & \\
\hline 2 & & Postal Code & \(\checkmark\) & State & \(\checkmark\) & City & \(\checkmark\) & Sum of Amount & \\
\hline 3 & & \(\bullet 09999\) & & & & & & 54.97 & \\
\hline 4 & & & & \(\boxminus \mathrm{OR}\) & & & & 54.97 & --- Subtotal for State OR \\
\hline 5 & & & & & & Portl & land & 12.54 & \\
\hline 6 & & & & & & Tillan & mook & 42.43 & \\
\hline 7 & & \(\square 12345\) & & & & & & 195.51 & .-. Sutotal for Postal Code 12345 \\
\hline 8 & & & & \(\bullet C A\) & & & & 195.51 & - Subtotal for State CA \\
\hline 9 & & & & & & San D & Diego & 195.51 & \\
\hline 10 & & \(\bullet 456789\) & & & & & & 244.12 & - Subtotal for Postal Code 456789 \\
\hline 11 & & & & \(\square W A\) & & & & 244.12 & --- Subtotal for State WA \\
\hline 12 & & & & & & Seatt & & 96.72 & \\
\hline 13 & & & & & & Tacom & ma & 79.83 & \\
\hline 14 & & & & & & Evere & & 67.57 & \\
\hline
\end{tabular}

In this example, there are 3 row fields (Postal Code, State, and City) and 1 data field Amount.
end example]
If row subtotals are placed at the bottom of each data group, then a new row is inserted directly below the data group in question, and a new row field value is inserted, in the same column as the row field in question, whose caption indicates that this row represents a subtotal value.

\section*{[Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & A & \multicolumn{2}{|l|}{B} & \multicolumn{2}{|l|}{C} & \multicolumn{2}{|c|}{D} & E & \\
\hline 1 & & & & & & & & & \\
\hline 2 & & Postal Code & \(\checkmark\) & State & \(\checkmark\) & City & - & Sum of Amount & \\
\hline 3 & & \(\bullet 09999\) & & & & & & & \\
\hline 4 & & & & \(\bullet\) OR & & & & & \\
\hline 5 & & & & & & Port & & 12.54 & \\
\hline 6 & & & & & & Tilla & & 42.43 & \\
\hline 7 & & & & OR To & & & & 54.97 & \\
\hline 8 & & 09999 Total & & & & & & 54.97 & \\
\hline 9 & & \(\bullet 12345\) & & & & & & & for Postal Code 09999 \\
\hline 10 & & & & \(\square \mathrm{CA}\) & & & & & \\
\hline 11 & & & & & & San & ego & 195.51 & tal for State \\
\hline 12 & & & & CA Tot & & & & 195.51 & \\
\hline 13 & & 12345 Total & & & & & & 195.51 & \\
\hline 14 & & \(\bullet 456789\) & & & & & & & ubtotal for Postal Code 12345 \\
\hline 15 & & & & \(\square W A\) & & & & & \\
\hline 16 & & & & & & Seat & & 96.72 & \\
\hline 17 & & & & & & Taco & & 79.83 & \\
\hline 18 & & & & & & Ever & & 67.57 & Subtotal for State WA \\
\hline 19 & & & & WA To & & & & 244.12 & \\
\hline 20 & & 456789 Total & & & & & & 244.12 & Subtotal for Postal Code 456789 \\
\hline
\end{tabular}

In this example, there are 3 row fields (Postal Code, State, and City) and 1 data field Amount.

\section*{end example]}

If subtotals are on, for column subtotals a new column is inserted directly after the data group being subtotalled. A new column field value is inserted, in the same row as the column field in question, whose caption indicates that this column represents a subtotal value. When there is only a single column field, no subtotal is shown.

\section*{[Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & & B & C & D & E & F & G & H & 1 \\
\hline 1 & & & & & & & & & \\
\hline 2 & & & Postal Code & State & City & & & & \\
\hline 3 & & & \(\square 09999\) & & & 09999 Total & \(\square 12345\) & & 12345 Total \\
\hline 4 & & & \(\square \mathrm{OR}\) & & OR Total & & \(\square\) CA & CA Total & \\
\hline 5 & & & Portland & Tillamook & & & San Diego & & \\
\hline 6 & & Sum of Amount & 12.54 & 42.43 & 54.97 & 54.97 & 195.51 & 195.51 & 195.51 \\
\hline
\end{tabular}

In this example, there are 3 column fields (Postal Code, State, and City) and a data field Amount. end example]
If row grand totals are on and there are column fields, a new column item is inserted at the very edge of the PivotTable body furthest away from column A, in the same row as the outermost column field values. The caption indicates that this is a grand total, and the values total all values across the row. When row grand totals are on but there are no column fields, no row grand total is shown.

\section*{[Example:}
\begin{tabular}{r|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F \\
\hline 1 & & & & & \\
\hline 2 & & \multicolumn{7}{|c|}{ State } & \\
\hline 3 & & CA & OR & WA & Grand Total \\
\hline 4 & Sum of Amount & 195.51 & 54.97 & 244.12 & 494.6 \\
\hline
\end{tabular}

In this example there is 1 column field State and 1 data field Amount, and row grand totals are on.
end example]
When column grand totals are on and there are row fields, a new row item is inserted at the very bottom of the PivotTable body, in the same column as the outermost row field values. The caption indicates that this is a grand total, and the values total all values in the column. When column grand totals are on but there are no row fields, no column grand total is shown.

\section*{[Example:}
\begin{tabular}{|l|l|l|l|}
\hline & A & \multicolumn{1}{|c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & & \\
\hline 2 & State & Sum of Amount \\
\hline 3 & CA & 195.51 \\
\hline 4 & OR & 54.97 \\
\hline 5 & WA & 244.12 \\
\hline 6 & \multicolumn{2}{|l|}{ Grand Total } & \(\mathbf{4 9 4 . 6}\) \\
\hline
\end{tabular}

In this example there is 1 row field State and 1 data field Amount, and column grand totals are on.

\section*{end example]}

\section*{Other Layout Modes}

A PivotTable can be displayed in Compact, Outline, or Tabular form. In addition, Classic layout can be applied to any of the 3 layout forms.

Outline mode has been discussed in the above sections, and all examples are shown using outline mode with classic layout off (gridDropZones \(=0\)).

For Compact mode, the layout differs from outline mode by:
- Instead of multiple row fields occupying multiple columns, the A1-most column of the PivotTable body contains all row field labels and values. A single label, "Row Labels", is located where the first (outermost) row label is placed. When there are multiple row fields, the outermost list of values is not indented, then next inner row field values are indented (as specified in the indent attribute), and so on until each set of values for inner row fields are shown.
- Instead of multiple column fields being listed and located across a row, the first column field position is labeled "Column Labels", and there is only this label, located in the first column field position.

\section*{[Example:}

Outline mode:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & A & \multicolumn{2}{|l|}{B} & C & & D & & E & & F & & G \\
\hline 1 & & & & & & & & & & & & \\
\hline 2 & & \multicolumn{2}{|l|}{Sum of Amount} & & & \multirow[t]{2}{*}{Postal Code
\[
-09999
\]} & \multirow[t]{2}{*}{\(\checkmark\)} & \multirow[t]{2}{*}{Last Name} & \multirow[t]{2}{*}{\(\checkmark\)} & & & \\
\hline 3 & & & & & & & & & & \(\boxminus 12345\) & & \\
\hline 4 & & State & \(\checkmark\) & City & \(\checkmark\) & Cencini & & Kotas & & Neipper & & Sergienko \\
\hline 5 & & \(\square C A\) & & & & & & & & & & \\
\hline 6 & & & & San Die & & & & & & & 63.67 & 50.69 \\
\hline 7 & & \(\Theta \mathrm{OR}\) & & & & & & & & & & \\
\hline 8 & & & & Portland & & & 12.54 & & & & & \\
\hline 9 & & & & Tillamo & & & & & 42.43 & & & \\
\hline 10 & & \(\boxminus W A\) & & & & & & & & & & \\
\hline 11 & & & & Seattle & & & & & & & & \\
\hline 12 & & & & Tacoma & & & & & & & & \\
\hline 13 & & & & Everett & & & & & & & & \\
\hline
\end{tabular}

The above picture shows 2 column fields (Postal Code and Last Name), 1 data field (Amount), and 2 row fields (State and City). There are no page fields shown.

Same PivotTable in compact mode:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline , & A & B & C & D & E & F \\
\hline 1 & & & & & & \\
\hline 2 & & Sum of Amount & Column Labels \(\square\) & & & \\
\hline 3 & & & \(\square 09999\) & & \(\square 12345\) & \\
\hline 4 & & Row Labels & Cencini & Kotas & Neipper & Sergienko \\
\hline 5 & & \(\square\) CA & & & & \\
\hline 6 & & San Diego & & & 63.67 & 50.69 \\
\hline 7 & & \(\Theta\) OR & & & & \\
\hline 8 & & Portland & 12.54 & & & \\
\hline 9 & & Tillamook & & 42.43 & & \\
\hline 10 & & \(\square\) WA & & & & \\
\hline 11 & & Seattle & & & & \\
\hline 12 & & Tacoma & & & & \\
\hline 13 & & Everett & & & & \\
\hline
\end{tabular}

The above picture shows all column field labels collapsed into a single label Column Labels and all row field labels collapsed into a single label Row Labels. There is 1 data field Amount and no page fields. end example]

For Tabular mode, the layout differs from outline mode by:
Instead of beginning new inner row field values on the next row down from the outer row field value parent, the first next-inner row field value is located on the same row as the parent value.
Row subtotals can only appear at the bottom of a group, not at the top

\section*{[Example:}

Outline mode:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & & \multicolumn{2}{|l|}{C} & D & E \\
\hline 1 & & & & & & & \\
\hline 2 & & Postal Code & \(\checkmark\) & State & \(\nabla\) & City & Sum of Amount \\
\hline 3 & & \(\bullet 09999\) & & & & & \\
\hline 4 & & & & \(\bullet\) OR & & & \\
\hline 5 & & & & & & Portland & 12.54 \\
\hline 6 & & & & & & Tillamook & 42.43 \\
\hline 7 & & \(\boxminus 12345\) & & & & & \\
\hline 8 & & & & -CA & & & \\
\hline 9 & & & & & & San Diego & 195.51 \\
\hline 10 & & \(\boxminus 456789\) & & & & & \\
\hline 11 & & & & EWA & & & \\
\hline 12 & & & & & & Seattle & 96.72 \\
\hline 13 & & & & & & Tacoma & 79.83 \\
\hline 14 & & & & & & Everett & 67.57 \\
\hline
\end{tabular}

The above picture shows 3 row fields (Postal Code, State, and City) and 1 data field, Amount.

Same PivotTable in tabular mode:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & & \multicolumn{2}{|l|}{C} & D & E \\
\hline 1 & & & & & & & \\
\hline 2 & & Postal Code & \(\checkmark\) & State & \(\checkmark\) & city & Sum of Amount \\
\hline 3 & & \(\square 09999\) & & \(\boxminus \mathrm{OR}\) & & Portland & 12.54 \\
\hline 4 & & & & & & Tillamook & 42.43 \\
\hline 5 & & \(\bigcirc 12345\) & & \(\Theta C A\) & & San Diego & 195.51 \\
\hline 6 & & \(\bullet 456789\) & & \(\square W A\) & & Seattle & 96.72 \\
\hline 7 & & & & & & Tacoma & 79.83 \\
\hline 8 & & & & & & Everett & 67.57 \\
\hline
\end{tabular}

The above picture shows 3 row fields (Postal Code, State, and City) and 1 data field, Amount. end example]

For Classic layout, the layout differs by:
- When there are row fields, no column fields, and 1 data field, instead of displaying the data field label adjacent to and in the same row as the row field labels, the data field label is located in the A1-most cell of the PivotTable body, and the row directly under this cell contains the row field labels.
- In the exact location where the data field label is located when classic layout is off, a label titled "Total" is displayed when classic layout is on.
[Example:
Outline mode, classic layout off:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4 & A & B & C & & & D & & E \\
\hline 1 & & & & & & & & \\
\hline 2 & & Postal Code & State & \(\checkmark\) & city & \(\checkmark\) & Sum of & Amount \\
\hline 3 & & \(\bullet 09999\) & & & & & & \\
\hline 4 & & & \(\Theta \mathrm{OR}\) & & & & & \\
\hline 5 & & & & & Portl & tland & & 12.54 \\
\hline 6 & & & & & Tillan & mook & & 42.43 \\
\hline 7 & & \(\boxminus 12345\) & & & & & & \\
\hline 8 & & & \(\square \mathrm{CA}\) & & & & & \\
\hline 9 & & & & & San D & Diego & & 195.51 \\
\hline 10 & & \(\bullet 456789\) & & & & & & \\
\hline 11 & & & \(\square W\) A & & & & & \\
\hline 12 & & & & & Seatt & ttle & & 96.72 \\
\hline 13 & & & & & Tacom & oma & & 79.83 \\
\hline 14 & & & & & Evere & rett & & 67.57 \\
\hline
\end{tabular}

The above picture shows 3 row fields (Postal Code, State, and City) and 1 data field, Amount.

Same PivotTable in Outline mode, classic layout applied:

The above picture shows 3 row fields (Postal Code, State, and City) and 1 data field, Amount.

\section*{end example]}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
applyAlignmentFor \\
mats (Apply \\
Alignment Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat alignment properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyBorderForma \\
ts (Apply Border \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat border properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyFontFormats \\
(Apply Font \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat font properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyNumberForm \\
ats (Apply Number \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat number format properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyPatternForm \\
ats (Apply Pattern \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat pattern properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
applyWidthHeight \\
Formats (Apply \\
Width / Height \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat width/height properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline asteriskTotals (Asterisk Totals) & \begin{tabular}{l}
Specifies a boolean value that indicates whether an asterisks should be displayed in subtotals and totals when visual totals are not used in OLAP -based PivotTables. \\
A value of 1 or true indicates an asterisks are displayed in subtotals and totals for OLAP PivotTables when visual tools are not available. \\
A value of 0 or false indicates an asterisk will not be displayed. This attribute depends on the implementation and availability of visual tools in the application user interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
autoFormatId \\
(Auto Format Id)
\end{tabular} & \begin{tabular}{l}
Identifies which legacy table autoformat to apply. \\
Annex D contains a listing of the supported PivotTable AutoFormats, example formatting, and a sample workbook with each of those AutoFormats applied. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline cacheId (PivotCache Definition Id) & \begin{tabular}{l}
Specifies the identifier of the related PivotCache definition. This Id is listed in the pivotCaches collection in the workbook part. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline chartFormat (Chart Format Id) & \begin{tabular}{l}
Specifies the next chart formatting identifier to use on the PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline colGrandTotals (Grand Totals On Columns) & \begin{tabular}{l}
Specifies a boolean value that indicates whether grand totals should be displayed for the PivotTable columns. \\
A value of 1 or true indicates grand totals should be displayed. \\
A value of 0 or false indicates grand totals should not be displayed for PivotTable columns. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \(\begin{array}{l}\text { colHeaderCaption } \\
\text { (Column Header } \\
\text { Caption) }\end{array}\) & \(\begin{array}{l}\text { Specifies the string to be displayed in column header in compact mode. This attribute } \\
\text { depends on whether the application implements a compact mode for displaying } \\
\text { PivotTables in the user interface. } \\
\text { The possible values for this attribute are defined by the ST_Xstring simple type } \\
\text { (§22.9.2.19). }\end{array}\) \\
\hline \(\begin{array}{l}\text { compact (Compact } \\
\text { New Fields) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether new fields should have their compact } \\
\text { flag set to true. }\end{array}\) \\
A value of 1 or true indicates new fields should default to compact mode equal to true.
\end{tabular}\(\}\)\begin{tabular}{l}
A value of 0 or false indicates new fields should default to compact mode equal to false. \\
This attribute depends on whether the application implements a compact mode in the \\
user interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \begin{tabular}{l}
A value of 1 or true indicates that this field is located in the row area. \\
A value of \(\theta\) or false indicates that this field is located in the column area. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{ll}
dataPosition \\
(Default Data Field \\
Position)
\end{tabular} & \begin{tabular}{l}
Specifies the position for the field representing multiple data field in the PivotTable, \\
whether that field is located in the row area or column area. \\
Missing attribute indicates this field is last, or innermost in the field list.
\end{tabular} \\
\hline 0indicates this field is first, or outermost in the field list. \\
1 indicates this field is second in the field list. \\
2 indicates this field is third in the field list, and increasing values follow this pattern. \\
If this value is higher than the number of fields in the field list, then this field is last, or \\
innermost in the field list. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
A value of 0 or false indicates the user is prevented from drilling down pivot item. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
enableFieldPropert \\
ies (Enable Field \\
Properties)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the user is prevented from displaying PivotField properties. \\
A value of 1 or true indicates the user can display pivot field properties. \\
A value of 0 or false indicates the user cannot display pivot field properties. This attribute depends on how pivot field properties are exposed in the application user interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline enableWizard (Enable PivotTable Wizard) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the user is prevented from displaying the PivotTable wizard. \\
A value of 1 or true indicates the user can display the PivotTable wizard. \\
A value of \(\theta\) or false indicates the user can not display the PivotTable wizard. This attribute depends on whether the application exposes a wizard or similar mechanism for creating and working with PivotTables in the user interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline errorCaption (Error Caption) & \begin{tabular}{l}
Specifies the string to be displayed in cells that contain errors. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline fieldListSortAscen ding (Default Sort Order) & \begin{tabular}{l}
Specifies a boolean value that indicates whether fields in the PivotTable are sorted in non-default order in the field list. \\
A value of 1 or true indicates fields for the PivotTable are sorted in the field list. The sort order from the data source is applied for range-based PivotTables. Alphabetical sorting is applied for external data PivotTables. \\
A value of 0 or false indicates fields in the field list are not sorted. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline fieldPrintTitles (Field Print Titles) & Specifies a boolean value that indicates whether the row and column titles from the PivotTable should be printed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & A value of 1 or true indicates row and column titles should be printed. \\
\hline & \(\begin{array}{l}\text { A value of } 0 \text { or false indicates row and column titles should not be printed. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\
\text { datatype. }\end{array}\) \\
\hline \(\begin{array}{l}\text { grandTotalCaption } \\
\text { (Grand Totals } \\
\text { Caption) }\end{array}\) & \(\begin{array}{l}\text { Specifies the string to be displayed for grand totals. } \\
\text { The possible values for this attribute are defined by the ST_Xstring simple type } \\
\text { (§22.9.2.19). }\end{array}\) \\
\hline \(\begin{array}{l}\text { gridDropZones } \\
\text { (Enable Drop Zones) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether the in-grid drop zones should be } \\
\text { displayed at runtime, and whether classic layout is applied. } \\
\text { A value of } 1 \text { or true indicates in-grid drop zones should be displayed and classic layout } \\
\text { should be applied to the PivotTable. }\end{array}\) \\
A value of \(\theta\) or false indicates in-grid drop zones should be disabled and classic layout \\
should not be applied. \\
[Note: Grid drop zones are optional runtime UI, determined by the application, that \\
indicate to the user the locations of the page, row, column, and data fields in the \\
PivotTable report. See layout discussion under pivotTableDefinition for the precise \\
locations of these areas. end note]
\end{tabular}\(\}\)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
itemPrintTitles \\
(Item Print Titles)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether Pivotltem names should be repeated at \\
the top of each printed page. \\
A value of 1 or true indicates pivot items names should be repeated at the top of each \\
page. \\
A value of \(\theta\) or false indicates should not be repeated. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
mdxSubqueries \\
(MDX Subqueries \\
Supported)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether MDX sub-queries are supported by OLAP \\
data provider for this PivotTable.
\end{tabular} \\
A value of 1 or true indicates MDX sub-queries are supported by the OLAP data provider. \\
A value of \(\theta\) or false indicates MDX sub-queries are not supported.
\end{tabular}\(|\)\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \(\begin{array}{l}\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\
\text { datatype. }\end{array}\) \\
\hline name (Name) & \(\begin{array}{l}\text { Specifies the PivotTable name. } \\
\text { The possible values for this attribute are defined by the ST_Xstring simple type } \\
\text { (§22.9.2.19). }\end{array}\) \\
\hline \(\begin{array}{l}\text { outline (Outline } \\
\text { New Fields) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether new fields should have their outline } \\
\text { flag set to true. }\end{array}\) \\
A value of 1 or true indicates new fields are created with outline equal to true.
\end{tabular}\(\}\)\begin{tabular}{l}
A value of \(\theta\) or false indicates new fields are created with outline equal to false. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \\
\hline (Table Style Name) & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
preserveFormattin \\
g (Preserve \\
Formatting)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the formatting applied by the user to \\
the PivotTable cells is discarded on refresh. \\
A value of 1 or true indicates the formatting applied by the end user is discarded on \\
refresh.
\end{tabular} \\
\hline A value of \(\theta\) or false indicates the end-user formatting is retained on refresh. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline Caption) & The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19). \\
\hline showCalcMbrs (Show Calculated Members) & \begin{tabular}{l}
Specifies a boolean value that indicates whether calculated members should be shown in the PivotTable view. This attribute applies to PivotTables from OLAP-sources only. \\
A value of 1 or true indicates that calculated members should be shown. \\
A value of \(\theta\) or false indicates calculated members should not be shown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline showDataDropDo wn (Show Drop Down) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the drop-down lists for the fields in the PivotTable should be hidden. This attribute depends on whether the application implements drop down lists or similar mechanism in the user interface. \\
A value of 1 or true indicates drop down lists are displayed for fields. \\
A value of 0 or false indicates drop down lists will not be displayed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline showDataTips (Show ToolTips on Data) & \begin{tabular}{l}
Specifies a boolean value that indicates whether tooltips should be displayed for PivotTable data cells. \\
A value of 1 or true indicates tooltips are displayed. \\
A value of 0 or false indicates tooltips will not be displayed. This attribute depends on whether the application employs tooltips or similar mechanism in the user interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline showDrill (Show Expand Collapse) & \begin{tabular}{l}
Specifies a boolean value that indicates whether drill indicators should be hidden. \\
A value of 1 or true indicates drill indicators are displayed. \\
A value of \(\theta\) or false indicates drill indicators will not be displayed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline showDropZones (Show Drop Zones) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the PivotTable should display large drop zones when there are no fields in the data region. \\
A value of 1 or true indicates a large drop zone is displayed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
A value of 0 or false indicates a large drop zone will not be displayed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showEmptyCol \\
(Show Empty \\
Column)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to include empty columns in the table. \\
A value of 1 or true indicates empty columns are included in the PivotTable. \\
A value of \(\theta\) or false indicates empty columns are excluded.
\end{tabular} \\
\hline \begin{tabular}{l}
showEmptyRow \\
(Show Empty Row)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to include empty rows in the table. \\
datatype.
\end{tabular} \\
A value of 1 or true indicates empty rows are included in the PivotTable. \\
A value of 0 or false indicates empty rows are excluded.
\end{tabular}, \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showMemberProp \\
ertyTips (Show \\
Member Property \\
ToolTips)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether member property information should be \\
omitted from PivotTable tooltips.
\end{tabular} \\
A value of 1 or true indicates member property information is included. \\
A value of \(\theta\) or false indicates member property information is excluded. This attribute \\
depends on whether the application employs tooltips or similar mechanism in the user \\
interface. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
tag (PivotTable \\
Custom String)
\end{tabular} & \begin{tabular}{l}
Specifies a user-defined string that is associated with this PivotTable. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(\$22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
updatedVersion \\
(PivotTable Last \\
Updated Version)
\end{tabular} & \begin{tabular}{l}
Specifies the version of the application that last updated the PivotTable view. This \\
attribute is application-dependent. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedByte \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
useAutoFormatting \\
(Auto Formatting)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether legacy auto formatting has been applied \\
to the PivotTable view.
\end{tabular} \\
A value of 1 or true indicates that legacy auto formatting has been applied to the \\
PivotTable. \\
A value of 0 or false indicates that legacy auto formatting has not been applied to the \\
PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT pivotTableDefinition) is located in §A.2. end note]

\subsection*{18.10.1.74 pivotTableStyleInfo (PivotTable Style)}

Represent information on style applied to the PivotTable.
[Example:
```
<sh:pivotTableStyleInfo name="PivotStyleLight16" showRowHeaders="1"
    showColHeaders="1" showRowStripes="0" showColStripes="0" showLastColumn="1"/>
```
end example]
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline name (Table Style Name) & \begin{tabular}{l}
Specifies the name of the table style to use with this table. \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline showColHeaders (Show Table Style Column Header Formatting) & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show column headers for the table. \\
A value of 1 or true indicates column headers are shown. \\
A value of 0 or false indicates column headers are omitted. \\
'True' if table style column header formatting should be displayed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showColStripes \\
(Show Column \\
Stripes)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show column stripe formatting for the table. \\
A value of 1 or true indicates column stripe formatting is shown. \\
A value of 0 or false indicates no column formatting is shown. \\
True if table style column stripe formatting should be displayed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline showLastColumn (Show Last Column) & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show the last column. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showRowHeaders \\
(Show Row Header Formatting)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether to show row headers for the table. \\
A value of 1 or true indicates table style formatting is displayed. \\
A value of 0 or false indicates table style formatting will not be displayed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
showRowStripes \\
(Show Row Stripes)
\end{tabular} & Specifies a boolean value that indicates whether to show row stripe formatting for the table. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & A value of 1 or true indicates row stripe formatting is displayed. \\
A value of \(\theta\) or false indicates no row formatting is shown. \\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotTableStyle) is located in §A.2. end note]

\subsection*{18.10.1.75 query (Query)}

Represents an OLAP sheet data cached query.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
mdx (MDX Query \\
String)
\end{tabular} & \begin{tabular}{l}
Specifies the Multidimensional Expressions (MDX) query string. \\
[Note: Data connectivity can use a number of different technologies. One example of \\
potential values stored in this attribute can be found at: \\
http://msdn2.microsoft.com/en-us/library/ms145595.aspx end note]
\end{tabular} \\
& \begin{tabular}{l}
See the MDX Language Reference for more information: \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(\$22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Query) is located in §A.2. end note]

\subsection*{18.10.1.76 queryCache (OLAP Query Cache)}

Represents the cache of OLAP sheet data queries.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Cached \\
Query Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of cached queries in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT QueryCache) is located in §A.2. end note]

\subsection*{18.10.1.77 r (PivotCache Record)}

Represents a single record of data in the PivotCache.

\section*{[Example:}
\[
\langle r\rangle
\]
<s v="3550"/>
<s V="Road-150 Red, 62"/>
<s v="This bike is ridden by race winners. Developed with the Adventure Works
Cycles professional race team, it has a extremely light heat-treated
aluminum frame, and steering that allows precision control."/>
<s v="No Discount"/>
<x v="0"/>
<s v="Australian Dollar"/>
<n v="1"/>
<n v="3578.27"/>
<n v="0"/>
<n v="2171.2941999999998"/>
<n v="3578.27"/>
<n v="89.456800000000001"/>
\(\langle/ r\rangle\)
end example]
[Note: The W3C XML Schema definition of this element’s content model (\(\underline{(T T R e c o r d)}\)) is located in §A.2. end note]

\subsection*{18.10.1.78 rangePr (Range Grouping Properties)}

Represents the collection of range grouping properties.
[Example:
```
<rangePr groupBy="months" startDate="2002-01-01T00:00:00"
    endDate="2006-05-06T00:00:00"/>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
autoEnd (Source \\
Data Ending Range)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the application uses the source data to \\
set the ending range value.
\end{tabular} \\
A value of 1 or true indicates the ending range value is set from the source data. \\
A value of 0 or false indicates ending range values are set by the value specified in \\
endDate or endNum.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
autoStart (Source \\
Data Set Beginning \\
Range)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether we use source data to set the beginning \\
range value. \\
A value of 1 or true indicates the beginning range value is set from the source data. \\
A value of 0 or false indicates the beginning range value is set from the value specified \\
in startDate or startNum. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
endDate (Date \\
Grouping End \\
Value)
\end{tabular} & \begin{tabular}{l}
Specifies the ending value for date grouping if autoEnd is false. \\
The possible values for this attribute are defined by the W3C XML Schema dateTime \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
endNum (Numeric \\
Grouping End \\
Value)
\end{tabular} & \begin{tabular}{l}
Specifies the ending value for numeric grouping if autoEnd is false. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular} \\
\hline groupBy (Group By) & \begin{tabular}{l}
Specifies the grouping. \\
The possible values for this attribute are defined by the ST_GroupBy simple type \\
(§18.18.38).
\end{tabular} \\
\hline \begin{tabular}{l}
groupInterval \\
(Grouping Interval)
\end{tabular} & \begin{tabular}{l}
Specifies the grouping interval for numeric range grouping. Specifies the number of days \\
to group by in date range grouping. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
startNum (Numeric \\
Grouping Start \\
Value) \\
Value)
\end{tabular} & \begin{tabular}{l}
Specifies the starting value for numeric grouping if autoStart is false. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular} \\
Specifies the starting value for date grouping if autoStart is false. \\
The possible values for this attribute are defined by the W3C XML Schema dateTime
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RangePr) is located in §A.2. end note]

\subsection*{18.10.1.79 \\ rangeSet (Range Set)}

Represents a single range in the rangeSets collection. element is intended to facilitate creating a PivotTable report by consolidating SpreadsheetML ranges that have similar categories of data to be summarized. The simplest layout for the data source is for each rangeSets of data to be in list-like format, with column labels in the first row, row labels in the first column, the rest of the rows having similar items in the same row and column, and no blank rows or columns within the range. A particular rangeSet can consist of a built-in named range that is provided by the application, a user defined named range, a range reference, or a reference to an external workbook.

When multiple ranges are consolidated using this functionality, up to 4 custom report filters (also known as page fields) can be created to help filter the PivotTable report, by specifically enabling one or more of the individual ranges to be selected in the report filter. For each custom page field created, a custom label can be specified and assigned to each range participating in the consolidation range, so that the PivotTable can be filtered by one or more of the ranges being summarized.
[Example: Consider a workbook with 6 worksheets. On Sheet1 we have:
\begin{tabular}{|l|l|}
\hline\(a\) & \(b\) \\
\hline Sheet1 & Sheet1 \\
\hline Sheet1 & Sheet1 \\
\hline
\end{tabular}

On Sheet2 we have:
\begin{tabular}{|l|l|}
\hline\(a\) & \(b\) \\
\hline Sheet2 & Sheet2 \\
\\
\hline Sheet2 & Sheet2 \\
\hline
\end{tabular}
... and so on up through Sheet5.
On Sheet6, we have the consolidated ranges being summarized by a PivotTable, and two page filters exist for the PivotTable.

Notice that for the second page filter, the items have been assigned a custom label, "one", "two", ..., "five", for each of Sheet1, Sheet2, ..., Sheet5 data sources, respectively. Similarly, the items have been assigned a custom label, "1", "2", ..., "5" for each of Sheet1, Sheet2, ..., Shet5 data sources, respectively.

The XML representing these custom page filters must be like the following:
```
<cacheSource type="consolidation">
    <consolidation autoPage="0">
        <pages count="2">
            <page count="5">
            <pageItem name="1"/>
            <pageItem name="2"/>
            <pageItem name="3"/>
            <pageItem name="4"/>
            <pageItem name="5"/>
            </page>
                <page count="5">
                    <pageItem name="one"/>
            <pageItem name="two"/>
            <pageItem name="three"/>
            <pageItem name="four"/>
                <pageItem name="five"/>
            </page>
        </pages>
```
```
        <rangeSets count="5">
            <rangeSet i1="0" i2="0" ref="A1:B3" sheet="Sheet1"/>
            <rangeSet i1="1" i2="1" ref="A1:B3" sheet="Sheet2"/>
            <rangeSet i1="2" i2="2" ref="A1:B3" sheet="Sheet3"/>
            <rangeSet i1="3" i2="3" ref="A1:B3" sheet="Sheet4"/>
            <rangeSet i1="4" i2="4" ref="A1:B3" sheet="Sheet5"/>
        </rangeSets>
        </consolidation>
</cacheSource>
```
end example]
[Note: Attributes i1, i2, i3, and i4 correspond to custom page fields created in the user interface. Spreadsheet ML only supports 4 custom page fields. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
i1 (Field Item Index \\
Page 1)
\end{tabular} & \begin{tabular}{l}
Specifies the index of a page field item in page filter one. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
i2 (Field Item Index \\
Page 2)
\end{tabular} & \begin{tabular}{l}
Specifies the index of a page field item in page filter two. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
i3 (Field Item index \\
Page 3)
\end{tabular} & \begin{tabular}{l}
Specifies the index of a page field item in page filter three. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
i4 (Field Item Index \\
Page 4)
\end{tabular} & \begin{tabular}{l}
Specifies the index of a page field item in page filter four. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline id (Relationship Id) & \begin{tabular}{l}
Specifies the unique identifier of the Workbook part where the range set is stored. See \\
Workbook (§18.2) for more information.
\end{tabular} \\
\begin{tabular}{l}
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l}
name (Named \\
Range)
\end{tabular} & \begin{tabular}{l}
Specifies the named range. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(\$22.9.2.19).
\end{tabular} \\
\hline ref (Reference) & Specifies the cell range. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62). \\
\hline sheet (Sheet Name) & \begin{tabular}{l}
Specifies the sheet name. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RangeSet) is located in §A.2. end note]

\subsection*{18.10.1.80 rangeSets (Range Sets)}

Represents the collection of reference-page items pairs.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Reference \\
and Page Item \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of reference and page items. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RangeSets) is located in §A.2. end note]

\subsection*{18.10.1.81 rowFields (Row Fields)}

Represents the collection of row fields for the PivotTable.
\begin{tabular}{|c|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{2}{c|}{\(B\)} & \multicolumn{1}{c|}{\(C\)} \\
\hline 1 & Region & \((A l l)\) & - & \\
\hline 2 & & & \\
\hline 3 & Sum of Sales & Quarter & \\
\hline 4 & Sport & - & Qtr1 & Qtr2 \\
\hline 5 & Golf & \\
\hline
\end{tabular}

In the image above, the blue field is a row field. A PivotTable report that has more than one row field has one inner row field (Sport, in the example below), the one closest to the data area. Any other row fields are outer row fields (Region, in the example below). Items in the outermost row field are displayed only once, but items in the rest of the row fields are repeated as needed.
[Example:
\begin{tabular}{|c|c|c|c|c|}
\hline & A & & B & C \\
\hline 3 & Sum of & & & Quarter \\
\hline 4 & Region & - & Sport - & Qtry \\
\hline 5 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{East}} & Golf & 5,000 \\
\hline 6 & & & Safari & 9,000; \\
\hline 7 & & & Tennis & 1,500 \\
\hline 8 & \multicolumn{3}{|l|}{East Total} & 15,500. \\
\hline 9 & West & & Golf & 3,500 \\
\hline
\end{tabular}

In the image above, Region is an outer row field. Sport is an inner row field.
```
<rowFields count="2">
    <field x="7"/>
    <field x="8"/>
</rowFields>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Repeated \\
Items Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of repeated items in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RowFields) is located in §A.2. end note]

\subsection*{18.10.1.82 rowHierarchiesUsage (Row OLAP Hierarchy References)}

Represents the collection of references to OLAP hierarchies on the row axis of a PivotTable.
[Example:
<sh:rowHierarchiesUsage count="1">
<sh:rowHierarchyUsage hierarchyUsage="9"/>
</sh:rowHierarchiesUsage>
end example]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline count (Item Count) & \begin{tabular}{l}
Specifies the number of items in the collection. \\
\\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RowHierarchiesUsage) is located in §A.2. end note]

\subsection*{18.10.1.83 rowHierarchyUsage (Row OLAP Hierarchies)}

Represents a references to an OLAP Hierarchy on the row axis of a PivotTable.

\section*{[Example:}
<sh:rowHierarchyUsage hierarchyUsage="9"/>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
hierarchyUsage \\
(Hierarchy Usage)
\end{tabular} & \begin{tabular}{l}
Specifies the reference to an OLAP hierarchy in a PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype. \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT HierarchyUsage) is located in §A.2. end note]

\subsection*{18.10.1.84 rowItems (Row Items)}

Represents the collection of items in row axis of the PivotTable.
[Example: In the SpreadsheetML example below, the item values are found in cells B10:B13. For example "Bikes" is in B10, and corresponds to the first <i> element below.
```

<rowItems count="4">
    <i>
        <x/>
    </i>
    <i r="1">
        <x/>
    </i>
    <i r="1">
        <x v="1"/>
    </i>
    <i t="grand">
        <x/>
    </i>
</rowItems>
```

Looking at the layout of the PivotTable in this example, "Bikes" is the first (and only) item value in the first row, in cell B10. In the XML defining the PivotTable row item values, the first <i> element corresponds to the first row. There is a single index element <x>. The first (and only) <x> element corresponds to the first field on the row axis, namely "Product Category", and an index value of " 0 " indicates that the 0th item in the items collection for that pivotField definition is how to obtain the item value. Note that "Bikes" isn't explicitly listed
as a value here, but instead the Oth item is an index to this field's shared items collection in the pivotCacheDefinition part.

For the second row there are two item values, one item value (Bikes) from the first field in that row (Product Category) and one item value (Mountain Bikes) from the second field in that row (Product Subcategory). In the PivotTable, the first item value "Bikes" is hidden from view. In the XML for this example, the second <i> element expresses both item values for this row. The first item value "Bikes" is expressed implicitly, because the value of @r on the second <i> element is ' 1 ', indicating that the first item value from the previous row is reused again as the first item value for the current row. The second item value is expressed explicitly via the \(\langle x\rangle\) element under the second <i> element. The index of ' 0 ' indicates that the Oth item in the <pivotField> element for that field is how to obtain the item value. Note again that the Oth item is itself an index into this field's shared items collection in the pivotCacheDefinition part.

The item values for the third row can be discovered in a similar way. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Items in a \\
Row Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of items in the row axis of the PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT rowltems) is located in §A.2. end note]

\subsection*{18.10.1.85 s (Character Value)}

Represents a character value in a PivotTable.
[Example:
```

    <sharedItems count="2">
        <s v="7527 Brook Way"/>
        <s v="3310 Harvey Way"/>
    </sharedItems>
    ```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline b (Bold) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this value contains bold formatting on \\
the OLAP server. This attribute applies to OLAP-based PivotTables only.
\end{tabular} \\
A value of 1 or true indicates this value contains bold formatting on the server. \\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
bc (Background \\
Color)
\end{tabular} & \begin{tabular}{l}
Specifies the background color for this value that was provided by the OLAP server. This \\
attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in \\
RGB space. \\
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type \\
(§18.18.86).
\end{tabular} \\
\hline c (Item Caption) & \begin{tabular}{l}
Specifies the caption for the this item. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
cp (Member \\
Property Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of member property values. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline f (Calculated Item) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this is a calculated item value. \\
A value of 1 or true indicates this item is a calculated value. \\
A value of 0 or false indicates this item is not a calculated value.
\end{tabular} \\
\hline st (Strikethrough) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the value contains strikethrough \\
formatting on the OLAP server. This attribute applies to OLAP-based PivotTables only. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline fc (Foreground & \begin{tabular}{l}
Specifies the foreground color for this value that was provided by the OLAP server. This indicates this value contains strikethrough formatting on the server. \\
attribute applies to OLAP-based PivotTables only. The color is specified as a HEX value in \\
RGB space.
\end{tabular} \\
\hline in (Foltalic) & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_UnsignedIntHex simple type \\
(§18.18.86).
\end{tabular} \\
datatyper
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline u (Unused Item) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this is an unused item. The application \\
marks an item as unused when an item is deleted from the data source. The item and \\
associated metadata are retained in the cache until the threshold for unused items \\
specified in missingItemsLimit is reached. \\
A value of 1 or true indicates this item is unused.
\end{tabular} \\
\hline A value of 0 or false indicates this item is used. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT String) is located in §A.2. end note]

\subsection*{18.10.1.86 serverFormat (Server Format)}

Represents the numeric format specified by the OLAP server for a tuple.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline culture (Culture) & \begin{tabular}{l}
Specifies a language used to determine the currency symbol to display for currency \\
values. [Example: if the culture is "en-us", the values in the application will format the \\
values with a dollar sign. If the culture is "fr-fr" the application will format the values with \\
a euro sign. end example] \\
This value conforms to the language tagging conventions of RFC 3066 and later. The \\
pattern <language>-<REGION> is used, e.g., "en-us" or "fr-fr". \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline format (Format) & Specifies the format string to use for all other numeric values. This string is supplied by \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
the OLAP server. Therefore, the syntax for reading the format string depends on the \\
server implementation.
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ServerFormat) is located in §A.2. end note]

\subsection*{18.10.1.87 serverFormats (Server Formats)}

Represents the collection of numeric and currency formats specified by the OLAP server for a tuple
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Format \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of formats in the collection. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ServerFormats) is located in §A.2. end note]

\subsection*{18.10.1.88 set (OLAP Set)}

Represents an OLAP sheet data set or tuple set. The set is defined by a Multidimensional Expressions (MDX) query that specifies criteria for the dimension members that belong to the set.
[Example: the following MDX expression defines the set for the 10 salespersons with the lowest sales:
BottomCount([Salesperson].[Salesperson Name].Members,10,[Measures].[Sales])
end example]
The MDX expression is specified in the setDefinition attribute.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Number of \\
Tuples)
\end{tabular} & \begin{tabular}{l}
Specifies the number of tuples in the set. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
maxRank \\
(Maximum Rank \\
Requested)
\end{tabular} & \begin{tabular}{l}
Specifies the largest rank entry the user has requested. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \(\begin{array}{l}\text { queryFailed (Query } \\
\text { Failed) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether querying on this set failed. } \\
\text { A value of } 1 \text { or true indicates a query against this set failed. }\end{array}\) \\
A value of \(\theta\) or false indicates a query against this set succeeded. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(\left.] \begin{array}{l}\text { Specifies the Multidimensional Expressions (MDX) set definition. } \\
\text { [Note: Data connectivity can use a number of different technologies. One example of } \\
\text { potential values stored in this attribute can be found at: http://msdn2.microsoft.com/en- } \\
\text { us/library/ms145595.aspx end note] }\end{array}\right\}\)\begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Set) is located in §A.2. end note]

\subsection*{18.10.1.89 sets (Sets)}

Represents the collection of OLAP sheet data entries or tuple sets.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Tuple Set \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of tuple sets. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Sets) is located in §A.2. end note]

\subsection*{18.10.1.90 sharedItems (Shared Items)}

Represents the collection of unique items for a field in the PivotCacheDefinition. The sharedltems complex type stores data type and formatting information about the data in a field. Items in the PivotCacheDefinition can be shared in order to reduce the redundancy of those values that are referenced in multiple places across all the PivotTable parts. [Example: A value might be part of a filter, it might appear on a row or column axis, and will appear in the pivotCacheRecords definition as well. However, because of the performance cost of creating the optimized shared items, items are only shared if they are actually in use in the PivotTable. Therefore, depending
on user actions on the PivotTable layout, the pivotCacheDefinition and underlying PivotCacheRecords part can be updated. end example]

If there are no shared items, then field values are stored directly in the pivotCacheRecords part.
[Example:
```

    <sharedItems count="1">
    <s v="[Customer].[Customer Geography].[Country].&amp;[United States]"
        c="United States"/>
    </sharedItems>
    ```
end example]

The following attributes are not required or used if there are no items in shareditems.
- containsBlank
- containsSemiMixedTypes
- containsMixedTypes
- longText

The following attributes are not used unless there is more than one item in sharedltems or the one and only item is not a blank item. If the first item is a blank item the data type the field cannot be verified.
- containsNumber
- containsDates
- containsString
- containsInteger

The following attributes can be omitted without loss of functionality.
- containsNonDate
- count

The following attributes are not required and can be omitted. However, refreshing the PivotTable could produce different groupings than before.
- maxDate
- minDate
- maxValue
- minValue

Applications should ensure that "date" attributes are not mixed with "value" attributes.
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline containsBlank & Specifies a boolean value that indicates whether this field contains a blank value. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \\
\hline (Contains Blank) & \begin{tabular}{l}
A value of 1 or true indicates this field contains one or more blank values. \\
A value of \(\theta\) or false indicates this field does not contain blank values. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
containsDate \\
(Contains Date)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates that the field contains at least one date. \\
A value of 1 or true indicates the field contains at least one date value.
\end{tabular} \\
\hline \begin{tabular}{l}
containsInteger \\
(Contains Integer)
\end{tabular} & \begin{tabular}{l}
A value of \(\theta\) or false indicates the field does not contain any date values. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
A value of 1 or true indicates this field contains integer values.
\end{tabular} \\
\hline \begin{tabular}{l}
containsNumber \\
(Contains Numbers)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether this field contains numeric values. \\
A value of \(\theta\) or false indicates non-integer or mixed values.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
A value of 1 or true indicates this field contains at least one numeric value. \\
A value of 0 or false indicates this field contains no numeric values. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline containsSemiMixe dTypes (Contains Semi Mixed Data Types) & \begin{tabular}{l}
Specifies a boolean value that indicates that this field contains text values. The field can also contain a mix of other data type and blank values. \\
A value of 1 or true indicates at least one text value, and can also contain a mix of other data types and blank values. \\
A value of 0 or false indicates the field does not have a mix of text and other values. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline containsString (Contains String) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this field contains a text value. \\
A value of 1 or true indicates this field contains at least one text value. \\
A value of 0 or false indicates this field does not contain any text values. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline count (Shared Items Count) & \begin{tabular}{l}
Specifies the number of shared items to load for this field. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline longText (Long Text) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this field contains a long text value. A string is considered long if it is over 255 Unicode scalar values. \\
A value of 1 or true indicates the value contains more than 255 Unicode scalar valuesof text. \\
A value of 0 or false indicates the value contains less than 255 Unicode scalar values. \\
[Note: This is used as many legacy spreadsheet application support a limit of 255 characters for text values. end note] \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
maxDate \\
(Maximum Date Time Value)
\end{tabular} & \begin{tabular}{l}
Specifies the maximum date/time value found in a date field. \\
The possible values for this attribute are defined by the W3C XML Schema dateTime
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & datatype. \\
\hline \begin{tabular}{l}
maxValue \\
(Maximum Numeric \\
Value)
\end{tabular} & \begin{tabular}{l}
Specifies the maximum numeric value found in a numeric field. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
minDate (Minimum \\
Date Time)
\end{tabular} & \begin{tabular}{l}
Specifies the minimum date/time value found in a date field. \\
The possible values for this attribute are defined by the W3C XML Schema dateTime \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
minValue \\
(Minimum Numeric \\
Value)
\end{tabular} & \begin{tabular}{l}
Specifies the minimum numeric value found in a numeric field. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Sharedltems) is located in §A.2. end note]

\subsection*{18.10.1.91 sortByTuple (Sort By Tuple)}

Represents the sort applied to a tuple.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
c (Member Name \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of member names. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Tuples) is located in §A.2. end note]

\subsection*{18.10.1.92 tpl (Tuple)}

Represents an OLAP sheet data entry member.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline fld (Field Index) & \begin{tabular}{l}
Specifies the index of the field to which the member belongs. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
hier (Hierarchy \\
Index)
\end{tabular} & \begin{tabular}{l}
Specified the index of the hierarchy to which the member belongs. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline item (Item Index) & \begin{tabular}{l}
Specifies the index of the item in the field that represents this item. \\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Tuple) is located in §A.2. end note]

\subsection*{18.10.1.93 tpls (Tuples)}

Represents members for the OLAP sheet data entry, also known as a tuple.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
c (Member Name \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of member names. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Tuples) is located in §A.2. end note]

\subsection*{18.10.1.94 tupleCache (Tuple Cache)}

Represents the cache of OLAP sheet data members, or tuples.
[Note: The W3C XML Schema definition of this element's content model (CT TupleCache) is located in §A.2. end note]

\subsection*{18.10.1.95 worksheetSource (Worksheet PivotCache Source)}

Represents the location of the source of the data that is stored in the cache.
[Example:
```

        <cacheSource type="worksheet">
            <worksheetSource name="Table1" r:id="rId2"/>
        </cacheSource>
    end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship Id) & \begin{tabular}{l}
Specifies the identifier to the Sheet part whose data is stored in the cache. See the Sheet \\
section (§18.2) for more information.
\end{tabular} \\
\begin{tabular}{l}
Namespace:
\end{tabular} & \\
\begin{tabular}{l}
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi
\end{tabular} & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline ps & \begin{tabular}{l}
Specifies the named range that is the source of the data. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
name (Named \\
Range)
\end{tabular} & \begin{tabular}{l}
Specifies the reference that defines a cell range that is the source of the data. This \\
attribute depends on how the application implements cell references. \\
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
\end{tabular} \\
\hline ref (Reference) & \begin{tabular}{l}
Specifies the name of the sheet that is the source for the cached data. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline sheet (Sheet Name)
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT WorksheetSource) is located in §A.2. end note]

\subsection*{18.10.1.96 x (Member Property Index)}

Represents an array of indexes to cached member property values.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
v (Shared Items \\
Index)
\end{tabular} & \begin{tabular}{l}
Specifies the index into the shared items table in the PivotCache that identifies this item. \\
\\
\end{tabular} \\
& \\
& The possible values for this attribute are defined by the W3C XML Schema int datatype. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT X) is located in §A.2. end note]

\subsection*{18.10.1.97 x (Shared Items Index)}

This element represents an array of indexes to cached shared item values
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
v (Shared Items \\
Index)
\end{tabular} & \begin{tabular}{l}
Specifies the index into the shared items table in the PivotCache that identifies this item. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Index) is located in §A.2. end note]

\subsection*{18.10.2 Shared Pivot Table Data}

This section defines the part where shared PivotTable data is stored.

\subsection*{18.10.2.1 reference (Reference)}

Represents a set of selected fields and selected items within those fields.

\section*{[Example:}
```

    <sh:reference field="4294967294" count="1" selected="0">
    <sh:x v="0"/>
    </sh:reference>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
avgSubtotal \\
(Include Average \\
Filter)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the 'average' aggregate function is \\
included in the filter. \\
A value of 1 or true indicates the average aggregation function is included in the filter. \\
A value of 0 or false indicates another aggregation function is included in the filter. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
byPosition \\
(Positional \\
Reference)
\end{tabular} & \begin{tabular}{l}
Specifies a boolean value that indicates whether the item is referred to by position rather \\
than item index.
\end{tabular} \\
A value of 1 or true indicates the item is referred to by position. \\
A value of 0 or false indicates the item is referred to by index. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline Subtotal) & \(\begin{array}{l}\text { A value of } 1 \text { or true indicates the count aggregation function is included in the filter. } \\
\text { A value of } \theta \text { or false indicates another aggregation function is included in the filter. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\
\text { datatype. }\end{array}\) \\
\hline \(\begin{array}{l}\text { defaultSubtotal } \\
\text { (Include Default } \\
\text { Filter) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether the default subtotal is included in the } \\
\text { filter. }\end{array}\) \\
\hline A value of 1 or true indicates the default subtotal is included in the filter. The default is \\
to display the total or the grand total. \\
A value of \(\theta\) or false indicates another subtotal or aggregation function is included in the \\
filter. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}\(\}\)
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
A value of 1 or true indicates the product aggregation function is included in the filter. \\
A value of \(\theta\) or false indicates another aggregation function is included in the filter. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline relative (Relative Reference) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the item is referred to by a relative reference rather than an absolute reference. This attribute is used if posRef is set to true. \\
A value of 1 or true indicates the item is referred to by a relative reference. \\
A value of 0 or false indicates the item is referred to by an absolute reference. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline selected (Selected) & \begin{tabular}{l}
Specifies a boolean value that indicates whether this field has selection. This attribute is used when the PivotTable is in Outline view. It is also used when both header and data cells have selection. \\
A value of 1 or true indicates the field has selection. \\
A value of 0 or false indicates the field does not have selection. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline stdDevPSubtotal (Include StdDevP Filter) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the population standard deviation aggregate function is included in the filter. \\
A value of 1 or true indicates the population standard deviation aggregation function is included in the filter. \\
A value of 0 or false indicates another aggregation function is included in the filter. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline stdDevSubtotal (Include StdDev Filter) & \begin{tabular}{l}
Specifies a boolean value that indicates whether the standard deviation aggregate function is included in the filter. \\
A value of 1 or true indicates the standard deviation aggregation function is included in the filter. \\
A value of 0 or false indicates another aggregation function is included in the filter. \\
The possible values for this attribute are defined by the W3C XML Schema boolean
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & datatype. \\
\hline \(\begin{array}{l}\text { sumSubtotal } \\
\text { (Include Sum Filter) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether the sum aggregate function is included } \\
\text { in the filter. } \\
\text { A value of } 1 \text { or true indicates the sum aggregation function is included in the filter. } \\
\text { A value of } 0 \text { or false indicates another aggregation function is included in the filter. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema boolean } \\
\text { datatype. }\end{array}\) \\
\hline \(\begin{array}{l}\text { varPSubtotal } \\
\text { (Include VarP Filter) }\end{array}\) & \(\begin{array}{l}\text { Specifies a boolean value that indicates whether the population variance aggregate } \\
\text { function is included in the filter. }\end{array}\) \\
A value of 1 or true indicates the population variance aggregation function is included in \\
the filter. \\
A value of \(\theta\) or false indicates another aggregation function is included in the filter.
\end{tabular}\(\}\)\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotAreaReference) is located in §A.2. end note]

\subsection*{18.10.2.2 references (References)}

Represents the set of selected fields and the selected items within those fields.

\section*{[Example:}
```

<sh:references count="5">
<sh:reference field="4294967294" count="1" selected="0">
<sh:x v="0"/>
</sh:reference>

```
```

        <sh:reference field="2" count="1" selected="0">
        <sh:x v="0"/>
        </sh:reference>
        <sh:reference field="14" count="1" selected="0">
        <sh:x v="0"/>
        </sh:reference>
        <sh:reference field="15" count="2" selected="0">
        <sh:x v="2"/>
        <sh:x v="3"/>
        </sh:reference>
    </sh:references>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Pivot Filter \\
Count)
\end{tabular} & \begin{tabular}{l}
Specifies the number of filtered records available in the PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PivotAreaReferences) is located in §A.2. end note]

\subsection*{18.11 Shared Workbook Data}

The Shared Workbooks architecture enables a spreadsheet application to record revisions made to a workbook (e.g., track changes), and is designed to enable either single, or multiple users editing the same workbook at the same time. Therefore, the application needs to support the ability to read changes made by another user and update its own state of the same workbook with those changes, even when those changes are made concurrently with other changes made by other users. Inevitably there are conflicts, and therefore merge conflict resolution should be supported the runtime application. The file format only contains enough information so that the spreadsheet application can deal with conflicts, and can undo/redo changes from the change history at run time.

\subsection*{18.11.1 Shared Workbook Data}

Within a shared workbook, the changes made to the spreadsheet at runtime are persisted as sets of different revisions collectively forming a revision history. These are persisted to the file on disk during a save event, and are saved in different xml parts known as revision logs. There is a headers table xml part that summarizes when changes were made, who made them, and it lists the relationship from each header to the individual revision log that records the specific changes.
[Example: This example shows the header and revision log for two simple events: adding text to a cell, and inserting a new sheet.

First, take a look at the header table, and revision log:
```

<headers xmlns="..." xmlns:r="..." guid="{A84A6777-8908-4CB9-9EB6-625CEFF419D3}">
    <header guid="{A84A6777-8908-4CB9-9EB6-625CEFF419D3}"
        dateTime="2006-07-14T13:42:54" maxSheetId="4" userName="UserName"
        r:id="rId1">
        <sheetIdMap count="3">
            <sheetId val="1"/>
            <sheetId val="2"/>
            <sheetId val="3"/>
        </sheetIdMap>
    </header>
</headers>
```

And the revision log is essentially empty:
```

<revisions xmlns="..." xmlns:r="..."/>
```

Now, after inserting the text "foo" into cell A1, and saving, the header looks like this:
```

<headers xmlns="..." xmlns:r="..." guid="{CFEA9B63-728B-4274-A346-0440E1573AB4}"
    diskRevisions="1" revisionId="1" version="2">
<header guid="{A84A6777-8908-4CB9-9EB6-625CEFF419D3}"
        dateTime="2006-07-14T13:42:54" maxSheetId="4" userName="UserName"
        r:id="rId1">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>
<header guid="{CFEA9B63-728B-4274-A346-0440E1573AB4}"
        dateTime="2006-07-14T13:44:40" maxSheetId="4" userName="UserName"
        r:id="rId2" minRId="1">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>
</headers>

```

A new header entry is added, with a GUID and a revision ID (rId2) that specifies which log to look into to see the details about the revision.

The old log is saved, and the newly created log (corresponding to rld2) now looks like this:
```

<revisions xmlns="..." xmlns:r="...">
    <rcc rId="1" sId="1">
        <nc r="A1" t="inlineStr">
            <is>
                <t>foo</t>
                    <phoneticPr fontId="0"/>
            </is>
        </nc>
    </rcc>
</revisions>
```

The log shows that the contents of a cell were revised, and the new cell contents is text containg "foo" as the string.

After inserting a new sheet, the header looks like this:
```

<headers xmlns="..." xmlns:r="..." guid="{7E1DAFA8-EF95-4865-8FE8-CC17B28635CF}"
    diskRevisions="1" revisionId="2" version="3">
<header guid="{A84A6777-8908-4CB9-9EB6-625CEFF419D3}"
        dateTime="2006-07-14T13:42:54" maxSheetId="4"
        userName="UserName" r:id="rId1">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>
<header guid="{CFEA9B63-728B-4274-A346-0440E1573AB4}"
        dateTime="2006-07-14T13:44:40" maxSheetId="4" userName="UserName"
        r:id="rId2" minRId="1">
<sheetIdMap count="3">
<sheetId val="1"/>
<sheetId val="2"/>
<sheetId val="3"/>
</sheetIdMap>
</header>
<header guid="{7E1DAFA8-EF95-4865-8FE8-CC17B28635CF}"
        dateTime="2006-07-14T13:48:56" maxSheetId="5" userName="UserName"
        r:id="rId3" minRId="2">

```
```

        <sheetIdMap count="4">
            <sheetId val="1"/>
            <sheetId val="2"/>
            <sheetId val="3"/>
            <sheetId val="4"/>
        </sheetIdMap>
    </header>
    </headers>

```

You can see that the last, most recent, header entry shows an entry for the new sheet. The most recent log looks like this:
```

<revisions xmlns="..." xmlns:r="...">
    <ris rId="2" sheetId="4" name="[shared example.xlsx]Sheet4"
        sheetPosition="3"/>
    <rcv guid="{841DBE00-ECD0-478E-893B-30CE5DABBEF5}" action="delete"/>
    <rcv guid="{841DBE00-ECD0-478E-893B-30CE5DABBEF5}" action="add"/>
</revisions>
```

This shows the new sheet, sheetld 4, is added to the workbook. The custom view (rcv) for the user is updated as a new sheet was added.
end example]

\subsection*{18.11.1.1 header (Header)}

This element is essentially a table that contains metadata about a list of specific changes that have taken place for this workbook. It lists when the changes were made, who made them, and the relationship IDs so that the log detailing the specific change can be found. If tracking changes, or sharing workbooks, are enabled, then changes are persisted on the Save event, or at a specified time interval. A header is created for each set of changes.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
dateTime (Date \\
Time)
\end{tabular} & \begin{tabular}{l}
The date and time when this set of revisions was saved. \\
[Note: This can happen when the user explicitly saves, or the save can occur due to a \\
time interval, specified in the spreadsheet application, elapsing. end note] \\
The possible values for this attribute are defined by the W3C XML Schema dateTime \\
datatype.
\end{tabular} \\
\hline guid (GUID) & \begin{tabular}{l}
A globally unique identifier for this set of revisions. \\
The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
\end{tabular} \\
\hline id (Relationship ID) & \begin{tabular}{l}
This is the ID that is used to find the corresponding log record of the changes made for \\
this header.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \\
\hline \begin{tabular}{l}
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l}
Use the corresponding relationship expressed in the revisionHeaders part to locate the \\
log record that lists the specific changes. \\
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l}
maxRId (Max \\
Revision Id)
\end{tabular} & \begin{tabular}{l}
The highest revision Id that belongs to this header. \\
[Note: This can be used when, given a revision ID, the spreadsheet application needs to \\
determine which revision log to access. end note]
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}\(\quad\)\begin{tabular}{l}
Internal identifier of the next available sheet in this workbook. \\
The numbering here is the index of the next available sheet in the workbook in a 1-based \\
index system. \\
maxSheetId (Last \\
Sheet Id) \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionHeader) is located in §A.2. end note]

\subsection*{18.11.1.2 headers (Revision Headers)}

This element represents the list of revision headers.
This section contains many references to history, versions, and revisions, and it is helpful to clarify the relationships here. In general, a series of changes (revisions) can be made to a spreadsheet. When a batch of those revisions is saved to disk, the version number of the spreadsheet is incremented. The batch of changes is saved to the revision history, which is persisted on disk with the file in the form of different log files and headers.

There are some attributes that deal with history which might seem redundant (such as diskRevisions, and history, among others) - these are there for backwards compatibility with older versions of spreadsheet applications and do not need to be used for creating new files.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
diskRevisions (Disk \\
Revisions)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating that this shared workbook file contains revisions. True when \\
the workbook does have revisions, false otherwise. \\
[Note: this attribute is used for backwards compatibility. end note] \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
exclusive (Exclusive \\
Mode)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating that this shared workbook is in exclusive mode. \\
A workbook is in exclusive mode when a user has a lock on it for appending revisions to \\
the file. \\
[Note: This is used for backwards compatibility with older spreadsheet applications. end \\
note] \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
guid (Last Revision \\
GUID)
\end{tabular} & \begin{tabular}{l}
The globally unique identifier of the last set of revisions. This shall match the GUID for \\
the most recent header.
\end{tabular} \\
\hline history (History) & \begin{tabular}{l}
A Boolean value indicating that this shared workbook maintains a revision history. True if \\
a history is maintained, false otherwise.
\end{tabular} \\
[Note: This is used for backwards compatibility with older spreadsheet applications. end \\
note]
\end{tabular}\(\quad\)\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
save. To get the current state of the file which includes edits by other users, the \\
spreadsheet application would need to apply all the revisions from lastGuid to guid. \\
The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
\end{tabular} \\
\hline \begin{tabular}{l}
preserveHistory \\
(Preserve History)
\end{tabular} & \begin{tabular}{l}
An integer representing the number of days the spreadsheet application shall keep the \\
change history for this workbook. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
protected \\
(Protected)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating whether the change tracking in this shared workbook can be \\
removed. True if the tracking can be removed, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
revisionId (Revision \\
Id)
\end{tabular} & \begin{tabular}{l}
The current revision number of this shared workbook. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
shared (Shared \\
Workbook)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating that this workbook is shared. True when the workbook is \\
shared, false otherwise. \\
[Note: This is used for backwards compatibility with older spreadsheet applications. end \\
note]
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionHeaders) is located in §A.2. end note]

\subsection*{18.11.1.3 nc (New Cell Data)}

This element represents new cell data that was added to the worksheet.

For most spreadsheet application purposes, only the data type and reference need to be used for revision tracking purposes. The rest of the cell properties can be written out, but are not necessarily needed as they can be recorded in other areas of the spreadsheet. For instance the <rfmt> element can be used to record style information instead of the S (style index) attribute.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
cm (Cell Metadata \\
Index)
\end{tabular} & \begin{tabular}{l}
The zero-based index of the cell metadata record associated with this cell. Metadata \\
information is found in the Metadata Part. Cell metadata is extra information stored at \\
the cell level, and is attached to the cell (travels through moves, copy / paste, clear, etc). \\
Cell metadata is not accessible via formula reference. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline ph (Show Phonetic) & \begin{tabular}{l}
A Boolean value indicating if the spreadsheet application should show phonetic \\
information. Phonetic information is displayed in the same cell across the top of the cell \\
and serves as a 'hint' which indicates how the text should be pronounced. This should \\
only be used for East Asian languages. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline r (Reference) & \begin{tabular}{l}
An A1 style reference to the location of this cell \\
The possible values for this attribute are defined by the ST_CellRef simple type \\
(§18.18.7).
\end{tabular} \\
\hline s (Style Index) & \begin{tabular}{l}
The index of this cell's style. Style records are stored in the Styles Part. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline t (Cell Data Type) & \begin{tabular}{l}
An enumeration representing the cell's data type. \\
The possible values for this attribute are defined by the ST_CellType simple type \\
(§18.18.11).
\end{tabular} \\
\hline \begin{tabular}{ll}
vm (Value \\
Metadata Index) & \begin{tabular}{l}
The zero-based index of the value metadata record associated with this cell's value. \\
Metadata records are stored in the Metadata Part. Value metadata is extra information \\
stored at the cell level, but associated with the value rather than the cell itself. Value \\
metadata is accessible via formula reference.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Cell) is located in §A.2. end note]

\subsection*{18.11.1.4 ndxf (New Formatting Information)}

This element represents new differential formatting information for this cell. This formatting is applied to the existing formatting of the cell.
[Note: The W3C XML Schema definition of this element’s content model (CT Dxf) is located in §A.2. end note]

\subsection*{18.11.1.5 oc (Old Cell Data)}

This element represents old cell data. Old cell data is data that was previously stored in the cell.
For most spreadsheet application purposes, only the data type and reference need to be used for revision tracking purposes. The rest of the cell properties can be written out, but are not necessarily needed as they can be recorded in other areas of the spreadsheet. For instance the <rfmt> element can be used to record style information instead of the \(S\) (style index) attribute.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
cm (Cell Metadata \\
Index)
\end{tabular} & \begin{tabular}{l}
The zero-based index of the cell metadata record associated with this cell. Metadata \\
information is found in the Metadata Part. Cell metadata is extra information stored at \\
the cell level, and is attached to the cell (travels through moves, copy / paste, clear, etc). \\
Cell metadata is not accessible via formula reference. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline ph (Show Phonetic) & \begin{tabular}{l}
A Boolean value indicating if the spreadsheet application should show phonetic \\
information. Phonetic information is displayed in the same cell across the top of the cell \\
and serves as a 'hint' which indicates how the text should be pronounced. This should \\
only be used for East Asian languages. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline r (Reference) & \begin{tabular}{l}
An A1 style reference to the location of this cell \\
The possible values for this attribute are defined by the ST_CellRef simple type \\
(§18.18.7).
\end{tabular} \\
\hline s (Style Index) & \begin{tabular}{l}
The index of this cell's style. Style records are stored in the Styles Part. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline t (Cell Data Type) & \begin{tabular}{l}
An enumeration representing the cell's data type. \\
The possible values for this attribute are defined by the ST_CellType simple type
\end{tabular} \\
(§18.18.11).
\end{tabular}
\begin{tabular}{|l|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
metadata is accessible via formula reference. \\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Cell) is located in §A.2. end note]

\subsection*{18.11.1.6 odxf (Old Formatting Information)}

This element represents the old differential formatting information for this cell. Old differential formatting is differential formatting that was previously applied to the cell.
[Note: The W3C XML Schema definition of this element’s content model (CT Dxf) is located in §A.2. end note]

\subsection*{18.11.1.7 oldFormula (Old Formula)}

This element represents the old formula for a defined name in this cell. This is only used for named cells. Formulas that are entered in a cell with no name are represented by the formula element <f>.

The possible values for this element are defined by the ST_Formula simple type (§18.18.35).
[Note: The W3C XML Schema definition of this element's content model (ST Formula) is located in §A.2. end note]

\subsection*{18.11.1.8 raf (Revision AutoFormat)}

This element represents a revision record of auto formatting change information for a table.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
applyAlignmentFor \\
mats (Apply \\
Alignment Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat alignment properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyBorderForma \\
ts (Apply Border \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat border properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyFontFormats \\
(Apply Font \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat font properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyNumberForm \\
ats (Apply Number \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat number format properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
applyPatternForm \\
ats (Apply Pattern \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat pattern properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyWidthHeight \\
Formats (Apply \\
Width / Height \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat width/height properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
autoFormatId \\
(Auto Format Id)
\end{tabular} & \begin{tabular}{l}
Identifies which legacy table autoformat to apply. \\
Annex D contains a listing of the supported PivotTable AutoFormats, example formatting, \\
and a sample workbook with each of those AutoFormats applied.
\end{tabular} \\
\hline ref (Reference) & \begin{tabular}{l}
A-1 style reference to the location where the formatting was applied \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
Tatatype.
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionAutoFormatting) is located in §A.2. end note]

\subsection*{18.11.1.9 rcc (Revision Cell Change)}

This element stores information about the contents of the cell that was replaced.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dxf (Formatting) & \begin{tabular}{l}
A Boolean flag indicating that there was a differential formatting change for this cell - \\
true if there was a formatting change, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
endOfListFormula \\
Update (End of List \\
Formula Update)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that indicates that the formula used at the end of a list has been \\
updated. True if the formula was updated, false otherwise. \\
List in this context does not mean table, rather it refers to the feature where the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
spreadsheet application automatically creates an internal structure for making data input more consistent on adjacent rows or columns. For instance, if 3 cells in a row are entered with the same format, then when entering data into the 4th adjacent cell, the spreadsheet application might automatically apply that same format. In this case, those cells are treated as a list. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
numFmtId \\
(Number Format Id)
\end{tabular} & \begin{tabular}{l}
Zero-based index of the number format (Fmt) record used by this cell format (XF). \\
The possible values for this attribute are defined by the ST_NumFmtId simple type (§18.18.47).
\end{tabular} \\
\hline odxf (Old Formatting) & \begin{tabular}{l}
Flag indicating that there is old formatting information available for this cell. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline oldPh (Old Phonetic Text) & \begin{tabular}{l}
A Boolean flag indicating whether there is old phonetic text information available. True when there is old phonetic text information available, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline oldQuotePrefix (Old Quote Prefix) & \begin{tabular}{l}
A Boolean value indicating if a single quote prefix is was used on this cell previously. Single quote prefixes are used to cause a formula to be evaluated as a string. True if a single quote prefix was used previously, false otherwise \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline ph (Phonetic Text) & \begin{tabular}{l}
A Boolean flag indicating whether this cell contains phonetic text or not. True when the cell contains phonetic text, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline quotePrefix (Quote Prefix) & \begin{tabular}{l}
A Boolean value indicating if a single quote prefix is used. Single quote prefixes are used to cause a formula to be evaluated as a string. True if a single quote prefix is used, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline ra (Revision Undo Rejected) & \begin{tabular}{l}
A Boolean flag which indicates that this revision was due to a previous undo (ua) revision being rejected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline rId (Revision Id) & \begin{tabular}{l}
An integer representing the number of this revision. This id shall apply to reviewable \\
revision types only. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline s (Style Revision) & \begin{tabular}{l}
Flag indicating that formatting change for this cell affected the cell's style. (Only \\
applicable for Undo operations) \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline sId (Sheet Id) & \begin{tabular}{l}
Internal identifier of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ua (Revision From \\
Rejection)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this revision occurred because another revision was \\
rejected and therefore undone. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
xfDxf (Row Column \\
Formatting Change)
\end{tabular} & \begin{tabular}{l}
Flag indicating that the formatting change had an effect on the formatting of the entire \\
row or column that this cell belongs to. (Only applicable for Undo operations). \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionCellChange) is located in §A.2. end note]

\subsection*{18.11.1.10 rcft (Revision Merge Conflict)}

This element represents a revision record which indicates that there was a merge conflict.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
ra (Revision Undo \\
Rejected)
\end{tabular} & \begin{tabular}{l}
A Boolean flag which indicates that this revision was due to a previous undo (ua) revision \\
being rejected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline rId (Revision Id) & \begin{tabular}{l}
An integer representing the number of this revision. This id shall apply to reviewable \\
revision types only.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ua (Revision From \\
Rejection)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this revision occurred because another revision was \\
rejected and therefore undone.
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT RevisionConflict) is located in §A.2. end note]

\subsection*{18.11.1.11 rcmt (Revision Cell Comment)}

This element represents a revision record of a cell comment change.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline action (User Action) & \begin{tabular}{l}
An enumeration identifying what kind of an operation the user performed on the \\
comment. \\
The possible values for this attribute are defined by the ST_RevisionAction simple type \\
(§18.18.65).
\end{tabular} \\
\hline \begin{tabular}{l}
alwaysShow \\
(Always Show \\
Comment)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating that the user has set this comment to always be visible. True \\
if the comment is set to always be visible, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline author (Author) & \begin{tabular}{l}
A string representing the name of the author who changed this comment. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline cell (Cell) & \begin{tabular}{l}
An A-1 style reference to the cell where the comment was changed. \\
The possible values for this attribute are defined by the ST_CellRef simple type \\
(§18.18.7).
\end{tabular} \\
\hline guid (GUID) & \begin{tabular}{l}
A globally unique identifier of this comment. \\
The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
\end{tabular} \\
\hline \begin{tabular}{l}
hiddenColumn \\
(Hidden Column)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating that the comment belongs to a cell in a hidden column. True \\
if the comment is in a hidden column, false otherwise.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & datatype. \\
\hline \begin{tabular}{l}
hiddenRow \\
(Comment In \\
Hidden Row)
\end{tabular} & \begin{tabular}{l}
A Boolean value indicating that the comment belongs to a cell in a hidden row. True if \\
the comment is in a hidden row, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
newLength (New \\
Comment Length)
\end{tabular} & \begin{tabular}{l}
Length of the comment text added in this revision. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline old (Old Comment) & \begin{tabular}{l}
An ignorable Boolean value used for backwards compatibility that indicates that the \\
original comment was created by a legacy spreadsheet application. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
oldLength (Original \\
Comment Length)
\end{tabular} & \begin{tabular}{l}
Length of the comment before this revision was made. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionComment) is located in §A.2. end note]

\subsection*{18.11.1.12 rcv (Revision Custom View)}

This element represents a revision record of adding or removing a custom view to the workbook
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline action (User Action) & \begin{tabular}{l}
An enumeration representing the action that the user performed. \\
The possible values for this attribute are defined by the ST_RevisionAction simple type \\
(§18.18.65).
\end{tabular} \\
\hline guid (GUID) & \begin{tabular}{l}
A globally unique identifier of the custom view. \\
The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionCustomView) is located in §A.2. end note]

\subsection*{18.11.1.13 rdn (Revision Defined Name)}

This element represents a revision record of a defined name change.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
comment (Name \\
Comment)
\end{tabular} & \begin{tabular}{l}
A string representing a comment about the defined name. \\
This comment can be shown by the spreadsheet application in a names management UI \\
so that users have more information about what the defined name is used for. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
customMenu (New \\
Custom Menu)
\end{tabular} & \begin{tabular}{l}
A string representing the new custom menu text \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
customView \\
(Custom View)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this named range belongs to a custom view
\end{tabular} \\
\hline \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
(Description) & \begin{tabular}{l}
A string representing the new description text for the defined name. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline function (Function) & \begin{tabular}{l}
A Boolean value indicating that the defined name refers to a function. True if the defined \\
name is a function, false otherwise.
\end{tabular} \\
\hline The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
9 Information \\
10 Commands \\
11 Customizing \\
12 Macro Control \\
13 DDE/External \\
14 User Defined \\
15 Engineering \\
14 Cube \\
The possible values for this attribute are defined by the W3C XML Schema unsignedByte datatype.
\end{tabular} \\
\hline help (New Help Topic) & \begin{tabular}{l}
A string representing the new help topic text. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline hidden (Named Range Hidden) & \begin{tabular}{l}
A Boolean value indicating whether the named range is now hidden. \\
Hidden refers to whether the defined name is of a 'hidden' type. This applies to things like a custom filter on a cell, it has a name, but is hidden and so is not visible in any name management UI. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline localSheetId (Local Name Sheet Id) & \begin{tabular}{l}
An integer representing the id of the sheet to which this defined name belongs. This shall be used local defined names only. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline name (Name) & \begin{tabular}{l}
A string representing the name for this defined name. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline oldComment (Old Name Comment) & \begin{tabular}{l}
A string representing the old comment about the defined name. \\
The possible values for this attribute are defined by the ST_Xstring simple type
(§22.9.2.19).
\end{tabular} \\
\hline oldCustomMenu (Old Custom Menu Text) & \begin{tabular}{l}
A string representing the old custom menu text \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
oldDescription (Old \\
Description)
\end{tabular} & \begin{tabular}{l}
A string representing the old description text \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
oldFunction (Old \\
Function)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that the old name was a function \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
oldFunctionGroupI \\
d (Old Function \\
Group Id)
\end{tabular} & \begin{tabular}{l}
Old function group ID. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedByte \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
oldHelp (Old Help \\
Topic)
\end{tabular} & \begin{tabular}{l}
A string representing the old help topic text \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
oldHidden (Old \\
Hidden)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating whether the named range was hidden \\
Hidden refers to whether the defined name is of a 'hidden' type. This applies to things \\
like a custom filter on a cell, it has a name, but is hidden and so is not visible in any name \\
management Ul.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline Bar) & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
ua (Revision From \\
Rejection)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this revision occurred because another revision was \\
rejected and therefore undone. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionDefinedName) is located in §A.2. end note]

\subsection*{18.11.1.14 reviewed (Reviewed)}

This element represents an identifier of a single reviewed revision. A reviewed revision, is a revision that has been reviewed via the spreadsheet application's track changes feature, has been accepted, and has been saved.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline rId (revision Id) & ID of a reviewed revision. \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Reviewed) is located in §A.2. end note]

\subsection*{18.11.1.15 reviewedList (Reviewed List)}

This element maintains a list of reviewed revisions.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Reviewed \\
Revisions Count)
\end{tabular} & \begin{tabular}{l}
Number of reviewed revisions. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ReviewedRevisions) is located in §A.2. end note]

\subsection*{18.11.1.16 revisions (Revisions)}

This element represents the root node of a list of revisions made in this shared workbook. This root node shows up at the beginning of every log file that contains specific revisions made to the workbook.

When multiple users are sharing, and editing, a workbook at the same time, there can be conflicting changes. The spreadsheet application should have logic to resolve such conflicts, and the file format should only contain enough information so that the spreadsheet application can restore the workbook to the correct state after conflict resolution. Revisions can also be tracked by the spreadsheet application for review by the user at a later time (as opposed to only dealing with conflicts on a save event.) Some edits to workbooks are made as a result of this conflict resolution. So, there are cases where a revision is effectively undone by another user, and as a result that undoing is itself a revision that adds or changes data in the file. These operations are tracked by the ua and ra attributes of many different elements.

\section*{[Example:}

Step 1:
User 1 inserts Column A. So the XML in the revision log would look like this:
```

<revisions xmlns="..." xmlns:r="...">
    <rrc rId="1" sId="1" ref="A1:A1048576" action="insertCol"/>
</revisions>
```

Step 2:
User 2 synchronizes the file to pick up that change, but then activates the Track Changes feature, and rejects that change. This effectively performs an undo on User 1's insertion. This is denoted in the file with the ua attribute meaning that this change happened as the result of an undo. The XML for the revision log would look like this:
```

<revisions xmlns="..." xmlns:r="...">
    <rrc rId="2" ua="1" sId="1" ref="A1:A1048576" action="deleteCol"/>
    <rcft rId="1" ua="1" sheetId="1"/>
</revisions>
```

Step 3:
User 1 enters "foo" in A1, and saves the file. A conflict resolution dialog is shown since User 2's version of the file removed the inserted Column A. User 1 chooses to accept their own changes. This undoes the change that User 2 made. So, in effect, it performed an undo on a previous undo operation. This is denoted in the file format by the ra attribute meaning that a the change occurred because a previous undo was undone. So the resulting XML for the newest log file looks like this:
```

<revisions xmlns="..." xmlns:r="...">
    <rrc rId="3" ua="1" ra="1" sId="1" ref="A1:A1048576" action="insertCol"/>
    <rcft rId="2" ua="1" sheetId="1"/>
    <rcc rId="4" sId="1">
        <nc r="A1" t="inlineStr">
            <is>
                    <t>foo</t>
            </is>
        </nc>
    </rcc>
    <rcft rId="2" sheetId="1"/>
</revisions>
```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT Revisions) is located in §A.2. end note]

\subsection*{18.11.1.17 rfmt (Revision Format)}

This element represents a revision record of information about a formatting change.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline length (Length) & \begin{tabular}{l}
The number of characters that were affected by a string change, counting from start. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline s (Style) & \begin{tabular}{l}
Flag indicating that this formatting change affected a cell's style. (Only applicable for \\
Undo operations). \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
sqref (Sequence Of \\
References)
\end{tabular} & \begin{tabular}{l}
A worksheet range to which this formatting was applied. [Note: For applications \\
supporting the default grid size (see §18.17.5), full column and row references shall \\
explicitly state the row and column components, e.g., "A1:A1048576" For column "A", \\
and A1:XFD1 for row "1". Applications with larger grid sizes shall interpret these to mean \\
"column A" and "row 1" respectively, for their larger grid size. end note]
\end{tabular} \\
The possible values for this attribute are defined by the ST_Sqref simple type \\
(§18.18.76).
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
the string in the cell. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
xfDxf (Row or \\
Column Formatting \\
Change)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this formatting change had an affect on the formatting of \\
an entire row or column that an affected cell(s) belongs to. (Only applicable for Undo \\
operations)
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionFormatting) is located in §A.2. end note]

\subsection*{18.11.1.18 ris (Revision Insert Sheet)}

This element represents a revision record of a sheet that was inserted.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline name (Sheet Name) & \begin{tabular}{l}
The name of the new sheet. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
ra (Revision Undo \\
Rejected)
\end{tabular} & \begin{tabular}{l}
A Boolean flag which indicates that this revision was due to a previous undo (ua) revision \\
being rejected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline rId (Revision Id) & \begin{tabular}{l}
An integer representing the number of this revision. This id shall apply to reviewable \\
revision types only. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
sheetPosition \\
(Sheet Position)
\end{tabular} & \begin{tabular}{l}
An integer representing the zero based position of the new sheet in the sheet tab bar. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ua (Revision From \\
Rejection)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this revision occurred because another revision was \\
rejected and therefore undone.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionInsertSheet) is located in §A.2. end note]

\subsection*{18.11.1.19 rm (Revision Cell Move)}

This element represents a revision record on a cell(s) that moved.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
destination \\
(Destination)
\end{tabular} & \begin{tabular}{l}
New A1 style location of the cell(s) that were moved \\
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
\end{tabular} \\
\hline \begin{tabular}{l}
ra (Revision Undo \\
Rejected)
\end{tabular} & \begin{tabular}{l}
A Boolean flag which indicates that this revision was due to a previous undo (ua) revision \\
being rejected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline rId (Revision Id) & \begin{tabular}{l}
An integer representing the number of this revision. This id shall apply to reviewable \\
revision types only. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline source (Source) & \begin{tabular}{l}
The original A1 style location of the cell(s) that were moved \\
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
\end{tabular} \\
\hline \begin{tabular}{l}
sourceSheetId \\
(Source Sheet Id)
\end{tabular} & \begin{tabular}{l}
An integer representing the internal id of the sheet where the cell(s) originally resided. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ua (Revision From \\
Rejection)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this revision occurred because another revision was \\
rejected and therefore undone. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionMove) is located in §A.2. end note]

\subsection*{18.11.1.20 rqt (Revision Query Table)}

This element represents a revision record of a query table field change.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline fieldId (Field Id) & \begin{tabular}{l}
ID of the specific query table field that was removed. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ref (QueryTable \\
Reference)
\end{tabular} & \begin{tabular}{l}
Location of the affected query table. \\
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionQueryTableField) is located in §A.2. end note]

\subsection*{18.11.1.21 rrc (Revision Row Column Insert Delete)}

This element represents a revision record of a row/column insert/delete action.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline action (User Action) & \begin{tabular}{l}
Indicates the action most recently performed on the row or column. \\
The possible values for this attribute are defined by the ST_rwColActionType simple \\
type (§18.18.66).
\end{tabular} \\
\hline edge (Edge Deleted) & \begin{tabular}{l}
A Boolean flag indicating that a row or column is being deleted at the edge of a sorted \\
range (only applicable to a Delete Row/Column revision types). \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline eol (End Of List) & \begin{tabular}{l}
A Boolean flag indicating that a row or a column is being inserted at the end of a list of \\
data. \\
List in this context does not mean table, rather it refers to the feature where the \\
spreadsheet application automatically creates an internal structure for making data input \\
more consistent on adjacent rows or columns. For instance, if 3 cells in a row are \\
entered with the same format, then when entering data into the 4th adjacent cell, the \\
spreadsheet application might automatically apply that same format. In this case, those
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
cells are treated as a list. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ra (Revision Undo \\
Rejected)
\end{tabular} & \begin{tabular}{l}
A Boolean flag which indicates that this revision was due to a previous undo (ua) revision \\
being rejected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline ref (Reference) & \begin{tabular}{l}
A reference to the location of the rows/columns that were inserted or deleted. \\
[Note: A reference to a whole column or row must include both the column and row \\
components. For example, column A is referenced by "A1:A1048576", and row 1 is \\
referenced by "A1:XFD1". However, because this attribute value is occurring in the \\
context of an entire row or column insert, the column component of a row reference can \\
be ignored, and the row component of a column reference can be ignored. end note] \\
The possible values for this attribute are defined by the ST_Ref simple type (§18.18.62).
\end{tabular} \\
\hline rId (Revision Id) & \begin{tabular}{l}
An integer representing the number of this revision. This id shall apply to reviewable \\
revision types only. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline sId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionRowColumn) is located in §A.2. end note]

\subsection*{18.11.1.22 rsnm (Revision Sheet Name)}

This element represents a revision record tracking the renaming a sheet.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
newName (New \\
Sheet Name)
\end{tabular} & A string representing the new sheet name \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
oldName (Old \\
Sheet Name)
\end{tabular} & \begin{tabular}{l}
A string representing the old sheet name \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
ra (Revision Undo \\
Rejected)
\end{tabular} & \begin{tabular}{l}
A Boolean flag which indicates that this revision was due to a previous undo (ua) revision \\
being rejected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline rId (Revision Id) & \begin{tabular}{l}
An integer representing the number of this revision. This id shall apply to reviewable \\
revision types only. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
An integer representing the internal id of the sheet on which the revision occurred. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ua (Revision From \\
Rejection)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that this revision occurred because another revision was \\
rejected and therefore undone. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT RevisionSheetRename) is located in §A.2. end note]

\subsection*{18.11.1.23 sheetId (Sheet Id)}

This element represents a sheet that revision can take place on. Each sheet in the workbook should be represented by one of these elements, and each sheet has an id associated with it. Sheet ids are used to refer to sheets internally by the spreadsheet application.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Sheet Id) & \begin{tabular}{l}
An integer serving as a number by which to reference the sheet internally. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Sheetld) is located in §A.2. end note]
18.11.1.24
sheetIdMap (Sheet Id Map)
This element represents a list of sheets and corresponding ids that are used for tracking revision records.
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline count (Sheet Count) & \begin{tabular}{l}
Number of sheets. \\
\\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \(\mathbf{l}\)
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SheetIdMap) is located in §A.2. end note]

\subsection*{18.11.1.25 undo (Undo)}

This element represents undo information for row/column deletion when there are functions in the spreadsheet that reference the deleted rows/columns. This element is not applicable for insert revisions.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\begin{tabular}{c}
\multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
array (Array \\
Formula)
\end{tabular} \\
\hline \begin{tabular}{l}
cs (Cross Sheet \\
Move)
\end{tabular} \\
\begin{tabular}{ll}
Flag indicating that the affected formula is an array formula. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline dn (Defined Name) \\
\begin{tabular}{l}
A Boolean flag indicating this was a cross-sheet move. True if it was a cross sheet move, \\
false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline Identifies the named range that referenced the deleted cell range. Mutually exclusive \\
with the cell reference attribute. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular}} \\
\hline exp (Expression) & \begin{tabular}{l}
The range which was deleted that is referenced by the affected formula. \\
The possible values for this attribute are defined by the ST_RefA simple type (§18.18.63).
\end{tabular} \\
\hline Identifies the expression that should be adjusted in the corresponding formula. \\
The possible values for this attribute are defined by the ST_FormulaExpression simple \\
type (§18.18.36).
\end{tabular}\(\quad\)\begin{tabular}{l}
Index of the expression within the corresponding formula that was affected by this \\
change.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
nf (Defined Name \\
Formula)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that the corresponding formula is part of a defined name. True \\
if this formula is part of a defined name, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline r (Cell Reference) & \begin{tabular}{l}
Location of the cell whose formula referenced the deleted cell range. Mutually exclusive \\
with the defined name attribute \\
The possible values for this attribute are defined by the ST_CellRef simple type \\
(§18.18.7).
\end{tabular} \\
\hline \begin{tabular}{l}
ref3D (Reference \\
3D)
\end{tabular} & \begin{tabular}{l}
A Boolean flag indicating that the expression contained the sheet name in addition to the \\
cell reference. True if it contained the sheet name, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline sId (Sheet Id) & \begin{tabular}{l}
Internal Id of the worksheet that contained the formula that referenced the deleted cell \\
range. Mutually exclusive with the defined name attribute. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline v (Value Needed) & \begin{tabular}{l}
A Boolean flag indicating the formula needs the actual value of the cell(s) it's referencing. \\
True if the formula requires the value of the cell it references, false otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Undolnfo) is located in §A.2. end note]

\subsection*{18.11.2 Shared Workbook User Data}

This subclause specifies information about the users of a shared workbook.

\subsection*{18.11.2.1 userInfo (User Information)}

This element represents a user, and it stores information about a specific user as it relates to revisions.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
dateTime (Date \\
Time)
\end{tabular} & \begin{tabular}{l}
Date and time when this user opened the shared workbook. \\
The possible values for this attribute are defined by the W3C XML Schema dateTime
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & datatype. \\
\hline \begin{tabular}{l}
guid (User Revisions \\
GUID)
\end{tabular} & \begin{tabular}{l}
A globally unique identifier identifying the last set of revisions that this uses is \\
synchronized to. \\
This attribute can be used by the spreadsheet application to ensure that revisions this \\
user depends on aren't deleted. \\
The possible values for this attribute are defined by the ST_Guid simple type (§22.9.2.4).
\end{tabular} \\
\hline id (User Id) & \begin{tabular}{l}
An integer representing an internal user id for this user. \\
This number can be negative.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT SharedUser) is located in §A.2. end note]

\subsection*{18.11.2.2 users (User List)}

This element represents a list of users who currently have this shared workbook open. This list does not include any users who have the workbook open in Read-Only mode.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Active User \\
Count)
\end{tabular} & \begin{tabular}{l}
Number of users who currently have this shared workbook open. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Users) is located in §A.2. end note]

\subsection*{18.12 QueryTable Data}

Query tables are 2 dimensional tables of data bound to an external query of some kind. [Example: A query table could for example show specific data from a text file, from a web query, or from a database query. end example]

\section*{[Example:}

Data connectivity can use a number of different technologies. The following spreadsheetML fragment is one an example of a query table connected to a database:
```

<queryTable xmlns="..." name="Northwind Orders" rowNumbers="1"
    growShrinkType="overwriteClear" connectionId="1" autoFormatId="16"
    applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="0"
    applyPatternFormats="0" applyAlignmentFormats="0" applyWidthHeightFormats="0">
<queryTableRefresh nextId="15">
<queryTableFields count="12">
<queryTableField id="1" name="OrderID" tableColumnId="1"/>
<queryTableField id="2" name="CustomerID" tableColumnId="2"/>
<queryTableField id="3" name="EmployeeID" tableColumnId="3"/>
<queryTableField id="4" name="OrderDate" tableColumnId="4"/>
<queryTableField id="5" name="RequiredDate" tableColumnId="5"/>
<queryTableField id="6" name="ShippedDate" tableColumnId="6"/>
<queryTableField id="7" name="ShipName" tableColumnId="7"/>
<queryTableField id="8" name="ShipAddress" tableColumnId="8"/>
<queryTableField id="9" name="ShipCity" tableColumnId="9"/>
<queryTableField id="10" name="ShipRegion" tableColumnId="10"/>
<queryTableField id="11" name="ShipPostalCode" tableColumnId="11"/>
<queryTableField id="12" name="ShipCountry" tableColumnId="12"/>
</queryTableFields>
</queryTableRefresh>
</queryTable>

```
end example]
[Example: And here's an example of the SpreadsheetML fragment defining a query table connected to a text import:
```

<queryTable xmlns="..." name="data in text" connectionId="1" autoFormatId="16"
    applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="1"
    applyPatternFormats="1" applyAlignmentFormats="0"
    applyWidthHeightFormats="0"/>

```

Elsewhere in the spreadsheetML file, a connection element is defined with the name "Northwind Orders" that describes how to connect to the appropriate database to refresh data for the query table. end example]

\subsection*{18.12.1 deletedField (Deleted Field)}

This element specifies a field that has been deleted from the query table.
[Example:
```

<queryTableDeletedFields count="2">
    <deletedField name="ShipVia"/>
    <deletedField name="Freight"/>
</queryTableDeletedFields>
```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
name (Deleted \\
Fields Name)
\end{tabular} & \begin{tabular}{l}
Specifies the name of the deleted field. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT DeletedField) is located in §A.2. end note]

\subsection*{18.12.2 queryTable (Query Table)}

This element specifies all the relevant properties for a query table, one query table element is stored for each query table object in the spreadsheetML document.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
adjustColumnWidt \\
h (Adjust Column \\
Width On Refresh)
\end{tabular} & \begin{tabular}{l}
Specifies whether to automatically adjust column widths on refresh to fit the data \\
retrieved. true if column widths should be adjusted. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyAlignmentFor \\
mats (Apply \\
Alignment Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat alignment properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyBorderForma \\
ts (Apply Border \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat border properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyFontFormats \\
(Apply Font \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat font properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
applyNumberForm \\
ats (Apply Number \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat number format properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline applyPatternForm & If true apply legacy table autoformat pattern properties. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline ats (Apply Pattern Formats) & The possible values for this attribute are defined by the W3C XML Schema boolean datatype. \\
\hline \begin{tabular}{l}
applyWidthHeight \\
Formats (Apply \\
Width / Height \\
Formats)
\end{tabular} & \begin{tabular}{l}
If true apply legacy table autoformat width/height properties. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline autoFormatId (Auto Format Id) & \begin{tabular}{l}
Identifies which legacy table autoformat to apply. \\
Annex D contains a listing of the supported PivotTable AutoFormats, example formatting, and a sample workbook with each of those AutoFormats applied. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline backgroundRefres h (Background Refresh) & \begin{tabular}{l}
Specifies whether or not the query table shall try to refresh data in the background. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline connectionId (Connection Id) & \begin{tabular}{l}
Specifies the ID number of the external data connection to use to refresh data in the query table. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline disableEdit (Disable Edit) & \begin{tabular}{l}
Specifies whether the connection element used with this query table shall be editable. If true, then the connection is not editable. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline disableRefresh (Disable Refresh) & \begin{tabular}{l}
Specifies whether the query table shall be refreshable. If true, then then query table is not refreshable. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
fillFormulas (Fill \\
Adjacent Formulas)
\end{tabular} & \begin{tabular}{l}
Specifies whether or not formulas in columns adjacent to the query table should be filled down whenever the query table is refreshed. This is helpful since the number of rows returned by a query table refresh operation can vary. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline firstBackgroundRe & Specifies whether or not data has ever been refreshed for this query table. If the very \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline fresh (First Background Refresh) & \begin{tabular}{l}
first background data refresh had not completed at the time the file was saved, this attribute is set to true. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline growShrinkType (Grow Shrink Type) & \begin{tabular}{l}
Specifies the type of behavior expected for dealing with a variable number of rows of data in the query table between refresh operations. \\
The meaning of the possible values of this attribute \{insertClear, insertDelete, overwriteClear \(\}\) are explained in detail in the definition of the simple type. \\
The possible values for this attribute are defined by the ST_GrowShrinkType simple type (§18.18.39).
\end{tabular} \\
\hline headers (First Row Column Titles) & \begin{tabular}{l}
Specifies whether or not the query table has first row with column titles. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline intermediate (Intermediate) & \begin{tabular}{l}
Specifies whether this query table is in an intermediate state, having been defined but not fully formed and populated with data. \\
In this state, fields and ranges of the query table can be unknown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline name (QueryTable Name) & \begin{tabular}{l}
Specifies the name of the query table. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
preserveFormattin \\
g (Preserve \\
Formatting On \\
Refresh)
\end{tabular} & \begin{tabular}{l}
Specifies whether the application should try to preserve formatting in the query table and copy this formatting to any new rows of data. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline refreshOnLoad (Refresh On Load) & \begin{tabular}{l}
Specifies whether the query table shall refresh its data automatically when the spreadsheetML document is loaded or opened. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline removeDataOnSav e (Remove Data On Save) & \begin{tabular}{l}
Specifies whether the query table shall remove all data from the worksheet before the spreadsheetML document is saved. \\
This is very helpful for situations where people who have different permissions to view data want to share the same spreadsheetML document. All data from the last user is
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
removed, and new users re-query the external data sources with their own credentials. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
rowNumbers (Row \\
Numbers)
\end{tabular} & \begin{tabular}{l}
Specifies whether the query table shall include a first column of row numbers. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT QueryTable) is located in §A.2. end note]

\subsection*{18.12.3 queryTableDeletedFields (Deleted Fields)}

This element is the collection for deletedField (\(\$ 18.12 .1\)) elements, each of which represents a column or field that has been deleted from the query table.

\section*{[Example:}
```

    <queryTableDeletedFields count="2">
    <deletedField name="ShipVia"/>
    <deletedField name="Freight"/>
    </queryTableDeletedFields>
    end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Deleted \\
Fields Count)
\end{tabular} & \begin{tabular}{l}
Specifies how many deleted fields there are. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT QueryTableDeletedFields) is located in §A.2. end note]

\subsection*{18.12.4 queryTableField (QueryTable Field)}

This element holds the properties related to a specific field or column in a query table.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
clipped (Clipped \\
Column)
\end{tabular} & \begin{tabular}{l}
Specifies whether this field/column is currently clipped and thus not visible in the \\
worksheet.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
[Note: this state might occur for example when a query table is defined near the edge of \\
a worksheet or other object in the spreadsheet that can't be overwritten with external \\
data. In this case some of the fields are displayed, but not all of them. end note] \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
dataBound (Data \\
Bound Column)
\end{tabular} & \begin{tabular}{l}
Specifies whether this column is a user-defined column or comes from the external data \\
query. User defined columns shall be preserved during data refresh operations. User- \\
defined columns are only supported on query tables that are attached to table objects. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
fillFormulas (Fill \\
This Formula On \\
Refresh)
\end{tabular} & \begin{tabular}{l}
Specifies whether the formula in this field/column should be filled down on data refresh. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline id (Field Id) & \begin{tabular}{l}
Specifies the unique identifier of the query table field. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline name (Name) & \begin{tabular}{l}
Specifies the unique name of the query table field. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline rowNumbers (Row & \begin{tabular}{l}
true if this column contains the row numbers for the records returned. \\
Numbers)
\end{tabular} \\
\hline \begin{tabular}{l}
tableColumnId possible values for this attribute are defined by the W3C XML Schema boolean \\
(Tablatype.
\end{tabular} \\
\begin{tabular}{l}
Specifies the unique identifier for the table column if the query table is attached to a \\
table object rather than just a range in the sheet.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT QueryTableField) is located in §A.2. end note]

\subsection*{18.12.5 queryTableFields (Query table fields)}

This element is the collection for queryTableField elements.
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline count (Column & Specifies the number of columns there are in this query table. Includes both query- \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline Count) & \begin{tabular}{l}
defined and user-defined columns, but not deleted columns. \\
\\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT QueryTableFields) is located in §A.2. end note]

\subsection*{18.12.6 queryTableRefresh (QueryTable Refresh Information)}

This element contains information related to refreshing the query table.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
fieldIdWrapped \\
(Next Field Id \\
Wrapped)
\end{tabular} & \begin{tabular}{l}
Whether or not the idFieldNext value wrapped around. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
headersInLastRefr \\
esh (Headers In Last \\
Refresh)
\end{tabular} & \begin{tabular}{l}
Whether or not the Query Table had titles last refresh. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
minimumVersion \\
(Minimum Refresh \\
Version)
\end{tabular} & \begin{tabular}{l}
For backward compatibility with legacy versions of spreadsheet applications, this \\
attribute specifies the minimum version of the application that is expected to correctly \\
refresh the data in the query table without any problems. \\
If this attribute is specified, an earlier version of a spreadsheet application should alert \\
the user to the potential incompatibilities when a refresh is attempted. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedByte \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
nextId (Next field \\
id)
\end{tabular} & \begin{tabular}{l}
Specifies the next unique queryTableField (§18.12.4) id number available for \\
assignment.
\end{tabular} \\
\hline \begin{tabular}{l}
preserveSortFilter \\
Layout (Preserve \\
Sort \& Filter Layout)
\end{tabular} & \begin{tabular}{l}
Specifies whether sorting, autofilter, layout, and table block formatting should be \\
preserved for this query table across data refresh operations. \\
datatype.
\end{tabular} \\
If this attribute is set to false, the query table might be more or less recreated from \\
scratch when data is refreshed. In this case, all user deleted or rearranged columns, user \\
inserted columns that aren't bound to external data, and table column formatting are \\
discarded.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
unboundColumnsL \\
eft (Columns Left)
\end{tabular} & \begin{tabular}{l}
Specifies the number of extra columns included at the left end of the field array that \\
aren't bound to external data. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
unboundColumnsR \\
ight (Columns \\
Right)
\end{tabular} & \begin{tabular}{l}
Specifies the number of extra columns included at the right end of the Table that aren't \\
bound to external data.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT QueryTableRefresh) is located in §A.2. end note]

\subsection*{18.13 External Data Connections}

SpreadsheetML allows for the definition of top level data connection objects that describe how to retrieve data from external sources. These connection objects are independent of the constructs in the spreadsheet application that display data such as tables, PivotTables, etc.

Some information about a connection is considered part of the connection's definition. Other information is not inherently part of the connection, but it describes the way the connection is to be used by the containing workbook. Note that in many cases, the spreadsheet application does not need knowledge of the command syntax for the external data source (e.g., database query language), and simply stores a command string that was created by a data provider API (e.g., an ODBC driver).

A connection's definition can be established in a standalone connection file for easier sharing and reuse, but this reference documentation deals with the XML representation for external data connections that is directly embedded within a SpreadsheetML document. This embedded representation is expected whenever external data is used, and ensures portability of the document and continued operation of the external query in the most cases.

\subsection*{18.13.1 connection (Connection)}

This element contains both the definition of how to get at an external data source as well as information describing how the connection is used within the workbook. Specific constructs in a worksheet, such as OLAP formulas, QueryTables, or PivotTables make use of information in the connection to retrieve or refresh data based on default events or the user's explicit request.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline background & Indicates whether the connection can be refreshed in the background (asynchronously). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
(Background \\
Refresh)
\end{tabular} & \begin{tabular}{l}
true if preferred usage of the connection is to refresh asynchronously in the background; \\
false if preferred usage of the connection is to refresh synchronously in the foreground. \\
This flag should be intentionally ignored in specific cases. \\
[Example: An example of when the flag would be ignored is in the case of a connection to \\
OLAP data on Microsoft SQL Server Analysis Services, where the connection is used by \\
both a PivotTable and also by CUBE functions within the workbook. That connection will \\
always be refreshed synchronously by the PivotTable and will always be refreshed \\
asynchronously by the CUBE functions. end example]
\end{tabular} \\
\hline \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{ll}
credentials \\
(Reconnection \\
Method)
\end{tabular} & \begin{tabular}{l}
Specifies the authentication method to be used when establishing (or re-establishing) the \\
connection.
\end{tabular} \\
The possible values for this attribute are defined by the ST_CredMethod simple type \\
(§18.18.16).
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \begin{tabular}{l}
information. This corresponds to the MaintainConnection property of a PivotCache \\
object.
\end{tabular} \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
minRefreshableVer \\
sion (Minimum \\
Version Required \\
for Refresh)
\end{tabular} & \begin{tabular}{l}
For compatibility with legacy spreadsheet applications. This represents the minimum \\
version \# that is required to be able to correctly refresh the data connection. This \\
attribute applies to connections that are used by a QueryTable.
\end{tabular} \\
\hline The possible values for this attribute are defined by the W3C XML Schema unsignedByte \\
datatype.
\end{tabular}\(\quad\)\begin{tabular}{l}
Specifies the name of the connection. Each connection shall have a unique name. \\
Name)
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & (§22.9.2.19). \\
\hline \begin{tabular}{l}
onlyUseConnection \\
File (Only Use \\
Connection File)
\end{tabular} & \begin{tabular}{l}
Indicates whether the spreadsheet application should always and only use the \\
connection information in the external connection file indicated by the odcFile attribute \\
when the connection is refreshed. \\
If false, then the spreadsheet application should follow the procedure indicated by the \\
reconnectionMethod attribute described below. \\
Applies to ODBC connections, and may be applied to custom data connections. This \\
attribute is ignored for other types of connections.
\end{tabular} \\
\hline The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
This exists for data security purposes - if no external data is saved in (or "cached") in the workbook, then current user credentials can be required every time to retrieve the relevant data, and people won't see the data the workbook author had last been using before saving the file. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
savePassword \\
(Save Password)
\end{tabular} & \begin{tabular}{l}
true if the password is to be saved as part of the connection string; otherwise, False. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { singleSignOnId } \\
& \text { (SSO Id) }
\end{aligned}
\] & \begin{tabular}{l}
Identifier for Single Sign On (SSO) used for authentication between an intermediate spreadsheetML server and the external data source. \\
[Note: Data connectivity can use a number of different technologies. One example of potential values stored in this attribute can be found at: \\
http://msdn.microsoft.com/library/default.asp?url=/library/enus/spptsdk/html/cSSOReturnCodes SV01001109.asp end note] \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline sourceFile (Source Database File) & \begin{tabular}{l}
Used when the external data source is file-based. When a connection to such a data source fails, the spreadsheet application attempts to connect directly to this file. Can be expressed in URI or system-specific file path notation. \\
[Note: Applications can decide what forms of URI they support, and whether systemspecific file path notations are supported. end note] \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
type (Database \\
Source Type)
\end{tabular} & \begin{tabular}{l}
Specifies the data source type. \\
Values are as follows: \\
1. ODBC-based source \\
2. DAO-based source \\
3. File based database source \\
4. Web query \\
5. Custom data connection source \\
6. Text-based source \\
7. ADO record set \\
8. DSP \\
Custom data connection source represents an application-defined connection technology. [Note: For example, Microsoft Office uses this value to represent OLE DB connections. end note]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Connection) is located in §A.2. end note]

\subsection*{18.13.2 connections (Connections)}

This element exists when there are one or more connections in the workbook. It is a container for the individual connection objects.
[Note: The W3C XML Schema definition of this element's content model (CT Connections) is located in §A.2. end note]

\subsection*{18.13.3 dbPr (Database Properties)}

This element stores all properties associated with an ODBC or OLE DB external data connection.

\section*{[Example:}

Data connectivity can use a number of different technologies. The following is one example XML fragment defining an OLE DB connection and the associated dbPr element:
```

    <connection id="2"
    odcFile="C:\My Documents\My Data Sources\Northwind Orders.odc" keepAlive="1"
    name="Northwind Orders" description="northwind" type="5" refreshedVersion="3">
    <dbPr connection="Provider=SQLOLEDB.1;Persist
        Security Info=True;Initial Catalog=Northwind;Data Source=dataserver1;Use
        Procedure for Prepare=1;Auto Translate=True;Packet Size=4096;Workstation
        ID=LOCAL_MACHINE_NAME;Use Encryption for Data=False;Tag with column
        collation when possible=False"
        command="&quot;Northwind&quot;.&quot;dbo&quot;.&quot;Orders&quot;"
        commandType="3"/>
    </connection>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
command \\
(Command Text)
\end{tabular} & \begin{tabular}{l}
The string containing the database command to pass to the data provider API that will \\
interact with the external source in order to retrieve data. These strings can be \\
constructed in a variety of ways (from simple Uls built into the spreadsheet application \\
for browsing and choosing tables and fields, to external applications providing user \\
interface to build up complex queries, to advanced users editing text queries). The
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
spreadsheetML application need not understand the command syntax; it can simply pass the command string to the data provider API in order to retrieve the latest external data. \\
[Example: \\
Data connectivity can use a number of different technologies. The following is one example of an ODBC command string of commandType=2 (for a Microsoft SQL Server database): \\
command="SELECT Orders.OrderID, Orders.OrderDate, Orders.ShipName, Orders.ShipAddress, Orders.ShipCity, Orders.ShipRegion, Orders.ShipPostalCode, Orders.ShipCountry_x000d__x000a_FROM Northwind.dbo.Orders Orders_x000d__x000a_WHERE (Orders.ShipCountry=?)" \\
Some characters in this string have been escaped - for more information on the escaping scheme, please refer to the ST_Xstring simple type definition. end example] \\
[Note: the "?" syntax in the string is something that the ODBC data provider is aware of and might replace with a parameter before execution. end note] \\
[Example: \\
Data connectivity can use a number of different technologies. The following is one example of an OLE DB command string of commandType=3 (for an Oracle database): \\
command="\"TESTDB\".\"ShippersTable\"" \\
end example] \\
[Note: Data connectivity can use a number of different technologies. A few examples of potential values stored in this attribute can be found at: \\
- http://msdn.microsoft.com/library/default.asp?url=/library/enus/odbc/htm/odbcsql statements.asp \\
- http://msdn.microsoft.com/library/default.asp?url=/library/enus/odbc/htm/odbcsal minimum grammar.asp \\
- http://msdn.microsoft.com/library/default.asp?url=/library/enus/oledb/htm/oledbusing commands.asp \\
end note] \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
commandType \\
(custom data source \\
Command Type)
\end{tabular} & \begin{tabular}{l}
Specifies the custom data source command type. Values are passed to the custom data source provider. \\
[Example: For the OLE DB custom data source provider, valid_values are as follows: \\
1. Query specifies a cube name \\
2. Query specifies a SQL statement
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
3. Query specifies a table name \\
4. Query specifies that default information has been given, and it is up to the provider how to interpret. \\
5. Query is against a web based List Data Provider. end example] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline connection (Connection String) & \begin{tabular}{l}
The connection string is used to make contact with an ODBC or custom data source. These can be constructed in a variety of ways (from UI wizards built into the data provider code, to external query applications, to advanced users editing text files). The spreadsheetML application need not understand the connection syntax at all; it can simply pass the command string to the data provider API in order to re-establish a connection with the external data source. \\
[Example: ODBC connection string to a database: \\
connection="DRIVER=SQL \\
Server;SERVER=example_server;UID=example_useralias;APP=Microsof \\
t Office 2007;WSID=user_alias;Trusted_Connection=Yes" \\
end example] \\
[Example: of an OLE DB connection string to an Oracle database: \\
connection="Provider=OraOLEDB.Oracle.1;Password=example_passwor \\
d;Persist Security Info=True;User ID=example_useralias;Data \\
Source=example_server;Extended Properties=\"\"" \\
end example] \\
[Note: Data connectivity can use a number of different technologies. A few examples of potential values stored in this attribute can be found at: \\
- http://msdn.microsoft.com/library/default.asp?url=/library/enus/odbc/htm/dasdkodbcoverview.asp \\
- http://msdn.microsoft.com/library/default.asp?url=/library/enus/odbcsal/od odbc d \(4 \times 4 k\).asp \\
- http://msdn.microsoft.com/library/default.asp?url=/library/enus/ado270/htm/mdreforacleprovspec.asp \\
end note] \\
Connection strings syntaxes are specific to individual ODBC or custom data provider drivers. \\
The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
serverCommand \\
(Command Text)
\end{tabular} & \begin{tabular}{l}
Specifies a second command text string that is persisted when PivotTable server-based \\
page fields are in use.
\end{tabular} \\
& \begin{tabular}{l}
For ODBC connections, serverCommand is usually a broader query than command (no \\
WHERE clause is present in the former). Based on these 2 commands, parameter Ul can \\
be populated and parameterized queries can be constructed.
\end{tabular} \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT DbPr) is located in §A.2. end note]

\subsection*{18.13.4 m (No Value)}

This element is present when tables in a web query are missing.
[Note: The W3C XML Schema definition of this element's content model (CT TableMissing) is located in §A.2. end note]

\subsection*{18.13.5 olapPr (OLAP Properties)}

This element contains all the properties needed for an OLAP data connection. OLAP connections contain both the dbPr and olapPr child elements.

\section*{[Example:}

Data connectivity can use a number of different technologies. The following is an example of a connection to an SAP BW OLAP data source:
```

<connection id="1" odcFile="C:\My Documents\My Data Sources\$INFOCUBE.odc"
        keepAlive="1" name="SAP demo cube" description="SAP DemoCube" type="5"
        refreshedVersion="3" background="1">
<dbPr connection="Provider=MDrmSap.2;Data Source=BI2;User
            ID=TESTUSER;Location=TESTSERVERNAME;Cache Authentication=False;Encrypt
            Password=False;Integrated Security=&quot;&quot;;Mask Password=False;Persist
            Encrypted=False;Persist Security Info=True;Impersonation
            Level=Anonymous;Mode=Read;Protection Level=None;Extended
            Properties=&quot;SFC_CLIENT=800;&quot;;Initial Catalog=$INFOCUBE"
            command="$0D_DECU" commandType="1"/>
<olapPr sendLocale="1" rowDrillCount="1000" serverFill="0"
            serverNumberFormat="0" serverFont="0" serverFontColor="0"/>
</connection>

```
end example]

\section*{[Example:}

Data connectivity can use a number of different technologies. The following is an example of a connection to a Microsoft SQL Server Analysis Services OLAP data source:
```

<connection id="1"
    odcFile="C:\My Documents\My Data Sources\Adventure Works DW.odc" keepAlive="1"
    name="Adventure Works DW" type="5" refreshedVersion="3" background="1">
<dbPr connection="Provider=MSOLAP.3;Cache Authentication=False;Persist
Security Info=True;Initial Catalog=Adventure Works
            DW;Data Source=DATASERVER1;Impersonation
            Level=Impersonate;Mode=ReadWrite;Protection Level=Pkt Privacy;Auto Synch
            Period=20000;Default Isolation Mode=0;Default MDX Visual Mode=0;MDX
            Compatibility=1;MDX Unique Name Style=0;Non Empty
            Threshold=0;SQLQueryMode=Calculated;Safety Options=2;Secured Cell
            Value=0;SOURCE_DSN_SUFFIX=&quot;Prompt=CompleteRequired;Window
            Handle=0x6A903CC;&quot;;SQL Compatibility=0;Compression Level=0;Real Time
            Olap=False;Packet Size=4096" command="Adventure Works" commandType="1"/>
<olapPr sendLocale="1" rowDrillCount="1000"/>
</connection>

```
end example]
[Note: Data connectivity can use a number of different technologies. One example of potential values stored in this attribute can be found at http://msdn.microsoft.com/library/default.asp?url=/library/enus/oledb/htm/dasdkoledboverview.asp end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline local (Local Cube) & \begin{tabular}{l}
Flag indicating whether we should get data from the local cube on refresh versus the \\
original data source. true if a local cube has been created for OLAP data, and it should \\
be used instead of the server. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
localConnection \\
(Local Cube \\
Connection)
\end{tabular} & \begin{tabular}{l}
Specifies a connection string to use when a local cube is available. This is used when \\
local is set to true.
\end{tabular} \\
[Example: \\
<olapPr local="true" \\
localConnection="OLEDB;Provider=MSOLAP; Data \\
Source=C: \Data \(\backslash\) DataCube.cub" > \\
end example] \(\quad\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & The possible values for this attribute are defined by the ST_Xstring simple type (§22.9.2.19). \\
\hline localRefresh (Local Refresh) & \begin{tabular}{l}
Flag indicating whether we should refresh the local cube from the original data source. When true, the original OLAP data source is queried each time the user explicitly refreshes the data in the application, and a new local cube is constructed from this query. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline rowDrillCount (Drill Through Count) & \begin{tabular}{l}
Maximum number of drill-through rows to return when the user drills through an aggregate value in a PivotTable. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt datatype.
\end{tabular} \\
\hline sendLocale (Send Locale to OLAP) & \begin{tabular}{l}
When true, the spreadsheetML app should send the user interface locale ID to the OLAP provider to retrieve localized member names and properties, etc. When false, no locale ID is expected. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline serverFill (OLAP Fill Formatting) & \begin{tabular}{l}
When true a PivotTable based on an OLAP source should format the data and aggregate cells in the PivotTable view using the background color from the OLAP source if this information is available. When false, OLAP server background fill colors are ignored, and standard formatting rules within the worksheet are followed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
serverFont (OLAP \\
Server Font)
\end{tabular} & \begin{tabular}{l}
When true, a PivotTable based on OLAP source should format the data and aggregate cells in the PivotTable view using the font from the OLAP source (e.g., Arial or Tahoma). When false, OLAP server fonts are ignored, and standard formatting rules within the worksheet are followed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
serverFontColor \\
(OLAP Font \\
Formatting)
\end{tabular} & \begin{tabular}{l}
When true a PivotTable based on OLAP source should format the data and aggregate cells in the PivotTable view using the font color from the OLAP source. When false, OLAP server font colors are ignored, and standard formatting rules within the worksheet are followed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline serverNumberFor mat (OLAP Number Format) & When true, a PivotTable based on OLAP source should format the data and aggregate cells in the PivotTable view using the number format from the OLAP source. When false, OLAP server number formats are ignored, and standard formatting rules within \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
the worksheet are followed. \\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OlapPr) is located in §A.2. end note]

\subsection*{18.13.6 parameter (Parameter Properties)}

This element stores properties about any parameters used with external data connections. Parameters are used to change the query executed externally and cause different data to be retrieved into the workbook. The type of parameter used - see ST_parameterType (\(\$ 18.18 .54\)) - determines whether the user is prompted for a value before data is refreshed, or the value is pulled from a cell in the workbook, or whether the same value should be used until explicitly changed in the data connection. Parameters are permitted for ODBC and web queries.

\section*{[Example:}

Data connectivity can use a number of different technologies. The following is an example of XML defining a connection to a Microsoft Access database, with a parameter based on the value in cell C1 on the first sheet.
```

<connection id="1" name="Connection" type="1" refreshedVersion="2"
    background="1" saveData="1">
<dbPr connection="DSN=MS Access
        Database;DBQ=C:\Desktop\db1.mdb;DefaultDir=C:\Desktop;DriverId=25;FIL=MS
        Access;MaxBufferSize=2048;PageTimeout=5;" command="SELECT Table1.Field1,
        Table1.Field2_x000d__x000a_FROM `C:\Desktop\db1`.Table1
        Table1_x000d__x000a_WHERE (Table1.Field2=?)"/>
<parameters count="1">
<parameter name="user specified value" sqlType="4" parameterType="cell"
            cell="Sheet1!$C$1"/>
</parameters>
</connection>

```
end example]

Note that the command string in the dbPr element contains a "?" character. This character serves as a parameter marker.
[Note: Data connectivity can use a number of different technologies. One example of potential values stored in this attribute can be found at: http://msdn.microsoft.com/library/default.asp?url=/library/enus/odbc/htm/odbcstatement parameters.asp end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline boolean (Boolean) & \begin{tabular}{l}
Boolean value to use as the query parameter. Used only when parameterType = value. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline cell (Cell Reference) & \begin{tabular}{l}
Cell reference indicating which cell's value to use for the query parameter. Used only \\
when parameterType = cell. \\
[Example: \\
<Parameter parameterType="cell" cell="Sheet1! \$C\$1"> \\
end example]
\end{tabular} \\
\hline double (Double) & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
Non-integer numeric value to use as the query parameter. Used only when \\
parameterType = value. \\
The possible values for this attribute are defined by the W3C XML Schema double \\
datatype.
\end{tabular}

[Note: The W3C XML Schema definition of this element's content model (CT Parameter) is located in §A.2. end note]

\subsection*{18.13.7 parameters (Query Parameters)}

This element serves as a collection of parameters for an ODBC or web query.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Parameter \\
Count)
\end{tabular} & \begin{tabular}{l}
The number of parameters used. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Parameters) is located in §A.2. end note]

\subsection*{18.13.8 s (Character Value)}

This element is used to specify an HTML table to import by name. If the tables are not named, they shall be specified with the <x v="[index]"> syntax instead.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline v (Value) & \begin{tabular}{l}
The name of the table to retrieve when the web query is refreshed. This corresponds to \\
the string used for the id attribute of the HTML <table> tag.
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT XStringElement) is located in §A.2. end note]

\subsection*{18.13.9 tables (Tables)}

This element serves as the collection of tables to be returned via a web query data connection. Tables are then most commonly referenced by <x> via their indices (in order of the <Table> tags in the HTML page).
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Count of \\
Tables)
\end{tabular} & \begin{tabular}{l}
Number of tables to pull data from when refreshing from a web query. \\
\\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Tables) is located in §A.2. end note]

\subsection*{18.13.10 textField (Text Import Field Settings)}

This element specifies field settings for text import.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline position (Position) & \begin{tabular}{l}
The character position the field starts at for fixed-length fields. The index is 0-based. If \\
this attribute does not exist, position=0 is assumed. Subsequent textField elements or \\
carriage returns in the text stream serve to denote endpoints for text fields. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline type (Field Type) & \begin{tabular}{l}
Specifies the field Type. When text is imported into cells in the worksheet, the data in \\
the cells are converted to the field type defined here. \\
Types can be specified by the user, or determined algorithmically via heuristics and text
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & analysis. \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the ST_ExternalConnectionType \\
simple type (§18.18.27).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TextField) is located in §A.2. end note]

\subsection*{18.13.11 textFields (Fields)}

This element that denotes a set of fields to retrieve from a text file. Contains 1 or more textField elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
count (Count of \\
Fields)
\end{tabular} & \begin{tabular}{l}
Number of distinct fields to retrieve. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TextFields) is located in §A.2. end note]

\subsection*{18.13.12 textPr (Text Import Settings)}

This element contains all of the text import settings.
[Example: Here's an example of the XML for a text connection:
```

<connection id="1" name="text data" type="6" refreshedVersion="3" background="1"
    saveData="1">
<textPr prompt="0" characterSet="IBM437" sourceFile="C:\Desktop\text data.txt"
        delimiter="|">
<textFields count="5">
<textField/>
<textField type="text" position="7"/>
<textField type="text" position="28"/>
<textField position="36"/>
<textField type="text" position="41"/>
</textFields>
</textPr>
</connection>
example]

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Attributes & \multicolumn{6}{|c|}{Description} \\
\hline characterSet (Character Set) & \multicolumn{6}{|l|}{\begin{tabular}{l}
Name of the character set associated with the text file. Values for this attribute are restricted to the names and aliases listed in the IANA CHARACTER SETS listing found at http://www.iana.org/assignments/character-sets. \\
[Note: When reading this value, if a system does not support a particular character set, the application is allowed to decide what is the best course of fallback action. end note] \\
If this attribute is not present then the codePage attribute are used. \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular}} \\
\hline comma (Comma is Delimiter) & \multicolumn{6}{|l|}{\begin{tabular}{l}
Flag indicating whether to treat comma characters as field delimiters. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular}} \\
\hline consecutive (Consecutive Delimiters) & \multicolumn{6}{|l|}{\begin{tabular}{l}
Flag indicating whether consecutive delimiters should be treated as just one delimiter. If this flag is true than it's possible or even likely that some rows will return more fields than others, and these fields will always fill cells in the worksheet from left to right. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular}} \\
\hline decimal (Decimal Separator) & \multicolumn{6}{|l|}{\begin{tabular}{l}
The decimal separator character. This and the thousands attribute are used only when data in the text file contains decimal and thousands separators that are different from those used on the computer, due to a different language setting being used. \\
The following table shows the results when you import text into a spreadsheet application using various separators. Numeric results are displayed in the rightmost column.
\end{tabular}} \\
\hline & System
decimal
separator & System thousands separator & Text file decimal separator value & Text file thousands Separator value & Text imported & Cell value (data type) \\
\hline & Period & Comma & Comma & Period & 123.123,45 & \begin{tabular}{l}
\[
123,123.45
\] \\
(numeric)
\end{tabular} \\
\hline & Period & Comma & Comma & Comma & 123.123,45 & 123.123,45 (text) \\
\hline & Comma & Period & Comma & Period & 123,123.45 & \begin{tabular}{l}
\[
123,123.45
\] \\
(numeric)
\end{tabular} \\
\hline & Period & Comma & Period & Comma & 123123.45 & 123123.45 (text) \\
\hline & Period & Comma & Period & Space & 123123.45 & \[
\begin{aligned}
& 123,123.45 \\
& \text { (numeric) }
\end{aligned}
\] \\
\hline & \multicolumn{6}{|l|}{Strings values of this attribute are expected to be one character in length.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
delimited \\
(Delimited File)
\end{tabular} & \begin{tabular}{l}
true if the file is Tab or character delimited. false if the file should be parsed according \\
to fixed length fields. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
delimiter (Custom \\
Delimiter)
\end{tabular} & \begin{tabular}{l}
User-specified character to be treated as a field delimiter. Only single characters are \\
supported.
\end{tabular} \\
\hline fileType (File Type) & \begin{tabular}{l}
Tge possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19). \\
character set to use during import.
\end{tabular} \\
\hline Only one of fileType and characterSet or codePage shall be specified for a textPr. \\
The possible values for this attribute are defined by the ST_FileType simple type \\
(§18.18.29).
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\begin{tabular}{c}
\multicolumn{1}{c|}{ Description } \\
\hline
\end{tabular} \begin{tabular}{l}
specific file path notations are supported. end note] \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular}} \\
\hline \begin{tabular}{l}
space (Space is \\
Delimiter)
\end{tabular} & \begin{tabular}{l}
Flag indicating whether to treat space characters as field delimiters. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
tab (Tab as \\
Delimiter)
\end{tabular} & \begin{tabular}{l}
Flag indicating whether to treat tab characters as field delimiters. If false, then tabs will \\
not be used as delimiters. If true or not present, then they are used as delimiters.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT TextPr) is located in §A.2. end note]

\subsection*{18.13.13 webPr (Web Query Properties)}

This element specifies the properties for a web query source. A web query will retrieve data from HTML tables, and can also supply HTTP "Get" parameters to be processed by the web server in generating the HTML by including the parameters and parameter elements.

Here's an example of a web query connection:

\section*{[Example:}
```

<connection id="1" name="Connection" type="4" refreshedVersion="0"
    background="1" saveData="1">
<webPr sourceData="1" parsePre="1" consecutive="1"
        url="http://ServerName/Image%20Library/Forms/AllItems.aspx" htmlTables="1">
<tables count="1">
<s v="contentthumbnail"/>
</tables>
</webPr>
</connection>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
consecutive \\
(Consecutive \\
Delimiters)
\end{tabular} & \begin{tabular}{l}
Flag indicating whether consecutive delimiters should be treated as just one delimiter. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
editPage (Edit \\
Query URL)
\end{tabular} & \begin{tabular}{l}
The URL of the user-facing web page showing the web query data. This URL is persisted \\
in the case that sourceData="true" and url has been redirected to reference an XML file. \\
Then the user-facing page can be shown in the UI, and the XML data can be retrieved \\
behind the scenes. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
firstRow (Use First \\
Row)
\end{tabular} & \begin{tabular}{l}
Flag indicating whether to parse all tables inside a PRE block with the same width settings \\
as the first row.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline post (Web Post) & \begin{tabular}{l}
Returns or sets the string used with the post method of inputting data into a web server \\
to return data from a web query. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
sourceData (Import \\
XML Source Data)
\end{tabular} & \begin{tabular}{l}
Flag indicating that XML source data should be imported instead of the HTML table itself. \\
Used when a web query exists to an HTML table with the following attribute.
\end{tabular} \\
\hline <TABLE ... o:WebQuerySourceHRef="http: //..." ... > ... </TABLE>
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT WebPr) is located in §A.2. end note]

\subsection*{18.14 Supplementary Workbook Data}

External links are used when linking the workbook to other workbooks or external data. The most frequent feature for linking a workbook to other workbooks is through the use of formulas. In this case the formula references a range or defined name in another workbook. Hyperlinks on cells and other spreadsheet objects are also considered an external link. Object-linking technologies are yet another technology used to link the workbook to another object. [Example: KParts or OLE. end example] Finally, Dynamic Data Exchange, or DDE, servers can be used to access external data. DDE servers are accessed through formulas in the workbook.

External links are saved with the target source in a relationship file so that external resources are easily discoverable in lightweight relationship XML rather than deep in the application's XML.

For a workbook consumer.xlsx that makes use of data in another workbook called data.xlsx, the following XML would exist in consumer.xlsx to describe the external link:

\section*{[Example:}
```

<Relationships xmlns="...">
    <Relationship Id="rId1" Type=".../externalLinkPath" Target="data.xlsx"
        TargetMode="External"/>
</Relationships>
```
end example]
And the following XML would exist to describe cached data retrieved from the external workbook:
[Example:
```

<externalLink xmlns="...">
    <externalBook xmlns:r="..." r:id="rId1">
        <sheetNames>
            <sheetName val="Sheet1"/>
            <sheetName val="Sheet2"/>
            <sheetName val="Sheet3"/>
        </sheetNames>
```
```
        <sheetDataSet>
            <sheetData sheetId="0"/>
            <sheetData sheetId="1"/>
            <sheetData sheetId="2">
                <row r="11">
                    <cell r="B11">
                    <v>47</v>
                    </cell>
                </row>
                <row r="12">
                    <cell r="B12">
                    <v>19</v>
                    </cell>
                </row>
                <row r="13">
                    <cell r="B13">
                    <v>38</v>
                    </cell>
            </row>
            </sheetData>
        </sheetDataSet>
    </externalBook>
</externalLink>
```
end example]

The Supplementary Workbook Data section of SpreadsheetML is complimentary to the External Data Connnections (\(\$ 18.13\)) section in maintaining all the information about external information that impacts the workbook.

\subsection*{18.14.1 cell (External Cell Data)}

This element is used to store cached values from external sources such as other workbooks. Formulas from external cells are not stored in the consuming workbook. Also, for this context, the attribute \(t\) cannot have a value of inlineStr. Rich text is not supported in this context either.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline r (Reference) & Describes the cell location in the external book. \\
[Example: \\
& \begin{tabular}{l}
<cell \(\mathrm{r}=\) "B12" \\
<v>74</v> \\
</cell>
\end{tabular} \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
end example] \\
The possible values for this attribute are defined by the ST_CellRef simple type \\
(§18.18.7).
\end{tabular} \\
\hline t (Type) & \begin{tabular}{l}
Indicates the data type of the cell value. \\
The possible values for this attribute are defined by the ST_CellType simple type \\
(§18.18.11).
\end{tabular} \\
\hline \begin{tabular}{l}
vm (Value \\
Metadata)
\end{tabular} & \begin{tabular}{l}
The index of the cell's value metadata, if any exists. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT ExternalCell) is located in §A.2. end note]

\subsection*{18.14.2 ddeItem (DDE Item definition)}

This element represents a DDE item.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline advise (Advise) & \begin{tabular}{l}
Specifies whether the DDE server should notify the application when the external data \\
changes. Default value is false. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline name (DDE Name) & \begin{tabular}{l}
Specifies the DDE item name. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
ole (Object Linking \\
TechnologyE)
\end{tabular} & \begin{tabular}{l}
Set to true if this is item uses an object linking technology. Default value is false. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
preferPic (Data is \\
an Image)
\end{tabular} & \begin{tabular}{l}
Set to true if data from this DDE item is an image format. Default value is false. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Ddeltem) is located in §A.2. end note]

\subsection*{18.14.3 ddeItems (DDE Items Collection)}

This element serves as a collection for ddeItem elements.
[Note: The W3C XML Schema definition of this element's content model (CT Ddeltems) is located in §A.2. end note]

\subsection*{18.14.4 ddeLink (DDE Connection)}

This element represents a connection to an external Dynamic Data Exchange (DDE) server. DDE is a method of sending data between applications using Windows messages according to a documented protocol that has been stable since about 1990.

The hierarchy of names defined by a DDE server is Application, Topics, and Items. Topics often correspond to units such as files or documents or database names, and Items refer to subsets of the data such as cell ranges, rows, fields, columns. DDE items can have multiple values as well.

\section*{[Example:}

Data connectivity can use a number of different technologies. The following is just one example of a spreadsheetML fragment describing the product Microsoft Excel being used as a DDE server to provide data to the current spreadsheet document:
```

    <ddeLink xmlns:r="..." ddeService="excel" ddeTopic="[ddesource.xls]Sheet1">
    <ddeItems>
        <ddeItem name="R1C1" advise="1"/>
        <ddeItem name="StdDocumentName" ole="1" advise="1"/>
    </ddeItems>
    </ddeLink>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
ddeService (Service \\
name)
\end{tabular} & \begin{tabular}{l}
Service name (i.e., application name) for the DDE connection. This is a required attribute. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
ddeTopic (Topic for \\
DDE server)
\end{tabular} & \begin{tabular}{l}
Describes something for the DDE application to which the channel pertains— usually a \\
document of that application. This is a required attribute.
\end{tabular} \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT DdeLink) is located in §A.2. end note]

\subsection*{18.14.5 definedName (Defined Name)}

This element contains information about a named range in an external workbook.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
name (Defined \\
Name)
\end{tabular} & \begin{tabular}{l}
The defined name. This attribute is required. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline refersTo (Refers To) & \begin{tabular}{l}
Name range definition string. \\
[Example: \\
<definedNames> \\
<definedName name="namedrange" \\
refersTo=" = 'Sheet1' ! \$D \(\$ 5: \$ D \$ 10 " />\) \\
</definedNames>
\end{tabular} \\
end example]
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ExternalDefinedName) is located in §A.2. end note]

\subsection*{18.14.6 definedNames (Named Links)}

This element is a collection of the defined names associated with the supporting workbook.
[Note: The W3C XML Schema definition of this element's content model (CT ExternalDefinedNames) is located in §A.2. end note]

\subsection*{18.14.7 externalBook (External Workbook)}

This element represents an external workbook which is supplying data to the current workbook.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
id (Relationship to \\
supporting book file
\end{tabular} & \begin{tabular}{l}
Relationship ID that references a link in the relationships collection. The target attribute \\
in the associated relationship will specify the worksheet XML file in the current
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline path) & spreadsheetML document ZIP archive that makes use of this externalbook. \\
Namespace: & The possible values for this attribute are defined by the ST_RelationshipId simple type \\
http://purl.oclc.or & (§22.8.2.1). \\
g/ooxml/officeDoc \\
ument/relationshi & \\
ps
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT ExternalBook) is located in §A.2. end note]

\subsection*{18.14.8 externalLink (External Reference)}

This element is a container for specific types of external links.
[Note: The W3C XML Schema definition of this element's content model (CT ExternalLink) is located in §A.2. end note]

\subsection*{18.14.9 oleItem (Object Link Item)}

This element represents a single link within the object referenced by the parent element.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline advise (Advise) & \begin{tabular}{l}
Set to true if the linked object should notify the application when the external data \\
changes. Default value is false. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline icon (Icon) & \begin{tabular}{l}
Set to true if the linked object is represented by an icon. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
name (Object \\
Name)
\end{tabular} & \begin{tabular}{l}
The linked object's name. \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline \begin{tabular}{l}
preferPic (Object is \\
an Image)
\end{tabular} & \begin{tabular}{l}
Set to true if the linked object is represented by an image. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Oleltem) is located in §A.2. end note]

\subsection*{18.14.10 oleItems (Object Link Items)}

This element is a collection of items within the link specified by the parent element.
[Note: The W3C XML Schema definition of this element's content model (CT Oleltems) is located in §A.2. end note]

\subsection*{18.14.11 oleLink (Generic Object Link Connection)}

This element represents an external link to an embedded object, specified by a progID/object pair. The type of object link is determined by reading the target of the id attribute.
[Example: The following markup defines a reference to a linked object using Bonobo. The progld attribute contains the shared library that contains the widget. The r:id identifies the referenced Bonobo object.
```

<oleLink r:id="rb1" progId="OAFIID:Bonobo_Sample_Calculator">
    </oleLink>
```

The target of the relationship with ID rb1, defines the Bonobo object itself. This example shows a link to a sample Bonobo widget taken from the following article, which also provides an introduction to Bonobo -http://www.ibm.com/developerworks/webservices/library/co-bnbo2.html. end example]
[Example: The following markup defines a reference to a linked object using KParts. The progld attribute contains the shared library that contains the plugin. The r:id identifies the referenced KParts object.
```

<oleLink r:id="rKp1" progId="libhtmlvalidatorplugin">
...
</oleLink>
```

The following XML, contained in the target of the relationship with ID rKp1, defines the KPart object, and will follow the kpartgui DTD:
```

<!DOCTYPE kpartgui SYSTEM "kpartgui.dtd">
<kpartgui library="libhtmlvalidatorplugin" name="htmlvalidatorplugin"
version="1" >
<MenuBar>
<Menu name="tools"><Text>\&Tools</Text>
<Action name="validatewebpage"/>
</Menu>
</MenuBar>
</kpartgui>

```

This example is taken from the kde.org web site, and contains a tutorial on building the plugin referenced by the above markup - http://developer.kde.org/documentation/tutorials/dot/writing-plugins.html. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
id (Object Link \\
Relationship)
\end{tabular} & \begin{tabular}{l}
Relationship ID that references a link in the relationships collection. The target attribute \\
in the associated relationship will specify the external file name used for this oleLink.
\end{tabular} \\
\begin{tabular}{l}
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l}
progId (Object Link \\
Identifier)
\end{tabular} & \begin{tabular}{l}
The ID for the object link connection. [Example: For a KParts link, this would store the \\
name of the appropriate KParts library. For an OLE link, this would store the ProgID of the \\
appropriate OLE object. end example]
\end{tabular} \\
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OleLink) is located in §A.2. end note]

\subsection*{18.14.12 row (Row)}

This element contains data for an external worksheet row.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline r (Row) & \begin{tabular}{l}
Row number of the row in the external book containing the cell data referenced. This \\
attribute is required.
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ExternalRow) is located in §A.2. end note]

\subsection*{18.14.13 sheetData (External Sheet Data Set)}

This element contains the cached worksheet data associated with a supporting workbook.
[Note: For an example, please refer to example at the beginning of this section. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
refreshError (Last \\
Refresh Resulted in \\
Error)
\end{tabular} & \begin{tabular}{l}
Specifies that the last external data refresh for this sheet did not succeed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline sheetId (Sheet Id) & \begin{tabular}{l}
Index of sheet in the external workbook that is referenced and partially cached in this \\
data set. This is a 1-based index. This attribute is required.
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ExternalSheetData) is located in §A.2. end note]

\subsection*{18.14.14 sheetDataSet (Cached Worksheet Data)}

This element serves as the collection for 1 or more sheetData elements.
[Note: The W3C XML Schema definition of this element's content model (CT ExternalSheetDataSet) is located in §A.2. end note]

\subsection*{18.14.15 sheetName (Sheet Name)}

Name of a worksheet in the supporting workbook
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{ll}
val (Sheet Name \\
Value)
\end{tabular} & Name of the sheet. This attribute is required. \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ExternalSheetName) is located in §A.2. end note]

\subsection*{18.14.16 sheetNames (Supporting Workbook Sheet Names)}

This element is the container for all of the worksheet names in a supporting workbook.
[Note: The W3C XML Schema definition of this element's content model (CT ExternalSheetNames) is located in §A.2. end note]

\subsection*{18.14.17 val (DDE Link Value)}

This element specifies a value associated with a particular DDE item.
[Example: Here's an example of how values, value, and val elements are written out in the spreadsheetML for a ddeItem supplied by a DDE server. In this example different cells in the workbook are bound to these specific DDE items:
```

<ddeLink xmlns:r="..." ddeService="StockSrv" ddeTopic="Prices">
        <ddeItems>
            <ddeItem name="Bread" advise="1">
                <values>
                    <value>
                    <val>3.5</val>
            </value>
                </values>
        </ddeItem>
        <ddeItem name="Milk" advise="1">
            <values>
                <value>
                    <val>5.7400000000000002</val>
                </value>
            </values>
        </ddeItem>
        <ddeItem name="MSFT" advise="1">
            <values>
                    <value>
                    <val>54.130000000000003</val>
            </value>
                </values>
        </ddeItem>
        <ddeItem name="StdDocumentName" ole="1" advise="1"/>
    </ddeItems>
</ddeLink>
```
end example]

The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).
[Note: The W3C XML Schema definition of this element's content model (ST Xstring) is located in §A.6.9. end note]

\subsection*{18.14.18 value (Value)}

This element contains a value associated with a particular DDE item. This serves as a container for the val element.
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline t (DDE Value Type) & Indicates the DDE value type. \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the ST_DdeValueType simple type \\
\((\S 18.18 .23)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT DdeValue) is located in §A.2. end note]

\subsection*{18.14.19 values (DDE Name Values)}

This element defines a collection of values associated with DDE item.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline cols (Columns) & \begin{tabular}{l}
The number of columns of data that is returned by the DDE server for this DDE item. The \\
default value of this attribute is 1. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline rows (Rows) & \begin{tabular}{l}
The number of rows of data that is returned by the DDE server for this DDE item. The \\
default value of this attribute is 1. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT DdeValues) is located in §A.2. end note]

\subsection*{18.15 Volatile Dependencies}

The volatileDependencies part provides a cache of data that supports Real Time Data (RTD) and CUBE functions in the workbook. Both of these types of functions require connectivity to external servers to retrieve their data. For RTD functions, an RTD interface defines how data is provided on the server, and how it is retrieved on the client. Similarly, CUBE functions access data in OLAP cubes via their own function syntax. The volatileDependencies part provides that cache of data and supporting information about these functions and their data servers and connections. This allows the spreadsheet application to work with cached values when recalculating the workbook when the external server is not available.
[Note: How users of SpreadsheetML access RTD data depends on the integration the user's spreadsheet application provides for RTD. end note]
[Note: Data connectivity can use a number of different technologies. One example of potential values stored in this attribute can be found at: http://msdn.microsoft.com/library/default.asp?url=/library/enus/vbaxl11/html/xlobjlRtdServer HV03085058.asp end note]

File Architecture
The workbook holds the relationship to the volatile dependencies part.

Illustration
[Example: The following image shows an example implementation of CUBE and Real Time Data (RTD) functions in a worksheet.
```

|
=RTD("jrtdx.rtd",,"aaa")
=CUBEMEMBER("xlextdat9 Adventure Works DW Adventure Works","[Department].[Departments].[Corporate]")
=CUBEVALUE("xlextdat9 Adventure Works DW Adventure Works",A3)
=CUBESET("xlextdat9 Adventure Works DW Adventure Works","[Customer].[Customer Geography].[All Customers].[United Kingdom].children","Set")
=CUBERANKEDMEMBER("xlextdat9 Adventure Works DW Adventure Works",\$A\$3,ROW(A1))
=CUBESETCOUNT(A3)
=CUBEMEMBERPROPERTY("xlextdat9 Adventure Works DW Adventure Works","[Product].[Product].[All Products].[Blade]","Class")
=CUBEKPIMEMBER("xlextdat9 Adventure Works DW Adventure Works","Growth in Customer Base",2)

```

The following example shows the XML that describes the functions in the illustration.
```

<volTypes xmlns="...">
    <volType type="realTimeData">
        <main first="jrtdx.rtd">
            <tp t="s">
                <v>aaa: 4447</v>
                <stp/>
                <stp>aaa</stp>
                <tr r="A1" s="1"/>
            </tp>
        </main>
    </volType>
```
```
<volType type="olapFunctions">
    <main first="xlextdat9 Adventure Works DW Adventure Works">
            <tp t="e">
                <v>#N/A</v>
            <stp>1</stp>
            <tr r="A6" s="1"/>
            <tr r="A9" s="1"/>
            <tr r="A8" s="1"/>
            <tr r="A5" s="1"/>
            <tr r="A4" s="1"/>
            <tr r="A3" s="1"/>
        </tp>
        </main>
        </volType>
</volTypes>
```
end example]
While RTD and Cube functions share the cache, there are differences in how the data is interpreted. [Example: RTD dependencies, volTypes/volType/main@first specifies the Progld of the RTD server. Whereas for OLAP dependencies, main@first indicates the connection name. end example]

\subsection*{18.15.1 main (Main)}

Represents dependency information for all topics within a volatile dependency type that share the same first string or function argument.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline first (First String) & \begin{tabular}{l}
Specifies the first string of all topics within this main. This string corresponds to the first \\
argument to the RTD or CUBE function.
\end{tabular} \\
For RTD functions, this argument represents the progID of the IRTDServer. \\
[Example: \\
<main first="jrtdx.rtd" > \\
end example \(]\) \\
For CUBE functions, this argument represents the CUBE connection. \\
{\(\left[\begin{array}{l}\text { Example: } \\
\text { <main first="xlextdat9 Adventure Works DW Adventure Works"> } \\
\text { end example }] \\
\text { For more information on RTD and CUBE functions in SpreadsheetML, see §18.17 in } \\
\text { Formulas. }\end{array}\right.\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_Xstring simple type \\
(§22.9.2.19).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT VolMain) is located in §A.2. end note]

\subsection*{18.15.2 stp (Strings in Subtopic)}

Represents all strings in the topic except for the first. An stp is allocated for each additional argument. [Example: For the topic \{"progid","","foo"\}, there would be two STPs: "" and "foo". end example]

For Cube functions, value of "1" indicates that all of the related cells with calling cube functions have been refreshed.

The possible values for this element are defined by the ST_Xstring simple type (§22.9.2.19).
[Note: The W3C XML Schema definition of this element's content model (ST Xstring) is located in §A.6.9. end note]

\subsection*{18.15.3 tp (Topic)}

Represents dependency information for all topics within a volatile dependency type that share the same first string or argument.

For the RTD function, this collection will contain the remaining parameters of the function, and indicate the last known value and data type of that value.
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline t (Type) & \begin{tabular}{l}
Specifies the type of the cell value. This value corresponds to the type of data returned by the RTD or CUBE function. \\
[Example: In the following RTD example, the value "aaa: 4447" has a string data type.
```

    <tp t="s">
        <v>aaa: 4447</v>
    </tp>
    ```
end example] \\
For Cube functions, this attribute can be ignored when stp value is " 1 ". \\
The possible values for this attribute are defined by the ST_VolValueType simple type (§18.18.91).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT VolTopic) is located in §A.2. end note]

\subsection*{18.15.4 \(\operatorname{tr}\) (References)}

Represents the reference to a cell that depends on this topic. Each topic can have one or more cells dependencies.

For CUBE functions, each <tr> element contains a cell whose cube function call dependent on the connection in main@first.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline r (Reference) & \begin{tabular}{l}
Specifies a reference to the cell location. The location is scoped to the sheet specified in \\
s. \\
{\(\left[\begin{array}{l}\text { Example: } \\
\text { <tr } \mathrm{r}=\text { "A6" } \mathrm{s}=" 1 " /> \\
\text { end example }] \\
\text { The possible values for this attribute are defined by the ST_CellRef simple type } \\
\text { (§18.18.7). }\end{array}\right.\)} \\
\hline s (Sheet Id) \\
\\
\begin{tabular}{l}
Specifies the sheet index. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT VolTopicRef) is located in §A.2. end note]

\subsection*{18.15.5 volType (Volatile Dependency Type)}

Represents dependency information for a specific type of external data server. There is no limit on the number of external dependencies that can exist for a workbook in SpreadsheetML.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline type (Type) & \begin{tabular}{l}
Specifies the type of the external dependency. \\
[Example: \\
<volType type="olapFunctions"> \\
end example]
\end{tabular} \\
\begin{tabular}{l}
The possible values for this attribute are defined by the ST_VolDepType simple type \\
(\(\$ 18.18 .90)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT VolType) is located in §A.2. end note]

\subsection*{18.15.6 volTypes (Volatile Dependency Types)}

Represents the collection of external dependencies for a workbook. This element defines the structure of the volatilateDependencies part. There can only be one volatileDependencies part for each workbook. However, the part can contain one or more dependency types.

The volatileDependencies part stores the following information for Real Time Data (RTD) and CUBE functions:
- Cached values
- Parameters used
- Connection and Server names

\section*{[Example: Outline of XML Structure}
```

<volTypes xmlns="...">
    <volType type="realTimeData">
    </volType>
    <volType type="olapFunctions">
    </volType>
</volTypes>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT VolTypes) is located in §A.2. end note]

\subsection*{18.16 Custom XML Mappings}

Custom XML Mappings enable binding of arbitrary XML data structures and arbitrary XML schema definitions to the workbook. Once a DataBinding has been established, then various XML nodes can be mapped to table columns, ranges of cells, or even single cells (for non-repeating attributes and elements). Once an XML Mapping is fully defined, the application is able to import and export XML instance structures according to the schema definition. ISO/IEC 29500 does not require any particular XML schema language.
[Note: Some examples of XML schema languages that might be used to implement Custom XML Mappings include:
- W3C XML Schema - http://www.w3.org/XML/Schema
- RELAX NG - ISO/IEC 19757-2
- Schematron - ISO/IEC 19757-3
- NVDL - ISO/IEC 19757-4
end note]

While the original schema or XML definition can reside on disk or at some file location outside the workbook, a copy of the schema is stored in the workbook.

Every time an XML instance or schema is added to the workbook, a new map object is created which ties together the schemas and where the various elements are mapped in the workbook.

\section*{[Example:}
```

<MapInfo SelectionNamespaces="">
    <Schema ID="Schema1">
        <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
            <xsd:element nillable="true" name="Root">
                <xsd:complexType>
                    <xsd:sequence minOccurs="0">
                    <xsd:element minOccurs="0" nillable="true" name="EmployeeInfo"
                        form="unqualified">
                        <xsd:complexType>
                            <xsd:sequence minOccurs="0">
                            <xsd:element minOccurs="0" nillable="true" type="xsd:string"
                                    name="Name" form="unqualified"></xsd:element>
                            <xsd:element minOccurs="0" nillable="true" type="xsd:date"
                                    name="Date" form="unqualified"></xsd:element>
                            <xsd:element minOccurs="0" nillable="true" type="xsd:integer"
                                    name="Code" form="unqualified"></xsd:element>
                                    </xsd:sequence>
                        </xsd:complexType></xsd:element>
                        <xsd:element minOccurs="0" maxOccurs="unbounded" nillable="true"
                                name="ExpenseItem" form="unqualified">
                        <xsd:complexType>
                            <xsd:sequence minOccurs="0">
                                    <xsd:element minOccurs="0" nillable="true" type="xsd:date"
                                    name="Date" form="unqualified"></xsd:element>
                                    <xsd:element minOccurs="0" nillable="true" type="xsd:string"
                                    name="Description" form="unqualified"></xsd:element>
                                    <xsd:element minOccurs="0" nillable="true" type="xsd:double"
                                    name="Amount" form="unqualified"></xsd:element>
                                    </xsd:sequence>
                                    </xsd:complexType></xsd:element>
            </xsd:sequence>
```
```
                    <xsd:attribute name="Currency" form="unqualified"
                        type="xsd:string"></xsd:attribute>
                    <xsd:attribute name="Approved" form="unqualified"
                        type="xsd:string"></xsd:attribute>
                </xsd:complexType>
            </xsd:element>
        </xsd:schema>
    </Schema>
    <Map ID="1" Name="Root_Map" RootElement="Root" SchemaID="Schema1"
        ShowImportExportValidationErrors="false" AutoFit="true" Append="false"
        PreserveSortAFLayout="true" PreserveFormat="true">
        <DataBinding ConnectionID="1" FileBinding="true" DataBindingLoadMode="1"/>
    </Map>
</MapInfo>
```
end example]
For XML mapped into a SpreadsheetML Table there will also be additional information in the SpreadsheetML file which refers back to the XML Map and XPath of the element or attribute mapped. This information is stored in a xmlColumnPr element, under the tableColumn node.
[Example:
```

<table xmlns="..." id="1" name="Table1" displayName="Table1" ref="A1:H11"
    tableType="xml" totalsRowShown="0" connectionId="1">
    <tableColumns count="5">
        <tableColumn id="1" uniqueName="Name" name="Name">
            <xmlColumnPr mapId="1" xpath="/Root/EmployeeInfo/Name"
                xmlDataType="string"/>
        </tableColumn>
        <tableColumn id="2" uniqueName="Date" name="Date">
            <xmlColumnPr mapId="1" xpath="/Root/EmployeeInfo/Date"
                xmlDataType="date"/>
        </tableColumn>
        <tableColumn id="3" uniqueName="Code" name="Code">
            <xmlColumnPr mapId="1" xpath="/Root/EmployeeInfo/Code"
                xmlDataType="integer"/>
        </tableColumn>
        <tableColumn id="4" uniqueName="Description" name="Description">
            <xmlColumnPr mapId="1" xpath="/Root/ExpenseItem/Description"
                xmlDataType="string"/>
        </tableColumn>
```
```
    <tableColumn id="5" uniqueName="Amount" name="Amount">
        <xmlColumnPr mapId="1" xpath="/Root/ExpenseItem/Amount"
            xmlDataType="double"/>
        </tableColumn>
        </tableColumns>
        <tableStyleInfo name="TableStyleMedium9" showFirstColumn="0"
        showLastColumn="0" showRowStripes="1" showColumnStripes="0"/>
</table>
end example]

```

For XML mapped into a single SpreadsheetML cell there will also be additional information in the TableSingleCells part which refers back to the XML Map and XPath of the element or attribute mapped. This information is stored in the xmlPr element under the xmlCellPr node.

\section*{[Example:}
```

<singleXmlCells xmlns="...">
    <singleXmlCell id="2" name="Table2" displayName="Table2" r="D19"
        connectionId="1">
        <xmlCellPr id="1" uniqueName="Currency">
            <xmlPr mapId="1" xpath="/Root/@Currency" xmlDataType="string"/>
        </xmlCellPr>
    </singleXmlCell>
    <singleXmlCell id="3" name="Table3" displayName="Table3" r="D20"
        connectionId="1">
        <xmlCellPr id="1" uniqueName="Approved">
            <xmlPr mapId="1" xpath="/Root/@Approved" xmlDataType="string"/>
        </xmlCellPr>
    </singleXmlCell
    <singleXmlCell id="4" name="Table4" displayName="Table4" r="D18"
        connectionId="1">
        <xmlCellPr id="1" uniqueName="Name">
            <xmlPr mapId="1" xpath="/Root/EmployeeInfo/Name" xmlDataType="string"/>
        </xmlCellPr>
    </singleXmlCell>
</singleXmlCells>
```
end example]

\subsection*{18.16.1 DataBinding (XML Mapping)}

This element contains properties which specify how the XML mapping should work.

\section*{[Example:}
<DataBinding ConnectionID="1" FileBinding="true" DataBindingLoadMode="1"/> end example]
[Note: This element is not intended to reintroduce transitional schema into the strict conformance class. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\begin{tabular}{l}
ConnectionID \\
Connection ID)
\end{tabular} & \begin{tabular}{l}
Specifies the Connection ID to the external connection in the External Data Connections \\
part.
\end{tabular} \\
Required if FileBinding is true. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT DataBinding) is located in §A.2. end note]

\subsection*{18.16.2 Map (XML Mapping Properties)}

This element contains all of the properties related to the XML map, and the behaviors expected during data refresh operations.
[Example:
```

<Map ID="1" Name="Root_Map" RootElement="Root" SchemaID="Schema1"
    ShowImportExportValidationErrors="false" AutoFit="true" Append="false"
    PreserveSortAFLayout="true" PreserveFormat="true">
<DataBinding ConnectionID="1" FileBinding="true" DataBindingLoadMode="1"/>
</Map>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
Append (Append \\
Data to Table)
\end{tabular} & \begin{tabular}{l}
Specifies whether XML data should overwrite or be appended to the end of the table or \\
range of mapped cells when data is refreshed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
AutoFit (AutoFit \\
Table on Refresh)
\end{tabular} & \begin{tabular}{l}
Specifies whether columns should be resized to fit the XML data after a data refresh \\
operation. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ID (XML Mapping \\
ID)
\end{tabular} & \begin{tabular}{l}
Specifies the ID of the XML map. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
Name (XML \\
Mapping Name)
\end{tabular} & \begin{tabular}{l}
Specifies the name of the XML map. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
PreserveFormat \\
(Preserve Cell
\end{tabular} & \begin{tabular}{l}
Specifies whether cell number formatting in the sheet should be preserved during data \\
refresh operations, or whether the number formatting defined by the XML data type
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline Formatting) & \begin{tabular}{l}
should be used. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
PreserveSortAFLay \\
out (Preserve \\
AutoFilter State)
\end{tabular} & \begin{tabular}{l}
Specifies whether to keep the filter state of the Table or cell range intact during a data \\
refresh. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
RootElement (Root \\
Element Name)
\end{tabular} & \begin{tabular}{l}
Specifies the names of the root XML element. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
SchemaID (Schema \\
Name)
\end{tabular} & \begin{tabular}{l}
Specifies the unique name of the schema used for the mapping. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
ShowImportExport \\
ValidationErrors \\
(Show Validation \\
Errors)
\end{tabular} & \begin{tabular}{l}
Specifies whether XML schema validation errors should be displayed during data refresh \\
or data export.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Map) is located in §A.2. end note]

\subsection*{18.16.3 MapInfo (XML Mapping)}

This element acts as the container for all of the XML schemas and maps attached to the SpreadsheetML document.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
SelectionNamespac \\
es (Prefix Mappings \\
for XPath \\
Expressions)
\end{tabular} & \begin{tabular}{l}
Specifies namespaces for use in XPath expressions when it is necessary to define new \\
namespaces externally. Namespaces are defined in the XML style, as a space-separated \\
list of namespace declaration attributes
\end{tabular} \\
[Example: The following example contains elements that belong to "a" and "b", in \\
addition to elements that do not belong to any namespace.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
```

            b-branch</b:branch>
        </a:root>
    </root>
    end example]

``` \\
This is used when writing Xpath expressions at runtime against the XML instance structures, because the Xpath expressions use namespace prefixes instead of the fully spelled out namespace. \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Maplnfo) is located in §A.2. end note]

\subsection*{18.16.4 Schema (XML Schema)}

This element contains the XML tree for an attached schema.
[Note: This element is not intended to reintroduce transitional schema into the strict conformance class. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline ID (Schema ID) & \begin{tabular}{l}
Specifies the unique name or ID for this attached schema. \\
[Example: \\
ID = "Schema1" \\
end example] \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
Namespace \\
(Schema Root \\
Namespace)
\end{tabular} & \begin{tabular}{l}
Specifies the namespace used by the schema. \\
[Example: \\
<MapInfo SelectionNamespaces="..."> \\
<Schema ID="Schema1" Namespace="..." \gg
\end{tabular} \\
end example] \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular}
\left.\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline <Schema ... SchemaLanguage="application/relax-ng-compact- \\
syntax"/> \\
end example] \\
The possible values for this attribute are defined by the W3C XML Schema token \\
datatype.
\end{tabular}\(\right]\)\begin{tabular}{l}
The schemaRef attribute is used in the specific case where the schema definition \\
happens to include another schema file that contributes to the same namespace. The \\
value of this attribute is the relative path to a "root" schema file on disk which in turn \\
references the other schema files contributing type definitions to the same namespace. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Schema) is located in §A.2. end note]

\subsection*{18.17 Formulas}

\subsection*{18.17.1 Introduction}

A SpreadsheetML formula is the syntactic representation of a series of calculations that is parsed or interpreted by the spreadsheet application into a function that calculates a value or array of values based upon zero-tomany inputs.

A formula is an expression that can contain the following: constants, operators, cell references, calls to functions, and names.
[Example: Consider the formula PI (\()^{*}\left(\mathrm{~A} 2^{\wedge} 2\right)\). In this case,
- PI () results in a call to the function PI, which returns the value of \(\pi\).
- The cell reference A2 returns the value in that cell.
- 2 is a numeric constant.
- The caret (^) operator raises its left operand to the power of its right operand.
- The parentheses, (and), are used for grouping.
- The asterisk (*) operator performs multiplication of its two operands.
end example]

\subsection*{18.17.2 Syntax}

The syntax rules in this subclause follow the system shown in ISO/IEC 14977: literal text is surrounded by double-quotes (or by apostrophes); the left-square-bracket and right-square-bracket designate the start and end of an option; the left-curly-bracket and right-curly-bracket designate the start and end of an sequence of one-ormore items; the vertical-line indicates an alternative; and each rule ends with a semicolon. Whenever hyphen is used as the exception-symbol (as per ISO/IEC 14977), it is surrounded by white space, and further clarified by a comment.

The syntax rules below are modified by the context-sensitive rules stated in other subclauses of \(\S 18.17 .{ }^{*}\), as indicated by an EBNF comment of the form "(* see semantic rules at 18.17... *)". [Note: Thus, in order to produce an automated verifier, the context-sensitive rules in subclauses 18.17.* must all be considered. The context-free syntax rules shown in this subclause provide an overview to assist comprehension by the reader, but do not represent the entirety of the context-sensitive rules. end note]

When used in narrative, production names are set in an italic style, as in array-constant, expression, and function-name.

The syntax of a formula is as follows:
```

formula=
expression ;
expression=
"(", expression, ")"
constant |
prefix-operator, expression |
expression, infix-operator, expression |
expression, postfix-operator |
cell-reference |
function-call |
name ;

```
where expression is an arbitrarily complex expression involving constants (§18.17.2.1), operators (§18.17.2.2), cell references (\(\$ 18.17 .2 .3\)), calls to functions (\((18.17 .2 .4\)), and names (\((18.17 .2 .5\)).

A token is the minimal lexical element of a formula. The categories of tokens are: constants (except for arrayconstant), operators, cell references, function names, names, and punctuators. The punctuators are:
- Left parenthesis (() and right parenthesis (\()\)) used for expression grouping and in a function call.
- Comma (,) used in a function call and an array-constant.
- Left brace (\(\{\)), right brace (\}), and semicolon (;) used in an array-constant.

In a formula, an arbitrary number of space characters \((U+0020)\) can precede the first token or follow the final token. An arbitrary number of space characters can separate two adjacent tokens, except that no space characters shall separate a function-name from the left parenthesis (() that follows it. Such space characters
have no effect on the semantics of a formula; however, such spaces shall be distinguished from the space operator (§18.17.2.2).

All arithmetic terms in an expression are numbers that can be represented by the workbook's value space. For any given workbook, the default value space is IEC 60559's double precision. However, an implementation is permitted to override that default value space by use of the characteristics markup (\(\$ 22.7\)). [Example: In the expression \(1 / 3\), although the operands appear to be integers, they are, in fact, floating-point numbers, and the result is 0.33 ..., not 0 , as would result from integer division. end example]

As ranges of data are fundamental to spreadsheet calculations, many SpreadsheetML functions are able to take arrays as inputs and to return arrays as outputs. Based on whether the formula is an array formula or not, the way in which input ranges are interpreted and output values are understood to relate to cells sharing the formula can mean one of two things.

For an array formula: All range arguments are interpreted to be their full range. If the result of the formula is an array, the values of the array are meant to be returned across all of the cells in the sheet sharing the formula. (When the size of the range for an array formula exceeds in either dimension the size of the returned array, the excess cells take on a value of \#N/A.)

For a normal (non-array) formula:
- Implicit intersection (§18.17.2.2) is performed on all arguments to functions except for those that allow a range.
- If the formula results in an array, only the first value from the array is returned to the cell.

Implicit intersection is determined as follows: When a range is passed to a function which expects only a single cell, a test is made to discover whether the calling cell intersects that range at any point horizontally or vertically. If it does, the cell at the point of intersection is passed to the function. [Example: The formula \(A B S\) (\(B 1: B 3\)) is entered into \(A 2\). Because the ABS function does not expect a range, implicit intersection is performed. \(A 2\) intersects \(B 1\) : \(B 3\) horizontally on row 2 , and so the value in \(B 2\) is passed into the function. end example]

The list of function arguments that allow a range is as follows:
- AND - all arguments
- AREAS - reference argument
- AVEDEV - all arguments
- AVERAGE - all arguments
- AVERAGEA - all arguments
- AVERAGEIF - all arguments except for criteria
- AVERAGEIFS - all arguments except for criterial, criteria2, etc.
- CELL - reference argument
- CHITEST - all arguments
- COLUMN - all arguments
- COLUMNS - all arguments
- CORREL - all arguments
- COUNT - all arguments
- COUNTA - all arguments
- COUNTBLANK - all arguments
- COUNTIF - all arguments except criteria
- COUNTIFS - all arguments except for criterial, criteria2, etc.
- COVAR - all arguments
- DAVERAGE - all arguments
- DCOUNT - all arguments
- DCOUNTA - all arguments
- DEVSQ - all arguments
- DGET - all arguments
- DMAX - all arguments
- DMIN - all arguments
- DPRODUCT - all arguments
- DSTDEV - all arguments
- DSTDEVP - all arguments
- DSUM - all arguments
- DVAR - all arguments
- DVARP - all arguments
- FORECAST - all arguments except for \(x\)
- FREQUENCY - all arguments
- FTEST - all arguments
- FVSCHEDULE - schedule argument
- GCD - all arguments
- GEOMEAN - all arguments
- GROWTH - all arguments
- HARMEAN - all arguments
- HLOOKUP - table_array argument
- IMPRODUCT-all arguments
- IMSUM - all arguments
- INDEX - array or reference argument
- INTERCEPT - all arguments
- LARGE - array argument
- LCM - all arguments
- LINEST - known-xs and known-ys arguments
- LOGEST - known-xs and known-ys arguments
- LOOKUP - all arguments except lookup_value
- MATCH - lookup_array argument
- MAX - all arguments
- MAXA - all arguments
- MDETERM - array argument
- MEDIAN - all arguments
- MIN - all arguments
- MINA - all arguments
- MINVERSE - all arguments
- MIRR - values argument
- MMULT - all arguments
- MODE - all arguments
- MULTINOMIAL - all arguments
- NETWORKDAYS - holidays argument
- NETWORKDAYS.INTL - holidays argument
- NPV - all arguments except rate
- OFFSET - reference argument
- OR-all arguments
- PEARSON - all arguments
- PERCENTILE - array argument
- PERCENTRANK - array argument
- PROB - \(x_{-}\)range and prob_range arguments
- PRODUCT - all arguments
- QUARTILE - array argument
- RANK - ref argument
- ROW - reference argument
- ROWS - array argument
- RSQ - all arguments
- SKEW - all arguments
- SLOPE - all arguments
- SMALL - array argument
- STDEV - all arguments
- STDEVA - all arguments
- STDEVP - all arguments
- STDEVPA - all arguments
- STEYX - all arguments
- SUBTOTAL - all arguments except function_num
- SUM - all arguments
- SUMIF - all arguments except criteria
- SUMIFS - all arguments except criterial, criteria2, etc.
- SUMPRODUCT - all arguments
- SUMSQ - all arguments
- SUMX2MY2 - all arguments
- SUMX2PY2 - all arguments
- SUMXMY2 - all arguments
- TRANSPOSE - all arguments
- TREND - all arguments except const-flag
- TRIMMEAN - array argument
- TRUNC - \(x\) argument
- TTEST - array-1 and array-2 arguments
- TYPE - all arguments
- VALUE - all arguments
- VAR - all arguments
- VARA - all arguments
- VARP - all arguments
- VARPA - all arguments
- VLOOKUP - table-array argument
- WORKDAY - holidays argument
- WORKDAY.INTL - holidays argument
- XIRR - all arguments except guess
- XNPV - all arguments except rate
- ZTEST - array argument
[Example: Here are some formulas taking array constants and ranges:
- (B2: B4*C2:C4)+10.5 performs three calculations: \((B 2 * C 2)+10.5,(B 3 * C 3)+10.5\), and (B4*C4)+10.5.
- \(\operatorname{SQRT}(\{1,2,3,4\})\) returns 1 when entered normally.
- \(\operatorname{SQRT}(\{1,2,3,4\})\) returns 1 when used in an array formula in a single cell, but if the array formula spans four or more contiguous cells in a row, it will return 1, 1.41, 1.73, and 2 in the first four cells, respectively, and \#N/A in any additional cells in the horizontal range spanned by the array formula. (For display purposes, the values returned have been truncated to two decimal places.)
- \(\operatorname{SUM}(\operatorname{SQRT}(\{1,2,3,4\}))\) returns 6.14 when entered normally; when used in an array formula, the intermediate calculation (in this instance performed by the SQRT function) is performed upon each element of the array.

With A1: A4 holding the values \(1,2,3\), and 4 , respectively:
- SQRT (A1:A4) entered normally will do implicit intersection if it is in any of the rows 1-4, and return the SQRT of the number in the same row.
- SQRT (A1:A4) returns 1 when used in an array formula in a single cell, since it does not do implicit intersection in this case. If it is used in an array formula spanning multiple contiguous cells in a column, it will return \(1,1.41,1.73,2, \# N / A, \ldots\), respectively, in the cells in its vertical output range. end example]

\subsection*{18.17.2.1 Constants}

A constant represents a fixed value that can be used in the calculation of a formula. A constant has the following form:
```

constant=
error-constant |
logical-constant |
numerical-constant
string-constant |
array-constant ;
error-constant=
"\#DIV/0!" | "\#N/A" | "\#NAME?" | "\#NULL!" |
"\#NUM!" | "\#REF!" | "\#VALUE!" | "\#GETTING_DATA" ;
logical-constant=
"FALSE" | "TRUE" ;
numerical-constant=
whole-number-part, [full-stop], [exponent-part] |
full-stop, fractional-part, [exponent-part] |
whole-number-part, full-stop, fractional-part [exponent-part] ;
full-stop=
"." ; (* also known as "period" *)
whole-number-part=
digit-sequence ;
fractional-part=
digit-sequence ;
exponent-part=
"e" [ sign ] digit-sequence |
"E" [ sign ] digit-sequence ;
sign=
"+" |
"-" ;
digit-sequence=
decimal-digit, {decimal-digit} ;
decimal-digit=
"0" | "1" | "2"> | "3" | | "4" |
string-constant=
double-quote, [string-chars], double-quote ;
double-quote=
'"' ; (* one double-quote character*)
string-chars=
string-char, {string-char} ;

```
```

string-char=
'""' | (* consecutive double-quotes, with no space between them *)
character - double-quote ; (* any character except double-quote *)
character=
as defined by the production Char in the XML 1.0 specification, §2.2.

```
[Example: \(=\$ A \$ 1 / 3\) divides the value in A1 by the constant value three; =\$A\$1\&"a" appends the constant string "a" to the string representation of the contents of cell A1. end example]

To include a double-quote character (") in string-chars, precede it with another double-quote character. [Example: "ab" "cd" contains the characters \(a b " c d\), and "" "abcd"" " contains the characters "abcd". end example]

An array constant is a list of one or more constants organized in one or two dimensions, and delimited by braces. An array constant has the following form:
```

array-constant=
"{", constant-list-rows, "}" ;
constant-list-rows=
constant-list-row, { semicolon, constant-list-row } ;
semicolon=
";" ;
constant-list-row=
constant, { comma, constant } ;

```

An array-constant shall not contain
- An array-constant.
- Columns or rows of unequal length.

Any numerical-constant in an array-constant can be preceded immediately by a prefix-operator.

The constants in an array-constant can have different types.
[Guidance An implementation is encouraged to not unnecessarily limit the number of rows and columns in an array-constant. end guidance]
[Example: \(\{1,3.5\), TRUE , "Hello" \(\}\) is a \(1 \times 4\) array of constants.

To represent the values \(10,20,30\), and 40 , as a \(1 \times 4\) array, use \(\{10,20,30,40\}\).
To represent the values \(10,20,30\), and 40 in the first row, and \(50,60,70\), and 80 in the second row, use the following \(2 x 4\) array constant: \(\{10,20,30,40 ; 50,60,70,80\}\). end example]
error-constant is described in \(\S 18.17 .3\).
Each constant has a corresponding type (§18.17.2.6), as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Constant Form } & \multicolumn{1}{c|}{ Type } \\
\hline array-constant & array \\
\hline error-constant & error \\
\hline logical-constant & logical \\
\hline numerical-constant & number \\
\hline string-constant & text \\
\hline
\end{tabular}

In the context of cell formulas and values in SpreadsheetML, the following definition of precision shall apply:
By default, default representation of precision shall be as defined by the XML schema double type: http://www.w3.org/TR/xmlschema-2/\#double. The default is therefore 53-bits of mantissa precision.

An application that uses XML schema double can optionally state the precision in the Additional Characteristics part by writing out the number of bits in the mantissa and exponent.

A compliant consumer shall parse numbers of arbitrary precision without error.

\subsection*{18.17.2.2 Operators}

An operator is a symbol that specifies the type of operation to perform on one or more operands. There are arithmetic, comparison, text, and reference operators.
```

operator=
":" | comma | space | "^" | "*" | "/" | "+" | "-"
infix-operator=
":" | comma | space | "^" | "*" | "/" | "+" | "-" | "\&"
postfix-operator=
"%" ;
prefix-operator=
"-" ;

```

The operators permitted in expression are:
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Operators } \\
\hline Family & Operator & Description & Precedence \\
\hline \begin{tabular}{l}
Reference \\
operators
\end{tabular} & \(:\) & \begin{tabular}{l}
Binary range operator, which takes two cell \\
reference (§18.17.2.3) operands, and results \\
in one reference to the cells inclusive of, and \\
between, those references. [Example: \\
SUM(B5:C15), which references 11 cells. \\
end example]
\end{tabular} & highest \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Operators} \\
\hline \multirow[t]{2}{*}{} & & in one reference to all those, possibly noncontiguous, cells. [Example: SUM((B5:B15,D5:D15))), which references 22 cells, 11 from column \(B\), and 11 from column D. The grouping parentheses are necessary to indicate that the comma is an operator rather than a punctuator separating two arguments. end example] & \\
\hline & space & \begin{tabular}{l}
Binary intersection operator, which takes two cell reference (§18.17.2.3) operands, and results in one reference to those, possibly non-contiguous, cells that are common. If the intersection is empty, the result is \#NULL!. [Example: ((B1:C1) (C1:D1)) results in a reference to C1, while ((B1:D1) (B1, D1)) results in a single reference to B1 and D1. \\
end example]
\end{tabular} & \\
\hline \multirow[t]{7}{*}{Arithmetic operators} & - & Unary minus & \\
\hline & \% & Percentage (unary postfix), which divides its operand by 100. [Example: 10.5\%, which results in 0.105 . end example] & \\
\hline & \(\wedge\) & Exponentiation & \\
\hline & * & Multiplication & \\
\hline & / & Division & \\
\hline & + & Addition & \\
\hline & - & Subtraction & \\
\hline Text operator & \& & Text concatenation (Each of the two operands is converted to text, if necessary, before concatenation.) & \\
\hline \multirow[t]{6}{*}{Comparison operators} & = & Equal-to & \multirow[t]{6}{*}{lowest} \\
\hline & <> & Not-equal-to & \\
\hline & < & Less-than & \\
\hline & <= & Less-than or equal-to & \\
\hline & > & Greater-than & \\
\hline & >= & Greater-than-or-equal-to & \\
\hline
\end{tabular}
expression can contain grouping parentheses to document the default precedence or to override it.
operators in expression having the same precedence associate left-to-right.
[Example: Given that cell E38 contains the value 4, and cell F38 contains the value 2, the formula
\[
\left(\left(-1+E 38^{\wedge} 2\right) * 3-F 38\right) / 2
\]
produces the result 21.5. end example]
The comparison operators yield TRUE for true and FALSE for false. An expression with value 0 tests logically false while one with any non-zero numeric value tests true.

For any given operator in an expression, if only one operand is an error value, the result is that error value. If more than one operand has an error value and those error values are the same, the result is that error value. If more than one operand has an error value and those error values are not all the same, as to which of those error values is used as the result is unspecified.

It the semantics of an operator having a given operand are not specified by ISO/IEC 29500, the result is \#VALUE!. [Example: "abc"+1 results in \#VALUE!, and "abc"/0 results in \#VALUE! rather than \#DIV/0!.end example]

\subsection*{18.17.2.3 Cell References}

Each set of horizontal cells in a worksheet is a row, and each set of vertical cells is a column. A cell's row and column combination designates the location of that cell. [Guidance An implementation is encouraged to not unnecessarily limit the number of rows and columns in a worksheet. end guidance]

A cell reference designates one or more cells on the same worksheet. Using references, one can:
- Use data contained in different parts of the same worksheet in a single formula.
- Use the value from a single cell in several formulas.
- Refer to cells on other sheets in the same workbook, and even to other workbooks. (References to cells in other workbooks are called links.)

A cell reference has the following form:
```

cell-reference=
name |
[work-sheet-prefix] A1-reference |
[work-sheet-prefix] A1-reference, ":", A1-reference |
[work-sheet-prefix] R1C1-reference |
[work-sheet-prefix] R1C1-reference, ":", R1C1-reference ;
work-sheet-prefix=
work-sheet-prefix-special |
sheet-name, "!" |
sheet-name, ":", sheet-name, "!" |
"[", workbook-name, "]", sheet-name, ":", sheet-name, "!" ;

```
work-sheet-prefix-special=
 apostrophe, sheet-name-special, apostrophe, "!" |
 apostrophe, sheet-name-special, ":",
 sheet-name-special, apostrophe, "!" |
 apostrophe, "[", workbook-name-special, "]",
 sheet-name-special, apostrophe, "!" |
 apostrophe, "[", workbook-name-special, "]",
 sheet-name-special, ":", sheet-name-special,
 apostrophe, "!" ;
workbook-name=
 book-name-characters ;
book-name-characters=
 book-name-character, \{book-name-character\} ;
book-name-character=
 character - (operator | apostrophe | "[" | "]" | "?") ;
 (* any character except operator or ', [,], or ? *)
apostrophe=
 "'" ; (* one apostrophe character *)
sheet-name=
 sheet-name-characters ;
sheet-name-character=
 character - (operator | apostrophe | "[" | "]" | "\" | "?") ;
 (* any character except operator or ', [,], \\, or ? *)
sheet-name-characters=
 sheet-name-character, \{sheet-name-character\} ;
workbook-name-special=
 book-name-start-character-special,
 [book-name-characters-special];
book-name-start-character-special=
 character - (apostrophe | "*" | "[" | "]" | ":" | "?") ;
 (* any character, including operator, except ', *, [,], :, or ? *)
book-name-characters-special=
 book-name-character-special, \{book-name-character-special\} ;
book-name-character-special=
 apostrophe, apostrophe |
 character - (apostrophe | "*" | "[" | "]" | ":" | "?") ;
 (* any character, including operator, except ', *, [,], :, or ? *)
sheet-name-special=
 sheet-name-start-character-special,
 [[sheet-name-characters-special], sheet-name-end-character-special] ;
```

sheet-name-start-character-special=
character - (apostrophe | "*" | "[" | "]" | "\" | ": | "/"
| "?") ;
(* any character, including operator, except ', *, [, ], <br>, :, /, or ? *)
sheet-name-end-character-special=
sheet-name-start-character-special ;
sheet-name-characters-special=
sheet-name-character-special, \{sheet-name-character-special\} ;
sheet-name-character-special=
apostrophe, apostrophe
character - (apostrophe | "*" | "[" | "]" | "\" | ": " | "
| "?") ;
(* any character, including operator, except $* *,[], \,,:, /$, or ? *)

```

A relative cell reference is based on the relative position of the cell that contains the formula and the cell to which the reference refers. If the position of the cell that contains the formula changes, the reference is changed along with it.

An absolute cell reference always refers to the absolute location of a cell. If the position of the cell that contains the formula changes, the absolute reference remains the same.

A mixed cell reference has either an absolute column and relative row, or an absolute row and relative column.
A link or external reference to a workbook is a reference that specifies the location of the workbook, including file or network path, book name, sheet name, and cell reference. Instead of writing the full file path or network location and workbook name directly in the f (formula) element, in order to make all external references more accessible, the workbook name shall be written in a Relationship part according to the Relationships semantic:
- Type shall be set to http://purl.oclc.org/ooxml/officeDocument/relationships/externalLinkPath,
- Target shall specify the full file path and file name, and
- TargetMode shall be set to External.

Additionally, in order to support the possibility that the external workbook is offline or otherwise inaccessible, a cache of the relevant sheet values in the referenced external workbook shall be stored within the referencing workbook according to §18.14.

This Supplementary Workbook Data part shall be the source part of the relationship that points to the external workbook as a target resource, and the Id of this relationship shall be referenced within the markup of the Supplementary Workbook Data part, using the externalBook element (§18.14.7).

The Supplementary Workbook Data part shall also be the target of a relationship whose source is the Workbook part (§18.2). The markup within the Workbook part shall reference this relationship Id using the externalReference element (§18.2.8).

Finally, a 1-based index referencing an externalReference within the collection externalReferences shall be written inline within the formula expression containing the reference to the external workbook. The index in this context shall be enclosed within square brackets, i.e.; left square bracket ([), followed by the index, followed by a right square bracket (]).

In this way, external resource files can more easily be accessed and updated.

\section*{[Example:}

Consider the formula =SUM(' C: \[Source.xlsx]Sheet1'!\$A\$1:\$A\$3)
This formula is expressed in the f element (formula) like this:
```

<f>SUM([1]Sheet1!\$A$1:$A\$3)</f>

```

The external reference to another workbook in this case is tokenized to [1]. The value inside the brackets is a 1 based index to the externalReferences collection in the workbook part, referencing a specific externalReference element.

The corresponding content of externalReferences in the workbook part is:
```

<externalReferences>
    <externalReference r:id="rId4"/>
</externalReferences>
```

The workbook part's externalReferences collection indicates that there is an external workbook reference in this workbook. The Supplementary Workbook Data cache, also stored in this workbook, can be found by following the relationship from the workbook whose id value is rId4.

That particular relationship (rld4) is expressed as:
```

<Relationship Id="rId4" Type=
"http://purl.oclc.org/ooxml/officeDocument/relationships/externalLinkPath"
Target="externalLinks/externalLink1.xml"/>

```

The above relationship indicates that the formula is supported by the Supplementary Workbook Data cache located at externalLinks/externalLink1.xml in the package.

The corresponding content in externalLink1.xml follows the markup specified in §18.14, Supplementary Workbook Data. The externalBook element in that markup indicates the id of the relationship that points from the source part externalLink1.xml to the location of the actual external workbook:
<externalBook xmlns:r="http://purl.oclc.org/ooxml/officeDocument/relationships" r:id="rId1">

That relationship (rld1) is shown here:
```

<Relationship Id="rId1" Type=
"http://purl.oclc.org/ooxml/officeDocument/relationships/externalLinkPath"
Target="file:///C:/Source.xlsx" TargetMode="External"/>

```

This relationship indicates that the external workbook that the formula references resides on a local drive, at \(\mathrm{c}: \\) source.xlsx. end example]

It is possible to process the same cell or set of cells on multiple worksheets within a workbook, using a 3-
\(D\) reference. A reference of this type is made up of the cell reference, preceded by a range of worksheet names, and an exclamation mark character (!), in that order. A 3-D reference can be used to refer to cells on other sheets, to defined names, and to create formulas by using the following functions: AVERAGE, AVERAGEA, COUNT, COUNTA, MAX, MAXA, MIN, MINA, PRODUCT, STDEV, STDEVA, STDEVP, STDEVPA, SUM, VAR, VARA, VARP, and VARPA.

3-D references shall not be used in array formulas.
By default, a cell reference is understood to refer to one or more cells in the current worksheet. However, a cell reference can be preceded by its parent worksheet name and an exclamation mark (!), in that order. This allows cells in one worksheet to be referenced in another worksheet of the same workbook. [Example: The cell reference MonthlyTotals !D1:D12 might be used from within a sibling (or the same) worksheet of MonthlyTotals to refer to those 12 cells. end example]

An area is a set of rectangular-shaped contiguous cells. An area can be a single cell. [Example: A5 and B6: C10 each designate one area, and D3:D5, E12: F15 designates two areas (the comma (,) being the union operator). end example] [Note: The number of areas designated by a cell reference can be obtained by calling the function AREAS (§18.17.7.10). end note]

There are two cell reference styles: A1 (§18.17.2.3.1) and R1C1 (§18.17.2.3.2).

\subsection*{18.17.2.3.1 A1-Style Cell References}

A cell reference using the A1 reference style has the following form:
```

A1-reference=
A1-column, ":", A1-column
A1-row, ":", A1-row
A1-column, A1-row ;
A1-column=
A1-relative-column
A1-absolute-column ;
A1-relative-column=
letter, $\{l e t t e r\}$; (* see semantic rules at 3.17.2.3.1 *)

```
```

letter=
"a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|"k"|"l"|"m"|
"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"v"|"w"|"x"|"y"|"z"|
"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"|
"N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z" ;
A1-absolute-column=
"\$", A1-relative-column ;
A1-row=
A1-relative-row |
A1-absolute-row ;
A1-relative-row=
digit-sequence ; (* shall be non-zero; see 3.17.2.3.1 *)
A1-absolute-row=
"\$", A1-relative-row ;

```

In this style, each row has a numeric heading numbered sequentially from the top down, starting at 1. Each column has an alphabetic heading named sequentially from left-to-right, \(A-Z\), then \(A A-A Z, B A-B Z, \ldots, Z A-Z Z\), \(A A A-A A Z, A B A-A B Z\), and so on. Column letters are not case-sensitive.

A relative reference to a single cell is written as its column letter immediately followed by its row number. A relative reference to a whole row is written as its row number. A relative reference to a whole column is written as its column letter. A reference to a range of two or more cells is written as two single-cell references separated by the binary range operator (:). An absolute A1 reference is made up of a cell's column letter followed by its row number, with each being preceded by a dollar character (\(\$\)). [Example: \(\mathrm{A} 2, \mathrm{~B} 34\), and B 5 : D 8 are relative \(A 1\) references. \(\$ A \$ 2, \$ B \$ 34\), and \(\$ B \$ 5: \$ D \$ 8\) are absolute \(A 1\) references. \(\$ A 2, B \$ 34\), and \(\$ B 5\) : \(D \$ 8\) are mixed A1 references. end example]
[Example: SUM(Sheet2: Sheet13!B5) adds all the values contained in cell B5 on all the worksheets between and including Sheet2 and Sheet13. end example]

For rules on how deal with potential ambiguities between cell references and defined names, see §18.17.5.1.

\subsection*{18.17.2.3.2 R1C1-Style Cell Reference}

A cell reference using the R1C1 reference style has the following form:
```

R1C1-reference=
R1C1-row-only |
R1C1-column-only
R1C1-row, R1C1-column ;
R1C1-row-only=
"R", R1C1-absolute-number, |
"R[", R1C1-relative-number, "]" ;

```
```

R1C1-row=
R1C1-relative-row |
R1C1-absolute-row ;
R1C1-relative-row=
"R[", R1C1-relative-number, "]" ;
R1C1-absolute-row=
"R" |
"R", R1C1-absolute-number ;
R1C1-column-only=
"C", R1C1-abolute-number
"C[", R1C1-relative-number, "]" ;
R1C1-column=
R1C1-relative-column
R1C1-absolute-column ;
R1C1-relative-column=
"C[", R1C1-relative-number, "]" ;
R1C1-absolute-column=
"C" |
"C", R1C1-absolute-number ;
R1C1-relative-number=
["-"], digit-sequence ;
R1C1-absolute-number=
digit-sequence ; (* shall be non-zero; see 3.17.2.3.2 *)

```

In this style, each row has a numeric heading numbered sequentially from the top down, starting at 1. Each column has a numeric heading numbered sequentially from left-to-right, starting at 1.

A whole row is referenced by omitting the column, and a whole column is referenced by omitting the row. An absolute row or column reference uses absolute row or column numbers, respectively. A relative row or column reference uses, respectively, row or column offsets from the cell containing the formula, with a negative offset indicating a row to the left or a column above, and a positive offset indicateing a row to the right or a column below. Specifying an offset of zero is equivalent to omitting that offset and its delimiting brackets. [Example: \(R[-2] C\) refers to the cell two rows up and in the same column, \(R[2] C[2]\) refers to the cell two rows down and two columns to the right, R2C2 refers to the cell in the second row and in the second column, R[-1] refers to the entire row above the active cell, and R refers to the current row. end example]

The R1C1 alternate reference style can only be used at runtime. See §18.17.6.1 for XML-related details.

\subsection*{18.17.2.4 Functions}

A function is a named formula that takes zero or more arguments, performs an operation, and, optionally, returns a result. A function call has the following form:
```

function-call=
function-name, "(", [argument-list], ")" ;

```
```

function-name=
prefixed-function-name
predefined-function-name
user-defined-function-name ;
predefined-function-name=
"ABS" | "ACOS" | "ACOSH"
| ( any of the other functions defined in §18.17.7) ;
prefixed-function-name=
"ISO.", predefined-function-name |
"ECMA.", predefined-function-name
user-defined-function-name=
letter, [ user-defined-name-characters ] ;
user-defined-name-characters=
user-defined-name-character, {user-defined-name-character} ;
user-defined-name-character=
letter | decimal-digit | full-stop ;
argument-list=
argument, { comma, argument } ;
comma=
"," ;
argument=
expression ;

```
predefined-function-names and user-defined-function-names are not case-sensitive.
A user-defined-function-name shall not have any of the following forms:
- TRUE or FALSE
- name
- cell-reference
[Guidance: An implementation is encouraged to support user-defined-function-names at least as long as 255 characters. end guidance]

The semantics of a call to a function having a user-defined-function-name are unspecified.
[Example: Here are some function calls: \(\operatorname{PI}(), \operatorname{POWER}(\mathrm{A} 1, \mathrm{~B} 3)\), and \(\operatorname{SUM}(\mathrm{C} 6: \mathrm{C} 10)\). end example]
An argument to a function can be a call to a function. That is, function calls can nest. [Guidance An implementation is encouraged to support at least 64 levels of nested function calls. end guidance]

Some functions take a variable number of arguments. This is indicated in the Syntax sections of \(\S 18.17 .7\) by their having argument-list as all, or the trailing part, of their argument list. The total number of arguments that shall be passed to such functions is at least 1.
[Guidance An implementation is encouraged to support function calls having at least 255 arguments. end guidance]

Expressions can have one or more values. Scalar expressions designate a single value, and cell references and array constants can designate multiple values. In the case of a multi-value expression, the way in which this is handled by a function when passed as an argument depends on a number of factors.

Most functions and operators expect either single- or multi-valued arguments and perform all of the array calculations whenever multi-valued arguments are present. [Example: SQRT (\(\{1 ; 2 ; 3 ; 4\}\)); see the examples in \(\S 18.17 .2\). end example]

When a function expects a single-valued argument but a multi-valued expression is passed, an attempt can be made to convert that set of values to a single value. For an array value or constant, the value of the expression is the value of the first element within that array value or constant. For a cell range, the first element can be used, or implicit intersection can be performed-the exact behavior is unspecified.

When a function expects a multi-valued argument but a single-valued expression is passed, that single-valued argument is treated as a \(1 \times 1\) array.

For rules on how deal with potential ambiguities between function names and defined names, see §18.17.5.1.

\subsection*{18.17.2.5 Names}

A name is an alias for a constant, a cell reference, or a formula. [Note: A name in a formula can make it easier to understand the purpose of that formula. For example, the formula SUM(FirstQuarterSales) is easier to identify than SUM (C20:C30). end note]

Here is the syntax for name:
```

name=
[ workbook-name, "!" ], name-start-character, [ name-characters ] ;
name-start-character=
letter | underscore | backslash ;
underscore=
"_" ;
backslash=
"\" ;
name-characters=
name-character, {name-character} ;
name-character=
letter | decimal-digit | underscore | full-stop ;

```
names are not case-sensitive.

All names within a workbook shall be unique. If the same names are defined in two workbooks, both names can be used in the same context be prefixing them with their corresponding workbook name and an exclamation
mark (!). [Example: SUM(Sales.xlsx!ProjectedSales) refers to the named range ProjectedSales in the workbook named Sales.xlsx. end example]

A name shall not have any of the following forms:
- TRUE or FALSE
- user-defined-function-name
- cell-reference
[Guidance An implementation is encouraged to support names at least as long as 255 characters. end guidance]
For rules on how deal with potential ambiguities between function names and defined names, or between cell references and defined names, see §18.17.5.1.

\subsection*{18.17.2.6 Types and Values}

Each expression has a type. SpreadsheetML formulas support the following types: array, error, logical, number, and text.

An array value or constant represents a collection of one or more elements, whose values can have any type (i.e., the elements of an array need not all have the same type).

An error value (\(\$ 18.17 .3\)) or constant represents an error, and can have any value defined for error-constant (§18.17.2.1).

A logical value or constant represents a truth value, and can have any value defined for logical-constant (§18.17.2.1).

A numeric value or constant represents a real number, and can have any value defined for numeric-constant (§18.17.2.1). The term "number" is used as a generic name for any expression of type number.

A text value or constant represents arbitrary text, and can have any value defined for string-constant (§18.17.2.1). The term "string" is used as a generic name for any expression of type text.

An implementation is permitted to provide an implicit conversion from string-constant to number. However, the rules by which such conversions take place are implementation-defined. [Example: An implementation might choose to accept " 123 " +10 by converting the string " 123 " to the number 123 . Such conversions might be localespecific in that a string-constant such as "10,56" might be converted to 10.56 in some locales, but not in others, depending on the radix point character. end example]
[Guidance An implementation is encouraged to support strings at least as long as 32,767 characters. end guidance]

A complex number is represented as a string in one of two equivalent text formats: \(x+y i\) or \(x+y j\), where \(x\) is the real part, and \(y\) is the imaginary part. [Example: " \(3+4 \mathrm{i}\) " and " \(2.5-34.6 \mathrm{j}\) " end example]

\subsection*{18.17.2.7 Single- and Array Formulas}

A formula can either be a single-cell formula, or an array formula.
A single-cell formula is applied to a single cell while an array formula is applied to a range of cells as a group.
When a single-cell formula results in a single value, the designated cell takes on that value. [Example: When cell A10 contains \(\operatorname{SIN}(0.3)\), the result stored in that cell is 0.295520207 . end example]

When a single-cell formula results in multiple values, the designated cell takes on the first of those values. [Example: When cell A10 contains \(\operatorname{SIN}(\{0.3,0.4,0.5\})\), the result stored in that cell is 0.295520207 (\(\operatorname{SIN}(0.3))\). end example]

Array formulas are an extension of the formula paradigm. They allow for combining of several formula operations into one, and the returning of multiple results. Array formulas span one or more cells. There are three primary functions that array formulas perform:
2. Returning multiple results from one single function call. [Example: the function LINEST returns an array of several results, and, therefore, ought to be spanned across several cells as an array formula in order to display those results. end example]
3. Executing one formula several times to generate an array of results. [Example: The array formula SIN(A1:A3) returns an array with three elements, those being the sines of A1, A2 and A3, respectively. end example]
4. Returning one single result from an operation that incorporated arrays as an intermediate step. [Example: The array formula \(\operatorname{SUM}(\operatorname{SIN}(\mathrm{A} 1: A 3)\)) returns a single result, that being the SUM of the sines of A1, A2 and A3, respectively. end example]

When an array formula results in a single value, all of the cells spanned by the array formula take on that value. [Example: When the group of cells A10:A12 contains \(\operatorname{SIN}(0.3)\), the result stored in each of those cells is 0.295520207 . end example]

When an array formula results in multiple values, the designated cells take on corresponding values, according to the shape of the cell group and the values. Specifically,
- If the cell group and values have the same shape (i.e., the same number of rows and columns), each cell takes on the value corresponding to its relative position.
- If the cell group has fewer columns than the values, the left-most columns of the values are stored in the cells.
- If the cell group has fewer rows than the values, the top-most rows of the values are stored in the cells.
- If the cell group has more columns than the values, each cell takes on the value corresponding to its relative position, except that
- For a cell group \(1 \times N\) array or a two-dimensional array, the excess right-most cells take on an unspecified value.
- For a cell group \(N \times 1\) array, the excess columns are clones of the first column.
- If the cell group has more rows than the values, each cell takes on the value corresponding to its relative position, except that:
- For a cell group Nx1 array or a two-dimensional array, the excess bottom-most cells take on an unspecified value.
- For a cell group \(1 x N\) array, the excess rows are clones of the first row.
[Example: Case 1: The \(1 \times 3\) group of cells \(\mathrm{A} 20: \mathrm{C} 20\) has applied to it the array formula \(\operatorname{SIN}(\{0.3,0.4,0.5\})\). The number of rows and columns in the group exactly matches the number of rows and columns in the result. Those cells then contain \(0.295520207,0.389418342\), and 0.479425539 , which correspond to SIN (0.3), \(\operatorname{SIN}(0.4)\), and \(\operatorname{SIN}(0.5)\), respectively.

Case 2: The \(1 \times 2\) group of cells A20: B20 has applied to it the array formula \(\operatorname{SIN}(\{0.3,0.4,0.5\})\). The number of columns in the group is less than the number of columns in the result. (The number of rows is the same in each.) Those cells then contain 0.295520207 and 0.389418342 , which correspond to \(\operatorname{SIN}(0.3)\) and SIN(0.4), respectively, the left-most part of the set of values.

Case 3: The 1 x 4 group of cells A20: D20 has applied to it the array formula \(\operatorname{SIN}(\{0.3,0.4,0.5\})\). The number of columns in the group is greater than the number of columns in the result. (The number of rows is the same in each.) Those cells then contain \(0.295520207,0.389418342,0.479425539\), and an unspecified value, which correspond to \(\operatorname{SIN}(0.3), \operatorname{SIN}(0.4)\), and \(\operatorname{SIN}(0.5)\), respectively, with the fourth value being unspecified.

Case 4: The \(2 \times 2\) group of cells \(\mathrm{A} 30: B 31\) has applied to it the array formula \(\operatorname{SIN}(\{0.1,0.2,0.3\})\). The number of columns in the group is less than the number of columns in the result. As a result, the cells in row 30 contain 0.295520207 and 0.389418342 , which correspond to \(\operatorname{SIN}(0.3)\) and \(\operatorname{SIN}(0.4)\), respectively. The number of rows in the group is greater than the number of rows in the result, so the cells in 31 are a copy of the cells in row 30 . The left-most part of the set of values is propagated into the cells.

Case 5: The \(2 \times 2\) group of cells A40: B41 has applied to it the array formula \(\operatorname{SIN}(\{0.1,0.2,0.3\);
\(0.4,0.5,0.6 ; 0.7,0.8,0.9\})\). The number of columns in the group is less than the number of columns in the result. As a result, the left-most column values are stored. The number of rows in the group is less than the number of rows in the result. As a result, the top-most column values are stored. end example]

\subsection*{18.17.3 Error values}

The evaluation of an expression can result in an error having one of a number of error values. These error values are:
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Error Value } & \multicolumn{1}{c|}{ Reason for Occurrence } \\
\hline \#DIV/0! & \begin{tabular}{l}
Intended to indicate when any number (including zero) or any error code is \\
divided by zero.
\end{tabular} \\
\hline \#GETTING_DATA & \begin{tabular}{l}
Intended to indicate when a cell reference cannot be evaluated because \\
the value for the cell has not been retrieved or calculated. [Note: This can \\
happen when connected to an OLAP cube. end note]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error Value } & \multicolumn{1}{c|}{ Reason for Occurrence } \\
\hline & \begin{tabular}{l}
This error constant differs from \#N/A in that \#GETTING_DATA is used when \\
there is an expectation that the value for the cell will eventually be available, \\
whereas \#N/A is used when there is no such expectation.
\end{tabular} \\
\hline \#N/A & \begin{tabular}{l}
Intended to indicate when a designated value is not available. [Example: Some \\
functions, such as SUMX2MY2, perform a series of operations on corresponding \\
elements in two arrays. If those arrays do not have the same number of \\
elements, then for some elements in the longer array, there are no \\
corresponding elements in the shorter one; that is, one or more values in the \\
shorter array are not available. end example] \\
This error value can be produced by calling the function NA (§18.17.7.223).
\end{tabular} \\
\hline \#NAME? & \begin{tabular}{l}
Intended to indicate when what looks like a name is used, but no such name has \\
been defined. [Example: XYZ/3, where XYZ is not a defined name. Total is \& \\
A10, where neither Total nor is is a defined name. Presumably, "Total \\
is " \& A10 was intended. SUM(A1C10), where the range A1:C10 was \\
intended. end example]
\end{tabular} \\
\hline \#NULL! & \begin{tabular}{l}
Intended to indicate when two areas are required to intersect, but do not. \\
[Example: In the case of SUM(B1 C1), the space between B1 and C1 is treated \\
as the binary intersection operator, when a comma was intended. end example]
\end{tabular} \\
\hline \#NUM! & \begin{tabular}{l}
Intended to indicate when an argument to a function has a compatible type, but \\
has a value that is outside the domain over which that function is defined. (This \\
is known as a domain error.) [Example: Certain calls to ASIN, ATANH, FACT, and \\
SQRT might result in domain errors. end example] \\
Intended to indicate that the result of a function cannot be represented in a \\
value of the specified type, typically due to extreme magnitude. (This is known \\
as a range error.) [Example: FACT(1000) might result in a range error. end \\
example]
\end{tabular} \\
\hline \#REF! & \begin{tabular}{l}
Intended to indicate when a cell reference cannot be evaluated. [Example: If a \\
formula contains a reference to a cell, and then the row or column containing \\
that cell is deleted, a \#REF! error results. If a worksheet does not support \\
20,001 columns, OFFSET(A1, 0, 20000) will result in a \#REF! error. end \\
example]
\end{tabular} \\
\hline \#VALUE! & \begin{tabular}{l}
Intended to indicate when an incompatible type argument is passed to a \\
function, or an incompatible type operand is used with an operator. [Example: In \\
the case of a function argument, text was expected, but a number was provided \\
end example]
\end{tabular} \\
\hline
\end{tabular}

Each error value has a corresponding error-constant (§18.17.2.1).
[Note: A number of functions operate on error values: They include ERROR . TYPE (§18.17.7.110), ISERR (§18.17.7.175), ISERROR (§18.17.7.176), and ISNA (§18.17.7.179). end note]

\subsection*{18.17.4 Dates and Times}

Dates and times in cells in SpreadsheetML are stored as strings, using the ISO 8601 lexical formats defined below.

The earliest date permitted is 0001-01-01, 00:00. The latest date permitted is 9999-12-31, 23:59:59.999. The time midnight shall be expressed always with hour component 0 and not with hour component 24 . Leap seconds are not permitted - the maximum number of seconds expressed in a minute shall be 60 .

Values with only a date component shall be expressed using the Complete, Extended Format Calendar Date representation, as defined in ISO 8601, §B.1.1 and §B2.1.
[Example: The date 5 October 1975 is expressed in SpreadsheetML as
1975-10-05
end example]
Values with only a time-of-day component shall be expressed using the Complete, Extended Format Time Of Day representation, as defined in ISO 8601, §B.1.2 and §B2.2. The decimal separator shall be a full stop (period), and fractional seconds shall be expressed with no more than three decimal places.
[Example: The time-of-day 08:30 can be expressed in the following ways within SpreadsheetML:
08:30
08:30:00
08:30:00.000
end example]
Values with both date and time-of-day components shall be expressed using the Complete, Extended Format Calendar Date and Time Of Day representation, as defined in ISO 8601, §B.1.3 and §B2.3. For the time component, only seconds may use a decimal separator, the decimal separator shall be a full stop (period) and fractional seconds shall be expressed with no more than three decimal places.
[Example: The date 22 November 1976 at local time 08:30 can be expressed in the following ways within SpreadsheetML:

1976-11-22T08:30
1976-11-22T08:30:00
1976-11-22T08:30:00.000
The date 15 October 1582-the day the Gregorian calendar went into effect for some countries-can be expressed in the following ways:

1582-10-15
1582-10-15T00:00

1582-10-15T00:00:00
1582-10-15T00:00:00.000
end example]
[Note: SpreadsheetML relates all dates to the proleptic Gregorian calendar of ISO 8601, treating time periods extending into the past and into the distant future as if the Gregorian calendar is in effect for all of those days. January 1 is always the first day of each year, ignoring historical changes to the period of the calendar year. The gaps and shifts introduced as part of calendar reforms and for introduction of leap seconds are ignored under the proleptic Gregorian calendar system. end note]

Wherever a calculation in a formula is specified to apply to number values and a date or time is provided, the effect shall be the same as if the date and/or time value is converted to the corresponding serial date-time. Wherever a calculation in a formula is specified to apply to or to deliver a date and/or time value, and a number value is supplied, the number value is interpreted as a serial date-time for the date and/or time. The relationships between serial date-times and dates and times are specified in §18.17.4.1, §18.17.4.2, and §18.17.4.3.

\subsection*{18.17.4.1 Date Conversion for Serial Date-Times}

A serial date-time is a number that represents a date and time. This signed value is in units of days relative to the base date for the selected date system. Serial date-times increase by 1 into each successive day and decrease by 1 into each preceding day. Fractional portions of serial date-times represent fractions of a single day. [Example: When using the 1900 date system, which has a base date of \(30^{\text {th }}\) December 1899, a serial datetime of 1.5 represents midday on the \(31^{\text {st }}\) December 1899 (serial date-time day 1), or 1899-12-31T12:00. A serial date-time of -4.25 represents 6 pm on the \(25^{\text {th }}\) December 1899, or 1899-12-25T18:00. end example] The base dates and the related serial date-times represent local date and time.

Two different bases are used for converting dates to and from serial date-times:
- In the 1900 date system, the lower limit is January \(1^{\text {st }}, 0001\) 00:00:00, which has a serial datetime of -693593. The upper-limit is December \(31^{\text {st }}, 9999,23: 59: 59.999\), which has a serial date-time of \(2,958,465.9999884\). The base date for this system is 00:00:00 on December \(30^{\text {th }}, 1899\), which has a serial date-time of 0 .
- In the 1904 date system, the lower limit is January \(1^{\text {st }}, 0001,00: 00: 00\), which has a serial date-time of -695055 . The upper limit is December \(31^{\text {st }}, 9999,23: 59: 59.999\), which has a serial date-time of \(2,957,003.9999884\). The base date for this system is 00:00:00 on January \(1^{\text {st }}, 1904\), which has a serial date-time of 0.

A serial date-time outside the temporal range for the selected date system is invalid.

The date system is specified by the value of the date1904 attribute of the workbookPr element. [Example:
1900 date system: <workbookPr showObjects="all"/>
1904 date system: <workbookPr date1904="1" showObjects="all"/>
end example]

\subsection*{18.17.4.2 Time Conversion for Serial Date-Times}

Time of day is represented by a serial date-time less than 1, but not less than 0 . Values from 0-0.99999999 represent times from the starting instant 0:00:00 (12:00:00 AM) to the last instant 23:59:59 (11:59:59 P.M.).

For any serial date-time, the serial time-of-day is the serial date-time minus the serial date-time of the day in which the time-of-day occurs. The serial date-time of the day in which a serial date-time occurs is the greatest integer that does not exceed the serial date-time.

\section*{[Example:}

The serial date-time 4.66666667 is in serial day 4, and the time-of-day serial date-time is \(4.66666667-4\), which is 0.66666667 .

The serial date-time -2.00000001 is in serial day -3, and the time-of-day serial date-time is -2.00000001-(-3), which is 0.99999999 .
end example]
Going forward in time, the time component of a serial date-time increases by \(1 / 86,400\) each second. [Note: As such, the time 12:00 has a serial date-time time component of 0.5 . end note]

\section*{[Example:}

The serial date-time 0.0000000... represents 00:00:00
The serial date-time 0.0000115... represents 00:00:01
The serial date-time 0.4207639... represents 10:05:54
The serial date-time 0.5000000... represents 12:00:00
The serial date-time 0.9999884... represents 23:59:59

\section*{end example]}

\subsection*{18.17.4.3 Combined Date and Time Conversion for Serial Date-Times}

The serial date-time corresponding to a date component can be added to any serial date-time for a time-of-day component to determine the serial date-time for the combined date-time.
[Note: In the 1900 date system, the serial date-time -1.25 represents December 28, 1899, 18:00. end note]
[Example: For the 1900 date system:

The serial date-time -2337.999989... represents 1893-08-05T00:00:01
The serial date-time 3687.4207639... represents 1910-02-03T10:05:54
The serial date-time 2.5000000... represents 1900-01-01T12:00:00
The serial date-time 2958465.9999884... represents 9999-12-31T23:59:59

For the 1904 date system:

The serial date-time -3799.999989... represents 1893-08-05T00:00:01
The serial date-time 2225.4207639... represents 1910-02-03T10:05:54
The serial date-time 0.5000000... represents 1904-01-01T12:00:00
The serial date-time 2957003. 9999884... represents 9999-12-31T23:59:59
end example]

\subsection*{18.17.5 Limits and Precision}

\subsection*{18.17.5.1 Limits}

In SpreadsheetML, cell references range from column A1-A1048576 (column A:A) to column XFD1-XFD1048576 (column XFD:XFD).

An implementation can extend this range. However, to avoid ambiguities, it is necessary to ensure that defined names are distinct from cell references, or that one takes precedence over the other. With this in mind, the following rules apply:
- A producer or consumer shall consider a defined name of the form used by cells in the range A1XFD1048576 to be an error.
- All other names outside this range can be defined names and shall override a cell reference if an ambiguity exists.
[Example: LOG10 is always a cell reference, LOG10(...) is always a formula, and LOG01000 can be a defined name that overrides a cell reference. end example]

\subsection*{18.17.5.2 Precision}

In order to clarify the semantics of cell formulas and values in SpreadsheetML, it is necessary to specify the precision of the numbers being represented in the file format. These numbers are therefore regarded as ranging over a specific value space, which defaults to the following:

The value space consists of the values \((-1)^{\wedge} s \times m \times 2^{\wedge} n\), where \(s\) is 0 or \(1, m\) is an integer greater than or equal to 0 and less than \(2^{\wedge} 53\), and \(n\) is an integer between -1074 and 971 , inclusive. \(m\) is herein referred to as the binary mantissa, and n is herein referred to as the binary exponent. [Note: The default precision is patterned after the IEC double-precision 64-bit floating-point type [IEC 60559]. end note]

Implementing applications can use the characteristics markup (§22.7) to specify other value spaces to replace the default in a given workbook. When present in the workbook, the value space defined using the characteristics markup overrides the default value space.

Regardless of the specific value space in use, values shall have a lexical representation as described in §18.17.5.3. Any numerical expression conforming to this lexical description is permitted. However, numbers
of higher precision than available in the value space, and numbers that lie outside the range representable in the value space shall be handled as prescribed in §18.17.5.4.

\subsection*{18.17.5.3 Lexical Representation}

The value space shall have a lexical representation consisting of a base 10 mantissa followed, optionally, by the character "E" or "e", followed by a base 10 exponent. The exponent shall be an integer. The mantissa shall be a decimal number. The representations for exponent and mantissa shall follow the lexical rules for integer and decimal below. If the " E " or "e" and the following exponent are omitted, an exponent value of 0 is assumed.

Lexical representations for zero can take a positive or negative sign.
[Example: -1E4, 1267.43233E12, 12.78e-2, 12, -0 , and 0 are all literals for numbers in the default value space. 4503599627370497.5 is also a literal, although it represents the same value as \(4503599627370497\left(2^{\wedge} 52+1\right)\) in the default value space (as explained in §18.17.5.4). end example]

An Integer has a lexical representation consisting of a finite-length sequence of decimal digits (\#x30-\#x39) with an optional leading sign. If the sign is omitted, " + " is assumed. [Example: \(-1,0,12678967543233,+100000\). end example]

A Decimal Number has a lexical representation consisting of a finite-length sequence of decimal digits (\#x30\#x39) separated by a period as a decimal indicator. An optional leading sign is allowed. If the sign is omitted, "+" is assumed. Leading and trailing zeroes are optional. If the fractional part is zero, the period and following zero(s) can be omitted. [Example: \(-1.23,12678967.543233,+100000.00,210\). end example]

\subsection*{18.17.5.4 Interpretation}

Strings that are permitted according to the lexical definition in \(\S 18.17 .5 .3\) shall be interpreted as values in the value space as follows:
1. The mantissa shall be interpreted as a real number expressed in base 10
2. The exponent shall be interpreted as an integer expressed in base 10
3. The raw value for a numerical expression shall be interpreted as mantissa \(\times 10^{\text {exponent }}\)
4. If the absolute value is larger than the largest value in the value space (\(2^{\wedge} 1024\) minus \(2^{\wedge} 971\)) then a consuming application shall treat this as equivalent to the error value \#NUM! (§18.17.3). Otherwise the value in the value space that is closest to the raw value is chosen as the interpretation. In the case that two values are equally close, the one with the smaller absolute value is chosen.

\subsection*{18.17.6 XML Representation}

\subsection*{18.17.6.1 Cell Reference Style}

A workbook saved with reference style A1 (§18.17.2.3.1), shall have the refMode attribute of the calcPr element (§18.2.2) in the Workbook part's XML omitted or set to A1. A workbook saved with reference style R1C1 (\(\$ 18.17 .2 .3 .2\)) shall have that refMode attribute set to R1C1. [Example: With R1C1 mode set, here is how the XML might look:
```

<workbook ...>
<calcPr calcId="122211" fullCalcOnLoad="1" refMode="R1C1"/>
..
</workbook>
end example]

```

Regardless of the value of the refMode attribute, cell references shall be stored in XML in the A1 form. This attribute's value tells an implementation which reference style to use at runtime.

\subsection*{18.17.6.2 Scalar Formulas}

A scalar formula shall be represented in a worksheet's XML by an felement that contains the text of the formula, and a v element that contains the text version of the last computed value for that formula. This pair of elements shall be inside a c element, which is, in turn, shall be inside a row element. [Example: Consider the scalar formula \(\operatorname{SQRT}\left(C 2^{\wedge} 2+D 2^{\wedge} 2\right)\), where \(C 2\) refers to a cell containing the number 12.5 , and \(D 2\) refers to a cell containing the number 9.6. The corresponding XML might be as follows:
```

<row r="2" spans="2:4">
    <c r="B2" s="40">
        <f>SQRT(C2^2+D2^2)</f>
        <v>15.761027885261798</v>
    </c>
    <c r="C2" s="0">
        <v>12.5</v>
    </c>
    <c r="D2" s="0">
        <v>9.6</v>
    </c>
</row>
```

In the scalar formula CONCATENATE("The total is ", C7," units"), C7 refers to a cell containing the number 23. The corresponding XML might be as follows:
```

<row r="7" spans="2:4" ht="285">
    <c r="B7" s="4" t="str">
        <f>CONCATENATE("The total is ",C7," units")</f>
        <v>The total is 23 units</v>
    </c>
    <c r="C7" s="0">
        <v>23</v>
    </c>
</row>
```

As the function CONCATENATE returns a string, the value for the cell's \(t\) attribute is str.
end example]

\subsection*{18.17.6.3 Array Formulas}

An array formula shall be represented in XML just like other formulas, except that the array formula's f element shall contain an attribute \(t\), whose value shall be array.

For a single-cell formula, the r attribute shall designate that cell. [Example: Consider the array formula SUM(C11:C12*D11:D12). The corresponding XML might be as follows:
```

<row r="11" spans="2:4" ht="300">
    <c r="B11" s="16">
            <f t="array" r="B11">SUM(C11:C12*D11:D12)</f>
            <v>110</v>
        </c>
        <c r="C11" s="4">
            <v>10</v>
        </c>
        <c r="D11" s="0">
            <v>3</v>
    </c>
</row>
<row r="12" spans="2:4" ht="285">
        <c r="C12" s="4">
            <v>20</v>
        </c>
        <c r="D12" s="0">
            <v>4</v>
        </c>
</row>
```

As this formula is a single-cell formula, the r attribute contains the name of that cell, B11. end example]
For an array formula spanning multiple cells, the \(r\) attribute of the top-left cell of the range of cells to which that formula applies shall designate the range of cells to which that formula applies. The celements for all cells except the top-left cell in that range shall not have an f element; however, they shall each have a v element. [Example: Consider the array formula \(\mathrm{A} 1: \mathrm{A} 3 * \mathrm{~B} 1: \mathrm{B} 3\), which is applied to the cell range \(\mathrm{C} 1: \mathrm{C} 3\). The corresponding XML might be as follows:
```

<row r="1" spans="1:3">
    <c r="A1" s="0">
        <v>112</v>
    </c>
    <c r="B1" s="0">
        <v>2.34</v>
    </c>
```
```
    <c r="C1" s="0">
        <f t="array" r="C1:C3">A1:A3*B1:B3</f>
        <v>262.08</v>
    </c>
</row>
<row r="2" spans="1:3">
    <c r="A2" s="0">
        <v>209</v>
    </c>
    <c r="B2" s="0">
        <v>1.28</v>
    </c>
    <c r="C2" s="0">
        <v>267.52</v>
    </c>
</row>
<row r="3" spans="1:3">
    <c r="A3" s="0">
        <v>128</v>
    </c>
    <c r="B3" s="0">
        <v>3.12</v>
    </c>
    <c r="C3" s="0">
        <v>399.36</v>
    </c>
</row>
```

As this formula is an array formula spanning multiple cells, the \(r\) attribute of cell C1 contains the name of that cell range, C1:C3, and cells C2 and C3 do not have an f element. end example]

\subsection*{18.17.6.4 Formula Evaluation Order}

The order in which formulas are evaluated is determined by the order of their corresponding celements in the calcChain element of the Calculation Chain part (§18.6.2).

\subsection*{18.17.6.5 Name Representation}

A formula can contain one or more names. These names shall be defined in the Workbook part's XML with each being the subject of a definedName element, inside a definedNames element. [Example: Consider the scalar formula SUM (value1, value2). The corresponding XML might be as follows:
```

<definedNames>
    <definedName name="value1" localSheetId="0">Sheet2!$B$2</definedName>
    <definedName name="value2" localSheetId="0">Sheet2!$B$3</definedName>
</definedNames>
```
```

    <c r="E5" s="0">
        <f ce="1">SUM(value1,value2)</f>
        <v>8</v>
    </c>
end example]

```

Each name shall be the subject of an lpstr element in the Application-Defined File Properties part.
```

<TitlesOfParts>
    <vt:vector ... baseType="lpstr">
            <vt:lpstr>Sheet1</vt:lpstr>
            <vt:lpstr>Sheet2</vt:lpstr>
            <vt:lpstr>Sheet3</vt:lpstr>
            <vt:lpstr>value1</vt:lpstr>
        <vt:lpstr>value2</vt:lpstr>
    </vt:vector>
</TitlesOfParts>
```

\subsection*{18.17.6.6 Value Representation}

The most recent value of a formula shall be stored in the corresponding \(v\) element, as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Result Type } & \multicolumn{1}{c|}{ Representation } \\
\hline array & The text form of the array's value. \\
\hline error & The text form of the error value. \\
\hline logical & The text \(\theta\) for FALSE and 1 for TRUE. \\
\hline number & The unformatted text form of the number, as accurately as possible. \\
\hline text & All of the characters in the text. \\
\hline
\end{tabular}

\subsection*{18.17.6.7 Dates and Times}

When a SpreadsheetML cell contains a date-time, the value of the cell is expressed as a string conforming to one of the ISO 8601 lexical formats specified in §18.17.4.

\section*{[Example:}
```

<ct="d">
<f>DATE(1582,10,15)+0.5</f>
<v>1582-10-15T12:00</v>
</c>

```
end example]

\subsection*{18.17.7 Predefined Function Definitions}

Each of the subclauses below this subclause describes a separate function, and each description contains a section marked Syntax. That section contains pieces of the function grammar as they pertain to that specific function. These pieces are presented in a slightly simpler form to aid in the understanding of the description. In those sections, the left-square-bracket and right-square-bracket designate the start and end of an option, as used in ISO/IEC 14977. However, the function-name, the open-parenthesis and the close-parenthesis designate actual literal text, as does each comma. [Note: Therefore, in a strict presentation according to ISO/IEC 14977, each would appear with double-quotes surrounding each instance. end note]

The Syntax section for each function defined in this subclause corresponds to a call to that function. Except for argument-list, the names in any Syntax section typeset as in number and string-1, are parameter names for that function, and are local to that function definition's description. argument-list is the name of a production in the grammar, and, as defined in \(\S 18.17 .2\), permits a comma-separated list of arguments.

When the type of an argument passed to a function is incompatible with the type expected the error value \#VALUE! is returned by that function.

The set of predefined functions is divided into the following functional categories [Note: The predefined functions defined here reflect current spreadsheet semantics and might not match common practice in other contexts. New functions might be added in future versions of the specification. end note]:

All predefined functions can be used with their simple name, with the prefix ECMA. or with the prefix ISO., with the following exception: the predefined function named CEILING in ISO/IEC 29500 can only be used with the prefix ECMA. . The predefined function named ISO. CEILING is specified in ISO/IEC 29500.
\begin{tabular}{|c|c|}
\hline Category & Formulas \\
\hline Cube & CUBEKPIMEMBER (§18.17.7.65), CUBEMEMBER (§18.17.7.66), CUBEMEMBERPROPERTY (§18.17.7.67), CUBERANKEDMEMBER (§18.17.7.68), CUBESET (§18.17.7.69), CUBESETCOUNT (§18.17.7.70), CUBEVALUE (§18.17.7.71) \\
\hline Database & DAVERAGE (§18.17.7.77), DCOUNT (§18.17.7.81), DCOUNTA (§18.17.7.82), DGET (§18.17.7.90), DMAX (§18.17.7.92), DMIN (§18.17.7.93), DPRODUCT (§18.17.7.97), DSTDEV (§18.17.7.98), DSTDEVP (§18.17.7.99), DSUM (\(\S 18.17 .7 .100)\), DVAR (§18.17.7.102), and DVARP (§18.17.7.103). \\
\hline Date and Time & DATE (§18.17.7.74), DATEDIF (§18.17.7.75), DATEVALUE (§18.17.7.76), DAY (§18.17.7.78), DAYS360 (§18.17.7.79), EDATE (§18.17.7.105), EOMONTH (§18.17.7.107), HOUR (§18.17.7.144), MINUTE (§18.17.7.214), MONTH (§18.17.7.220), NETWORKDAYS (§18.17.7.226), NETWORKDAYS.INTL (§18.17.7.227), NOW (§18.17.7.234), SECOND (§18.17.7.287), TIME (§18.17.7.323), TIMEVALUE (§18.17.7.324), TODAY (§18.17.7.326), WEEKDAY (§18.17.7.344), WEEKNUM (§18.17.7.345), WORKDAY (§18.17.7.347), WORKDAY.INTL (§18.17.7.348), YEAR (§18.17.7.351), and YEARFRAC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Category & Formulas \\
\hline & (§18.17.7.352) \\
\hline Engineering & BESSELI (§18.17.7.23), BESSEL (§18.17.7.24), BESSELK (§18.17.7.25), BESSELY (§18.17.7.26), BIN2DEC (§18.17.7.29), BIN2HEX (§18.17.7.30), BIN2OCT (§18.17.7.31), COMPLEX (§18.17.7.45), CONVERT (§18.17.7.48), DEC2BIN (§18.17.7.84), DEC2HEX (§18.17.7.85), DEC2OCT (§18.17.7.86), DELTA (§18.17.7.88), ERF (§18.17.7.108), ERFC (§18.17.7.109), GESTEP (§18.17.7.136), HEX2BIN (§18.17.7.140), HEX2DEC (§18.17.7.141), HEX2OCT (§18.17.7.142), IMABS (§18.17.7.149), IMAGINARY (§18.17.7.150), IMARGUMENT (§18.17.7.151), IMCONJUGATE (§18.17.7.152), IMCOS (§18.17.7.153), IMDIV (§18.17.7.154), IMEXP (§18.17.7.155), IMLN (§18.17.7.156), IMLOG10 (§18.17.7.157), IMLOG2 (§18.17.7.158), IMPOWER (§18.17.7.159), IMPRODUCT (§18.17.7.160), IMREAL (§18.17.7.161), IMSIN (§18.17.7.162), IMSQRT (§18.17.7.163), IMSUB (§18.17.7.164), IMSUM (§18.17.7.165), OCT2BIN (§18.17.7.237), OCT2DEC (§18.17.7.238), and OCT2HEX (§18.17.7.239). \\
\hline Financial & ACCRINT (§18.17.7.2), ACCRINTM (§18.17.7.3), AMORDEGRC (§18.17.7.7), AMORLINC (§18.17.7.8), COUPDAYBS (§18.17.7.57), COUPDAYS (§18.17.7.58), COUPDAYSNC (§18.17.7.59), COUPNCD (§18.17.7.60), COUPNUM (§18.17.7.61), COUPPCD (§18.17.7.62), CUMIPMT (§18.17.7.72), CUMPRINC (§18.17.7.73), DB (§18.17.7.80), DDB (§18.17.7.83), DISC (§18.17.7.90), DOLLARDE (§18.17.7.95), DOLLARFR (§18.17.7.96), DURATION (§18.17.7.101), EFFECT (§18.17.7.106), FV (§18.17.7.129), FVSCHEDULE (§18.17.7.130), INTRATE (§18.17.7.171), IPMT (§18.17.7.172), IRR (§18.17.7.173), ISPMT (§18.17.7.184), MDURATION (§18.17.7.208), MIRR (§18.17.7.216), NOMINAL (§18.17.7.228), NPER (§18.17.7.235), NPV (§18.17.7.236), ODDFPRICE (§18.17.7.241), ODDFYIELD (§18.17.7.242), ODDLPRICE (§18.17.7.243), ODDLYIELD (§18.17.7.244), PMT (§18.17.7.253), PPMT (§18.17.7.256), PRICE (§18.17.7.257), PRICEDISC (§18.17.7.258), PRICEMAT (§18.17.7.259), PV (§18.17.7.263), RATE (§18.17.7.270), RECEIVED (§18.17.7.271), SLN (§18.17.7.293), SYD (§18.17.7.314), TBILLEQ (§18.17.7.318), TBILLPRICE (§18.17.7.319), TBILLYIELD (§18.17.7.320), VDB (§18.17.7.342), XIRR (§18.17.7.349), XNPV (§18.17.7.350), YIELD (§18.17.7.353), YIELDDISC (\((18.17 .7 .354)\), and YIELDMAT (§18.17.7.355). \\
\hline Information & CELL (§18.17.7.34), ERROR.TYPE (§18.17.7.110), INFO (§18.17.7.168), ISBLANK (§18.17.7.174), ISERR (§18.17.7.175), ISERROR (§18.17.7.176), ISEVEN (§18.17.7.177), ISLOGICAL (§18.17.7.178), ISNA (§18.17.7.179), ISNONTEXT (§18.17.7.180), ISNUMBER (§18.17.7.181), ISODD (§18.17.7.183), ISREF (§18.17.7.185), ISTEXT (§18.17.7.186), N (§18.17.7.223), NA (§18.17.7.224), and TYPE (§18.17.7.334). \\
\hline Logical & AND (§18.17.7.9), FALSE (§18.17.7.117), IF (§18.17.7.147), IFERROR (§18.17.7.148), NOT (§18.17.7.233), OR (§18.17.7.246), and TRUE (§18.17.7.330). \\
\hline Lookup and Reference & ADDRESS (§18.17.7.6), AREAS (§18.17.7.10), CHOOSE (§18.17.7.39), COLUMN (§18.17.7.42), COLUMNS (§18.17.7.43, GETPIVOTDATA (§18.17.7.137), \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Category & Formulas \\
\hline & HLOOKUP (§18.17.7.143), HYPERLINK (§18.17.7.145), INDEX (§18.17.7.166), INDIRECT (§18.17.7.167), LOOKUP (§18.17.7.202), MATCH (§18.17.7.204), OFFSET (§18.17.7.245), ROW (§18.17.7.281), ROWS (§18.17.7.282), RTD (\(\S 18.17 .7 .284)\), TRANSPOSE (\((18.17 .7 .327\)), and VLOOKUP (§18.17.7.343). \\
\hline Math and Trig & ABS (§18.17.7.1), ACOS (§18.17.7.4), ACOSH (§18.17.7.5), ASIN (§18.17.7.12), ASINH (§18.17.7.13), ATAN (§18.17.7.14), ATAN2 (§18.17.7.15), ATANH (§18.17.7.16), CEILING (§18.17.7.33), COMBIN (§18.17.7.44), COS (§18.17.7.50), COSH (§18.17.7.51), DEGREES (§18.17.7.87), ECMA.CEILING (§18.17.7.104), EVEN (§18.17.7.111), EXP (§18.17.7.113), FACT (§18.17.7.115), FACTDOUBLE (§18.17.7.116), FLOOR (§18.17.7.125), GCD (§18.17.7.134), INT (§18.17.7.169), ISO.CEILING (§18.17.7.182), LCM (§18.17.7.190), LN (§18.17.7.196), LOG (§18.17.7.197), LOG10 (§18.17.7.198), MDETERM (§18.17.7.207), MINVERSE (§18.17.7.215), MMULT (§18.17.7.217), MOD (§18.17.7.218), MROUND (§18.17.7.221), MULTINOMIAL (§18.17.7.222), ODD (§18.17.7.240), PI (§18.17.7.252), POWER (§18.17.7.255), PRODUCT (§18.17.7.261), QUOTIENT (§18.17.7.265), RADIANS (§18.17.7.266), RAND (§18.17.7.267), RANDBETWEEN (§18.17.7.268), ROMAN (§18.17.7.277), ROUND (§18.17.7.278), ROUNDDOWN (§18.17.7.279), ROUNDUP (§18.17.7.280), SERIESSUM (§18.17.7.288), SIGN (§18.17.7.289), SIN (§18.17.7.290), SINH (§18.17.7.291), SQRT (§18.17.7.296), SQRTPI (§18.17.7.297), SUBTOTAL (§18.17.7.305), SUM (§18.17.7.306), SUMIF (§18.17.7.307), SUMIFS (§18.17.7.308), SUMPRODUCT (§18.17.7.309), SUMSQ (§18.17.7.310), SUMX2MY2 (§18.17.7.311), SUMX2PY2 (§18.17.7.312), SUMXMY2 (§18.17.7.313), TAN (§18.17.7.316), TANH (§18.17.7.317), and TRUNC (§18.17.7.332). \\
\hline Statistical & \begin{tabular}{l}
AVEDEV (§18.17.7.17), AVERAGE (§18.17.7.18), AVERAGEA (§18.17.7.19),AVERAGEIF (§18.17.7.20), AVERAGEIFS (§18.17.7.21), BETADIST (§18.17.7.27), BETAINV (§18.17.7.28), BINOMDIST (§18.17.7.32), CHIDIST (§18.17.7.36), CHIINV (§18.17.7.37), CHITEST (§18.17.7.38), CONFIDENCE (§18.17.7.47), CORREL (§18.17.7.49), COUNT (§18.17.7.52), COUNTA (\((18.17 .7 .53)\)), COUNTBLANK (§18.17.7.54), COUNTIF (§18.17.7.55),COUNTIFS (§18.17.7.56), COVAR (§18.17.7.63), CRITBINOM (§18.17.7.64), DEVSQ (§18.17.7.89), EXPONDIST (§18.17.7.114), FDIST (§18.17.7.118), FINV (§18.17.7.121), FISHER (§18.17.7.122), FISHERINV (§18.17.7.123), FORECAST (§18.17.7.126), FREQUENCY (§18.17.7.127), FTEST (§18.17.7.128), \\
GAMMADIST (§18.17.7.131), GAMMAINV (§18.17.7.132), GAMMALN (§18.17.7.133), GEOMEAN (§18.17.7.135), GROWTH (§18.17.7.138), HARMEAN (§18.17.7.139), HYPGEOMDIST (§18.17.7.146), INTERCEPT (§18.17.7.170), KURT (§18.17.7.188), LARGE (§18.17.7.189), LINEST (§18.17.7.195), LOGEST (§18.17.7.199), LOGINV (§18.17.7.200), LOGNORMDIST (§18.17.7.201), MAX (§18.17.7.205), MAXA (§18.17.7.206), MEDIAN (§18.17.7.209), MIN (§18.17.7.212), MINA (§18.17.7.213), MODE (§18.17.7.219), NEGBINOMDIST (§18.17.7.225), NORMDIST (§18.17.7.229), NORMINV (§18.17.7.230), NORMSDIST (§18.17.7.231), NORMSINV (§18.17.7.232), PEARSON (§18.17.7.247), PERCENTILE (§18.17.7.248),
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Category & Formulas \\
\hline & PERCENTRANK (§18.17.7.249), PERMUT (§18.17.7.250), POISSON (§18.17.7.254), PROB (§18.17.7.260), QUARTILE (§18.17.7.264), RANK (§18.17.7.269), RSQ (§18.17.7.283), SKEW (§18.17.7.292), SLOPE (§18.17.7.294), SMALL (§18.17.7.295), STANDARDIZE (§18.17.7.298), STDEV (§18.17.7.299), STDEVA (§18.17.7.300), STDEVP (§18.17.7.301), STDEVPA (§18.17.7.302), STEYX (§18.17.7.303), TDIST (§18.17.7.321), TINV (§18.17.7.325), TREND (§18.17.7.328), TRIMMEAN (§18.17.7.330), TTEST (§18.17.7.333), VAR (§18.17.7.338), VARA (§18.17.7.339), VARP (§18.17.7.340), VARPA (§18.17.7.341), WEIBULL (§18.17.7.346), and ZTEST (§18.17.7.356). \\
\hline Text and Data & ASC (§18.17.7.11), BAHTTEXT (§18.17.7.22), CHAR (§18.17.7.35), CLEAN (§18.17.7.40), CODE (§18.17.7.41), CONCATENATE (§18.17.7.46), DOLLAR (§18.17.7.94), EXACT (§18.17.7.112), FIND (§18.17.7.119), FINDB (§18.17.7.120), FIXED (§18.17.7.124), JIS (§18.17.7.187), LEFT (§18.17.7.191), LEFTB (§18.17.7.192), LEN (§18.17.7.193), LENB (§18.17.7.194), LOWER (§18.17.7.203), MID (§18.17.7.210), MIDB (§18.17.7.211), PHONETIC (§18.17.7.251), PROPER (§18.17.7.262), REPLACE (§18.17.7.272), REPLACEB (§18.17.7.273), REPT (§18.17.7.274), RIGHT (§18.17.7.275), RIGHTB (§18.17.7.276), SEARCH (§18.17.7.285), SEARCHB (§18.17.7.286), SUBSTITUTE (§18.17.7.304), T (§18.17.7.315), TEXT (§18.17.7.322), TRIM (§18.17.7.329), UPPER (§18.17.7.335), and VALUE (§18.17.7.337). \\
\hline
\end{tabular}

\subsection*{18.17.7.1 ABS}

\section*{Syntax:}

ABS (\(x\))
Description: Computes the absolute value of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value whose absolute value is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number - The absolute value of \(x\).
[Example:

ABS (10.5) results in 10.5
ABS (0) results in 0
ABS (-10.5) results in 10.5
end example]

\subsection*{18.17.7.2 ACCRINT}

\section*{Syntax:}

ACCRINT (issue , first-interest , settlement , rate , [par] , frequency [, [basis]])
Description: Computes the accrued interest for a security that pays periodic interest.

\section*{Mathematical Formula:}

ACCRINT \(=\) par \(\times \frac{\text { rate }}{\text { frequency }} \times \sum_{i=1}^{N C} \frac{A_{i}}{N L_{i}}\)
where:
- \(\mathrm{A}_{\mathrm{i}} \mathrm{Ai}=\) number of accrued days for the \(\mathrm{i}^{\text {th }}\) quasi-coupon period within odd period.
- frequency \(=\) argument frequency
- \(N C=\) number of quasi-coupon periods that fit in odd period. If this number contains a fraction, raise it to the next whole number. The quasi-coupon period can be calculated in one of two following ways:
- Odd long first coupon: by working backwards in time from the long coupon's interest payment date (first coupon date) and adding together the number of standard coupon periods that would fit in the long coupon, rounding up to the next whole number;
- Odd long last coupon: by working forward in time from the long coupon's interest payment date (last coupon date before redemption) and adding together the number of standard coupon periods that would fit in the long coupon, rounding up to the next whole number.
- \(\mathrm{NL}_{\mathrm{i}} \mathrm{NLi}=\) normal length in days of the \(\mathrm{i}^{\text {th }}\) quasi-coupon period within odd period.
- par = argument par
- rate \(=\) argument rate

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline issue & number & The security's issue date. \\
\hline first-interest & number & The security's first interest date. \\
\hline settlement & number & The security's settlement date. \\
\hline rate & number & The security's annual coupon rate. \\
\hline par & number & The security's par value. If omitted, 1,000 is used. \\
\hline frequency & number & \begin{tabular}{l}
The number of coupon payments per year. For annual \\
payments, frequency is \(1 ;\) \\
freq semiannual payments, \\
frequency is \(2 ;\) \\
fruncated to an integer.
\end{tabular} \\
\hline basis & number & The truncated integer type of day count basis to use, as \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The accrued interest for a security that pays periodic interest.
However, if
- issue, first-interest, or settlement is out of range for the current date system, \#NUM! is returned
- issue \(\geq\) settlement, \#NUM! is returned
- rate or par \(\leq 0, \# N U M!\) is returned
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned
- basis \(<0\) or basis \(>4\), \#NUM! is returned
[Example:
\(\operatorname{ACCRINT}(\operatorname{DATE}(2006,3,1), \operatorname{DATE}(2006,9,1), \operatorname{DATE}(2006,5,1), 0.1,1100,2,0)\) results in 18.33
\(\operatorname{ACCRINT}(\operatorname{DATE}(2006,3,1), \operatorname{DATE}(2006,9,1), \operatorname{DATE}(2006,5,1), 0.1, ~, 2,0)\) results in 16.67
end example]

\subsection*{18.17.7.3 ACCRINTM}

\section*{Syntax:}

ACCRINTM (issue , settlement , rate , [[par] [, [basis]]])
Description: Computes the accrued interest for a security that pays interest at maturity.

\section*{Mathematical Formula:}

ACCRINTM \(=\) par \(\times\) rate \(\times \frac{A}{D}\)
where:
- \(A=\) Number of accrued days counted according to a monthly basis. For interest at maturity items, the number of days from the issue date to the maturity date is used.
- \(D=\) Annual Year Basis.
- par = argument par
- rate \(=\) argument rate

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline issue & number & The security's issue date. \\
\hline settlement & number & The security's settlement date. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The security's annual coupon rate.} \\
\hline par & number & \multicolumn{2}{|l|}{The security's par value. If omitted, 1,000 is used.} \\
\hline \multirow[t]{4}{*}{basis} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30. If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 days. \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The accrued interest for a security that pays interest at maturity.

However, if
- issue or settlement is out of range for the current date system, \#NUM! is returned
- issue \(\geq\) settlement, \#NUM! is returned
- rate or par \(\leq 0, \#\) NUM! is returned
- basis < 0 or basis \(>4\), \#NUM! is returned

\section*{[Example:}

ACCRINTM(DATE \((2006,3,1), \operatorname{DATE}(2006,5,1), 0.1,1100,0)\) results in 18.33333333
\(\operatorname{ACCRINTM}(\operatorname{DATE}(2006,3,1), \operatorname{DATE}(2006,5,1), 0.1,, 0)\) results in 16.66666667
ACCRINTM(DATE \((2006,3,1), \operatorname{DATE}(2006,5,1), 0.1\),\() results in 16.66666667\)

\section*{end example]}

\subsection*{18.17.7.4 ACOS}

\section*{Syntax:}
```

ACOS ( x )

```

Description: Computes the arc cosine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value whose arc cosine is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number - The arc cosine of \(x\), in radians.
However, if \(x\) is outside the interval \([-1,+1]\), \#NUM! is returned
[Example:

ACOS (-1) results in 3.141592654
ACOS (0) results in 1.570796327
\(\operatorname{ACOS}(1)\) results in 0
end example]

\subsection*{18.17.7.5 ACOSH}

\section*{Syntax:}
```

ACOSH ( }x\mathrm{ )

```

Description: Computes the inverse hyperbolic cosine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l}
The value whose inverse hyperbolic cosine is to be \\
determined.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse hyperbolic cosine of \(x\).
However, if \(x<1, \# N U M\) ! is returned.
[Example:

ACOSH (1) results in 0
ACOSH (10) results in 2.993222846
ACOSH (100) results in 5.298292366
end example]

\subsection*{18.17.7.6 ADDRESS}

\section*{Syntax:}

ADDRESS (row-number , col-number [, [ref-type][, [A1-ref-style-flag]
[, sheet-name]]])
Description: Creates a cell address, given the specified row and column numbers.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline row-number & number & \multicolumn{2}{|l|}{The number of the row.} \\
\hline col-number & number & \multicolumn{2}{|l|}{The number of the column.} \\
\hline \multirow[t]{6}{*}{ref-type} & \multirow[t]{6}{*}{number} & \multicolumn{2}{|l|}{The type of reference to return, as follows:} \\
\hline & & Value & Type of Reference Returned \\
\hline & & 1 or omitted & Absolute row and column \\
\hline & & 2 & Absolute row; relative column \\
\hline & & 3 & Relative row; absolute column \\
\hline & & 4 & Relative row and column \\
\hline A1-ref-styleflag & logical & \multicolumn{2}{|l|}{The style of the reference. If TRUE or omitted, an A1-style reference (\(\$ 18.17 .2 .3 .1\)) is returned; otherwise, an R1C1style reference (\(\$ 18.17 .2 .3 .2\)) is returned.} \\
\hline sheet-name & text & \multicolumn{2}{|l|}{The name of the worksheet to be used. If omitted, no} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & sheet name is used. \\
\hline
\end{tabular}

Return Type and Value: text - A cell address, given the specified row and column numbers.
However, if
- row-number or col-number < 1 , \#NUM! is returned.
- ref-type is outside the range \(1-4\), \#NUM! is returned.

\section*{[Example:}

In A1-reference style mode:

ADDRESS \((5,7,1)\) results in \(\$\) G \(\$ 5\)
ADDRESS \((5,7,2)\) results in \(\mathrm{G} \$ 5\)
ADDRESS \((5,7,3)\) results in \(\$\) G5
\(\operatorname{ADDRESS}(5,7,4)\) results in \(G 5\)
ADDRESS (5, 7, , , "Sheet1") results in Sheet1!\$G\$5
In R1C1-reference style mode:
```

ADDRESS(5,7,1, FALSE) results in R5C7
ADDRESS(5,7,2,FALSE) results in R5C[7]
ADDRESS(5,7,3,FALSE) results in R[5]C7
ADDRESS(5,7,4,FALSE) results in R[5]C[7]
end example]

```

\subsection*{18.17.7.7 AMORDEGRC}

\section*{Syntax:}
```

AMORDEGRC ( cost , date-purchased , first-period , salvage , period,
rate [, [ basis ]] )

```

Description: Computes the depreciation for each accounting period. (This function is provided for the French accounting system. If an asset is purchased in the middle of the accounting period, the prorated depreciation is taken into account. The function is similar to AMORLINC (§18.17.7.7), except that a depreciation coefficient is applied in the calculation depending on the life of the assets.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The cost of the asset. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline datepurchased & number & \multicolumn{2}{|l|}{The date of the purchase of the asset.} \\
\hline first-period & number & \multicolumn{2}{|l|}{The date of the end of the first period.} \\
\hline salvage & number & \multicolumn{2}{|l|}{The salvage value at the end of the life of the asset.} \\
\hline period & number & \multicolumn{2}{|l|}{The period.} \\
\hline rate & number & \multicolumn{2}{|l|}{The rate of depreciation.} \\
\hline \multirow[t]{4}{*}{basis} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30. If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the \\
\hline
\end{tabular}

Return Type and Value: number - The depreciation for each accounting period.
However, if
- cost, salvage, period, or rate \(<0, \# N U M!\) is returned.
- date-purchased or first-period is out of range for the current date system, \#NUM! is returned.
- basis < 0 or basis \(>4\), \#NUM! is returned.
- The life of the assets is between 0 and 1,1 and 2,2 and 3 , or 4 and 5 , \(\#\) NUM! is returned.

This function returns the depreciation until the last period of the life of the assets or until the cumulated value of depreciation is greater than the cost of the assets minus the salvage value.

The depreciation coefficients are:
\begin{tabular}{|l|l|}
\hline Life of assets (1/rate) & \multicolumn{1}{|c|}{ Depreciation Coefficient } \\
\hline Between 3 and 4 years & 1.5 \\
\hline Between 5 and 6 years & 2 \\
\hline More than 6 years & 2.5 \\
\hline
\end{tabular}

The depreciation rate grows to 50 percent for the period preceding the last period, and grows to 100 percent for the last period.
[Example:

AMORDEGRC(2400, \(\operatorname{DATE}(2008,8,19), \operatorname{DATE}(2008,12,31), 300,1,0.15,1)\) results in 776.00
```

end example]

```

\subsection*{18.17.7.8 AMORLINC}

\section*{Syntax:}

AMORLINC (cost , date-purchased , first-period , salvage , period , rate [, [basis]])
Description: Computes the depreciation for each accounting period. (This function is provided for the French accounting system. If an asset is purchased in the middle of the accounting period, the prorated depreciation is taken into account.)

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The cost of the asset. \\
\hline \begin{tabular}{l}
date- \\
purchased
\end{tabular} & number & The date of the purchase of the asset. \\
\hline first-period & number & The date of the end of the first period. \\
\hline salvage & number & The salvage value at the end of the life of the asset. \\
\hline period & number & The period. \\
\hline rate & number & The rate of depreciation. \\
\hline basis & number & The truncated integer type of day count basis to use, as \\
\hline
\end{tabular}

Return Type and Value: number - The depreciation for each accounting period.
However, if:
- cost, salvage, period, or rate \(<0\), \#NUM! is returned.
- date-purchased or first-period is out of range for the current date system, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:

AMORLINC (2400, \(\operatorname{DATE}(2008,8,19), \operatorname{DATE}(2008,12,31), 300,1,0.15,1)\) results in 360.00
end example]

\subsection*{18.17.7.9 AND}

\section*{Syntax:}

AND (argument-list)
Description: Tests if all arguments in argument-list are TRUE. The function evaluates all arguments prior to returning a value.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l}
logical, array, or \\
cell reference
\end{tabular} & \begin{tabular}{l}
The arguments in argument-list designate the values to be \\
tested. For an array or cell reference, a cell that contains \\
text or is empty shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if all arguments in argument-list are TRUE; otherwise, FALSE.
However, if no logical values are found, \#VALUE! is returned.
[Example:

AND (TRUE) results in TRUE
AND (TRUE, FALSE) results in FALSE
AND (\(10>5,3=1+2,5\)) results in TRUE
\(\operatorname{AND}(\{10,5,6,7\}\), TRUE , E6: F6) results in TRUE, when E6 contains TRUE and F6 contains 10
end example]
18.17.7.10 AREAS

Syntax:
AREAS (reference)
Description: Finds the number of areas (\$18.17.2.3) designated by reference.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline reference & reference & \begin{tabular}{l}
A reference to a single cell or to a range of cells that can \\
refer to multiple areas．
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value：number－The number of areas designated by reference．
However，if the reference designates no areas，\＃NUM！is returned．
［Example：

AREAS（E312）results in 1
AREAS（E311：F313）results in 1
AREAS（（E312：F314，G316：H316，G311））results in 3，given the union of the three areas
AREAS（（E312：F314 E313：F314 F312：F314））results in 1，given the intersection of the three areas

\section*{end example］}

\section*{18．17．7．11 ASC}

Syntax：
ASC（string）
Description：For double－byte character set（DBCS）languages，converts all full－width（double－byte）characters to half－width（single－byte）characters．

\section*{Arguments：}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l}
Designate the text to be converted．If string does not \\
contain any full－width characters，nothing in string is \\
converted．
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value：text－The text resulting from the conversion．
［Example：

ASC（＂ABC＂）results in ABC
ASC（＂エクセンル＂）results in エクセl
end example］

\section*{18．17．7．12 ASIN}

\section*{Syntax：}
```

ASIN ( }x\mathrm{ )

```

Description: Computes the arc sine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value whose arc sine is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number - The arc sine of \(x\), in radians.
However, if \(x\) is outside the interval \([-1,+1]\), \#NUM! is returned.
[Example:

ASIN(-1) results in -1. 570796327
ASIN(0) results in 0
ASIN(1) results in 1.570796327

\section*{end example]}

\subsection*{18.17.7.13 ASINH}

\section*{Syntax:}
```

ASINH ( }x\mathrm{ )

```

Description: Computes the inverse hyperbolic cosine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l}
The value whose inverse hyperbolic sine is to be \\
determined.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse hyperbolic cosine of \(x\).
[Example:

ASINH (1) results in 0.881373587
ASINH (10) results in 2.99822295
ASINH (100) results in 5.298342366
ASINH (0.5) results in 0.481211825
end example]

\subsection*{18.17.7.14 ATAN}

\section*{Syntax:}
```

ATAN ( x )

```

Description: Computes the arc tangent of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & Description \\
\hline\(x\) & number & The value whose arc tangent is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number - The arc tangent of \(x\), in radians.
[Example:

ATAN (-1) results in -0.785398163
ATAN (0) results in 0
ATAN(1) results in 0.785398163
ATAN (-10) results in 1.471127674
ATAN(10) results in 1.471127674
end example]

\subsection*{18.17.7.15 ATAN2}

Syntax:
ATAN2 (\(x, y\))
Description: Computes the arc tangent of the coordinates \(x\) and \(y\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The first coordinate. \\
\hline\(y\) & number & The second coordinate. \\
\hline
\end{tabular}

Return Type and Value: number - The arc tangent of \(y / x\), in radians.
However, if both \(x\) and \(y\) are zero, \#DIV/0! is returned.
[Example:

ATAN2 \((1,1)\) results in 0.785398163

ATAN2 \((-2,2)\) results in 2.35619449
ATAN2 \((3,-3)\) results in -0.785398163
end example]

\subsection*{18.17.7.16 ATANH}

\section*{Syntax:}

ATANH (\(x\))
Description: Computes the inverse hyperbolic tangent of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l}
The value whose inverse hyperbolic tangent is to be \\
determined.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse hyperbolic tangent of \(x\).
However, if \(x\) is outside the interval \([-1,+1]\), \#NUM! is returned.
[Example:

ATANH(-0.999999) results in -7.254328619
ATANH (0) results in 0
ATANH (0.999999) results in 7.254328619
end example]

\subsection*{18.17.7.17 AVEDEV}

\section*{Syntax:}

\section*{AVEDEV (argument-list)}

Description: Computes the average of the absolute deviations of a set of data points from their mean. AVEDEV is a measure of the variability in a data set.

\section*{Mathematical Formula:}

The average of the absolute deviations of a set of data points from their mean is as follows:
\(\frac{1}{n} \sum|x-\bar{x}|\)
where:
- \(n=\) the number of arguments in argument-list
- \(x=\) an argument in argument-list
- \(\overline{\mathrm{x}}=\) the \(x\) mean value

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l}
logical, number, \\
name, array, or \\
reference that \\
contains a \\
number. The list \\
can be a single \\
argument that is \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l}
The arguments in argument-list designate the values for \\
which the average of the absolute deviations is to be \\
computed. Logical values and text representations of \\
numbers occurring directly in the list of arguments are \\
included. If an array or reference argument contains text, \\
logical values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The average of the absolute deviations of a set of data points from their mean.

\section*{[Example:}
\(\operatorname{AVEDEV}(-3.5,1.4,6.9,-4.5)\) results in 4.075
\(\operatorname{AVEDEV}(\{-3.5,1.4,6.9,-4.5\})\) results in 4.075
end example]

\subsection*{18.17.7.18 AVERAGE}

Syntax:
AVERAGE (argument-list)
Description: Computes the arithmetic mean of the numeric values of its arguments.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l}
logical, number, \\
name, text, or \\
reference that \\
contains a \\
number.
\end{tabular} & \begin{tabular}{l}
The arguments in argument-list designate the values to be \\
averaged. An argument that is a logical value or the text \\
representation of a number shall be counted. If an array \\
or cell reference argument contains logical values, text, \\
or empty cells, those values shall be ignored; however, \\
cells having the value Ovalue 0 shall be counted. [Note: \\
The function AVERAGEA (§18.17.7.18) does include cell
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l}
reference arguments that refer to logical values or text \\
representations of numbers. end note]
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The arithmetic mean of the values of its arguments.
[Example:
\(\operatorname{AVERAGE}(1,2,3,4,5)\) results in 3
\(\operatorname{AVERAGE}(\{1,2 ; 3,4\})\) results in 2.5
\(\operatorname{AVERAGE}(\{1,2,3,4,5\}, 6, " 7 ")\) results in 4
\(\operatorname{AVERAGE}(\{1, " 2 ", \operatorname{TRUE}, 4\})\) results in 2.5 , as the logical value and numeric text are ignored
end example]

\subsection*{18.17.7.19 AVERAGEA}

\section*{Syntax:}

AVERAGEA (argument-list)
Description: Computes the arithmetic mean of the values of its arguments.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l}
logical, number, \\
text, or reference \\
that contains a \\
number.
\end{tabular} & \begin{tabular}{l}
The arguments in argument-list designate the values to be \\
averaged. An argument that is a logical value or the text \\
representation of a number shall be counted. Arguments \\
with value TRUE evaluate to 1; arguments with value \\
FALSE evaluate to 0. An array or cell reference argument \\
that contains text evaluates to 0. \\
If an argument is an array or reference, only values in \\
that array or reference are used. Empty cells and text \\
values in the array or reference are ignored.
\end{tabular} \\
\hline
\end{tabular}
[Note: The function AVERAGE (§18.17.7.18) does not include cell reference arguments that refer to logical values or text representations of numbers. end note]

Return Type and Value: number - The arithmetic mean of the values of its arguments.

\section*{[Example:}
\(\operatorname{AVERAGEA}(10, \mathrm{E} 1)\), where E 1 is an empty cell, results in 10 , as E 1 is ignored
AVERAGEA (10, E2), where E2 contains TRUE, results in 5.5

AVERAGEA (10, E3), where E3 contains FALSE, results in 5
end example]

\subsection*{18.17.7.20 AVERAGEIF}

\section*{Syntax:}

AVERAGEIF (cell-range , selection-criteria [, average-range])
Description: Applies selection criteria on the values in one range of cells and averages the values of the cells in a corresponding range.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cell-range & reference & \begin{tabular}{l}
The range of cells to be inspected. Cells in cell-range that \\
contain TRUE or FALSE are ignored. If a cell is an empty \\
cell, it is ignored.
\end{tabular} \\
\hline \begin{tabular}{l}
selection- \\
criteria
\end{tabular} & \begin{tabular}{l}
number, \\
expression, \\
reference, text
\end{tabular} & \begin{tabular}{l}
Designates the cells that are to be averaged. In the case \\
of text, selection-criteria can consist of any comparison \\
operator followed by the operand against which each \\
cell's value is to be compared. selection-criteria can \\
include one or more wildcard characters, question \\
mark (?) and asterisk (*). A question mark matches any \\
single character; an asterisk matches any sequence of \\
characters. To search for a question mark, asterisk, or \\
tilde character, prefix that character with a tilde (\()\). If a \\
cell in selection-criteria is empty, it is treated as if it \\
contained 0.
\end{tabular} \\
\hline \begin{tabular}{l}
average- \\
range
\end{tabular} & reference & \begin{tabular}{l}
Designates the cells whose values are averaged. In this \\
case, average-range need not have the same size and \\
shape as cell-range. The actual cells that are averaged \\
are determined by using the top, left cell in average- \\
range as the beginning cell, and then including cells that \\
correspond in size and shape to cell-range. If average- \\
range is omitted, cell-range also designates the cells \\
whose values are averaged. If a cell is an empty cell, it is \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The average of the values of the cells corresponding to those selected.
However, if no cells in the range meet the criteria, the return value is unspecified.
[Example: Assuming A2 : A4 contains 10, 20, and 30:

AVERAGEIF (A2:A4, ">15") results in 25 , the average of 20 and 30 .

\section*{end example]}

\subsection*{18.17.7.21 AVERAGEIFS}

\section*{Syntax:}

AVERAGEIFS (average-range , cell-range-1 , selection-criteria-1
[, cell-range-2 , selection-criteria-2 [, ...]])
Description: The average of the values of all cells that meet multiple criteria.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
average- \\
range
\end{tabular} & reference & \begin{tabular}{l}
Designates the cells whose values are averaged. In this \\
case, average-range need not have the same size and \\
shape as cell-range- 1 through cell-range- \(n\). The actual \\
cells that are added are determined by using the top, left \\
cell in average-range as the beginning cell, and then \\
including cells that correspond in size and shape to cell- \\
range-1 through cell-range- . If a cell in average-range is \\
empty, that cell is ignored. Each cell in average-range is \\
used in the average calculation only if all of the \\
corresponding criteria specified are true for that cell.
\end{tabular} \\
\hline cell-range-1 & \begin{tabular}{l}
number, \\
expression, \\
reference, text
\end{tabular} & \begin{tabular}{l}
Designates the first range of cells to be inspected.
\end{tabular} \\
\hline \begin{tabular}{l}
selection- \\
criteria-1
\end{tabular} & reference, text & \begin{tabular}{l}
selection-criteria-1 specifies the criteria for the first \\
range of cells that is averaged. In the case of text, \\
selection-criteria- 1 can consist of any comparison \\
operator followed by the operand against which each \\
cell's value is to be compared. If a cell in any selection \\
criteria range is empty, it is treated as if its value was 0. \\
Cells that contain TRUE evaluate to 1; cells in any range \\
that contain FALSE evaluate to 0. selection-criteria-l can \\
include one or more wildcard characters, question \\
mark (?) and asterisk (*). A question mark matches any \\
single character; an asterisk matches any sequence of \\
characters. To search for a question mark, asterisk, or \\
tilde character, prefix that character with a tilde (~).
\end{tabular} \\
\hline cell-range-n & \begin{tabular}{l}
number, \\
expression,
\end{tabular} & \begin{tabular}{l}
The optional arguments selection-criteria-2 through \\
selection-criteria- \(n\) have corresponding arguments cell-
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & reference, text & \begin{tabular}{l}
range-2 through cell-range- \(n\), and have the same \\
semantics as selection-criteria-1 and cell-range-1, \\
respectively.
\end{tabular} \\
\hline \begin{tabular}{l}
selection- \\
criteria- \(n\)
\end{tabular} & reference, text & \\
\hline
\end{tabular}

Return Type and Value: number - The average of the cells corresponding to those selected.
However, if
- Cells in average-range are empty or contain text values that cannot be translated into numbers, the return value is unspecified.
- There are no cells that meet all the criteria, the return value is unspecified.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } & \multicolumn{1}{c|}{ D } \\
\hline 1 & Student & First Quiz Grade & Second Quiz Grade & Final Exam Grade \\
\hline 2 & Emilio & 75 & 85 & 87 \\
\hline 3 & Julie & 94 & 80 & 88 \\
\hline 4 & Hans & 86 & 93 & Incomplete \\
\hline 5 & Frederique & Incomplete & 75 & 75 \\
\hline
\end{tabular}

AVERAGEIFS (B2: B5, B2:B5, ">70", B2:B5, "<90") results in 80.5 (the average for all students all first quiz grades that are between 70 and 90)

AVERAGEIFS(D2:D5,D2:D5, "<>Incomplete", D2:D5, ">80") results in 87.5 (the average for all students all first quiz grades that are above 80 and not marked "Incomplete")

AVERAGEIFS(B2:D5, B2:B5, "<>Incomplete", C2:C5, "<>Incomplete", D2:D5, "<>Incomplete") results in 82.375 (the average grades for all students who do not have incomplete grades)
end example]

\subsection*{18.17.7.22 BAHTTEXT}

\section*{Syntax:}

BAHTTEXT (number)
Description: Produces a string containing number formatted according to the Thai convention.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & The value to be formatted. \\
\hline
\end{tabular}

Return Type and Value: text - The text containing number formatted.
[Example:
\(\operatorname{BAHTTEXT}\) (1234) results in หนึ่งพันสองร้อยสามสิบสี่บาทถ้วน
end example]

\subsection*{18.17.7.23 BESSELI}

\section*{Syntax:}

BESSELI (\(x\), \(n\))
Description: The modified Bessel function \(\ln (x)\), which is equivalent to the Bessel function \(\operatorname{Jn}(x)\) evaluated for purely imaginary arguments.

\section*{Mathematical Formula:}

The \(n\)-th order modified Bessel function of the variable x is:
\(\mathrm{I}_{\mathrm{n}}(x)=(i)^{-n} J_{n}(i x)\)
where:
- \(x=\operatorname{argument} x\)
- \(n=\operatorname{argument} n\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which to evaluate the function. \\
\hline\(n\) & number & \begin{tabular}{l}
The order of the Bessel function. This value is truncated \\
to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Bessel function \(\operatorname{In}(x)\).
However, if \(n<0\), \#NUM! is returned.
[Example:

BESSELI \((-5.6,0)\) results in 46.73755194

BESSELI \((2.345,5)\) results in 0.023137792
end example]

\subsection*{18.17.7.24 BESSELJ}

Syntax:
BESSELJ (\(x, n\))
Description: The Bessel function \(\mathrm{Jn}(\mathrm{x})\).

\section*{Mathematical Formula:}

The \(n\)-th order Bessel function of the variable x is:
\(J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(n+k+1)}\left(\frac{x}{2}\right)^{n+2 k}\)
where:
\(\Gamma(n+k+1)=\int_{0}^{\infty} e^{-x} x^{n+k} d x\)
is the Gamma function, and
- \(x=\operatorname{argument} x\)
- \(n=\operatorname{argument} n\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which to evaluate the function. \\
\hline\(n\) & number & \begin{tabular}{l}
The order of the Bessel function. This value is truncated \\
to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Bessel function \(\operatorname{Jn}(x)\).
However, if \(n<0\), \#NUM! is returned.
[Example:

BESSELJ \((-5.6,0)\) results in 0.026970887
BESSELJ \((2.345,5)\) results in 0.014627862

\section*{end example]}

\subsection*{18.17.7.25 BESSELK}

\section*{Syntax:}

BESSELK (\(x, n\))
Description: The modified Bessel function \(\mathrm{Kn}(\mathrm{x})\), which is equivalent to using the Bessel function \(\mathrm{Jn}(\mathrm{x})\) and \(\mathrm{Yn}(\mathrm{x})\).

\section*{Mathematical Formula:}

The \(n\)-th order modified Bessel function of the variable x is:
\(K_{n}(x)=\frac{p}{2} i^{n+1}\left[J_{n}(i x)+i Y_{n}(i x)\right]\)
where:
- \(\mathrm{J}_{\mathrm{n}}\) is the J Bessel function
- \(n=\) argument \(n\)
- \(p=\pi\)
- \(x=\) argument \(x\)
- \(Y_{n} Y n\) is the \(Y\) Bessel function
- Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which to evaluate the function. \\
\hline\(n\) & number & \begin{tabular}{l}
The order of the Bessel function. This value is truncated \\
to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Bessel function \(\mathrm{Kn}(\mathrm{x})\).
However, if \(n<0\), \#NUM! is returned.
[Example:
BESSELK \((2.345,5)\) results in 3.904137225
end example]
18.17.7.26 BESSELY

Syntax:
BESSELY (\(x, n\))

Description: Weber's Bessel function Yn(x).

\section*{Mathematical Formula:}

The n-th order Bessel function of the variable x is:
\(Y_{n}(x)=\lim _{v \rightarrow n} \frac{J_{v}(x) \cos (v \pi)-J_{-v}(x)}{\sin (v \pi)}\)
where:
- \(\quad n=\) argument \(n\)
- \(\quad x=\operatorname{argument} x\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which to evaluate the function. \\
\hline\(n\) & number & \begin{tabular}{l}
The order of the Bessel function. This value is truncated \\
to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Weber's Bessel function Yn(x).
However, if \(n<0, \#\) NUM! is returned.
[Example:
\(\operatorname{BESSELY}(2.345,5)\) results in -4.98977884
end example]

\subsection*{18.17.7.27 BETADIST}

Syntax:
BETADIST (\(x\), alpha , beta [, [A] , [B]])
Description: Computes the cumulative beta probability density function.
Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l}
The value between \(A\) and \(B\) at which to evaluate the \\
function.
\end{tabular} \\
\hline alpha & number & A parameter of the distribution. \\
\hline beta & number & A parameter of the distribution. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(A\) & number & \begin{tabular}{l}
The lower bound to the interval of \(x\). If omitted, the \\
lower bound is 0.
\end{tabular} \\
\hline\(B\) & number & \begin{tabular}{l}
The upper bound to the interval of \(x\). If omitted, the \\
upper bound is 1.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The cumulative beta probability density function.

\section*{However, if}
- alpha or beta \(\leq 0\), \#NUM! is returned.
- \(x<A, x\rangle B\), or \(A=B\), \#NUM! is returned.
[Example:

BETADIST(\(0.5,1,2\)) results in 0.75
BETADIST \((0.5,1,2,-4.5,7.3)\) results in 0.66791152
BETADIST(\(0.5,1,2,2.3\)) results in 0.387523629
end example]

\subsection*{18.17.7.28 BETAINV}

\section*{Syntax:}

BETAINV (probability , alpha , beta [, [A] , [B]])
Description: Computes the inverse of the cumulative distribution function for a specified beta distribution. Given a value for probability, BETAINV is used to seek for the value \(x\) such that BETADIST (\(x\), alpha, beta, \(A, B)=\) probability. Thus, precision of BETAINV depends on precision of BETADIST.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & A probability associated with the beta distribution. \\
\hline alpha & number & A parameter of the distribution. \\
\hline beta & number & A parameter of the distribution. \\
\hline A & number & \begin{tabular}{l}
The lower bound to the interval of \(x\). If omitted, the \\
lower bound is 0.
\end{tabular} \\
\hline B & number & \begin{tabular}{l}
The upper bound to the interval of \(x\). If omitted, the \\
upper bound is 1.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the cumulative distribution function for a specified beta distribution.

However, if
- alpha or beta \(\leq 0\), \#NUM! is returned.
- probability \(<0\) or probability \(>1\), \#NUM! is returned.
- The search has not converged after some implementation-defined number of iterations, \#N/A is returned.
[Example:
\(\operatorname{BETAINV}(0.5,1,2)\) results in 0.29289341
\(\operatorname{BETAINV}(0.5,1,2,-4.5,7.3)\) results in -1.043857765
BETAINV \((0.5,1,2,, 2.3)\) results in 0.673654842
end example]
18.17.7.29 BIN2DEC

Syntax:
BIN2DEC (number)
Description: Makes the decimal equivalent of number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l}
A 10-digit binary number that is to be converted to a \\
decimal string. If number has less than 10 digits, leading \\
zero digits are implied until it has exactly 10 digits. The \\
10 digits use twos-complement representation with the \\
left-most bit (10th bit from the right) representing the \\
sign bit.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The decimal equivalent of number.
However, if
- number contains one or more non-binary digits, \#NUM! is returned.
- number contains more than 10 binary digits; that is, number is outside the range 1000000000 (-512 decimal) to 0111111111 (511 decimal), inclusive, \#NUM! is returned.
[Example:

BIN2DEC (111) results in 7
BIN2DEC (11111111) results in 255
BIN2DEC(1111111110) results in -2
BIN2DEC (1000000000) results in -512
end example]
18.17.7.30 BIN2HEX

Syntax:
BIN2HEX (number [, num-hex-digits])
Description: Makes the uppercase hexadecimal equivalent of number, with the result having num-hex-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l}
A 10-digit binary number that is to be converted to a \\
hexadecimal string. If number has less than 10 digits, \\
leading zero digits are implied until it has exactly \\
10 digits. The 10 digits use twos-complement \\
representation with the left-most bit (10th bit from the \\
right) representing the sign bit.
\end{tabular} \\
\hline \begin{tabular}{l}
num-hex- \\
digits
\end{tabular} & number & \begin{tabular}{l}
The number of digits in the result, with leading zeros \\
added as necessary. However, if number is negative, num- \\
hex-digits is ignored and the result has 10 digits. If num- \\
hex-digits is omitted, the minimum number of digits is \\
used in the result. num-hex-digits is truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The uppercase hexadecimal equivalent of number.
However, if
- number contains one or more non-binary digits, \#NUM! is returned.
- number contains more than 10 binary digits; that is, number is outside the range 1000000000 (200 hex, -512 decimal) to 0111111111 (1FF hex, 511 decimal), inclusive, \#NUM! is returned.
- number needs more digits that num-hex-digits, \#NUM! is returned.
- num-hex-digits \(\leq 0\) or \(>10\), \#NUM! is returned.

\section*{[Example:}

BIN2HEX (1) results in 1

BIN2HEX \((1,4)\) results in 0001
BIN2HEX (111111) results in 3 F
BIN2HEX (1111000000) results in FFFFFFFFC0
BIN2HEX \((1000000000,3)\) results in FFFFFFFE00
end example]
18.17.7.31 BIN2OCT

Syntax:
BIN2OCT (number [, num-oct-digits])
Description: Makes the octal equivalent of number, with the result having num-oct-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l}
A 10-digit binary number that is to be converted to an \\
octal string. If number has less than 10 digits, leading zero \\
digits are implied until it has exactly 10 digits. The \\
10 digits use twos-complement representation with the \\
left-most bit (10th bit from the right) representing the \\
sign bit.
\end{tabular} \\
\hline \begin{tabular}{l}
num-oct- \\
digits
\end{tabular} & number & \begin{tabular}{l}
num-oct-digits is the number of digits in the result, with \\
leading zeros added as necessary. However, if number is \\
negative, \(n u m\)-oct-digits is ignored and the result has \\
10 digits. If \(n u m\)-oct-digits is omitted, the minimum \\
number of digits is used in the result. num-oct-digits is \\
truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The octal equivalent of number.
However, if
- number contains one or more non-binary digits, \#NUM! is returned.
- number contains more than 10 binary digits; that is, number is outside the range 1000000000 (1000 octal, -512 decimal) to 0111111111 (0777 octal, 511 decimal), inclusive, \#NUM! is returned.
- number needs more digits that num-oct-digits, \#NUM! is returned.
- num-oct-digits \(<0\) or \(>10\), \#NUM! is returned.
[Example:

BIN2OCT (1) results in 1
BIN2OCT \((1,4)\) results in 0001

BIN2OCT (111111) results in 77
BIN2OCT (1111000000) results in 7777777700
BIN2OCT \((1000000000,3)\) results in 7777777000
end example]

\subsection*{18.17.7.32 BINOMDIST}

Syntax:
BINOMDIST (number-successes , number-trials , success-probability , cumulative-flag)
Description: Computes the individual term binomial distribution probability.

\section*{Mathematical Formula:}

The binomial probability mass function is:
\(b(x, n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}\)
where:
\(\binom{n}{x}\)
is \(\operatorname{COMBIN}(n, x)\).
The cumulative binomial distribution is:
\(B(x, n, p)=\sum_{y=0}^{x} b(y, n, p)\)
where:
- \(n=\) argument number-trials
- \(p=\) argument success-probability
- \(x=\) argument number-successes

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
number- \\
successes
\end{tabular} & number & \begin{tabular}{l}
The number of successes in number-trials, truncated to \\
an integer.
\end{tabular} \\
\hline number-trials & number & \begin{tabular}{l}
The number of independent trials, truncated to an \\
integer.
\end{tabular} \\
\hline \begin{tabular}{l}
success- \\
probability
\end{tabular} & number & The probability of success on each trial. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{ll}
cumulative- \\
flag
\end{tabular} & logical & \begin{tabular}{l}
Determines the form of the function. If TRUE, then the \\
cumulative distribution function is returned, which is the \\
probability that there are at most number-successes \\
successes; if FALSE, the probability mass function is \\
returned, which is the probability that there are number- \\
successes successes.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The individual term binomial distribution probability.
However, if
- number-successes \(<0\) or number-successes > number-trials, \#NUM! is returned.
- success-probability \(<0\) or success-probability \(>1, \# N U M!\) is returned.
[Example:

BINOMDIST(\(6,10,0.5\), FALSE) results in 0.205078125
BINOMDIST \((6,10,0.5\), TRUE \()\) results in 0.828125
end example]

\subsection*{18.17.7.33 CEILING}

\section*{Syntax:}

CEILING (\(x\), significance)
Description: Computes a value that is \(x\) rounded-up, away from zero, to the nearest multiple of significance.
Regardless of the sign of \(x\), a value is rounded up when adjusted away from zero.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded \\
\hline significance & number & \begin{tabular}{l}
The multiple to which \(x\) is to be rounded. \\
If \(x\) is negative, and significance is negative, then the \\
value is rounded down (away from zero). If \(x\) is \\
negative, and significance is positive, then the value is \\
rounded up, towards zero.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-up value of \(x\).
However, if \(x\) and significance have different signs, \#NUM! is returned.
[Example:
\(\operatorname{CEILING}(2.5,1)\) rounds 2.5 up to nearest multiple of 1 ; that is, to 3
CEILING \((-2.5,-2)\) rounds -2.5 up to nearest multiple of -2 ; that is, to -4
\(\operatorname{CEILING}(1.5,0.1)\) rounds 1.5 up to the nearest multiple of 0.1 ; that is, to 1.5
CEILING \((0.234,0.01)\) rounds 0.234 up to the nearest multiple of 0.01 ; that is, to 0.24

\section*{end example]}

\subsection*{18.17.7.34}

Syntax:
CELL (category [, reference])
Description: Retrieves information about the formatting, location, or contents of the upper-left cell indicated by reference. category indicates the kind of information to be retrieved.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline category & text & The category string as defined in the table following. \\
\hline reference & reference & \begin{tabular}{l}
Refers to the cell whose category information is being \\
requested. If reference is a cell range, the first cell in that \\
range is the cell whose category information is being \\
requested. If reference is omitted, the information \\
retrieved pertains to the most recent cell whose value \\
was changed. For the category "format ", if reference \\
designates a cell formatted with a built-in number \\
format, the number format string is as defined in the \\
table following.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ category } & \multicolumn{1}{c|}{ Meaning } & Result Type \\
\hline "address" & Reference of the first cell in reference. & text \\
\hline "col" & Column number of the cell in reference. & number \\
\hline "color" & \begin{tabular}{l}
1 if the cell is formatted in color for negative values; \\
otherwise, 0.0 if the cell does not contain a number.
\end{tabular} & number \\
\hline "contents" & Value of the upper-left cell in reference. & \begin{tabular}{l}
Text or \\
number
\end{tabular} \\
\hline "filename" & \begin{tabular}{l}
Fully qualified filename of the file that contains reference. \\
However, if the worksheet that contains reference has not yet \\
been saved, the filename is an empty string.
\end{tabular} & text \\
\hline "format" & \begin{tabular}{l}
Number format of the cell. (See the discussion of formats \\
below.) The number format string has " - " appended if the
\end{tabular} & text \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline category & Meaning & Result Type \\
\hline & cell is formatted in color for negative values. The number format string has "()" appended if the cell is formatted in color for positive or all values. & \\
\hline "parentheses" & 1 if the cell is formatted with parentheses for positive or all values; otherwise, 0.0 if the cell does not contain a number. & number \\
\hline "prefix" & \begin{tabular}{l}
Text value corresponding to the label prefix of the cell, as follows: \\
- Single quotation mark (') if the cell contains leftaligned text \\
- Double quotation mark (") if the cell contains rightaligned text \\
- Caret (^) if the cell contains centered text \\
- Backslash (\(\backslash\)) if the cell contains fill-aligned text \\
- Empty string if the cell contains anything else
\end{tabular} & text \\
\hline "protect" & 0 if the cell is not locked; otherwise, 1. & number \\
\hline "row" & Row number of the cell in reference. & number \\
\hline "type" & \begin{tabular}{l}
Text value corresponding to the type of data in the cell. \\
- "b" (blank) if the cell is empty \\
- "l" (label) if the cell contains a text constant \\
- " \(v\) " (value) if the cell contains anything else
\end{tabular} & text \\
\hline "width" & Column width of the cell rounded off to an integer. Each unit of column width is equal to the width of one character in the default font size. & number \\
\hline
\end{tabular}

If the SpreadsheetML is intended to be used in certain non-English locales, the category string can be the English value shown in the table above, or the translation shown in the following table. Locales not specified in the table below shall only use the English versions of the category string.
[Note: Using translated versions of the category string is strongly discouraged, as spreadsheet applications might not support these translations. end note]
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Locale } & \multicolumn{1}{c|}{ address } & \multicolumn{1}{c|}{ col } & \multicolumn{1}{c|}{ color } & \multicolumn{1}{c|}{ contents } & \multicolumn{1}{c|}{ filename } & format \\
\hline az-latn-az & ünvan & col & rəng & mündəricat & fayladi & format \\
\hline ca-es & dirección & columna & color & contenido & nombrearchivo & formato \\
\hline cs-cz & adresa & sloupec & barva & obsah & názevsouboru & formát \\
\hline da-dk & adresse & kolonne & farve & indhold & filnavn & format \\
\hline de-de & adresse & spalte & farbe & inhalt & dateiname & format \\
\hline es-es & direccion & columna & color & contenido & nombrearchivo & formato \\
\hline et-ee & aadress & veerg & värv & sisukord & failinimi & vorming \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Locale & address & col & color & contents & filename & format \\
\hline fi-fi & osoite & sarake & väri & sisältö & tiedostonnimi & muoto \\
\hline fr-fr & adresse & colonne & couleur & contenu & nomfichier & format \\
\hline hu-hu & cím & oszlop & szín & tartalom & filenév & forma \\
\hline it-it & indirizzo & col & colore & contenuto & nomefile & formato \\
\hline kk-kz & мекенжай & баған & түс & мазмұны & файлатауы & пішім \\
\hline Iv-lv & adrese & kolonna & krāsa & saturs & faila_nosaukums & formāts \\
\hline nb-no & adresse & kol & farge & innhold & filnavn & format \\
\hline \(\mathrm{nl}-\mathrm{nl}\) & adres & kolom & kleur & inhoud & bestandsnaam & notatie \\
\hline pl-pl & adres & kolumna & kolor & zawartość & nazwa_pliku & format \\
\hline pt-br & endereço & col & cor & conteúdo & nome.arquivo & formato \\
\hline pt-pt & endereço & col & cor & conteúdo & nome.ficheiro & formato \\
\hline ru-ru & адрес & столбец & цвет & содержимое & имяфайла & формат \\
\hline sk-sk & adresa & stípec & farba & obsah & názovsúboru & formát \\
\hline sl-si & address & sto & color & contents & filename & format \\
\hline sv-se & adress & kol & färg & innehåll & filnamn & format \\
\hline tr-tr & adres & süt & renk & içerik & dosyaadi & biçim \\
\hline uk-ua & адреса & стовпець & колір & вміст & ім`я_файлу & формат \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Locale } & parentheses & \multicolumn{1}{|c|}{ prefix } & \multicolumn{1}{|c|}{ protect } & \multicolumn{1}{c|}{ row } & \multicolumn{1}{c|}{ type } & \multicolumn{1}{c|}{ width } \\
\hline az-latn-az & parentheses & prefix & protect & sətir & tip & en \\
\hline ca-es & parentesis & prefijo & proteger & fila & tipo & ancho \\
\hline cs-cz & závorky & prefix & zámek & řádek & typ & šířka \\
\hline da-dk & parenteser & foranstillet & beskyt & række & værditype & bredde \\
\hline de-de & klammern & präfix & schutz & zeile & typ & breite \\
\hline es-es & parentesis & prefijo & proteger & fila & tipo & ancho \\
\hline et-ee & sulud & eesliide & kaitse & rida & tüüp & laius \\
\hline fi-fi & sulkeet & etuliite & suojaus & rivi & tyyppi & leveys \\
\hline fr-fr & parentheses & prefixe & protege & ligne & type & largeur \\
\hline hu-hu & zárójelek & előtag & védett & sor & típus & széles \\
\hline it-it & parentesi & prefisso & proteggi & riga & tipo & larghezza \\
\hline kk-kz & жақшалар & префикс & қорғаныс & жол & түp & eнi \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Locale & parentheses & prefix & protect & row & type & width \\
\hline Iv-lv & iekavas & prefikss & aizsargāt & rinda & tips & platums \\
\hline nb-no & parenteser & prefiks & beskytt & rad & verditype & bredde \\
\hline \(\mathrm{nl}-\mathrm{nl}\) & haakjes & voorvoegsel & bescherming & rij & type & breedte \\
\hline pl-pl & nawiasy & prefiks & ochrona & wiersz & typ & szerokość \\
\hline pt-br & parênteses & prefixo & proteger & lin & tipo & largura \\
\hline pt-pt & parênteses & prefixo & proteger & lin & tipo & largura \\
\hline ru-ru & скобки & префикс & защита & строка & тип & ширина \\
\hline sk-sk & zátvorky & vloženýznak & chránit' & riadok & typ & šírka \\
\hline sl-si & parentheses & prefix & protect & vrstica & type & širina \\
\hline sv-se & parenteser & prefix & skydd & rad & typ & bredd \\
\hline tr-tr & ayraç & önek & koruma & sat & tür & genişlik \\
\hline uk-ua & дужки & префікс & захист & рядок & тип & довжина \\
\hline
\end{tabular}

Return Type and Value: various (see table above) - The value corresponding to category, and whose type is shown in the category value table above.

When the category parameter is "format ", then the value returned depends upon the number format of the upper-left cell of reference, and, more specifically, upon the number format code of the upper-left cell of reference. Depending upon the number format code of the appropriate cell, the result value of CELL when the category is "format" is based upon the rules defined below.

First, some observations regarding the rules are in order:
- The various "sections" of the number format code are referred to within the rules. For more information on sections in the number format code, see numFmts (Number Formats) (§18.8.31).
- There are cases in which it is useful to discuss the characters from the number format code that are dependent upon the value in the cell. Instead of representing text or spacing in the cell's display text, these characters interpret, in some fashion, the value to be displayed. In the rules, these characters are referred to as "interpreted characters" of the number format code. The following table shows all the interpreted characters:
\begin{tabular}{|l|}
\hline Interpreted Characters \\
\hline 0 \\
\hline\(\#\) \\
\hline @ \\
\hline d \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Interpreted Characters \\
\hline m \\
\hline y \\
\hline h \\
\hline s \\
\hline ? \\
\hline AM/PM \\
\hline A/P \\
\hline g \\
\hline e \\
\hline r \\
\hline
\end{tabular}
- There are cases in which it is also useful to discuss runs of similar interpreted characters. [Example: Each "d", "m", and "y" within the number format code "dd/mm/yyyy" does not represent a separate interpretation of the day of the date value to be represented, and instead helps to make up a representation of the day of the date that is two digits in length. end example] These runs of similar characters are referred to below as "interpreted symbols" since multiple characters are used, but the result is a single symbolic representation of at least part of the value.
- Since there are multiple different symbols for days, months, years, hours, minutes, seconds, and AM/PM, it is sometimes useful to discuss all of the representations of each of these. When any of "Day", "Month", "Year", "Hour", "Minute", etc., is referred to within a rule, what is meant is any of the possible representations for that date/time portion. For example, a "Day" symbol would be any of \(d\), dd, ddd, or dddd.
- The use of characters such as " 0 ", " \(E\) ", and "\%" as a symbol within a number format code does not include usages of these same characters either escaped (by preceding them with a backslash character " \(\\) ") or as a part of a quoted string.

Here are the rules to determine the result value:
1. If the first interpreted symbols within the first section are any of the date or time characters (any of " \(y\) ", "m", "d", "h", "m", "s") then the first one or two characters of the return value are determined by the order of interpreted symbols (including any interpreted symbols, not just date/time symbols) according to the following table. ("anything" can mean "no additional symbols". If the type is "anything except <type>", then the excepted symbol type cannot follow the previously specified symbol.)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Interpreted Symbols in Order } & \multicolumn{1}{c|}{\begin{tabular}{c}
Return Value \\
Characters
\end{tabular}} \\
\hline Day, month, year, anything & "D1" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Interpreted Symbols in Order } & \multicolumn{1}{c|}{\begin{tabular}{c}
Return Value \\
Characters
\end{tabular}} \\
\hline & \\
\hline Day, month, anything besides year, anything & "D2" \\
\hline Month, year, anything & "D3" \\
\hline Month, day, year, anything & "D4" \\
\hline Month, day, anything besides year, anything & "D5" \\
\hline Hours, minutes, seconds, AM/PM, anything & "D6" \\
\hline Hours, minutes, AM/PM, anything & "D7" \\
\hline \begin{tabular}{l}
Hours, minutes, seconds, anything besides AM/PM, \\
anything
\end{tabular} & "D8" \\
\hline \begin{tabular}{l}
Hours, minutes, anything besides seconds or AM/PM, \\
anything
\end{tabular} & "D9" \\
\hline Any other combination of symbols & \begin{tabular}{l}
"G" or "C" depending \\
on whether there is a \\
\$ in the first condition
\end{tabular} \\
\hline
\end{tabular}
2. Otherwise, the first character of the return value is determined based upon the referenced cell's number format code according to the rules in the table below:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ First Section of the Number Format Code } & \multicolumn{1}{c|}{\begin{tabular}{l}
First Return \\
Value Character
\end{tabular}} \\
\hline \begin{tabular}{l}
Absent Characters \\
(as Symbols)
\end{tabular} & \begin{tabular}{l}
Present Characters \\
(as Symbols)
\end{tabular} & "G" \\
\hline & @ & "C" \\
\hline @ & \(\$\) & "P" \\
\hline @, \$ & \(\%\) & "S" \\
\hline @, \$, \% & E & "," \\
\hline @, \$, \%, E & \begin{tabular}{l}
A run of any combination of one or \\
more "0", "\#", and "?" characters, \\
followed by a comma, followed by a \\
run of any combination of one or more \\
"0", "\#", and "?" characters. \\
This run can not be preceded by a \\
period (".") or by any interpreted \\
characters.
\end{tabular} & \\
\hline @, \$, \%, E, or a run of characters & At least one of "0", "?", or "\#" & "F" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ First Section of the Number Format Code } & First Return \\
\hline \begin{tabular}{l}
containing a comma as described \\
in the row above
\end{tabular} & & \\
\hline Any of the above conditions & Anything & "G" \\
\hline
\end{tabular}
3. The final value is determined by appending any of the applicable characters from the table below to the return value characters obtained from the previous two tables:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Case } & \multicolumn{1}{c|}{ Characters to Append } \\
\hline \begin{tabular}{l}
The first character of the return value is C, F, S, P, or \\
"," and the number format code contains any of "?", \\
" 0 ", or "\#" as a symbol.
\end{tabular} & \begin{tabular}{l}
The decimal number equal to the total \\
number of "\#", "?", and "0" characters \\
to the right of the first "." within the \\
first section
\end{tabular} \\
\hline \begin{tabular}{l}
The first character of the return value was C, and the \\
number format code does not contains any of "?", "0", \\
or "\#" as a symbol.
\end{tabular} & \begin{tabular}{l}
15 or the length of the string \\
immediately following the first "\$" sign \\
in the number format code that is a \\
symbol.
\end{tabular} \\
\hline \begin{tabular}{l}
The first section of the number format code contains \\
an open parenthesis ("(") as a symbol.
\end{tabular} & "()" \\
\hline \begin{tabular}{l}
The second section of the number format code \\
contains [Red], [Black], [Green], [White], [Blue], \\
[Magenta], [Yellow], or [Cyan] as a symbol.
\end{tabular} & "-" \\
\hline
\end{tabular}

However, if category is not one of the defined values, \#VALUE! is returned.

\section*{[Example:}

CELL("address", A10) might result in \$E\$289
CELL ("contents", A10: B10), results in \(x x x\), when A10 contains \(x x x\), and B10 contains anything
CELL("filename", A10) might result in E: \Formulas \[Test.xlsx]Sheet1
CELL ("format", A10) results in G, when A10 contains Xxx
CELL ("format", A10) results in F2-, when A10 contains (123.00)
CELL ("format", A10) results in C3-, when A10 contains \(\$ 123,456.780\)
CELL("format", A10) results in S3, when A10 contains 1.235E+05
CELL ("prefix", A10) results in ', when A10 contains xxx
CELL ("type", A10) results in 1 , when A10 contains xxx
end example]

\subsection*{18.17.7.35 \\ CHAR}

\section*{Syntax:}

CHAR (\(x\))
Description: Determines the character that is represented by the value number. On the Macintosh platform, the Macintosh character set is used. On all other platforms, the Latin character set with IANA name iso-8859-1 is used.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l}
A value in the range 1-255, which designates the \\
character.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The character represented by the value number.
[Example:

CHAR (65) results in A
CHAR (A10) results in A, when A10 contains 65
end example]

\subsection*{18.17.7.36 CHIDIST}

Syntax:
CHIDIST (\(x\), degrees-freedom)
Description: Computes the one-tailed probability of the chi-squared distribution.

\section*{Mathematical Formula:}

CHIDIST \(=P(X>x)\)
where:
- \(\quad X=\) an \(\chi 2\) random variable
- \(x=\operatorname{argument} x\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which the distribution is to be evaluated. \\
\hline \begin{tabular}{l}
degrees- \\
freedom
\end{tabular} & number & \begin{tabular}{l}
The number of degrees of freedom, truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The one-tailed probability of the chi-squared distribution.
However, if
- \(x<0\), \#NUM! is returned.
- degrees-freedom \(<1\) or degrees-freedom \(>10^{10}\), \#NUM! is returned.
[Example:

CHIDIST \((3.5,4)\) results in 0.47787835
CHIDIST \((12.34,7)\) results in 0.089917721
end example]

\subsection*{18.17.7.37}

Syntax:
CHIINV (probability , degrees-freedom)
Description: Computes the inverse of the one-tailed probability of the chi-squared distribution. Given a value for probability, CHIINV seeks for a value \(x\) such that CHIDIST (\(x\), degrees-freedom) \(=\) probability. Thus, precision of CHIINV depends on precision of CHIDIST.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & \begin{tabular}{l}
A probability associated with the chi-squared \\
distribution.
\end{tabular} \\
\hline \begin{tabular}{l}
degrees- \\
freedom
\end{tabular} & number & \begin{tabular}{l}
The number of degrees of freedom, truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the one-tailed probability of the chi-squared distribution.
However, if
- probability \(<0\) or probability \(>1\), \#NUM! is returned.
- degrees-freedom \(<1\) or degrees-freedom \(\geq 10^{10}\), \#NUM! is returned.
- the implementation determines that a return value cannot be computed, \(\# \mathrm{~N} / \mathrm{A}\) is returned

\section*{[Example:}

CHIINV \((0.5,4)\) results in 3.356694001
\(\operatorname{CHIINV}(0.3,7)\) results in 8.38343064
end example]

\subsection*{18.17.7.38} CHITEST

\section*{Syntax:}

CHITEST (actual-range , expected-range)
Description: Computes the test for independence. CHITEST returns the value from the chi-squared distribution for the statistic and the appropriate degrees of freedom.

\section*{Mathematical Formula:}

The \(\chi 2\) test first calculates a \(\chi 2\) statistic using the formula:
\(x^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(A_{i j}-E_{i j}\right)^{2}}{E_{i j}}\)
where:
- \(\mathrm{A}_{\mathrm{ij}}=\) actual frequency in the i -th row, j -th column of the argument actual-range
- \(\quad c=\) number of columns in argument actual-range (or argument expected-range)
- \(\quad \mathrm{E}_{\mathrm{ij}}=\) expected frequency in the i -th row, j -th column of the argument expected-range
- \(r=\) number or rows in argument actual-range (or argument expected-range)

CHITEST uses the \(\chi 2\) distribution with an appropriate number of degrees of freedom, df . If \(\mathrm{r}>1\) and \(\mathrm{c}>1\), then \(d f=(r-1)(c-1)\). If \(r=1\) and \(c>1\), then \(d f=c-1\) or if \(r>1\) and \(c=1\), then \(d f=r-1\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline actual-range & reference & \begin{tabular}{l}
The range of data that contains observations to test \\
against expected values.
\end{tabular} \\
\hline \begin{tabular}{l}
expected- \\
range
\end{tabular} & reference & \begin{tabular}{l}
The range of data that contains the ratio of the product \\
of row totals and column totals to the grand total.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The value from the chi-squared distribution for the statistic and the appropriate degrees of freedom.

However, if:
- The number of rows and columns is exactly one, the return value is unspecified.
- actual-range and expected-range have a different number of data points, \#N/A is returned.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & Men (Actual) & Women (Actual) & Description \\
\hline 2 & 58 & 35 & Agree \\
\hline 3 & 11 & 25 & Neutral \\
\hline 4 & 10 & 23 & Disagree \\
\hline 5 & Men (Expected) & \begin{tabular}{l}
Women \\
(Expected)
\end{tabular} & Description \\
\hline 6 & 45.35 & 47.65 & Agree \\
\hline 7 & 17.56 & 18.44 & Neutral \\
\hline 8 & 16.09 & 16.91 & Disagree \\
\hline
\end{tabular}

CHITEST(A2: B4, A6: B8) results in 0.000308
end example]

\subsection*{18.17.7.39 CHOOSE}

\section*{Syntax:}

CHOOSE (index , argument-list)
Description: Selects the argument in argument-list that corresponds by position to index.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline index & number & \begin{tabular}{l}
An index into argument-list, truncated to an integer. The \\
value of index shall be in the position range 1-n, where \\
argument- 1 is position 1, argument- 2 is position 2, and so \\
on up to argument- \(n\). If index is an array, the value or \\
every element in that array is evaluated, and if the \\
formula is an array formula, the result is an array of \\
chosen values.
\end{tabular} \\
\hline argument-list & any & \begin{tabular}{l}
The arguments in any given argument-list need not all \\
have the same type.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any, including array - The argument in argument-list that corresponds by position to index.

However, if the value of index is not an index into argument-list, \#VALUE! is returned.
[Example:

CHOOSE (E7, F7, G7, H7, I7, J7, K7, L7) results in Monday, when E7 contains 2, and the cells F7: L7 each contain the names of the week, from Sunday to Saturday

SUM (CHOOSE (E1, F20:G20, H20: J24)) results in the sum of the elements designated by F20:G20 or H20: J24, as determined by the value of E1

If \(B 9: B 11\) contain 1,3 , and 3 , respectively, and \(\operatorname{CHOOSE}(B 9: B 11,10,20,30)\) is an array formula spanning 3 cells, the values of those 3 cells is 10,30 , and 30 , respectively.
end example]

\subsection*{18.17.7.40 CLEAN}

\section*{Syntax:}

CLEAN (string)

\section*{Description:}

Makes a string that is a copy of string with all so-called "non-printable" characters-those with internal values in the range U+0000-001F-removed.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designate the string to be cleaned. \\
\hline
\end{tabular}

Return Type and Value: text - The trimmed copy of string.
[Example:

CLEAN("A" \& CHAR(2) \& "BC") results in ABC, which is stored in A10 LEN (A10) results in 3
end example]

\subsection*{18.17.7.41 CODE}

\section*{Syntax:}

CODE (string)
Description: Determines the numeric code of the first character in string.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & Type & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates a string containing one or more characters. \\
\hline
\end{tabular}

Return Type and Value: number - The numeric code of the first character in string.
However, if string is empty, \#VALUE! is returned.
[Example:

CODE ("abc") results in 97
\(\operatorname{CODE}\) (A10) results in 97, when A1 contains abc
end example]

\subsection*{18.17.7.42 COLUMN}

\section*{Syntax:}

COLUMN ([reference])
Description: Finds the number of the column(s) corresponding to reference.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline reference & reference & \begin{tabular}{l}
A reference to a single cell or to a range of contiguous \\
cells. If omitted, the behavior is as if reference referred to \\
the cell containing the formula.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - If reference refers to a single cell or to a single column of cells, the corresponding column is returned. If reference refers to a range of cells involving multiple columns, a horizontal array of the corresponding columns as numbers is returned.

However, if the range of cells referred to by reference is not contiguous, \#REF! is returned.

\section*{[Example:}

COLUMN() results in 4, when the cell containing the formula is in column 4
COLUMN(E17:E19) results in 5
COLUMN(E16:F17) results in a horizontal array containing 5and 6, respectively
end example]

\subsection*{18.17.7.43 COLUMNS}

\section*{Syntax:}

COLUMNS (array)
Description: Finds the number of columns corresponding to array.

\section*{Arguments:}
\begin{tabular}{|l|c|ll|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & & Description \\
\hline array & array, reference & Any array. & \\
\hline
\end{tabular}

Return Type and Value: number - The number of columns corresponding to array.
However, if the range of cells referred to by array is not contiguous, \#NULL! is returned.
[Example:

COLUMNS(E16:F16) results in 2
COLUMNS (E16:G18) results in 3
COLUMNS (\(\{1,2 ; 3,4\}\)) results in 2
end example]

\subsection*{18.17.7.44 COMBIN}

Syntax:
COMBIN (number, number-chosen)
Description: Computes the possible number of groups of size number-chosen that can be formed from number objects. [Note: A combination is any set or subset of objects, regardless of their internal order. Combinations are distinct from permutations, for which the internal order is significant. end note]

\section*{Mathematical Formula:}

The number of combinations is as follows, where number \(=n\) and number-chosen \(=k\) :
\(\binom{n}{k}=\frac{P_{k, n}}{k!}=\frac{n!}{k!(n-k)!}\)
where:
\(P_{k, n}=\frac{n!}{(n-k)!}\)
where:
- \(k=\) argument number-chosen
- \(n=\) argument number

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l}
The total number of objects available, truncated to an \\
integer.
\end{tabular} \\
\hline \begin{tabular}{l}
number- \\
chosen
\end{tabular} & number & \begin{tabular}{l}
The number of objects in each combination, truncated to \\
an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of different combinations of number-chosen in number.
However, if
- number \(<0\), \#NUM! is returned.
- number-chosen \(<0\), \#NUM! is returned.
- number < number-chosen, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{COMBIN}(8,2)\) results in 28
\(\operatorname{COMBIN}(10,4)\) results in 210
\(\operatorname{COMBIN}(6,5)\) results in 6
end example]

\subsection*{18.17.7.45}

\section*{Syntax:}

COMPLEX (real-number , imaginary-number [, suffix])
Description: Makes a complex number in \(x+y i\) or \(x+y j\) text format from the arguments.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline real-number & number & The real number coefficient. \\
\hline \begin{tabular}{l}
imaginary- \\
number
\end{tabular} & number & The imaginary number coefficient. \\
\hline suffix & text & " i " or " j ". If omitted, " i " is used. \\
\hline
\end{tabular}

Return Type and Value: text - The complex number string specified by the arguments.

If real-number has the value 0 and imaginary-number has a non-zero value, the resulting string contains just the real number. If real-number has a non-zero value and imaginary-number has a zero value, the resulting string contains just the imaginary number and suffix. If both real-number and imaginary-number have a zero value, the resulting string is " 0 ".

However, if suffix is neither " i " nor " j ", \#VALUE! is returned.
[Example:

COMPLEX \((-3.5,19.6)\) results in \(-3.5+19.6 i\)
COMPLEX(3.5,-19.6,"j") results in 3.5-19.6j
\(\operatorname{COMPLEX}(3.5,0)\) results in 3.5
\(\operatorname{COMPLEX}(0,2.4)\) results in 2.4 i
\(\operatorname{COMPLEX}(0,0)\) results in 0
end example]

\subsection*{18.17.7.46 CONCATENATE}

\section*{Syntax:}

CONCATENATE (argument-list)
Description: Makes a string that is the concatenation of all the strings corresponding to the arguments in argument-list, taken left-to-right.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & text & Each argument in argument-list shall designate a string. \\
\hline
\end{tabular}

Return Type and Value: text - The concatenated string.
[Example:

CONCATENATE("text") results in text
CONCATENATE("The total is ",A10," units") results in The total is 43 units, when A10 contains 43
\(\operatorname{CONCATENATE}(3, "+", 4, "=", 3+4)\) results in \(3+4=7\)
end example]
18.17.7.47 CONFIDENCE

\section*{Syntax:}

CONFIDENCE (alpha , standard-dev , size)
Description: Computes a value that can be used to construct a confidence interval for a population mean. The CONFIDENCE function assumes a normal distribution for calculation.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline alpha & number & \begin{tabular}{l}
The significance level used to compute the confidence \\
level.
\end{tabular} \\
\hline standard-dev & number & The population standard deviation for the data range. \\
\hline size & number & The sample size, truncated to an integer. \\
\hline
\end{tabular}

Return Type and Value: number - A value that can be used to construct a confidence interval for a population mean.

However, if
- alpha \(\leq 0\) or alpha \(\geq 1\), \#NUM! is returned.
- standard-dev \(\leq 0\), \#NUM! is returned.
- size \(<1\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{CONFIDENCE}(0.4,5,12)\) results in 1.214775614
CONFIDENCE \((0.75,9,7)\) results in 1.083909234
end example]

\subsection*{18.17.7.48 CONVERT}

\section*{Syntax:}

CONVERT (number , from-unit , to-unit)
Description: Converts a number from one measurement system to another.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & The value to be converted from from-units to to-units. \\
\hline from-unit & text & \begin{tabular}{l}
The unit to be converted from, where the permitted \\
string values are shown in the tables below.
\end{tabular} \\
\hline to-unit & text & \begin{tabular}{l}
The unit to be converted to, where the permitted string \\
values are shown in the tables below.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Weight and Mass } \\
\hline Unit String & Meaning \\
\hline g & Gram \\
\hline lbm & Pound mass (avoirdupois) \\
\hline ozm & Ounce mass (avoirdupois) \\
\hline sg & Slug \\
\hline u & U (atomic mass unit) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Distance } \\
\hline Unit String & Meaning \\
\hline ang & Angstrom \\
\hline ft & Foot \\
\hline in & Inch \\
\hline m & Meter \\
\hline mi & Statute mile \\
\hline Nmi & Nautical mile \\
\hline Pica & Point (1/72 inch) \\
\hline yd & Yard \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Time } \\
\hline Unit String & Meaning \\
\hline day & Day \\
\hline hr & Hour \\
\hline mn & Minute \\
\hline sec & Second \\
\hline yr & Year \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Pressure } \\
\hline Unit String & Meaning \\
\hline at or atm & Atmosphere \\
\hline mmHg & mm of Mercury \\
\hline P or p & Pascal \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Force } \\
\hline Unit String & Meaning \\
\hline dy or dyn & Dyne \\
\hline lbf & Pound force \\
\hline N & Newton \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Energy } \\
\hline Unit String & Meaning \\
\hline BTU or btu & BTU \(_{\text {IT }}\) \\
\hline c & Thermodynamic calorie \\
\hline cal & IT calorie \\
\hline e & Erg \\
\hline ev or eV & Electron volt \\
\hline flb & Foot-pound \\
\hline HPh or hh & Horsepower-hour \\
\hline J & Joule \\
\hline Wh or wh & Watt-hour \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Power } \\
\hline Unit String & Meaning \\
\hline H or hp & Horsepower \\
\hline W or w & Watt \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Magnetism } \\
\hline Unit String & Meaning \\
\hline ga & Gauss \\
\hline T & Tesla \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Temperature } \\
\hline Unit String & Meaning \\
\hline C or cel & Degrees Celsius \\
\hline F or fah & Degrees Fahrenheit \\
\hline K or kel & Degrees Kelvin \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Liquid Measure} \\
\hline Unit String & Meaning & Family Conversion Factor (Informative) & Metric Conversion Factor (Informative) \\
\hline AU_tbs & Australian tablespoon & & 20 ml \\
\hline cup & U.S. cup (reduced accuracy) & 1/2 pt & \(236.59 \mathrm{ml}+/-0.025 \%\) \\
\hline CZ_mass & Czech mass & & 1.4147 I \\
\hline CZ_mug & Czech mug & 1/4CZ_mass & 0.3581 \\
\hline gal & U.S. gallon (reduced accuracy) & 8 pt & \begin{tabular}{l}
\[
3.7854 \mathrm{I}+/-0.025 \%
\] \\
For the purpose of comparison with calculations by applications using the antecedents to ISO/IEC 29500, the specific metric conversion factor value of 3.78624 I might be appropriate.
\end{tabular} \\
\hline GB_tbs or CA_tbs or JP_tbs & United Kingdom tablespoon & & 15 ml \\
\hline ```
imperial_gal
or AU_gal or
CA_gal or
GB_gal
``` & Imperial gallon & 8 imperial_pt & 4.54609 I \\
\hline \[
\begin{aligned}
& \text { imperial_oz } \\
& \text { or AU_oz or } \\
& \text { CA_oz or } \\
& \text { GB_oz }
\end{aligned}
\] & Imperial fluid ounce & 1/20 imperial_pt & 28.4130625 ml \\
\hline imperial_pt or AU_pt or CA_pt or GB_pt or uk_pt & Imperial pint & & \begin{tabular}{l}
\[
0.56826125 \mid
\] \\
uk_pt might be reduced accuracy: +/- 0.025\%
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { imperial_qt } \\
& \text { or AU_qt or } \\
& \text { CA_qt or } \\
& \text { GB_qt }
\end{aligned}
\] & Imperial quart & 2 imperial_pt & 1.1365225 I \\
\hline JP_cup & Japanese cup & & 200 ml \\
\hline 1 or lt & Liter & & \\
\hline metric_cup or AU_cup or & Metric cup & & 250 ml \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Liquid Measure } \\
\hline \begin{tabular}{l} 
CA_cup or \\
NZ_cup
\end{tabular} & & & \\
\hline \begin{tabular}{l} 
metric_tsp \\
or AU_tsp or \\
CA_tsp or \\
JP_tsp or \\
GB_tsp
\end{tabular} & Metric teaspoon & & 5 ml \\
\hline ml & Milliliter & \begin{tabular}{l} 
U.S. fluid ounce (reduced \\
accuracy)
\end{tabular} & \(1 / 16\) pt \\
\hline oz & U.S. liquid pint & & \(1 / 1000 \mathrm{I}\) \\
\hline pt or us_pt & U.S. liquid quart & 2 pt & \(29.573 \mathrm{ml}+/-0.025 \%\) \\
\hline qt & \begin{tabular}{l} 
U.S. tablespoon (reduced \\
accuracy)
\end{tabular} & \(1 / 2\) oz & \(473.18 \mathrm{ml}+/-0.025 \%\) \\
\hline tbs & \begin{tabular}{l} 
U.S. teaspoon (reduced \\
accuracy)
\end{tabular} & \(1 / 6\) oz & \(946.35 \mathrm{ml}+/-0.025 \%\) \\
\hline tsp & U.S. cup & \(14.787 \mathrm{ml}+/-0.025 \%\) \\
\hline US_cup & U.S. gallon & 8 US_pt & \(4.9289 \mathrm{ml}+/-0.025 \%\) \\
\hline US_gal & \(1 / 16\) US_pt & 236.5882 ml \\
\hline US_oz & U.S. fluid ounce & 3.785412 I \\
\hline US_pt & U.S. liquid pint & 29.57353 ml \\
\hline US_qt & U.S. liquid quart & \(1 / 2\) US_oz & 473.1765 ml \\
\hline US_tbs & U.S. tablespoon & 946.3529 ml \\
\hline US_tsp & U.S. teaspoon & 14.78676 ml \\
\hline
\end{tabular}

The following abbreviated unit prefixes can be used with any metric unit:
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Abbreviated Unit Prefixes } \\
\hline Prefix String & Meaning \\
\hline E & exa (1E+18) \\
\hline P & peta (1E+15) \\
\hline T & tera (1E +12\()\) \\
\hline G & giga (1E +09\()\) \\
\hline M & mega (1E +06\()\) \\
\hline K & kilo (1E+03) \\
\hline h & hecto (1E +02\()\) \\
\hline e & deka (1E+01) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Abbreviated Unit Prefixes } \\
\hline d & deci (1E-01) \\
\hline c & centi (1E-02) \\
\hline m & milli (1E-03) \\
\hline u & micro (1E-06) \\
\hline n & nano 1E-09) \\
\hline p & pico (1E-12) \\
\hline f & femto (1E-15) \\
\hline a & atto (1E-18) \\
\hline
\end{tabular}

Unit names and prefixes are case-sensitive.
Return Type and Value: number - The value of number in from-units converted to to-units.
However, if
- The value of from-unit or to-unit is not one of the defined values, \#N/A is returned.
- The from-unit and to-unit are from different measurement categories, \#N/A is returned.
- The value of from-unit or to-unit has an abbreviated unit prefix, yet none is supported for that unit, \#N/A is returned.

\section*{[Example:}

CONVERT(10, "ozm", "g") results in 283.4951521
CONVERT (1, "yd", "mm") results in 914.4000003
CONVERT (1, "yd", "cm") results in 91.44000003
CONVERT ( 1, " yd ", " m ") results in 0.9144
CONVERT (1, "yd", "km") results in 0.0009144
CONVERT(1, "mi", "Nmi") results in 0.868976242
CONVERT (1,"day", "sec") results in 86400
CONVERT ( 0, "K", "C") results in -273.15
end example]

\subsection*{18.17.7.49 CORREL}

Syntax:
CORREL ( array-1 , array-2 )
Description: Computes the correlation coefficient of the two cell ranges designated by array-1 and array- 2 .

\section*{Mathematical Formula:}

The equation for the correlation coefficient is:
\(\operatorname{Correl}(X, Y)=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(-\bar{x})^{2} \sum(y-\bar{y})^{2}}}\)
where
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean \(\operatorname{AVERAGE~(array-1)~}\)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (array-2)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & array, reference & \begin{tabular}{l} 
The first cell range. If an array or reference argument \\
contains text, logical values, or empty cells, those values \\
are ignored; however, cells with the value 0 are included.
\end{tabular} \\
\hline array-2 & array, reference & \begin{tabular}{l} 
The second cell range. If an array or reference argument \\
contains text, logical values, or empty cells, those values \\
are ignored; however, cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The correlation coefficient of the cells in two cell ranges.
However, if
- array- 1 and array- 2 have a different number of data points, the return value is unspecified.
- array- 1 and array- 2 is empty, the return value is unspecified.
- The standard deviation of the values in array-1 or array-2 equals zero, the return value is unspecified.
[Example:
\(\operatorname{CORREL}(\{2.532,5.621 ; 2.1,3.4\},\{5.32,2.765 ; 5.2,6.7\})\) results in -0.714976
end example]

\subsection*{18.17.7.50 COS}

\section*{Syntax:}
\(\cos (x)\)
Description: Computes the cosine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value, in radians, whose cosine is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number - The cosine of \(x\).
[Example:
\(\operatorname{COS}(-1)\) results in 0.540302306
\(\cos (0)\) results in 1
\(\operatorname{COS}(1)\) results in 0.540302306
end example]

\subsection*{18.17.7.51 COSH}

\section*{Syntax:}

Cosh ( \(x\) )
Description: Computes the hyperbolic cosine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value whose hyperbolic cosine is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number - The hyperbolic cosine of \(x\).
However, if the magnitude of \(x\) is too large, \#NUM! is returned.
[Example:
\(\operatorname{COSH}(-1)\) results in 1.543080635
\(\operatorname{COSH}(0)\) results in 1
COSH (1) results in 1.543080635
end example]

\subsection*{18.17.7.52 COUNT}

Syntax:
COUNT ( argument-list)
Description: Counts the number of arguments in argument-list that contain numbers, and the number of cells referred to by arguments in argument-list, which contain numbers.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & text & \begin{tabular}{l} 
Each argument in argument-list designates a value. \\
Arguments that are numbers, logical values, dates, or \\
text representations of numbers shall be counted. \\
If an argument is an array or reference, only numbers in \\
that array or reference shall be counted. Empty cells, \\
logical values, text, or error values in the array or \\
reference shall be ignored. [Note: To count logical values, \\
text, or error values as well, use the COUNTA \\
(\$18.17.7.53) function. end note]
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The numeric argument and reference to numeric argument count.

\section*{[Example:}
\(\operatorname{COUNT}(1,2,3,4,5)\) results in 5
\(\operatorname{COUNT}(\{1,2,3,4,5\})\) results in 5
\(\operatorname{COUNT}(\{1,2,3,4,5\}, 6, " 7 ")\) results in 7
\(\operatorname{COUNT}(10, E 1)\), where E1 is an empty cell, results in 1, as E1 is ignored
\(\operatorname{COUNT}(10, E 2)\), where E2 contains TRUE, results in 1, as E2 is ignored
end example]

\subsection*{18.17.7.53 COUNTA}

\section*{Syntax:}

\section*{COUNTA ( argument-list)}

Description: Counts the number of arguments that are not cell references, and the number of cells, referred to by arguments, which are not empty.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & text & \begin{tabular}{l} 
Each argument in argument-list designates a value. \\
Arguments with values of any type shall be counted. \\
However, empty cells shall not be counted. \\
If an argument is an array or reference, only values in \\
that array or reference shall be counted. Empty cells and \\
text values in the array or reference shall be ignored. \\
[Note: To exclude logical values, text, or error values, use \\
the COUNT (\$18.17.7.52) function. end note]
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of arguments that are not cell references, and the number of cells, referred to by arguments, which are not empty.
[Example:
\(\operatorname{COUNTA}(1,2,3,4,5)\) results in 5
COUNTA \((\{1,2,3,4,5\})\) results in 15
COUNTA (\{1, 2, 3, 4, 5\}, \(6, " 7\) ") results in 7
\(\operatorname{COUNTA}(10\), E1), where E1 is an empty cell, results in 1, as E1 is ignored
\(\operatorname{COUNTA}(10, E 2)\), where E2 contains TRUE, results in 2, as E2 is counted
end example]

\subsection*{18.17.7.54 \\ COUNTBLANK}

\section*{Syntax:}

COUNTBLANK (cell-range )
Description: Counts the number of cells in a specified range of cells, which are empty. A cell containing a formula that returns an empty string is counted, whereas a cell containing a zero value is not.

\section*{Arguments:}
\begin{tabular}{|r|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cell-range & reference & Designates the range of cells to be inspected. \\
\hline
\end{tabular}

Return Type and Value: number - The number of empty cells in the range specified.
[Example:

COUNTBLANK (A2: C2), where A2 and B2 are empty, but C2 is not, results in 2

\section*{end example]}

\subsection*{18.17.7.55 COUNTIF}

\section*{Syntax:}

COUNTIF ( cell-range , selection-criteria )
Description: Counts the number of cells in a specified range of cells, whose values meet the specified criteria.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cell-range & reference & Designates the range of cells to be inspected. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
selection- \\
criteria
\end{tabular} & \begin{tabular}{l} 
number, \\
expression, \\
reference, text
\end{tabular} & \begin{tabular}{l} 
Designates the cells to be counted. In the case of text, \\
selection-criteria can consist of any comparison operator \\
followed by the operand against which each cell's value is \\
to be compared. selection-criteria can include one or \\
more wildcard characters, question mark (?) and \\
asterisk (*). A question mark matches any single \\
character; an asterisk matches any sequence of \\
characters. To search for a question mark, asterisk, or \\
tilde character, prefix that character with a tilde ( \(\sim)\).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of cells in the range specified that meet the criteria.
[Example: Given that A1, B1, C1, and D1, respectively, contain the values \(3,10,7\), and 10

COUNTIF (A1:D1, "=10") results in 2
COUNTIF (A1:D1, ">5") results in 30
COUNTIF (A1:D1, "<>10") results in 2
Given that A2, B2, C2, and D2, respectively, contain the values apples, oranges, grapes, and melons

COUNTIF (A2:D2, "*es") results in 3
COUNTIF (A2:D2, "? ? a*") results in 2
COUNTIF(A2:D2, "* 1 *") results in 2
end example]

\subsection*{18.17.7.56}

\section*{Syntax:}

COUNTIFS ( count-range , cell-range-1 , selection-criteria-1
[, cell-range-2 , selection-criteria-2 [ , ... ]] )
Description: Counts the number of cells within a range that meet multiple criteria.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline count-range & reference & \begin{tabular}{l} 
Designates the cells whose values are included. count- \\
range does not have to have the same size and shape as \\
cell-range- 1 through cell-range- \(n\). The actual cells that \\
are added are determined by using the top, left cell in \\
count-range as the beginning cell, and then including cells \\
that correspond in size and shape to cell-range- 1 through \\
cell-range- \(n\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cell-range-1 & reference & \begin{tabular}{l} 
Designates the first range of cells to be inspected. Each \\
cell in a range is counted only if all of the corresponding \\
criteria specified are true for that cell.
\end{tabular} \\
\hline \begin{tabular}{l} 
selection- \\
criteria-1
\end{tabular} & \begin{tabular}{l} 
number, \\
expression, \\
reference, text
\end{tabular} & \begin{tabular}{l} 
Designates the first range of cells to be counted. In the \\
case of text, selection-criteria- 1 can consist of any \\
comparison operator followed by the operand against \\
which each cell's value is to be compared. selection- \\
criteria can include one or more wildcard characters, \\
question mark (?) and asterisk (*). A question mark \\
matches any single character; an asterisk matches any \\
sequence of characters. To search for a question mark, \\
asterisk, or tilde character, prefix that character with a \\
tilde ( \(\sim\) ).
\end{tabular} \\
\hline cell-range-n & reference & \begin{tabular}{l} 
The optional arguments selection-criteria-2 through \\
selection-criteria- \(n\) have corresponding arguments cell- \\
range-2 through cell-range- \(n\), and have the same \\
semantics as selection-criteria- \(l\) and cell-range- 1,
\end{tabular} \\
respectively.
\end{tabular}

If a cell in any argument is an empty cell, it is treated as if it had the value 0 .
Return Type and Value: number - The count of the cells corresponding to those selected.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } & \multicolumn{1}{c|}{ D } \\
\hline 1 & Sales Person & \begin{tabular}{l} 
Exceeded Tables \\
Quota
\end{tabular} & \begin{tabular}{l} 
Exceeded Chairs \\
Quota
\end{tabular} & \begin{tabular}{l} 
Exceeded Desks \\
Quota
\end{tabular} \\
\hline 2 & Davolio & Yes & No & No \\
\hline 3 & Buchanan & Yes & Yes & No \\
\hline 4 & Suyama & Yes & Yes & Yes \\
\hline 5 & Leverling & No & Yes & Yes \\
\hline
\end{tabular}

COUNTIFS(B2:D2, "=Yes") results in 1 (counts how many times Davolio exceeded a sales quota for tables, chairs, and desks)

COUNTIFS(B2:B5, "=Yes", C2:C5, "=Yes") results in 2 (counts how many sales people exceeded both their tables and chairs quota)

COUNTIFS(B5:D5, "=Yes",B3:D3, "=Yes") results in 1 (counts how many times Leverling and Buchanan exceeded the same quota for tables, chairs, and desks)

\section*{end example]}

\subsection*{18.17.7.57 COUPDAYBS}

\section*{Syntax:}

COUPDAYBS ( settlement , maturity , frequency [ , [ basis ]] )
Description: Computes the number of days from the beginning of the coupon period to the settlement date.

\section*{Arguments:}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{\begin{tabular}{c}
\multicolumn{1}{c|}{ Description }
\end{tabular}} \\
\hline settlement & number & The security's settlement date.
\end{tabular}\(|\)\begin{tabular}{ll} 
maturity & number \\
\hline frequency & number \\
\hline The security's maturity date.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline & \multirow[t]{5}{*}{} & \multicolumn{2}{|r|}{\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
days as long as \\
the first date \\
was not 28 or \\
29 February, in \\
which case it \\
does not \\
change.
\end{tabular} \\
\hline
\end{tabular}} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 days. \\
\hline & & 2 & Actual/360. Similar to Basis 1, but only has 360 days per year. \\
\hline & & 3 & Actual/365. Similar to Basis 1, but always has 365 days per year. \\
\hline & & 4 & \begin{tabular}{l}
European 30/360. The European method for adjusting day counts. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date \\
is 28 or 29 \\
February, it is adjusted to 30 February. \\
- For months with 31 days, all dates with a day value of 31 are changed to
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|c|}{ Description } \\
\hline & & & \\
& & & \\
& & & day 30, \\
including \\
situations \\
where the \\
& & & first date \\
& & & is 28 or \\
& & & 29 Februar \\
& & & \(y\). \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The number of days from the beginning of the coupon period to the settlement date.

However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
```

COUPDAYBS(DATE (2007,1,25),DATE (2008,11, 15),2,1) results in 71

```
COUPDAYBS (DATE \((2007,1,25), \operatorname{DATE}(2008,11,15), 2)\) results in 70
end example]

\subsection*{18.17.7.58}

\section*{Syntax:}

COUPDAYS ( settlement , maturity , frequency [ , [ basis ]] )
Description: Computes the number of days in the coupon period that contains the settlement date.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline maturity & number & The security's maturity date. \\
\hline frequency & number & \begin{tabular}{l} 
The number of coupon payments per year. For annual \\
payments, frequency is 1; for semiannual payments, \\
frequency is 2; for quarterly payments, frequency is 4.
\end{tabular} \\
\hline
\end{tabular}



Time information in the date arguments is ignored.
Return Type and Value: number - The number of days in the coupon period that contains the settlement date.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned.
- basis < 0 or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
```

COUPDAYS(DATE (2007,1, 25), DATE (2008,11, 15),2,1) results in }18
COUPDAYS(DATE (2007,1, 25),DATE (2008,11, 15),2) results in }18

```

\section*{end example]}

\subsection*{18.17.7.59 COUPDAYSNC}

\section*{Syntax:}

COUPDAYSNC ( settlement , maturity , frequency [, [ basis ]])
Description: Computes the number of days from the settlement date to the next coupon date.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline frequency & number & \multicolumn{2}{|l|}{The number of coupon payments per year. For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4 . frequency is truncated to an integer.} \\
\hline basis & number & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline & & & 31 days, all dates with a day value of 31 are changed to day 30 , including situations where the first date is 28 or 29 Februar y. \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The number of days from the settlement date to the next coupon date.

However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned.
- basis < 0 or basis \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{COUPDAYSNC}(\operatorname{DATE}(2007,1,25), \operatorname{DATE}(2008,11,15), 2,1)\) results in 110
\(\operatorname{COUPDAYSNC}(\operatorname{DATE}(2007,1,25), \operatorname{DATE}(2008,11,15), 2)\) results in 110

\section*{end example]}

\subsection*{18.17.7.60}

COUPNCD ( settlement , maturity , frequency [ , [ basis ]])
Description: Computes the next coupon date after the settlement date.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline maturity & number & The security's maturity date. \\
\hline frequency & number & The number of coupon payments per year. For annual \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline & & \multicolumn{2}{|l|}{payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4 . frequency is truncated to an integer.} \\
\hline basis & number & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30. If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The next coupon date after the settlement date, as a date.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{COUPNCD}(\operatorname{DATE}(2007,1,25), \operatorname{DATE}(2008,11,15), 2,1)\) results in 15-May-2007
end example]

\subsection*{18.17.7.61 COUPNUM}

COUPNUM ( settlement , maturity , frequency [ , [ basis ]] )
Description: Computes the number of coupons payable between the settlement date and maturity date, rounded up to the nearest whole number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date.
\end{tabular}\(|\)\begin{tabular}{lll|}
\hline maturity & number & The security's maturity date.
\end{tabular}



Time information in the date arguments is ignored.
Return Type and Value: number - The number of coupons payable between the settlement date and maturity date, rounded up to the nearest whole coupon.

However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{COUPNUM}(\operatorname{DATE}(2007,1,25), \operatorname{DATE}(2008,11,15), 2,1)\) results in 4
end example]

\subsection*{18.17.7.62 COUPPCD}

COUPPCD ( settlement , maturity , frequency [ , [ basis ]] )
Description: Computes the previous coupon date before the settlement date.
Arguments:
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline frequency & number & \multicolumn{2}{|l|}{The number of coupon payments per year. For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4. frequency is truncated to an integer.} \\
\hline \multirow[t]{4}{*}{basis} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The previous coupon date before the settlement date, as a date.

\section*{However, if}
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{COUPPCD}(\operatorname{DATE}(2007,1,25), \operatorname{DATE}(2008,11,15), 2,1)\) results in \(15-\) Nov-2006
end example]

\subsection*{18.17.7.63 COVAR}

\section*{Syntax:}

COVAR ( array-1 , array-2 )
Description: Computes covariance; that is, the average of the products of deviations for each data point pair in the two cell ranges designated by array- 1 and array- 2 .

\section*{Mathematical Formula:}

The covariance is:
\(\operatorname{Cov}(X, Y)=\frac{\sum(x-\bar{x})(y-\bar{y})}{n}\)
where
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (array-1)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (array-2)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & \begin{tabular}{l} 
number, name, \\
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
If an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline array-2 \\
\hline
\end{tabular}

Return Type and Value: number - The covariance.

\section*{However, if}
- array-1 and array-2 have a different number of data points, the return value is unspecified.
- array-1 or array-2 is empty, the return value is unspecified.
[Example:
\(\operatorname{COVAR}(\{2.532,5.621 ; 2.1,3.4\},\{5.32,2.765 ; 5.2,6.7\})\) results in -1.375374
end example]

\subsection*{18.17.7.64 CRITBINOM}

\section*{Syntax:}

CRITBINOM ( number-trials , success-probability , alpha )
Description: Computes the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number-trials & number & The number of Bernoulli trials. \\
\hline \begin{tabular}{l} 
success- \\
probability
\end{tabular} & number & The probability of success on each trial. \\
\hline alpha & number & The criterion value. \\
\hline
\end{tabular}

Return Type and Value: number - The smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

However, if
- number-trials \(<0, \# N U M!\) is returned.
- success-probability is \(<0\) or success-probability \(>1\), \#NUM! is returned.
- alpha \(<0\) or alpha \(>1\), \#NUM! is returned.

\section*{[Example:}

CRITBINOM \((6,0.5,0.75)\) results in 4
CRITBINOM \((12,0.3,0.95)\) results in 6
end example]

\section*{Syntax:}

CUBEKPIMEMBER ( connection , kpi-name , kpi-property [, [ caption ]])
Description: Fetches from the OLAP cube on the OLAP server designated by connection, a Key Performance Indicator (KPI) name, property, and measure, and displays the name and property in the cell. A KPI is a quantifiable measurement, such as monthly gross profit or quarterly employee turnover, used to monitor an organization's performance.

\section*{Arguments:}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{2}{c|}{ Description } \\
\hline connection & text & The name of the connection to the cube. \\
\hline kpi-name & text & The name of the KPI in the cube. \\
\hline kpi-property & number & \begin{tabular}{l} 
The KPI component to be returned, truncated to integer; \\
it shall be one of the following:
\end{tabular} \\
\(\qquad\)\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Value } & \multicolumn{1}{c|}{ Description }
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
The actual value, at the time the \\
function is executed.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
A target value of the KPI, which \\
can be compared to the actual \\
value in order to determine if the \\
underlying indicator is meeting its \\
goal.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
The state of the KPI at a specific \\
moment in time
\end{tabular} \\
\hline 4 & \begin{tabular}{ll} 
A measure of the value over time
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
The relative importance assigned \\
to the KPI on the server. If this KPI \\
is assigned a parent KPI, then this \\
number can be used on the server \\
to proportionally adjust the results \\
of this KPI value when calculating \\
the value of the parent KPI. While \\
this number can be shown in the \\
spreadsheet application, it is \\
assumed that it is used by the \\
server for any calculations \\
affecting the KPI.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & & \begin{tabular}{l} 
[Example: A KPI could be \\
associated with the first quarter of \\
the year 2007. end example]
\end{tabular} \\
\hline caption & text & \begin{tabular}{l} 
If 1 is specified, only kpi-name is displayed in the cell.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The selected key performance indicator.
However, if
- kpi-name is not the name of a KPI in the cube, the return value is unspecified.
- kpi-property is outside the range \(1-6, \# \mathrm{~N} / \mathrm{A}\) is returned.
- The connection name is not a workbook connection stored in the workbook, the return value is unspecified.
- The OLAP server is not running, not available, or returns an error message, the return value is unspecified.
[Example:
```

CUBEKPIMEMBER("Sales","MySalesKPI",1)
CUBEKPIMEMBER("Sales","MySalesKPI",2,"Sales KPI Goal")

```
```

end example]

```

\subsection*{18.17.7.66 CUBEMEMBER}

\section*{Syntax:}

CUBEMEMBER ( connection , member-expression , [, [ caption ]] )
Description: Fetches from the OLAP cube on the OLAP server designated by connection, the member or tuple defined by member-expression. [Note: This function is used to ensure that the member or tuple exists in the cube. end note]

When a call to CUBEMEMBER is used as an argument to another CUBExxx function, the MDX expression that identifies the member or tuple is used by that CUBExxx function, rather than the displayed value in the cell of the CUBEMEMBER function.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline connection & text & The name of the connection to the cube. \\
\hline \begin{tabular}{l} 
member- \\
expression
\end{tabular} & \begin{tabular}{l} 
text, reference, \\
array
\end{tabular} & \begin{tabular}{l} 
A multidimensional expression (MDX) that evaluates to a \\
unique member in the cube. Alternatively, member- \\
expression can be a tuple, specified as a cell range or an \\
array constant. [Note: MDX is a standard query language \\
for OLAP cubes. end note]
\end{tabular} \\
\hline caption & text & \begin{tabular}{l} 
The string displayed in the cell instead of the caption \\
from the cube (assuming it defines such a caption). When \\
a tuple is returned, the caption used is the one for the \\
last member in the tuple.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - A member or tuple in a cube hierarchy.
However, if
- The connection name is not a workbook connection stored in the workbook, the return value is unspecified.
- The OLAP server is not running, not available, or returns an error message, the return value is unspecified.
- At least one element within the tuple is invalid, the return value is unspecified.
- The syntax of member-expression is incorrect, the return value is unspecified.
- The member specified by member-expression doesn't exist in the cube, the return value is unspecified.
- The tuple is invalid because there is no intersection for the specified values, the return value is unspecified.
- The set contains at least one member with a different dimension than the other members, the return value is unspecified.

\section*{[Example:}
```

CUBEMEMBER("Sales","[Time].[Fiscal].[2004]")
CUBEMEMBER(\$A\$1,D$12)
CUBEMEMBER("Sales",(B4,C6,D5),"SalesFor2004")
CUBEMEMBER("Sales",{[Products].[Food];[Time].[Fiscal].[2004]})
CUBEMEMBER($A\$1,C\$12:D\$12)

```
end example]

\subsection*{18.17.7.67}

\section*{Syntax:}

CUBEMEMBERPROPERTY (connection , member-expression , property )

Description: Fetches a property of a member in the OLAP cube on an OLAP server. [Note: Use this function o ensure that a member name exists within the cube and to return the specified property for this member. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline connection & text & The name of the connection to the cube. \\
\hline \begin{tabular}{l} 
member- \\
expression
\end{tabular} & text & \begin{tabular}{l} 
A multidimensional expression (MDX) that evaluates to a \\
unique member in the cube. [Note: MDX is a standard \\
query language for OLAP cubes. end note]
\end{tabular} \\
\hline property & text & \begin{tabular}{l} 
The name of the property returned or a reference to a \\
cell that contains the name of the property.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - A property of a member in the OLAP cube.
However, if
- The connection name is not a workbook connection stored in the workbook, the return value is unspecified.
- The OLAP server is not running, not available, or returns an error message, the return value is unspecified.
- The syntax of member-expression is incorrect, the return value is unspecified.
- The member specified by member-expression doesn't exist in the cube, the return value is unspecified.

\section*{[Example:}
```

CUBEMEMBERPROPERTY("Sales","[Time].[Fiscal].[2004]",\$A\$3)
CUBEMEMBERPROPERTY("Sales","[Store].[MyFavoriteStore]",
"[Store].[Store Name].[Store Sqft]")

```
end example]

\subsection*{18.17.7.68 CUBERANKEDMEMBER}

\section*{Syntax:}
```

CUBERANKEDMEMBER (connection , set-expression , rank [, caption])

```

Description: Fetches the \(\mathrm{n}^{\text {th }}\), or ranked, member in a set.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline connection & text & The name of the connection to the cube. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
set- \\
expression
\end{tabular} & text & A set expression, such as "\{[Item1].children\}". \\
\hline rank & number & \begin{tabular}{l} 
Specifies the top value to return, truncated to integer. \\
If 1, the top value is returned; if 2, the second-most top \\
value is returned; and so on.
\end{tabular} \\
\hline caption & text & \begin{tabular}{l} 
The text displayed in the cell instead of the caption from \\
the cube (assuming it defines such a caption).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The \(\mathrm{n}^{\text {th }}\) member in the set.

\section*{However, if}
- The connection name is not a workbook connection stored in the workbook, the return value is unspecified.
- The OLAP server is not running, not available, or returns an error message, the return value is unspecified. , the return value is unspecified.
- The syntax of member-expression is incorrect, the return value is unspecified.
- The set contains at least one member with a different dimension than the other members, the return value is unspecified.

\section*{[Example:}
```

CUBERANKEDMEMBER("Sales",\$D\$4,1,"Top Month")
CUBERANKEDMEMBER("Sales",CUBESET("Sales","Summer","[2004].[June]",
"[2004].[July]","[2004].[August]"),3,"Top Month")

```
end example]

\subsection*{18.17.7.69 CUBESET}

\section*{Syntax:}
```

CUBESET (connection , set-expression [, [caption][, [sort-order]
[, [sort-by]]]])

```

Description: Fetches from the OLAP cube on the OLAP server designated by connection the set of members or tuples that is defined by set-expression. [Note: Use this function to build dynamic reports that aggregate and filter data, by using the return value as a slicer in the CUBEVALUE function, the CUBERANKEDMEMBER function to choose specific members from the calculated set, and the CUBESETCOUNT function to control the size of the set. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{3}{|c|}{ Description } \\
\hline connection & text & The name of the connection to the cube. \\
\hline \begin{tabular}{l} 
set- \\
expression
\end{tabular} & text, reference & \begin{tabular}{l} 
A set expression that results in a set of members or \\
tuples. set-expression can also be a cell reference to \\
range that contains one or more members, tuples, or sets \\
included in the set.
\end{tabular} \\
\hline caption & text & \begin{tabular}{l} 
The text displayed in the cell instead of the caption from \\
the cube (assuming it defines such a caption).
\end{tabular} \\
\hline sort-order & text & \begin{tabular}{l} 
The type of sort, if any, to perform; it can be one of the \\
following:
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The set of members or tuples.

However, if
- The connection name is not a workbook connection stored in the workbook, the return value is unspecified.
- The OLAP server is not running, not available, or returns an error message, the return value is unspecified.
- The syntax of member-expression is incorrect, the return value is unspecified.
- The set contains at least one member with a different dimension than the other members, the return value is unspecified.
- sort-order is outside the range \(0-6, \# \mathrm{~N} / \mathrm{A}\) is returned.
- sort-order requires sort-by, but sort-by is omitted, \#VALUE! is returned.

\section*{[Example:}
```

CUBESET("Finance","Order([Product].[Product].[Product Category]
.Members,[Measures].[Unit Sales],ASC)","Products")
CUBESET("Sales","[Product].[All Products].Children",
"Products",1,"[Measures].[Sales Amount]")
end example]

```

\subsection*{18.17.7.70 CUBESETCOUNT}

\section*{Syntax:}

CUBESETCOUNT ( set)
Description: Computes the number of items in a set.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline set & text & \begin{tabular}{l} 
An expression that evaluates to a set defined by the \\
CUBESET function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of items in a set.
[Example:

CUBESETCOUNT(A3)
CUBESETCOUNT(CUBESET("Sales","[Product].[All Products].Children", "Products",1,"[Measures].[Sales Amount]"))
end example]

\subsection*{18.17.7.71 CUBEVALUE}

\section*{Syntax:}
```

CUBEVALUE (connection , argument-list)

```

Description: Fetches from the OLAP cube on the OLAP server designated by connection, the aggregated value defined by a series of member-expression arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline connection & text & The name of the connection to the cube. \\
\hline argument-list & text, reference & \begin{tabular}{l} 
Each argument in argument-list is text containing a \\
multidimensional expression (MDX) that evaluates to a \\
member or tuple within the cube. Alternatively, an \\
argument an be a set defined with the CUBESET \\
function. Use any argument as a slicer to define the \\
portion of the cube for which the aggregated value is \\
returned. If no measure is specified in an argument, the \\
default measure for that cube is used. If a cell reference \\
is used for an argument, and that cell reference contains \\
a CUBE function, then that argument uses the MDX \\
expression for the item in the referenced cell, and not \\
the value displayed in that referenced cell. [Note: MDX is \\
a standard query language for OLAP cubes. end note]
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The aggregated value.
However, if
- The connection name is not a workbook connection stored in the workbook, the return value is unspecified.
- The OLAP server is not running, not available, or returns an error message, the return value is unspecified.
- At least one element within the tuple is invalid, the return value is unspecified.
- The syntax of member-expression is incorrect, the return value is unspecified.
- The member specified by an argument doesn't exist in the cube, the return value is unspecified.
- The tuple is invalid because there is no intersection for the specified values, the return value is unspecified. (This can occur with multiple elements from the same hierarchy.)
- The set contains at least one member with a different dimension than the other members, the return value is unspecified.

\section*{[Example:}
```

CUBEVALUE("Sales", "[Measures].[Profit]","[Time].[2004]",
"[All Product].[Beverages]")
CUBEVALUE (\$A\$1,"[Measures].[Profit]",D\$12,\$A23)
CUBEVALUE("Sales",\$B\$7,D\$12,\$A23)

```
end example]

\subsection*{18.17.7.72 CUMIPMT}

\section*{Syntax:}
```

CUMIPMT (rate , nper , pv , start-period , end-period , type)

```

Description: Computes the cumulative interest paid on a loan between start-period and end-period.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{2}{c|}{ Description } \\
\hline rate & number & The interest rate. \\
\hline nper & number & \begin{tabular}{l} 
The total number of payment periods, truncated to \\
integer.
\end{tabular} \\
\hline pv & number & The present value. \\
\hline start-period & number & \begin{tabular}{l} 
The first period in the calculation. (Payment periods are \\
numbered beginning with 1.)
\end{tabular} \\
\hline end-period & number & The last period in the calculation. \\
\hline type & number & \begin{tabular}{l} 
The timing of the payment, truncated to integer, as \\
follows: \\
\\
\end{tabular} \\
& & \begin{tabular}{|l|l|l|}
\multicolumn{1}{c|}{ Value } & \multicolumn{1}{c|}{ Timing } \\
\hline
\end{tabular} \\
& & \begin{tabular}{l} 
Payment at the end of the \\
period
\end{tabular} \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The cumulative interest paid on a loan.
However, if
- rate, nper, or \(p v \leq 0, \# N U M\) ! is returned.
- start-period \(<1\) or end-period \(<1\), or start-period \(>\) end period, \(\#\) NUM! is returned.
- type is any number other than 0 or \(1, \# N U M!\) is returned.
[Example:
CUMIPMT ( \(0.09 / 12,30 * 12,125000,13,24,0)\) results in -11135.23
CUMIPMT ( \(0.09 / 12,30 * 12,125000,1,1,0\) ) results in -937.50

\section*{end example]}

\subsection*{18.17.7.73}

\section*{Syntax:}

CUMPRINC (rate , nper , pv, start-period, end-period, type )
Description: Computes the cumulative principal paid on a loan between start-period and end-period.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The interest rate.} \\
\hline nper & number & \multicolumn{2}{|l|}{The total number of payment periods, truncated to integer.} \\
\hline \(p v\) & number & \multicolumn{2}{|l|}{The present value.} \\
\hline start-period & number & \multicolumn{2}{|l|}{The first period in the calculation. (Payment periods are numbered beginning with 1.)} \\
\hline end-period & number & \multicolumn{2}{|l|}{The last period in the calculation.} \\
\hline \multirow[t]{4}{*}{type} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The timing of the payment, truncated to integer, as follows:} \\
\hline & & Value & Timing \\
\hline & & 0 & Payment at the end of the period \\
\hline & & 1 & Payment at the beginning of the period \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The cumulative principal paid on a loan.
However, if
- rate, nper, or \(p v \leq 0, \# N U M\) ! is returned.
- start-period \(<1\) or end-period \(<1\), or start-period \(>\) end_period, \#NUM! is returned.
- type is any number other than 0 or \(1, \# N U M!\) is returned.

\section*{[Example:}
\(\operatorname{CUMPRINC}(0.09 / 12,30 * 12,125000,13,24,0)\) results in -934.11
\(\operatorname{CUMPRINC}(0.09 / 12,30 * 12,125000,1,1,0)\) results in -68.28
end example]

\subsection*{18.17.7.74 \\ DATE}

Syntax:
DATE ( year , month , day )
Description: Computes the serial date-time for the given date.

\section*{Arguments:}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline year & number & \begin{tabular}{l}
A positive number, truncated to an integer representing the year, that together with month and day specifies the date whose serial date-time is to be computed. \\
For the 1900 date system: \\
- If year is in the range 0-99, inclusive, the year shall be interpreted as year +1900 . \\
- If year is in the range 100-9999, inclusive, the year shall be interpreted as year. \\
For the 1904 date system: \\
- If year is in the range 0-1899, inclusive, the year shall be interpreted as year +1900 . \\
- If year is in the range 1900-9999, inclusive, the year shall be interpreted as year.
\end{tabular} \\
\hline month & number & \begin{tabular}{l}
A month, truncated to integer, that together with year and day specifies the date whose serial date-time is to be computed. \\
month shall be interpreted as the number of months relative to the final month of the year prior to the specified year.
\end{tabular} \\
\hline day & number & \begin{tabular}{l}
A day, truncated to integer, that together with month and year specifies the date whose serial date-time is to be computed. \\
day shall be interpreted as the number of days relative to the last day of the month (and its associated year) prior to the month (and its associated year) as determined from month and year (see below).
\end{tabular} \\
\hline
\end{tabular}

The value of month or day in a year-month-day argument triplet can be out of range. month is simply an instance of counting a given number of months, minus one, relative to January of the year specified, using the Gregorian calendar [ISO 8601]. This calendar defines that there are 12 months in a year, and that when counting forward, the month following December of one year is January of the following year, and when counting backward, the month preceding January of one year is December of the previous year. Likewise, day is simply an instance of counting a given number of days, minus one, relative to the first day of the adjusted month, using the Gregorian calendar. This calendar defines the number of days in each month, and that when counting forward, the day following the final day of one month is the first day of the following month, and when counting backward, the day preceding the first day of one month is the final day of the previous month. [Example: The year-month-day argument triplets \((2007,12,32),(2007,13,1)\), and \((2008,1,1)\) all result in the same serial date. end example]
[Note: One way to handle out-of-range values for month or day is as follows:
Compute yearAdjust \(=\operatorname{INT}((\) month -1\() / 12)\)
Compute adjustedMonth = month - (yearAdjust * 12)
Compute adjustedYear \(=\) year + yearAdjust.
A serialDateBase can now be computed for the first day of the adjustedYear and adjustedMonth. Finally, compute the serial date for the full triplet by adding (day-1) to this serialDateBase. end note]

Return Type and Value: number - The serial date-time for the given date.
However, if year is outside the acceptable range for the date system currently in use, \#NUM! is returned.
[Example: For the 1900 backward compatibility date-base date system:
\(\operatorname{DATE}(0,1,1)\) results in a serial date-time of 1
\(\operatorname{DATE}(1899,1,1)\) results in a serial date-time of 693598
\(\operatorname{DATE}(1900,1,1)\) results in a serial date-time of 1
\(\operatorname{DATE}(9999,12,31)\) results in a serial date-time of 2958465
For the 1904 date system:
\(\operatorname{DATE}(4,1,1)\) results in a serial date-time of 0
\(\operatorname{DATE}(1899,1,1)\) results in a serial date-time of 692136
\(\operatorname{DATE}(1904,1,1)\) results in a serial date-time of 0
DATE \((9999,12,31)\) results in a serial date-time of 2957003
end example]

\subsection*{18.17.7.75 DATEDIF}

\section*{Syntax:}

DATEDIF ( start-date , end-date , unit )
Description: Calculates the number of days, months, or years between two dates.

\section*{Arguments:}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{2}{c|}{ Description } \\
\hline start-date & number & The first date in the period, truncated to integer. \\
\hline end-date & number & The last date in the period, truncated to integer. \\
\hline unit & text & The count to be returned, as follows: \\
\(\qquad\)\begin{tabular}{|l|l|l|l|}
\hline Value & \multicolumn{1}{c|}{ Day Count Basis } \\
\hline "Y" & \begin{tabular}{l} 
The number of complete years \\
in the period.
\end{tabular} \\
\hline
\end{tabular} & & "M" & \begin{tabular}{l} 
The number of complete \\
months in the period.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of days, months, or years between two dates, depending on the value of unit.

However, if
- start-date or end-date is out of range for the current date system, \#NUM! is returned.
- start-date \(\geq\) end-date \#NUM! is returned.
- unit is any value other than those shown in the table above, \#NUM! is returned.

\section*{[Example:}

DATEDIF (DATE (2001, 1, 1), DATE (2003, 1, 1), "Y") results in 2 complete years

DATEDIF (DATE (2001, 6, 1) , \(\operatorname{DATE}(2002,8,15)\), "D") results in 440 days
\(\operatorname{DATEDIF}(\operatorname{DATE}(2001,6,1), \operatorname{DATE}(2002,8,15), " Y D ")\) results in 75 days
DATEDIF (DATE \((2001,6,1), \operatorname{DATE}(2002,8,15), " M D ")\) results in 14 days
end example]

\subsection*{18.17.7.76 DATEVALUE}

\section*{Syntax:}

DATEVALUE ( date-time-string )
Description: Computes the serial date-time of the date represented by the string date-time-string, taking into account the current date system.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{ll} 
date-time- \\
string
\end{tabular} & text & \begin{tabular}{l} 
The date and/or time whose serial date-time is to be \\
computed. date-time-string can have any supported date \\
and/or time format. If the year portion of date-time-string \\
is omitted, the current year is used. Any time information \\
in date-time-string shall be ignored. When date-time- \\
string contains both a date and time part, times in date- \\
time-string are truncated. Time-only values for date-time- \\
string are special cased to return 0 so that when they are \\
used in date addition and subtraction, time-only strings \\
are ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time of the date represented by the string date-time-string.

\section*{However, if}
- date-time-string is out of range for the current date system, \#VALUE! is returned.
- date-time-string does not represent a date, \#VALUE! is returned.
- date-time-string contains only a time, 0 is returned so that when it used in date addition and subtraction, time-only strings are ignored.
[Example: When the current year is 2006,
DATEVALUE ("2/1/2006")
DATEVALUE ("01-Feb-2006 10:06 AM")
DATEVALUE ("2006/2/1")
DATEVALUE ("2006-2-1")
DATEVALUE ("1-Feb")
all result in 38749 for the 1900 date system, or 37287 for the 1904 date system. end example]

\subsection*{18.17.7.77 DAVERAGE}

\section*{Syntax:}

DAVERAGE (database , field , criteria )
Description: Averages the values in a column of a list or database that match the specified criteria.
In order to perform an operation on an entire column in a database, a blank line shall be entered below the column labels in the criteria range.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & \begin{tabular}{l} 
The range of cells that makes up the list or database, \\
which shall be a list of related data in which rows of \\
related information are records, and columns of data are \\
fields. The first row of the list shall contain labels for each \\
column.
\end{tabular} \\
\hline field & text, number & \begin{tabular}{l} 
Indicates the column to which criteria shall be applied. It \\
can either be a string containing the column's label, or \\
the column's position number, where columns are \\
numbered starting at 1. [Example: If column 3's label is \\
"Age" then either 3 or "Age" can be used. end example]
\end{tabular} \\
\hline criteria & reference & \begin{tabular}{l} 
The range of cells that contains the specified conditions. \\
Each cell in that range that contains a condition shall \\
have a value that is the form of a number, an expression, \\
a cell reference, or text that defines which cells are \\
selected. In the case of text, criteria can include one or \\
more wildcard characters, question mark (?) and \\
asterisk (*). A question mark matches any single \\
character; an asterisk matches any sequence of \\
characters. To search for a question mark, asterisk, or \\
tilde character, prefix that character with a tilde ( ( ). A \\
text criteria can also consist of any comparison operator \\
followed by the operand against which each cell's value is \\
to be compared. If the text does not begin with a \\
comparison operator, the criteria matches any string \\
starting with that text, as though the criteria were \\
suffixed by an asterisk (*). [Example: A criteria of "Pea" \\
can result in Pea, Pear, and Peach's being matched, \\
whereas a criteria of "=Pea" only matches Pea. end \\
example] \\
Comparison operators do not require a prefix if used in \\
the string, however it is not possible to specifically search \\
for a string which begins with a comparison operator.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
The range shall include at least one column label and at \\
least one cell below the column label in which a condition \\
for the column is specified. [Example: If the range G1:G2 \\
contains the column label Income in \(\mathrm{G1}\) and the amount \\
10,000 in G2, one could define the range as \\
MatchIncome and use that name as criteria. end \\
example] The value of criteria shall not overlap the range \\
specified by database. \\
To find rows that meet multiple criteria for a single \\
column, all of the criteria shall be specified directly below \\
one another in separate rows of the criteria range. \\
To find rows that meet multiple criteria for multiple \\
columns, all of the criteria shall be specified in the same \\
row of the criteria range. \\
To find rows that meet multiple criteria for multiple \\
columns, where any criteria can be true, each of the \\
criteria shall be specified in a different row of the criteria \\
range. \\
To find rows that meet multiple sets of criteria, where \\
each set includes criteria for multiple columns, each set \\
of criteria shall be specified in a separate row of the \\
criteria range. \\
To find rows that meet multiple sets of criteria, where \\
each set includes criteria for one column, multiple \\
columns with the same column heading shall be included \\
in the criteria range.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The average of the values of the cells that correspond to the specified criteria.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \multicolumn{1}{c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } & \multicolumn{1}{c|}{ D } & \multicolumn{1}{c|}{ E } & \multicolumn{1}{c|}{ F } \\
\hline 1 & Tree & Height & Age & Yield & Profit & Height \\
\hline 2 & =Apple & \(>10\) & & & & \(<16\) \\
\hline 3 & =Pear & & & & & \\
\hline 4 & Tree & Height & Age & Yield & Profit & \\
\hline 5 & Apple & 18 & 20 & 14 & 105.00 & \\
\hline 6 & Pear & 12 & 12 & 10 & 96.00 & \\
\hline 7 & Cherry & 13 & 14 & 9 & 105.00 & \\
\hline 8 & Apple & 14 & 15 & 10 & 75.00 & \\
\hline 9 & Pear & 9 & 8 & 8 & 76.80 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F \\
\hline 10 & Apple & 8 & 9 & 6 & 45.00 & \\
\hline
\end{tabular}
the average yield of apple trees over 10 feet in height is computed by DAVERAGE(A4:E10, "Yield", A1:B2), which results in 12

The average age of all trees is computed by \(\operatorname{DAVERAGE}(A 4: E 10,3, A 4: E 10)\), which results in 13
end example]

\subsection*{18.17.7.78 DAY}

\section*{Syntax:}

DAY (date-value )
Description: Computes the numeric day of the month in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value, taking into account the current date system.

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline date-value & number, text & \begin{tabular}{l} 
The date and/or time whose day is to be computed. That \\
date and/or time shall be expressed either as a serial \\
date-time, in which case, its fractional part is ignored, or \\
as a string-constant having any date and/or time format, \\
in which case, any time information shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The day of the month in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value. The returned value shall be in the range 1-31.

However, if date-value is out of range for the current date system, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{DAY}(\operatorname{DATE}(2006,1,2))\) results in 2
DAY (DATE \((2006,0,2)\) ) results in 31
DAY("2006/1/2 10:45 AM") results in 2
DAY (30000) results in 18 for the 1900 date system, or 19 for the 1904 date system
end example]
18.17.7.79 DAYS360

Syntax:

DAYS360 ( start-date , end-date [, method-flag ] )
Description: Computes the signed number of days between two dates based on a 360 -day year (twelve 30-day months).

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & & Description \\
\hline start-date & number & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{start-date and end-date are the dates for which the difference is to be computed. start-date can be earlier than, the same as, or later than end-date.}} \\
\hline start-date & number & & \\
\hline \multirow[t]{4}{*}{method-flag} & \multirow[t]{4}{*}{logical} & \multicolumn{2}{|l|}{Specifies whether to use the U.S. or European method in the calculation, as follows:} \\
\hline & & Value & Meaning \\
\hline & & FALSE or omitted & U.S. (NASD) method: If the start-date is the 31st day of a month, it is changed to the 30th day of that same month. If the end-date is the 31st day of a month and the start-date is earlier than the 30th day of a month, the end-date is changed to the 1st day of the following month; otherwise the end-date is changed to the 30th day of the same month. \\
\hline & & TRUE & European method: start-dates and end-dates that occur on the 31st day of a month are changed to the 30th day of the same month. \\
\hline
\end{tabular}

Return Type and Value: number - The signed number of days between two dates based on a 360-day year (12 30-day months). If start-date is later than end-date, the return value shall be negative, and the magnitude shall be the difference in days.

However, if start-date or end-date is out of range for the current date system, \#NUM! is returned.
[Example:

DAYS360(DATE (2002, 2, 3), DATE \((2005,5,31))\) results in 1198
DAYS360(DATE \((2005,5,31)\), \(\operatorname{DATE}(2002,2,3))\) results in -1197
DAYS360(DATE \((2002,2,3)\), \(\operatorname{DATE}(2005,5,31)\), FALSE) results in 1198
DAYS360(DATE (2002, 2, 3), \(\operatorname{DATE}(2005,5,31)\), TRUE) results in 1197
|end example]
18.17.7.80 DB

Syntax:
DB ( cost , salvage , life , period [ , [ month ]] )
Description: Computes the depreciation of an asset for a specified period using the fixed-declining balance method.

\section*{Mathematical Formula:}

The fixed-declining balance method computes depreciation at a fixed rate. DB uses the following formulas to calculate depreciation for a period:
(cost - total depreciation from prior periods) \(\times\) rate
where:
rate \(=1-\left(\frac{\text { salvage }}{\text { cost }}\right)^{\frac{1}{\text { life }}}\), rounded to three decimal places
Depreciation for the first and last periods is a special case. If argument month is omitted, depreciation for the first period is calculated using the formula cost \(\times\) rate.

If month argument is entered, use the following formulas:
For the first period, DB uses this formula:
\(\frac{\text { cost } \times \text { rate } \times \text { month }}{12}\)
For the last period, DB uses this formula:
(cost - total depreciation from prior periods) \(\times\) rate \(\times(12\) - month \()\)
12
where:
- cost \(=\) argument cost
- life = argument life
- rate \(=1-(\) salvage \(/\) cost \() \wedge(1 /\) life \()\), rounded to three decimals
- salvage \(=\) argument salvage
- total depreciation from prior periods \(=\mathrm{DB}(\operatorname{cost}\), salvage, life, 1, [month]) + DB(cost, salvage, life, 2, [month]) + ... + DB(cost, salvage, life, period-1, [month]), where period > 1

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The initial cost of the asset. \\
\hline salvage & number & \begin{tabular}{l} 
The value at the end of the depreciation. (This is \\
sometimes called the salvage value of the asset.)
\end{tabular} \\
\hline life & number & \begin{tabular}{l} 
The number of periods over which the asset is being \\
depreciated. (This is sometimes called the useful life of \\
the asset.)
\end{tabular} \\
\hline period & number & \begin{tabular}{l} 
The period for which the depreciation is to be calculated. \\
(period shall use the same units as life.)
\end{tabular} \\
\hline month & number & \begin{tabular}{l} 
The number of months in the first year. If omitted, a \\
value of 12 is used.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The depreciation of an asset for a specified period using the fixed-declining balance method.

However, if
- cost, salvage, life, or period \(<0\), \#NUM! is returned.
- month is outside the range \(1-12, \# N U M\) ! is returned.
[Example:
\(\operatorname{DB}(1000000,100000,6,1,7)\) results in \(186,083.33\)
DB \((1000000,100000,6,2,7)\) results in \(259,639.42\)
DB \((1000000,100000,6,3,7)\) results in \(176,814.44\)
DB (1000000, 100000, \(6,4,7)\) results in \(120,410.64\)
DB \((1000000,100000,6,5,7)\) results in \(81,999.64\)
DB (1000000, 100000, \(6,6,7\) ) results in \(55,841.76\)
DB (1000000, 100000, \(6,7,7\) ) results in \(15,845.10\)
end example]

\subsection*{18.17.7.81 DCOUNT}

\section*{Syntax:}

DCOUNT (database , field, criteria )

Description: Counts the number of values in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The count of the values of the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

For all the apple trees having a height between 10 and 16 , the number of Age fields that contain numbers is computed by DCOUNT(A4:E10, "Age", A1:F2), which results in 1.
end example]

\subsection*{18.17.7.82 DCOUNTA}

\section*{Syntax:}

DCOUNTA ( database , field , criteria )
Description: Counts the number of non-blank cells in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.)
Return Type and Value: number - The count of the non-blank cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

For all the apple trees having a height between 10 and 16, the number of Profit fields that are not blank is
computed by DCOUNTA(A4:E10, "Profit", A1: F2), which results in 1.
end example]

\subsection*{18.17.7.83 DDB}

\section*{Syntax:}

DDB ( cost , salvage , life , period [ , factor ] )
Description: Computes the depreciation of an asset for a specified period using the double-declining balance or some other specified method. [Note: Use VDB (§18.17.7.341) for a straight-line depreciation method when depreciation is greater than the declining balance calculation. end note]

\section*{Mathematical Formula:}

MIN ( (cost - total depreciation from prior periods)
\[
\times\left(\frac{\text { factor }}{\text { life }}\right),(\text { cost }- \text { salvage }- \text { total depreiation from prior periods) })
\]
where:
cost \(=\) argument cost
factor \(=\) argument factor
life \(=\) argument life
salvage \(=\) argument salvage
total depreciation from prior periods \(=\) DDB(cost, salvage, life, 1, [factor]) + DDB(cost, salvage, life, 2, [factor]) + ... + DDB(cost, salvage, life, period-1, [factor]), where period > 1. Depreciation for period = 1 can be calculated by using cost \(\times\) factor/life.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The initial cost of the asset. \\
\hline salvage & number & \begin{tabular}{l} 
The value at the end of the depreciation. (This is \\
sometimes called the salvage value of the asset.)
\end{tabular} \\
\hline life & number & \begin{tabular}{l} 
The number of periods over which the asset is being \\
depreciated. (This is sometimes called the useful life of \\
the asset.)
\end{tabular} \\
\hline period & number & \begin{tabular}{l} 
The period for which the depreciation is to be calculated. \\
(period shall use the same units as life.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline factor & number & \begin{tabular}{l} 
The rate at which the balance declines. If omitted, it is \\
assumed to be 2 (the double-declining balance method).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The depreciation of an asset for a specified period.

However, if
- salvage < 0 \#NUM! is returned.
- cost life <= 0 , \#NUM! is returned.
- life \(<=0\) \#NUM! is returned.
- period \(<=0\), \#NUM! is returned.
- factor \(<=0\), \#NUM! is returned.
[Example:
\(\operatorname{DDB}(2400,300,10 * 365,1)\) results in 1.32
\(\operatorname{DDB}(2400,300,10 * 12,1,2)\) results in 40.00
\(\operatorname{DDB}(2400,300,10,1,2)\) results in 480.00
DDB (2400, 300, 10, 2, 1.5) results in 306.00
\(\operatorname{DDB}(2400,300,10,10)\) results in 22.12
end example]

\subsection*{18.17.7.84 \\ DEC2BIN}

\section*{Syntax:}

DEC2BIN ( number [ , num-bin-digits ] )
Description: Makes the binary equivalent of number, with the result having num-bin-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l} 
The decimal number that is to be converted to a binary \\
string.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-bin- \\
digits
\end{tabular} & number & \begin{tabular}{l} 
The number of digits in the result, with leading zeros \\
added as necessary. However, if number is negative, num- \\
bin-digits is ignored and the result has 10 digits. If \\
omitted, the minimum number of digits is used in the \\
result. \(n u m-b i n-d i g i t s ~ i s ~ t r u n c a t e d ~ t o ~ a n ~ i n t e g e r . ~\)
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The binary equivalent of number using twos-complement representation with the left-most bit (10th bit from the right) representing the sign bit.

However, if
- number is outside the range -512 (1000000000 binary) to 511 (0111111111 binary), inclusive, \#NUM! is returned.
- number needs more digits that num-bin-digits, \#NUM! is returned.
- num-bin-digits \(\leq 0\) or \(>10\), \#NUM! is returned.

\section*{[Example:}

DEC2BIN(23) results in 10111
DEC2BIN \((-256)\) results in 1100000000
\(\operatorname{DEC2BIN}(18,7)\) results in 0010010
end example]

\subsection*{18.17.7.85}

\section*{DEC2HEX}

\section*{Syntax:}

DEC2HEX ( number [, num-hex-digits] )
Description: Makes the hexadecimal equivalent of number, with the result having num-hex-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l} 
The decimal number that is to be converted to a \\
hexadecimal string.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-bin- \\
digits
\end{tabular} & number & \begin{tabular}{l} 
num-hex-digits is the number of digits in the result, with \\
leading zeros added as necessary. However, if number is \\
negative, num-hex-digits is ignored and the result has \\
10 digits. If num-hex-digits is omitted, the minimum \\
number of digits is used in the result. num-hex-digits is \\
truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The hexadecimal equivalent of number using twos-complement representation with the left-most bit (40th bit from the right) representing the sign bit.

However, if
- number is outside the range \(-549,755,813,888\) ( 8000000000 hex) to \(549,755,813,887\)
(7FFFFFFFFF hex), inclusive, \#NUM! is returned.
- number needs more digits that num-hex-digits, \#NUM! is returned.
- num-hex-digits \(\leq 0\) or \(>10\), \#NUM! is returned.

\section*{[Example:}

DEC2HEX (23) results in 17
DEC2HEX \((-256)\) results in FFFFFFFFF00
DEC2HEX \((18,7)\) results in 0000012
end example]

\subsection*{18.17.7.86 DEC2OCT}

\section*{Syntax:}

DEC2OCT ( number [, num-oct-digits ] )
Description: Makes the octal equivalent of number, with the result having num-oct-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l} 
The decimal number that is to be converted to an octal \\
string.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-bin- \\
digits
\end{tabular} & number & \begin{tabular}{l} 
The number of digits in the result, with leading zeros \\
added as necessary. However, if number is negative, num- \\
oct-digits is ignored and the result has 10 digits. If num- \\
oct-digits is omitted, the minimum number of digits is \\
used in the result. \(n u m\)-oct-digits is truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The octal equivalent of number using twos-complement representation with the left-most bit (30th bit from the right) representing the sign bit.

However, if
- number is outside the range \(-536,870,912\) ( 4000000000 octal) to \(536,870,911\) (3777777777 octal), inclusive, \#NUM! is returned.
- number needs more digits that num-oct-digits, \#NUM! is returned.
- num-oct-digits \(\leq 0\) or \(>10\), \#NUM! is returned.

\section*{[Example:}

\section*{DEC20CT(23) results in 27}

DEC2OCT (-256) results in 7777777400
\(\operatorname{DEC2OCT}(18,7)\) results in 0000022

\section*{end example]}

\subsection*{18.17.7.87 DEGREES}

\section*{Syntax:}

DEGREES ( angle )
Description: Converts angle in radians into degrees.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline angle & number & \begin{tabular}{l} 
The number of radians that is to be converted into \\
degrees.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - angle in degrees.
[Example:

DEGREES (2 * PI()) results in 360
DEGREES (PI ()) results in 180
DEGREES (PI ( \() / 2\) ) results in 90
DEGREES (8.5) results in 487.0141259
end example]

\subsection*{18.17.7.88 \\ DELTA}

\section*{Syntax:}

DELTA ( number-1 [, number-2] )
Description: Compares two numbers for equality.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number-1 & number & \begin{tabular}{l} 
The numbers that are to be compared for equality. If \\
number-2 is omitted, it is assumed to be zero.
\end{tabular} \\
\hline number-2 & number & \\
\hline
\end{tabular}

Return Type and Value: number - 1 if number-1 equals number-2; otherwise, 0.
[Example:
\(\operatorname{DELTA}(10.5,10.5)\) results in 1
\(\operatorname{DELTA}(10.5,10.6)\) results in 0
\(\operatorname{DELTA}(10.5)\) results in 0
DELTA (0) results in 1
end example]

\subsection*{18.17.7.89 DEVSQ}

\section*{Syntax:}

DEVSQ ( argument-list )
Description: Computes the sum of squares of deviations of data points from their sample mean.

\section*{Mathematical Formula:}

DEVSQ \(=\sum(x-\bar{x})^{2}\)
where:
- \(x=\) each element in argument-list
- \(\overline{\mathrm{x}}=\) the mean of the elements in argument-list

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, array, or \\
reference to a \\
number. \\
Argument list \\
can be a single \\
argument that is \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values for \\
which the sum of squared deviations is to be calculated. \\
Logical values and text representations of numbers \\
occurring directly in the list of arguments are included. If \\
an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of squares of deviations of data points from their sample mean.

\section*{[Example:}

DEVSQ(5.6,8.2,9.2) results in 6.906666667
DEVSQ (\{5.6, 8.2, 9.2 \(\}\) ) results in 6.906666667
end example]

\subsection*{18.17.7.90 DGET}

\section*{Syntax:}

DGET (database , field , criteria )
Description: Extracts a single value from a column of a list that matches the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The value of the cell that corresponds to the specified criteria.
However, if
- No record matches the criteria, \#VALUE! is returned.
- More than one record matches the criteria, \#NUM! is returned.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:
For all the apple trees having a height between 10 and 16 , the number of Profit fields that are not blank is computed by DGET(A4:E7, "Yield", A1:A2), which results in 14.
end example]

\subsection*{18.17.7.91 DISC}

Syntax:
DISC ( settlement , maturity , pr , redemption [ , [ basis ]] )
Description: Computes the discount rate for a security.

\section*{Mathematical Formula:}

DISC \(=\frac{\text { redemption }- \text { par }}{\text { par }} \times \frac{B}{S M}\)
where:
- \(B=\) number of days in a year, depending on the year basis.
- \(\quad D S M=\) number of days between settlement and maturity.
- par = argument \(p r\)
- redemption \(=\) argument redemption

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline pr & number & \multicolumn{2}{|l|}{The security's price per 100 currency units face value.} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per 100 currency units face value.} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 \\
or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Name & Type & Description \\
\hline & & \(\boxed{y}\) & y. \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
The currency units of \(p r\) and redemption are assumed to be the same currency.
Return Type and Value: number - The discount rate for a security.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- \(p r\) or redemption \(\leq 0, \# N U M\) ! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{DISC}(\operatorname{DATE}(2007,1,25), \operatorname{DATE}(2007,6,15), 97.975,100,1)\) results in \(5.2420 \%\)
end example]

\subsection*{18.17.7.92 DMAX}

\section*{Syntax:}

DMAX (database , field , criteria )
Description: Computes the maximum value of the cells in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The maximum of the values of the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The maximum profit of apple and pear trees is computed by DMAX(A4:E10, "Profit", A1:A3), which results in 105.

\section*{end example]}

\subsection*{18.17.7.93 \\ DMIN}

Syntax:
DMIN (database , field , criteria )
Description: Computes the minimum value of the cells in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The minimum of the values of the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The minimum profit of apple trees over 10 in height is computed by DMIN(A4:E10, "Profit", A1:B2), which results in 75 .
end example]

\subsection*{18.17.7.94 DOLLAR}

\section*{Syntax:}

DOLLAR ( number [, num-decimal ] )
Description: Produces a string containing number rounded to num-decimal decimal places. The formatting applied to the string for the thousands separator, radix point, and currency symbol are implementation-specific.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & The number that is to be formatted. \\
\hline num-decimal & number & \begin{tabular}{l} 
Designate the number of decimal places to be used in the \\
resulting string; it is truncated to an integer. If num- \\
decimal is negative, number is rounded to the left of the \\
decimal point. If omitted, a value of 2 shall be assumed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The string containing number rounded to num-decimal decimal places, and have a currency symbol and thousands separators.
[Example: When the spreadsheet application defines the currency symbol to be " \(\$\) ", the thousands separator to be "," and the radix to be ".":

DOLLAR (1234.567) results in \(\$ 1,234.57\)
\(\operatorname{DOLLAR}(1234.567,-2)\) results in \(\$ 1,200\)
DOLLAR \((-1234.567,4)\) results in \((\$ 1,234.5670)\)
When the spreadsheet application defines the currency symbol to be " \(€\) ", the thousands separator to be " " and the radix to be ",":

DOLLAR (1234.567) results in \(1234,57 €\)
\(\operatorname{DOLLAR}(1234.567,-2)\) results in \(1200 €\)
DOLLAR \((-1234.567,4)\) results in \(-1234,5670 €\)
When the spreadsheet application defines the currency symbol to be "SFr.", the thousands separator to be """ and the radix to be ".":

DOLLAR (1234.567) results in SFr. 1'234.57
\(\operatorname{DOLLAR}(1234.567,-2)\) results in SFr. 1' 200
DOLLAR \((-1234.567,4)\) results in SFr. -1'234.5670
When the spreadsheet application defines the currency symbol to be "kr", the thousands separator to be " " and the radix to be ",":

DOLLAR (1234.567) results in kr 1234,57
DOLLAR (1234.567,-2) results in kr 1200
DOLLAR \((-1234.567,4)\) results in \(\mathrm{kr}-1234,5670\)
end example]

\subsection*{18.17.7.95 DOLLARDE}

\section*{Syntax:}

DOLLARDE ( fractional-dollar , fraction )

Description: Converts a fractional dollar price into a dollar price expressed as a decimal number. [Note: Fractional dollar numbers are sometimes used for securities prices. end note] The fractional part of fractionaldollar is scaled to match the magnitude of fraction by moving the decimal place right by the number of digits in fraction. The fractional-dollar \(\mathrm{m} . \mathrm{n}\) is computed into a decimal dollar value as \(\mathrm{m}+\mathrm{i}\), where i is an intermediate result equal to \(\left(\left((0 . n)^{*}(10 x)\right) /\right.\) fraction \()\), and \(x\) is the base \(10 \log\) of fraction, rounded up to the nearest whole number.
[Example: Given a fractional-dollar value of 1.02 and a fraction value of 16 , the fractional part of fractionaldollar is multiplied by 100 , giving a value of 2 to be divided by fraction before being added to the integral part of fractional-dollar, yielding a decimal price of 1.125. end example]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
fractional- \\
dollar
\end{tabular} & number & The number to be interpreted as a fractional dollar price. \\
\hline fraction & number & The integer to use in the denominator of the fraction. \\
\hline
\end{tabular}

Return Type and Value: number - The dollar price expressed as a decimal number.
However, if
- fraction \(<0\), \#NUM! is returned.
- fraction \(=0\), \#DIV/0! is returned.

\section*{[Example:}

DOLLARDE \((1.02,16)\) results in 1.125
\(\operatorname{DOLLARDE}(1.1,32)\) results in 1.3125
end example]

\subsection*{18.17.7.96 DOLLARFR}

Syntax:
DOLLARFR ( decimal-dollar , fraction )
Description: Converts a dollar price expressed as a decimal into a dollar price expressed as a fraction. This function is used to convert decimal dollar numbers, such as securities prices, to fractional numbers.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline decimal- & number & The number expressed as a decimal. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline dollar & & \\
\hline fraction & number & The integer to use in the denominator of the fraction. \\
\hline
\end{tabular}

Return Type and Value: number - The dollar price expressed as a fractional number. [Example: A result of m.n means \(m+n /\) fraction dollars. end example] The fractional part of the return value is scaled to have the same number of digits after the decimal point, as there are digits in fraction. [Example: DOLLARFR(1.125, 16) has a two-digit fraction value and so returns the two-digit fractional number 1.02 end example] If an exact numerator cannot be found, the function returns the lowest numerator that could be used with fraction, multiplied by a power of ten. [Example: \(\operatorname{DOLLARFR}(1.5,3)\) returns 1.15, as there is no exact fraction which satisfies \(n / 3=0.5\), and \(15 / 30\) represents the lowest power of ten fraction can be multiplied by to obtain an exact value. end example]

However, if
- fraction <0, \#NUM! is returned.
- fraction \(=0, \#\) DIV/0! is returned.

\section*{[Example:}
\(\operatorname{DOLLARFR}(1.125,16)\) results in 1.02
\(\operatorname{DOLLARFR}(1.125,32)\) results in 1.04
end example]

\subsection*{18.17.7.97 DPRODUCT}

\section*{Syntax:}

DPRODUCT (database , field , criteria )
Description: Computes the product of the values of the cells in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The product of the values of the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The product of the yields from apple trees with a height greater than 10 is computed by DPRODUCT(A4:E10, "Yield", A1:B2), which results in 140.
```

end example]

```

\subsection*{18.17.7.98 DSTDEV}

\section*{Syntax:}

DSTDEV (database , field , criteria )
Description: Estimates the standard deviation of a population based on a sample by using the numbers in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - An estimate of the standard deviation of a population based on the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The estimated standard deviation in the yield of apple and pear trees if the data in the database is only a sample of the total orchard population is computed by DSTDEV(A4:E10, "Yield", A1:A3), which results in 2.97.
end example]

\subsection*{18.17.7.99 DSTDEVP}

\section*{Syntax:}

DSTDEVP ( database , field , criteria )
Description: Computes the standard deviation of a population based on the entire population by using the numbers in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The standard deviation of a population based on the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The true standard deviation in the yield of apple and pear trees if the data in the database is the entire population is computed by \(\operatorname{DSTDEVP}(\mathrm{A} 4: E 10\), "Yield", A1: A3), which results in 2.65 .
end example]

\subsection*{18.17.7.100 DSUM}

Syntax:
DSUM ( database , field , criteria )
Description: Computes the sum of the values in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The sum of the values of the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The total profit from apple trees is computed by DSUM(A4:E10, "Profit", A1:A2), which results in 225 .
The total profit from apple trees with a height between 10 and 16 is computed by DSUM(A4:E10, "Profit", A1:F2), which results in 75.
end example]
18.17.7.101

DURATION

\section*{Syntax:}

DURATION ( settlement, maturity , coupon , yld , frequency [, [ basis ]])
Description: Computes the Macaulay duration for an assumed par value of 100 . Duration is defined as the weighted average term to maturity of the cash flows from a bond. The weight of each cash flow is determined by dividing the present value of the cash flow by the price.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline coupon & number & \multicolumn{2}{|l|}{The security's annual coupon rate.} \\
\hline yld & number & \multicolumn{2}{|l|}{The security's annual yield.} \\
\hline frequency & number & \multicolumn{2}{|l|}{The number of coupon payments per year. For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4. frequency is truncated to an integer.} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, a follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|l|}{Description} \\
\hline & & & dates with a day value of 31 are changed to day 30 , including situations where the first date is 28 or 29 Februar y. \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The Macaulay duration for an assumed par value of 100.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- coupon or yld \(<0, \# N U M\) ! is returned.
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned.
- basis < 0 or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{DURATION}(\operatorname{DATE}(2008,1,1), \operatorname{DATE}(2016,1,1), 0.08,0.09,2,1)\) results in 5.993774956
end example]

\subsection*{18.17.7.102 DVAR}

\section*{Syntax:}

DVAR ( database , field , criteria )
Description: Estimates the variance of a population based on a sample by using the numbers in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - An estimate of the variance of a population based on the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The estimated variance in the yield of apple and pear trees if the data in the database is only a sample of the total orchard population is computed by DVAR(A4:E10, "Yield", A1:A3), which results in 8.8.
end example]

\subsection*{18.17.7.103 DVARP}

\section*{Syntax:}

DVARP ( database , field , criteria )
Description: Calculates the variance of a population based on the entire population by using the numbers in a column of a list or database that match the specified criteria. (See the DAVERAGE function §18.17.7.77.)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline database & reference & The range of cells that makes up the list or database. \\
\hline field & text, number & The column to which criteria shall be applied. \\
\hline criteria & reference & The range of cells that contains the specified conditions. \\
\hline
\end{tabular}

For a detailed description of each argument, see the DAVERAGE function §18.17.7.77.
Return Type and Value: number - The variance of a population based on the entire population using the cells that correspond to the specified criteria.
[Example: Using the data in the example in the DAVERAGE function §18.17.7.77:

The true variance in the yield of apple and pear trees if the data in the database is the entire orchard population is computed by \(\operatorname{DVARP}(A 4: E 10\), "Yield", A1:A3), which results in 7.04 .
end example]

\subsection*{18.17.7.104 ECMA.CEILING}

\section*{Syntax:}

ECMA.CEILING ( \(x\), significance )
Description: Computes a value that is \(x\) rounded-up, away from zero, to the nearest multiple of significance. Regardless of the sign of \(x\), a value is rounded up when adjusted away from zero.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded \\
\hline significance & number & \begin{tabular}{l} 
The multiple to which \(x\) is to be rounded. \\
If \(x\) is negative, and significance is negative, then the \\
value is rounded down (away from zero). If \(x\) is \\
negative, and significance is positive, then the value is \\
rounded up, towards zero.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-up value of \(x\).
However, if
- \(\quad x\) is positive and significance is negative, \#NUM! is returned.
- \(x\) and/or significance is zero, zero is returned.

\section*{[Example:}

ECMA. CEILING \((4.3,2)\) rounds 4.3 up to nearest multiple of 2; that is, to 6
ECMA. CEILING \((4.3,-2)\) rounds 4.3 up to nearest multiple of -2 ; that is, to \#NUM!
ECMA. CEILING \((-4.3,2)\) rounds -4.3 up to the nearest multiple of 2 ; that is, to -4
ECMA.CEILING \((-4.3,-2)\) rounds -4.3 up to the nearest multiple of -2 ; that is, to -6
end example]

\subsection*{18.17.7.105 EDATE}

\section*{Syntax:}

EDATE ( start-date, month-offset )
Description: Computes the serial date-time of the date that is month-offset months from the date specified by the date date-string, taking into account the current date system.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline start-date & number & The start date. \\
\hline month-offset & number & \begin{tabular}{l} 
The number of months before or after start-date, \\
truncated to integer. A positive value yields a future date; \\
a negative value yields a past date; a zero value yields the \\
date start-date.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time of the date that is month-offset months from the date specified by the date date-string, as a whole number.

However, if
- start-value is out of range for the current date system, \#NUM! is returned.
- start-value plus month-offset is out of range for the current date system, \#NUM! is returned.
[Example: For the 1900 date system:
\(\operatorname{EDATE}(\operatorname{DATE}(2006,1,31), 5)\) results in a serial date-time of 38898
\(\operatorname{EDATE}(\operatorname{DATE}(2004,2,29), 12)\) results in a serial date-time of 38411
\(\operatorname{EDATE}(\operatorname{DATE}(2004,2,28), 12)\) results in a serial date-time of 38411
\(\operatorname{EDATE}(\operatorname{DATE}(2004,1,15),-23)\) results in a serial date-time of 37302
For the 1904 date system:
\(\operatorname{EDATE}(\operatorname{DATE}(2006,1,31), 5)\) results in a serial date-time of 37436
\(\operatorname{EDATE}(\operatorname{DATE}(2004,2,29), 12)\) results in a serial date-time of 36949
\(\operatorname{EDATE}(\operatorname{DATE}(2004,2,28), 12)\) results in a serial date-time of 36949
\(\operatorname{EDATE}(\operatorname{DATE}(2004,1,15),-23)\) results in a serial date-time of 35840

\section*{end example]}

\subsection*{18.17.7.106 EFFECT}

\section*{Syntax:}

EFFECT ( nominal-rate , npery )
Description: Computes the effective annual interest rate, given the nominal annual interest rate and the number of compounding periods per year.

\section*{Mathematical Formula:}

EFFECT \(=\left(1+\frac{\text { Nominal_rate }}{\text { Npery }}\right)^{\text {Npery }}-1\)
where:
- Nominal_rate \(=\) argument nominal-rate
- Npery = argument npery

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline nominal-rate & number & The nominal interest rate. \\
\hline npery & number & \begin{tabular}{l} 
The number of compounding periods per year, truncated \\
to integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The effective annual interest rate.
However, if
- nominal-rate \(\leq 0\), \#NUM! is returned.
- npery \(<1\), \#NUM! is returned.
[Example:
\(\operatorname{EFFECT}(0.0525,4)\) results in \(5.3543 \%\)
end example]

\subsection*{18.17.7.107 EOMONTH}

Syntax:
EOMONTH ( start-date, month-offset )
Description: Computes the serial date-time of the last day of the month for the date that is month-offset months from the date specified by the date start-date, taking into account the current date system.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline start-date & number & The start date. \\
\hline month-offset & number & \begin{tabular}{l} 
The number of months before or after start-date, \\
truncated to integer. A positive value yields a future date; \\
a negative value yields a past date; a zero value yields the \\
date start-date.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time of the last day of the month for the date that is monthoffset months from the date specified by the date start-date, as a whole number.

However, if
- start-date is not a date, \#NUM! is returned.
- start-date plus month-offset does not yield a date, \#NUM! is returned.
[Example: For the 1900 date system:
EOMONTH(DATE \((2006,1,31), 5)\) results in a serial date-time of 38898
EOMONTH(DATE \((2004,2,29), 12)\) results in a serial date-time of 38411
EOMONTH(DATE \((2004,2,28), 12)\) results in a serial date-time of 38411
EOMONTH(DATE \((2004,1,15),-23)\) results in a serial date-time of 37315
For the 1904 date system:

EOMONTH(DATE \((2006,1,31), 5)\) results in a serial date-time of 37436
EOMONTH (DATE \((2004,2,29), 12)\) results in a serial date-time of 36949
EOMONTH(DATE \((2004,2,28), 12)\) results in a serial date-time of 36949
EOMONTH(DATE \((2004,1,15),-23)\) results in a serial date-time of 35853
end example]

\subsection*{18.17.7.108 ERF}

\section*{Syntax:}

ERF (lower-bound [, upper-bound ])
Description: Computes the error function integrated between lower-bound and upper-bound.

\section*{Mathematical Formula:}

If upper-bound is omitted:
\(E R F(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t\)
where:
- \(z=\) argument lower-bound

If upper-bound is present:
\(E R F(a, b)=\frac{2}{\sqrt{\pi}} \int_{a}^{b} e^{-t^{2}} d t=E R F(b)-E R F(a)\)
where:
- \(b=\) argument upper-bound
- \(a=\) argument lower-bound

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline lower-bound & number & The lower bound for integrating ERF. \\
\hline upper-bound & number & \begin{tabular}{l} 
The upper bound for integrating ERF. If omitted, the \\
value of the upper bound is lower-bound, and the lower \\
bound becomes zero.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The error function integrated between lower-bound and upper-bound.
However, if
- lower-bound is negative, \#NUM! is returned.
- upper-bound is negative, \#NUM! is returned.
[Example:
\(\operatorname{ERF}(1.234,4.5432)\) results in 0.08096060
\(\operatorname{ERF}(0,1.345)\) results in 0.94284416
\(\operatorname{ERF}(0,1.345)\) results in 0.94284416
end example]

\subsection*{18.17.7.109 ERFC}

Syntax:
ERFC (lower-bound )
Description: Computes the complementary error function integrated between lower-bound and \(\infty\).

\section*{Mathematical Formula:}
\(\operatorname{ERFC}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t=1-\operatorname{ERF}(x)\)
where:
- \(x=\) argument lower-bound

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline lower-bound & number & The lower bound for integrating ERFC. \\
\hline
\end{tabular}

Return Type and Value: number - The complementary error function integrated between lower-bound and \(\infty\).
However, if lower-bound is negative
lower-bound or upper-bound is negative, \#NUM! is returned.

\section*{[Example:}

ERFC(1.234) results in 0.08096060
ERFC ( 0 ) results in 1.00000000

\section*{end example]}

\subsection*{18.17.7.110 ERROR.TYPE}

\section*{Syntax:}

ERROR.TYPE (value)
Description: Determines the kind of the error value designated by value.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
A value whose type is to be determined. No conversion \\
shall take place on the argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The kind of the error value designated by value, as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ value } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Return \\
Value
\end{tabular}} \\
\hline \#NULL! & 1 \\
\hline \#DIV/0! & 2 \\
\hline \#VALUE ! & 3 \\
\hline \#REF ! & 4 \\
\hline \#NAME ? & 5 \\
\hline \#NUM! & 6 \\
\hline \#N/A & 7 \\
\hline \#GETTING_DATA & 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ value } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Return \\
Value
\end{tabular}} \\
\hline Anything else & \#N/A \\
\hline
\end{tabular}
[Example:

ERROR.TYPE (A1) results in 2 if A1 evaluates to \#DIV/0!
ERROR. TYPE (A1) results in 4 if A1 evaluates to \#REF/0!
ERROR.TYPE (A1) results in 7 if A1 evaluates to \#N/A
ERROR.TYPE (A1) results in \#N/A if A1 evaluates to a non-error value, such as a number or text

\section*{end example]}

\subsection*{18.17.7.111 EVEN}

\section*{Syntax:}
```

EVEN (}x\mathrm{)

```

Description: Computes \(x\) rounded to the nearest even integer, away from zero. Regardless of the sign of \(x\), a value is rounded up when adjusted away from zero.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded. \\
\hline
\end{tabular}

Return Type and Value: number - The rounded value of \(x\). If \(x\) is zero, the result is zero.
[Example:
\(\operatorname{EVEN}(1.5)\) rounds 1.5 up to the nearest even integer; that is, to 2.
\(\operatorname{EVEN}(3)\) rounds 3 up to the nearest even integer; that is, to 4.
\(\operatorname{EVEN}(2)\) rounds 2 up to the nearest even integer; that is, to 2.
\(\operatorname{EVEN}(-1)\) rounds -1 up to the nearest even integer; that is, to -2 .
end example]
18.17.7.112 EXACT

Syntax:
EXACT ( string-1 , string-2 )
Description: Performs a case-sensitive, character-by-character, lexical comparison of string-1 and string-2.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \\
\hline string- 1 & text & \multirow{2}{c|}{ Description } \\
\hline string- 2 & text & \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if string-1 and string-2 have the exact same length and contents; otherwise, FALSE.
[Example:

EXACT("ABC", "ABC") results in TRUE
EXACT("ABC", "ABCD") results in FALSE
EXACT ("Abc", "aBC") results in FALSE
\(\operatorname{EXACT}(" \mathrm{"}, \mathrm{"}\) ") results in TRUE
end example]

\subsection*{18.17.7.113 EXP}

Syntax:
```

EXP (}x\mathrm{)

```

Description: Computes \(e^{x}\), where the constant \(e\) is the base of the natural logarithm.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The exponent to which \(e\) is to be raised. \\
\hline
\end{tabular}

Return Type and Value: number - \(e^{x}\).
However, if \(x\) is too large for the result to be representable, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{EXP}(-1)\) results in 0.367879441
\(\operatorname{EXP}(0)\) results in 1
EXP (1) results in 2.718281828
\(\operatorname{EXP}(2)\) results in 7.389056099
end example]

\subsection*{18.17.7.114 EXPONDIST}

\section*{Syntax:}

EXPONDIST ( \(x\), lambda , cumulative-flag )
Description: Computes the exponential distribution.

\section*{Mathematical Formula:}

The equation for the probability density function is:
\(f(x, \lambda)=\lambda e^{-\lambda x}\)
The equation for the cumulative distribution function is:
\(F(x, \lambda)=1-e^{-\lambda x}\)
where:
- \(x=\operatorname{argument} x\)
- \(\lambda\) = argument lambda

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which the function is evaluated. \\
\hline lambda & number & The inverse of the mean. \\
\hline \begin{tabular}{l} 
cumulative- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Determines the form of the function. If TRUE, \\
EXPONDIST returns the cumulative distribution function; \\
if FALSE, EXPONDIST returns the probability density \\
function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The exponential distribution.
However, if
- \(x<0\), \#NUM! is returned.
- lambda \(\leq 0, \#\) NUM! is returned.
[Example:

EXPONDIST(0.2,10, FALSE) results in 1.353352832
EXPONDIST(2.3,1.5,TRUE) results in 0.968254364
end example]

\subsection*{18.17.7.115 FACT}

\section*{Syntax:}
```

FACT (}x\mathrm{)

```

Description: Computes the factorial of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The non-negative value whose factorial is to be \\
computed. \(x\) is truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The factorial of \(x\).
However, if
- \(x\) is negative, \#NUM! is returned.
- \(x\) is too large for the result to be representable, \#NUM! is returned.
[Example:

FACT (5) results in 120
\(\operatorname{FACT}(3.5)\) results in 6
FACT (0) results in 1
end example]

\subsection*{18.17.7.116 FACTDOUBLE}

Syntax:
FACTDOUBLE ( \(n\) )
Description: Computes the double factorial of \(n\).

\section*{Mathematical Formula:}

If \(n\) is even:
\(n!!=n(n-2)(n-4) \ldots(4)(2)\)
If \(n\) is odd:
\(n!!=n(n-2)(n-4) \ldots(3)(1)\)
where:
- \(n=\) argument \(n\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(n\) & number & \begin{tabular}{l} 
The non-negative value whose double factorial is to be \\
computed. \(n\) is truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The double factorial of \(n\).

\section*{However, if}
- \(n\) is negative, \#NUM! is returned.
- \(n\) is too large for the result to be representable, \#NUM! is returned.
[Example:

FACTDOUBLE (5) results in 15
FACTDOUBLE (3.5) results in 3
FACTDOUBLE (0) results in 1
end example]

\subsection*{18.17.7.117 FALSE}

\section*{Syntax:}
false ()
Description: Computes the value FALSE. (A call to function FALSE is equivalent to using the logical-constant FALSE.)

Arguments: None.
Return Type and Value: logical - The value FALSE.
[Example:

FALSE () results in FALSE
end example]

\subsection*{18.17.7.118 FDIST}

\section*{Syntax:}

FDIST ( \(x\), degrees-freedom-1 , degrees-freedom-2 )

Description: Computes the F probability distribution.

\section*{Mathematical Formula:}
\(F D I S T=P(F>x)\)
where:
- \(F\) is a random variable that has an F distribution with degrees of freedom degrees-freedom- 1 and degrees-freedom-2
- \(x\) is argument \(x\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which the function is to be evaluated. \\
\hline \begin{tabular}{l} 
degrees- \\
freedom- 1
\end{tabular} & number & \begin{tabular}{l} 
The number of degrees of freedom for the numerator, \\
truncated to an integer.
\end{tabular} \\
\hline \begin{tabular}{l} 
degrees- \\
freedom- 2
\end{tabular} & number & \begin{tabular}{l} 
The number of degrees of freedom for the denominator, \\
truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The F probability distribution.
However, if
- \(\quad x\) is negative, \#NUM! is returned.
- degrees-freedom- \(1<1\) or degrees-freedom- \(1 \geq 10^{10}\), \#NUM! is returned.
- degrees-freedom- \(2<1\) or degrees-freedom- \(2 \geq 10^{10}\), \#NUM! is returned.
[Example:

FDIST \((12.345,3,4)\) results in 0.017226183
end example]

\subsection*{18.17.7.119 FIND}

Syntax:
FIND ( string-1 , string-2 [ , start-pos ] )
Description: Performs a case-sensitive search using a lexical comparison for the first occurrence of string-l in string-2, starting at character position start-pos within string-2. (FIND is intended for use with languages that
use the single-byte character set (SBCS), whereas FINDB (§18.17.7.120) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string- 1 & text & Designate the string to be searched for within the string \\
designated by string-2.
\end{tabular}

Return Type and Value: number - The start position of the first occurrence of string-1 in string-2, starting at character position start-pos within string-2. If string- 1 is an empty string, it shall always be found in any string-2 at position start-pos, or at position 1 if start-pos is omitted.

However, if
- string-1 is not found within string-2, \#VALUE! is returned.
- start-pos designates a position outside string-2, \#VALUE! is returned.
[Example:
FIND("de", "abcdef") results in 4
FIND (A10, B10) results in 4 , when A10 contains de, and B10 contains abcdef

\section*{end example]}

\subsection*{18.17.7.120 FINDB}

\section*{Syntax:}

FINDB ( string-1 , string-2 , [ start-pos ] )
Description: Performs a case-sensitive search using a lexical comparison for the first occurrence of string- 1 in string-2, starting at byte position start-pos within string-2. (FINDB is intended for use with languages that use the double-byte character set (DBCS), whereas FIND (§18.17.7.119) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string- 1 & text & Designate the string to be searched for within the string \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string-2 & text & designated by string-2. \\
\hline start-pos & number & \begin{tabular}{l} 
The number of the start position within string-2 for which \\
string-1 is to be searched. The start position of the first \\
byte is 1. If omitted, a position of 1 shall be assumed. \\
start-pos shall be at least 0.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The start position of the first occurrence of string-l in string-2, starting at character position start-pos within string-2. If string-1 is an empty string, it shall always be found in any string-2 at position start-pos, or at position 1 if start-pos is omitted.

\section*{However, if}
- string-1 is not found within string-2, \#VALUE! is returned.
- start-pos designates a position outside string-2, \#VALUE! is returned.
[Example: Assuming 1-byte characters

FINDB("de", "abcdef") results in 4
FINDB(A10, B10) results in 4 , when A10 contains de, and B10 contains abcdef
end example]

\subsection*{18.17.7.121 FINV}

\section*{Syntax:}

FINV (probability , degrees-freedom-1 , degrees-freedom-2 )
Description: Computes the inverse of the F probability distribution. Given a value for probability, FINV seeks that value \(x\) such that FDIST \((x\), degrees-freedom 1, degrees-freedom 2\()=\) probability. Thus, precision of FINV depends on precision of FDIST.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & \begin{tabular}{l} 
A probability associated with the F cumulative \\
distribution.
\end{tabular} \\
\hline \begin{tabular}{l} 
degrees- \\
freedom-1
\end{tabular} & number & \begin{tabular}{l} 
The number of degrees of freedom for the numerator, \\
truncated to an integer.
\end{tabular} \\
\hline \begin{tabular}{l} 
degrees- \\
freedom- 2
\end{tabular} & number & \begin{tabular}{l} 
The number of degrees of freedom for the denominator, \\
truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the F probability distribution.

However, if
- probability \(<0\) or probability \(>1\), \#NUM! is returned.
- degrees-freedom- \(1<1\) or degrees-freedom- \(1 \geq 10^{10}\), \#NUM! is returned.
- degrees-freedom-2 \(<1\) or degrees-freedom- \(2 \geq 10^{10}\), \#NUM! is returned.
- the implementation determines that a return value cannot be computed, \(\# N / A\) is returned
[Example:
\(\operatorname{FINV}(0.5,3,4)\) results in 0.940534076
end example]

\subsection*{18.17.7.122 FISHER}

\section*{Syntax:}

FISHER ( \(x\) )
Description: Computes the Fisher transformation at \(x\).

\section*{Mathematical Formula:}
\(z^{\prime}=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)\)
where:
- \(x=\operatorname{argument} x\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number for which the transformation is wanted. \\
\hline
\end{tabular}

Return Type and Value: number - The Fisher transformation at \(x\).
However, if
- \(x \leq-1\), \#NUM! is returned.
- \(x \geq 1\), \#NUM! is returned.

\section*{[Example:}

FISHER (-0.43) results in -0.459896681
FISHER (0.578) results in 0.659454094

\section*{end example]}

\subsection*{18.17.7.123 FISHERINV}

\section*{Syntax:}

FISHERINV ( \(y\) )
Description: Computes the inverse of the Fisher transformation.

\section*{Mathematical Formula:}
\(x=\frac{e^{2 y}-1}{e^{2 y}+1}\)
where:
- \(y=\operatorname{argument} y\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(y\) & number & \begin{tabular}{l} 
The number for which the inverse of the transformation \\
is wanted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the Fisher transformation.
[Example:

FISHERINV ( -0.43 ) results in 0.405321309
FISHERINV (0.578) results in 0.521210269
end example]

\subsection*{18.17.7.124 FIXED}

Syntax:
FIXED ( number [, [ num-decimal] [ , suppress-commas-flag ]] )
Description: Produces a string containing number rounded to num-decimal decimal places, using the same rounding algorithm as ROUND (§18.17.7.278). Thousands separator commas are included as determined by suppress-commas-flag.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l} 
Designate the number that is to be formatted, truncated \\
to integer.
\end{tabular} \\
\hline num-decimal & number & \begin{tabular}{l} 
Designate the number of decimal places to be used in the \\
resulting string. If negative, number is rounded to the left \\
of the decimal point. If omitted, a value of 2 shall be \\
assumed.
\end{tabular} \\
\hline \begin{tabular}{l} 
suppress- \\
commas-flag
\end{tabular} & logical & \begin{tabular}{l} 
If TRUE, commas are not included; if FALSE or omitted, \\
commas are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The string containing number rounded to num-decimal decimal places.

\section*{[Example:}

FIXED (1234567) results in 1, 234, 567.00
FIXED (1234567.555555, 4, TRUE) results in 1234567.5556
FIXED \((.555555,10)\) results in 0.5555550000
FIXED \((1234567,-3)\) results in \(1,235,000\)
end example]

\subsection*{18.17.7.125 FLOOR}

\section*{Syntax:}

FLOOR ( \(x\), significance )
Description: Computes \(x\) rounded down, toward zero, to the nearest multiple of significance. Regardless of the sign of \(x\), a value is rounded down when adjusted away from zero.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded, \\
\hline significance & number & The multiple to which \(x\) is to be rounded. \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-down value of \(x\).
However, if \(x\) and significance have different signs, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{FLOOR}(2.5,1)\) rounds 2.5 down to nearest multiple of 1 ; that is, to 2
\(\operatorname{FLOOR}(-2.5,-2)\) rounds -2.5 down to nearest multiple of -2 ; that is, to -2
\(\operatorname{FLOOR}(1.5,0.1)\) rounds 1.5 down to the nearest multiple of 0.1 ; that is, to 1.5
\(\operatorname{FLOOR}(0.234,0.01)\) rounds 0.234 down to the nearest multiple of 0.01 ; that is, to 0.23
end example]

\subsection*{18.17.7.126 FORECAST}

\section*{Syntax:}

FORECAST ( \(x\), known-ys , known-xs )
Description: Calculates, or predicts, a future value by using existing values. The predicted value is a \(y\)-value for a given \(x\)-value. The known values are existing \(x\)-values and \(y\)-values, and the new value is predicted by using linear regression.

\section*{Mathematical Formula:}

FORECAST=a+bx, where:
\(a=\bar{y}-b \bar{x}\)
and:
\(b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}\) is the sample mean AVERAGE (known-xs)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}\) is the sample mean AVERAGE(known-ys)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The data point for which a value is to be predicted. \\
\hline known-xs & array, reference & The independent data. \\
\hline known-ys & array, reference & The dependent data. \\
\hline
\end{tabular}

Return Type and Value: number - The future value.
However, if
- known-xs and known-ys are empty or contain a different number of data points, the return value is unspecified.
- The variance of known-xs equals zero, the return value is unspecified.

\section*{[Example:}

FORECAST ( \(30,\{6,7,9,15,21\},\{20,28,31,38,40\})\) results in 10.60725309

\section*{end example]}

\subsection*{18.17.7.127 FREQUENCY}

\section*{Syntax:}

FREQUENCY ( data-array , bins-array )
Description: Calculates how often values occur within a range of values. A call to FREQUENCY shall be an array formula.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline data-array & \begin{tabular}{l} 
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
Set of values for which frequencies are to be computed. \\
If data-array contains no values, FREQUENCY returns an \\
array of zeros. Cells containing text or that are empty are \\
ignored.
\end{tabular} \\
\hline bins-array & array, reference & \begin{tabular}{l} 
Set of intervals into which the values in data-array are to \\
be grouped. If bins-array contains no values, FREQUENCY \\
returns the number of elements in data-array.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: vertical array of numbers - The frequency at which values occur within a range of values. The number of elements in the returned array is one more than the number of elements in bins-array. The extra element contains the count of any values above the highest interval.

\section*{[Example:}

If the cells A 2 : A 10 contain \(79,85,78,85,50,81,95,88\), and 97 , and the cells \(\mathrm{B2}: \mathrm{B4}\) contain 70,79 , and 89 , FREQUENCY(A2:A10, B2:B4) results in a vertical array containing \(1(50), 2(79,78), 4(85,85,81,88)\), and 2 (95, 97).
end example]

\subsection*{18.17.7.128 FTEST}

Syntax:
FTEST ( array-1 , array-2 )
Description: Computes the result of an F-test.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & \begin{tabular}{l} 
number, name, \\
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
If an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline array-2
\end{tabular}

Return Type and Value: number - The two-tailed probability that the variances in array- 1 and array-2 are not significantly different.

However, if
- The number of data points in array-1 or array-2 is less than 2 , the return value is unspecified.
- The variance of array-1 or array- 2 is zero, the return value is unspecified.
[Example:
If the cells D6:D10 contain \(6,7,9,15\), and 21, and the cells E6:E10 contain 20, 28, 31, 38, and 40, FTEST(D6:D10, E6:E10) results in 0.648317847

\section*{end example]}

\subsection*{18.17.7.129 FV}

\section*{Syntax:}
```

FV (rate , nper , pmt [, [pv] [, [type]]])

```

Description: Computes the future value of an investment based on periodic, constant payments and a constant interest rate.

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline rate & number & The interest rate. \\
\hline nper & number & \begin{tabular}{l} 
The total number of payment periods, truncated to \\
integer.
\end{tabular} \\
\hline pmt & number & \begin{tabular}{l} 
The payment made each period; it cannot change over \\
the life of the annuity. [Note: Typically, \(p m t\) contains \\
principal and interest, but no other fees or taxes. end \\
note] If omitted, \(p v\) shall be provided.
\end{tabular} \\
\hline\(p v\) & number & \begin{tabular}{l} 
The the present value, or the lump-sum amount that a \\
series of future payments is worth right now. If omitted, \\
it is assumed to be 0, and \(p m t\) shall be provided.
\end{tabular} \\
\hline type & number & The timing of the payment, truncated to integer, as \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline Name & Type & \multicolumn{2}{|c|}{ Description } \\
\hline & & \multicolumn{1}{|c|}{\begin{tabular}{l} 
follows: \\
\\
\end{tabular}} & \\
\hline \multicolumn{1}{|c|}{ Value } & \multicolumn{1}{c|}{ Timing } \\
\hline 0 & \begin{tabular}{l} 
Payment at the end of the \\
period
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Payment at the beginning of \\
the period
\end{tabular} \\
\hline
\end{tabular}

Arguments representing cash paid by investor shall be expressed as negative numbers; arguments representing cash received by the investor shall be expressed as positive numbers.

Return Type and Value: number - The future value of an investment based on periodic, constant payments and a constant interest rate.

However, if type is any number other than 0 or 1, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{FV}(0.06 / 12,10,-200,-500,1) \quad 2,581.40\)
FV \((0.12 / 12,12,-1000)\) results in \(12,682.50\)
\(\mathrm{FV}(0.11 / 12,35,-2000,1)\) results in \(82,846.25\)
\(\operatorname{FV}(0.06 / 12,12,-100,-1000,1)\) results in \(2,301.40\)
end example]

\subsection*{18.17.7.130 FVSCHEDULE}

Syntax:
FVSCHEDULE ( principal , schedule )
Description: Computes the future value of an initial principal after applying a series of compound interest rates. [Note: This function can be used to calculate the future value of an investment with a variable or adjustable rate. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline principal & number & The present value. \\
\hline schedule & array & \begin{tabular}{l} 
Set of interest rates to apply. The values in this array can \\
be numbers or blank cells. Blank cells are taken as zeros \\
(i.e., no interest).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The future value of an initial principal after applying a series of compound interest rates.

However, if any element of the array schedule is not a number and not blank, \#VALUE! is returned.
[Example:
\(\operatorname{FVSCHEDULE}(1,\{0.09,0.11,0.1\})\) results in 1.33089
end example]

\subsection*{18.17.7.131 GAMMADIST}

\section*{Syntax:}

GAMMADIST ( \(x\), alpha , beta , cumulative-flag )
Description: Computes the gamma distribution.

\section*{Mathematical Formula:}

The equation for the gamma probability density function is:
\(f(x, \alpha, \beta)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}\)
\(f\left(x ; a,, \theta^{\prime}\right)=\frac{1}{A^{\prime a} \Gamma(\alpha x)} x^{a-1} e^{-\frac{B}{\theta}}\)
The standard gamma probability density function is:
\(f(x, \alpha)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}\)
When alpha \(=1\), GAMMADIST returns the exponential distribution with:
\(\lambda=\frac{1}{\beta}\)
where:
- \(\alpha=\) argument alpha
- \(\beta=\) argument beta
- \(x=\operatorname{argument} x\)

For a positive integer n , when alph \(a=\mathrm{n} / 2\), beta \(=2\), and cumulative \(=\) TRUE, GAMMADIST returns ( 1 CHIDIST( \(x\) )) with \(n\) degrees of freedom.

When alpha is a positive integer, GAMMADIST is also known as the Erlang distribution.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which the distribution is to be evaluated. \\
\hline alpha & number & A parameter of the distribution. \\
\hline beta & number & \begin{tabular}{l} 
A parameter of the distribution. If beta \(=1\), GAMMADIST \\
returns the standard gamma distribution.
\end{tabular} \\
\hline \begin{tabular}{l} 
cumulative- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Determines the form of the function. If TRUE, \\
GAMMADIST returns the cumulative distribution function; \\
if FALSE, it returns the probability density function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The gamma distribution.
However, if
- \(x<0, \# N U M!\) is returned.
- alpha \(\leq 0\) or beta \(\leq 0\), \#NUM! is returned.

\section*{[Example:}

GAMMADIST(10, 9, 2, FALSE) results in 0.03263902
GAMMADIST(10, 9,2 , TRUE) results in 0.068093631
end example]

\subsection*{18.17.7.132 GAMMAINV}

\section*{Syntax:}

GAMMAINV ( probability , alpha , beta)
Description: Computes the inverse of the gamma distribution. Given a value for probability, GAMMAINV seeks that value \(x\) such that GAMMADIST ( \(x\), alpha, beta, TRUE \()=\) probability. Thus, the precision of GAMMAINV depends on the precision of GAMMADIST.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & The probability associated with the gamma distribution. \\
\hline alpha & number & A parameter of the distribution. \\
\hline beta & number & \begin{tabular}{l} 
A parameter of the distribution. If beta \(=1\), GAMMAINV \\
returns the standard gamma distribution.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the gamma distribution.
However, if
- probability \(<0\) or probability \(>1\), \#NUM! is returned.
- alpha \(\leq 0\) or beta \(\leq 0, \#\) NUM! is returned.
- the implementation determines that a return value cannot be computed, \#N/A is returned.
[Example:

GAMMAINV \((0.068,9,2)\) results in 9.997130086
end example]

\subsection*{18.17.7.133 GAMMALN}

Syntax:
GAMMALN ( \(x\) )
Description: Computes the natural logarithm of the gamma function.

\section*{Mathematical Formula:}
\(\operatorname{GAMMALN}=L N(\Gamma(x))\)
where:
\(\Gamma(x)=\int_{0}^{\infty} e^{-u} u^{x-1} d u\)
where:
- \(x=\operatorname{argument} x\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The value for which the gamma function is to be \\
calculated.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The natural logarithm of the gamma function.
However, if \(x \leq 0\), \#NUM! is returned.
[Example:

GAMMALN (4.5) results in 2.453736571
end example]

\subsection*{18.17.7.134 GCD}

Syntax:
GCD ( argument-list )
Description: Computes the greatest common divisor of the one or more numbers, designated by arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & numbers & \begin{tabular}{l} 
The arguments in argument-list designate the values. \\
Each argument is truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The greatest common divisor of one or more numbers.
However, if any argument is negative, \#NUM! is returned.
[Example:

GCD (5) results in 5
\(\operatorname{GCD}(5,2)\) results in 1
\(\operatorname{GCD}(100,50,28)\) results in 2
\(\operatorname{GCD}(24.5,36.3)\) results in 12
\(\operatorname{GCD}(7,1)\) results in 1
\(\operatorname{GCD}(5,0)\) results in 5
end example]

\subsection*{18.17.7.135 GEOMEAN}

\section*{Syntax:}

GEOMEAN ( argument-list )
Description: Computes the geometric mean of an array or range of positive data.

\section*{Mathematical Formula:}
\(G M_{\bar{y}}=\sqrt[n]{y_{1} y_{2} y_{3} \ldots y_{n}}\)
where:
- n is the number of elements in argument-list.
- \(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \cdots, \mathrm{y}_{\mathrm{n}}\) are the values of the n -th element in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, array, or \\
reference to \\
number.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values to be \\
averaged. Logical values and text representations of \\
numbers that entered directly into the list of arguments \\
are included. If an array or reference argument contains \\
text, logical values, or empty cells, those values are \\
ignored; however, cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The geometric mean of an array or range of positive data.
However, if the value of any data point \(\leq 0\), \#NUM! is returned.
[Example:
\(\operatorname{GEOMEAN}(10.5,5.3,2.9)\) results in 5.444454702
GEOMEAN(10.5,\{5.3,2.9\}, "12") results in 6.633780588
end example]

\subsection*{18.17.7.136 GESTEP}

\section*{Syntax:}

GESTEP ( number [, step])
Description: Tests if the value of number is greater than or equal to that of step.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l} 
number is the value to test against step. If step is omitted, \\
zero is used.
\end{tabular} \\
\hline step & number & zer
\end{tabular}

Return Type and Value: number - 1 if number \(\geq\) step; otherwise, 0 .

\section*{[Example:}
\(\operatorname{GESTEP}(5.6,-4.3)\) results in 1
\(\operatorname{GESTEP}(5.6,5.6)\) results in 1
\(\operatorname{GESTEP}(-5.6)\) results in 0

\section*{end example]}

\subsection*{18.17.7.137 GETPIVOTDATA}

\section*{Syntax:}

GETPIVOTDATA ( data-field , pivot-table , field-1 , item-1 [ , field-2 , item-2 [ , ...]])

Description: Retrieves data stored in a PivotTable report. Calculated fields or items and custom calculations are included in GETPIVOTDATA calculations.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline data-field & text & \begin{tabular}{l} 
The name of the data field that contains the data to be \\
retrieved.
\end{tabular} \\
\hline pivot-table & \begin{tabular}{l} 
reference to any \\
cell, range of \\
cells, or named \\
range of cells in a \\
PivotTable report
\end{tabular} & \begin{tabular}{l} 
This information is used to determine which PivotTable \\
report contains the data to be retrieved. If pivot-table is a \\
range that includes two or more PivotTable reports, data \\
shall be retrieved from whichever report was created \\
most recently in the range.
\end{tabular} \\
\hline \begin{tabular}{l} 
field-1 \\
through field- \\
\(n\)
\end{tabular} & text & \begin{tabular}{l} 
Argument pairs field-l and item-l, field-2 and item-2 \\
through field- \(n\) and item- \(n\) are field names and item \\
names that describe the data to be retrieved. The pairs \\
can be in any order. Field names and names for items \\
other than dates/times (which shall be expressed as \\
numbers) and numbers shall be enclosed in quotation \\
marks. For OLAP PivotTable reports, items can contain \\
the source name of the dimension as well as the source \\
name of the item. [Example: A field and item pair for an \\
OLAP PivotTable might look like this: \\
"[Product]", "[Product]. [All \\
Products]. [Foods]. [Baked Goods]" \\
item-1 \\
through item- \\
\(n\)
\end{tabular} \\
text & \begin{tabular}{l} 
end example] If the field and item arguments describe a \\
single cell, the value of that cell is returned regardless of \\
its value.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The data stored in a PivotTable report.

\section*{However, if}
- pivot-table is not a range in which a PivotTable report is found, the return value is unspecified.
- The arguments do not describe a visible field, the return value is unspecified.
- The arguments include a page field that is not displayed, the return value is unspecified.
[Example: Given the following data:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & D & & E \\
\hline 2 & Region & North & & & & & \\
\hline 3 & & & & & & & \\
\hline 4 & \multicolumn{2}{|l|}{Sum of Sales} & Product & & & & \\
\hline 5 & Month & Salesperson & Beverages & \multicolumn{2}{|l|}{Produce} & \multicolumn{2}{|l|}{Grand Total} \\
\hline 6 & \multirow[t]{2}{*}{March} & Buchanan & \$ 3,522 & \$ & 10,201 & & 13,723 \\
\hline 7 & & Davolio & \$ 8,725 & \$ & 7,889 & \$ & 16,614 \\
\hline 8 & \multicolumn{2}{|l|}{March Total} & \$ 12,247 & \$ & 18,090 & \$ & 30,337 \\
\hline 9 & \multirow[t]{2}{*}{April} & Buchanan & \$ 5,594 & \$ & 7,265 & \$ & 12,859 \\
\hline 10 & & Davolio & \$ 5,461 & \$ & 668 & \$ & 6,129 \\
\hline 11 & \multicolumn{2}{|l|}{April Total} & \$ 11,055 & \$ & 7,933 & \$ & 18,988 \\
\hline 12 & \multicolumn{2}{|l|}{Grand Total} & \$ 23,302 & \$ & 26,023 & \$ & 49,325 \\
\hline
\end{tabular}

GETPIVOTDATA("Sales", \$A\$4) returns the grand total of the Sales field, \$49, 325.
GETPIVOTDATA("Sum of Sales",\$A\$4) also returns the grand total of the Sales field, \$49, 325; the field name can be entered exactly as it looks on the sheet, or as its root (without "Sum of," "Count of," and so forth).

GETPIVOTDATA("Sales", \$A\$4, "Month", "March") returns the grand total for March, \$30, 337.
GETPIVOTDATA("Sales", \$A\$4, "Month", "March", "Product", "Produce", "Salesperson", "Buchan an") returns \(\$ 10,201\).

GETPIVOTDATA("Sales", \$A\$4, "Region", "South") is unspecified because the South region data is not visible.

GETPIVOTDATA("Sales", \$A\$4, "Product", "Beverages", "Salesperson", "Davolio") is unspecified because there is no total value of beverage sales for Davolio.
end example]

\subsection*{18.17.7.138 GROWTH}

Syntax:
GROWTH ( known-ys [, [ known-xs ] [ , [ new-xs ][ , const-flag ]] )
Description: Computes predicted exponential growth by using existing data. GROWTH can also fit an exponential curve to existing \(x\)-values and \(y\)-values.

\section*{Arguments:}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline known-ys & array & Set of \(y\)-values already known in the relationship \(y=b^{*} m^{x}\). If the array known-ys is a single column, then each column of known-xs is interpreted as a separate variable. If the array known-ys is a single row, then each row of known-xs is interpreted as a separate variable. \\
\hline known-xs & array & Set of \(x\)-values that might already be know in the relationship \(\mathrm{y}=\mathrm{b}^{*} \mathrm{~m}^{\mathrm{x}}\). The array known-xs can include one or more sets of variables. If only one variable is used, known-ys and known-xs can be ranges of any shape, as long as they have equal dimensions. If more than one variable is used, known-ys shall be a vector (that is, a known-ys with a height of one row or a width of one column). If known-xs is omitted, it is assumed to be the array \(\{1,2,3, \ldots\}\) that is the same size as known-ys. \\
\hline new-xs & array & A set of new \(x\)-values for which GROWTH is to return corresponding \(y\)-values. new-xs shall include a column (or row) for each independent variable, just as known-xs does. So, if known-ys is in a single column, known-xs and new-xs shall have the same number of columns. If known\(y s\) is in a single row, known-xs and new-xs shall have the same number of rows. If new-xs are omitted, it is assumed to be the array \(\{1,2,3, \ldots\}\) that is the same size as known-ys. \\
\hline const-flag & logical & Specifies whether to force the constant b to equal 1. If TRUE or omitted, \(b\) is calculated normally. If FALSE, \(b\) is set equal to 1 and the m -values are adjusted so that \(\mathrm{y}=\) \(\mathrm{m}^{\mathrm{x}}\). \\
\hline
\end{tabular}

Return Type and Value: array - The \(y\)-values for a series of new \(x\)-values.
However, if any of the numbers in known-ys are zero or negative, \#NUM! is returned.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & Month & Units & Formula (corresponding units) \\
\hline 2 & 11 & 33,100 & 32618.20377 \\
\hline 3 & 12 & 47,300 & 47729.42261 \\
\hline 4 & 13 & 69,000 & 69841.30086 \\
\hline 5 & 14 & 102,000 & 102197.0734 \\
\hline 6 & 15 & 150,000 & 149542.4867 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 7 & 16 & 220,000 & 218821.8762 \\
\hline 8 & Month & Formula (Predicted Units) & \\
\hline 9 & 17 & \(320,196.72\) & \\
\hline 10 & 18 & \(468,536.05\) & \\
\hline
\end{tabular}

When GROWTH(A2: B4, A6: B8) is an array formula spanning cells \(\mathrm{C} 2: \mathrm{C7}\), those cells take on the results shown. When GROWTH (A2: B4, A6: B8, A9:A10) is an array formula spanning cells B9:B10, those cells take on the results shown.
end example]

\subsection*{18.17.7.139 HARMEAN}

\section*{Syntax:}

HARMEAN ( argument-list )
Description: Computes the harmonic mean of a data set.

\section*{Mathematical Formula:}
\(\frac{1}{H}=\frac{1}{n} \sum \frac{1}{Y_{i}}\)
where:
- \(n=\) number of elements in argument-list
- \(\mathrm{Y}_{\mathrm{i}}=\) each element in argument-list

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, text, \\
number, name, \\
array, or \\
reference to \\
number.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values to be \\
averaged. Argument values can be numbers, or names, \\
arrays, or references that contain numbers. Logical values \\
and text representations of numbers entered directly into \\
the list of arguments are included. If an array or \\
reference argument contains text, logical values, or \\
empty cells, those values are ignored; however, cells with \\
the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The harmonic mean of a data set.
However, if the value of any data point \(\leq 0\), \#NUM! is returned.

\section*{[Example:}

HARMEAN \((4.6,5.8,8.3,7)\) results in 6.124222
HARMMEAN (10.5,\{5.3,2.9\},"12") results in 5.617360
end example]

\subsection*{18.17.7.140 HEX2BIN}

\section*{Syntax:}

HEX2BIN ( number [, num-bin-digits ] )
Description: Makes the binary equivalent of number, with the result having num-bin-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & text & \begin{tabular}{l} 
A 10-digit hexadecimal number in a string that is to be \\
converted to a binary string. number is not case-sensitive. \\
If number has less than 10 digits, leading zero digits are \\
implied until it has exactly 10 digits. The 10 digits use \\
twos-complement representation with the left-most bit \\
(40th bit from the right) representing the sign bit.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-bin- \\
digits
\end{tabular} & number & \begin{tabular}{l} 
The number of digits in the result, with leading zeros \\
added as necessary. However, if number is negative, num- \\
bin-digits is ignored and the result has 10 digits. If num- \\
bin-digits is omitted, the minimum number of digits is \\
used in the result. \(n u m\)-bin-digits is truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The binary equivalent of number.
However, if
- number is outside the range "FFFFFFFE00" (1111111111111111111111111111111000000000 binary, 512 decimal) to "1FF" ( 0000000000000000000000000000000111111111 binary, 511 decimal), inclusive, \#NUM! is returned.
- number contains one or more non-hexadecimal digits, \#NUM! is returned.
- number contains more than 10 hexadecimal digits, \#NUM! is returned.
- number needs more digits that num-bin-digits, \#NUM! is returned.
- num-bin-digits is negative or \(>10\), \#NUM! is returned.

\section*{[Example:}

HEX2BIN("fE") results in 11111110
HEX2BIN("FFFFFFFFFE") results in 1111111110
HEX2BIN("2") results in 10
HEX2BIN("F",6) results in 001111
end example]

\subsection*{18.17.7.141 HEX2DEC}

Syntax:
HEX2DEC ( number)
Description: Makes the decimal equivalent of number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & string & \begin{tabular}{l} 
A 10-digit hexadecimal number in a string that is to be \\
converted to a decimal number. number is not case- \\
sensitive. If number has less than 10 digits, leading zero \\
digits are implied until it has exactly 10 digits. The
\end{tabular} \\
10 digits use twos-complement representation with the \\
left-most bit (40th bit from the right) representing the \\
sign bit.
\end{tabular}

Return Type and Value: number - The decimal equivalent of number.

However, if
- number contains one or more non-hexadecimal digits, \#NUM! is returned.
- number contains more than 10 hexadecimal digits; that is, number is outside the range " 8000000000 " (-548,755,813,888 decimal) to "7FFFFFFFFF" (548,755,813,887 decimal), inclusive, \#NUM! is returned.
[Example:

HEX2DEC("fE") results in 254
HEX2DEC("FFFFFFFFFE") results in -2
HEX2DEC("F000000000") results in -68719476736
end example]
18.17.7.142 HEX2OCT

\section*{Syntax}

HEX2OCT ( number [, num-oct-digits ] )
Description: Makes the octal equivalent of number, with the result having num-oct-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & text & \begin{tabular}{l} 
A 10-digit hexadecimal number in a string that is to be \\
converted to an octal string. number is not case-sensitive. \\
If number has less than 10 digits, leading zero digits are \\
implied until it has exactly 10 digits. The 10 digits use \\
twos-complement representation with the left-most bit \\
(40th bit from the right) representing the sign bit.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-oct- \\
digits
\end{tabular} & number & \begin{tabular}{l} 
The number of digits in the result, with leading zeros \\
added as necessary. However, if number is negative, num- \\
oct-digits is ignored and the result has 10 digits. If num- \\
oct-digits is omitted, the minimum number of digits is \\
used in the result. num-oct-digits is truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The octal equivalent of number.
However, if
- number is outside the range "FFE0000000" (17774000000000 octal, \(-536,870,912\) decimal) to "1FFFFFFF" ( 00003777777777 octal, \(536,870,911\) decimal), inclusive, \#NUM! is returned.
- number contains one or more non-hexadecimal digits, \#NUM! is returned.
- number contains more than 10 hexadecimal digits, \#NUM! is returned.
- number needs more digits that num-oct-digits, \#NUM! is returned.
- num-oct-digits is negative or \(>10\), \#NUM! is returned.

\section*{[Example:}

HEX2OCT("fE") results in 376
HEX2OCT("FFFFFFFFFE") results in 7777777776
HEX2OCT ("2") results in 2
HEX2OCT("F",6) results in 000017
end example]

\subsection*{18.17.7.143 HLOOKUP}

\section*{Syntax:}

HLOOKUP ( lookup-value , table-array, row-index-num [ , [ range-lookup-flag ]] )

Description: Performs a horizontal search for a value in the top row of a table or an array, noting the column in which the matching value is found. From that column, the value from a given row is returned.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{\begin{tabular}{c}
\multicolumn{1}{c|}{ Description } \\
\hline lookup-value \\
value or \\
reference.
\end{tabular}} \\
\hline table-array & \begin{tabular}{l} 
array, reference, \\
name
\end{tabular} & \begin{tabular}{l} 
The value to be located in the first row of the table. If \\
range-lookup is FALSE and lookup-value is a string, the \\
wildcard characters, question mark (?) and asterisk (*), \\
can be included in lookup-value. A question mark \\
matches any single character; an asterisk matches any \\
sequence of characters. To find a question mark or \\
asterisk, use a tilde ( \(\sim\) before the character.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Designates the table of information to be searched. The \\
values in the first row of table-array can be text, \\
numbers, or logical values. If range-lookup-flag is TRUE, \\
the values in the first row of table-array shall be placed in \\
"ascending order", as follows: ..., -2, -1, 0, 1, 2, ..., A-Z, \\
FALSE, TRUE. If range-lookup-flag is FALSE, table-array's \\
values need not be sorted. Uppercase and lowercase text \\
is treated as equivalent.
\end{tabular} \\
\hline \begin{tabular}{l} 
row-index- \\
num
\end{tabular} & number & \begin{tabular}{l} 
The row number in table-array from which the matching \\
value is to be returned. (A row-index-num of 1 returns the \\
first row value in table-array, a row-index-num of 2 \\
returns the second row value in table-array, and so on.)
\end{tabular} \\
\hline \begin{tabular}{l} 
range- \\
lookup-flag
\end{tabular} & logical & \begin{tabular}{l} 
Specifies whether HLOOKUP is to find an exact or \\
approximate match. If TRUE or omitted, an approximate \\
match is returned. That is, if an exact match is not found, \\
the next largest value that is less than lookup-value is \\
returned. If FALSE, an exact match is performed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The value from a given row number, where the column is determined by a search of the top row looking for a match with a given value.

However, if
- An exact match is performed, but no match is found, \(\# \mathrm{~N} / \mathrm{A}\) is returned.
- row-index-num is less than \(1, \#\) VALUE! is returned.
- row-index-num is greater than the number of rows in table-array, \#REF! is returned.
- lookup-value is smaller than the smallest value in the first row of table-array, \#N/A is returned.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & Axles & Bearings & Bolts \\
\hline 2 & 4 & 6 & 9 \\
\hline 3 & 5 & 7 & 10 \\
\hline 4 & 6 & 8 & 11 \\
\hline
\end{tabular}

HLOOKUP("Axles", A1: C4, 2, TRUE) results in 4
HLOOKUP("Bearings", A1:C4, 3, FALSE) results in 7
HLOOKUP ("B", A1:C4, 3, TRUE) results in 5
HLOOKUP("Bolts", A1:C4,4) results in 11
HLOOKUP(3, \{1, 2, 3;"a", "b", "c";"d","e", "f"\}, 2, TRUE) results in c

\section*{end example]}

\subsection*{18.17.7.144 HOUR}

\section*{Syntax:}

HOUR ( time-value )
Description: Computes the hour for the date and/or time having the given time-value.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline time-value & number & \begin{tabular}{l} 
The date and/or time whose hour is to be computed. \\
That date and/or time shall be expressed either as a \\
serial date-time, in which case, its integer part is ignored, \\
or as a string-constant having any date and/or time \\
format, in which case, any date information shall be \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The hour for the date and/or time having the given time-value. The returned value shall be in the range \(0-23\).

However, if time-value is out of range for the current date system, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{HOUR}(\operatorname{DATE}(2006,2,26)+\operatorname{TIME}(2,10,20))\) results in 2
\(\operatorname{HOUR}(\operatorname{TIME}(22,56,34))\) results in 22
HOUR ( 0 ) results in 0 , since serial date-time 0 represents 00:00:00
\(\operatorname{HOUR}(10.5)\) results in 12 , since serial date-time .5 represents 12:00:00

HOUR("22-Oct-2001 10:53:12") results in 10
HOUR("10:53:12 pm") results in 22
HOUR("22:53:12") results in 22
end example]

\subsection*{18.17.7.145 HYPERLINK}

\section*{Syntax:}

HYPERLINK ( link-location [ , [ friendly-name ]] )
Description: Creates a shortcut that opens a document stored on a network server, an intranet, or the Internet. When the cell that contains the HYPERLINK function call is clicked, the file stored at link-location is opened.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline link-location & text & \begin{tabular}{l} 
The location to be opened as text. link-location can refer \\
to a place in a document-such as a specific cell or \\
named range in a SpreadsheetML worksheet or \\
workbook, or to a bookmark in a WordprocessingML \\
document. The link-location can be to a location on a \\
local hard disk drive, the path to a location on a server or \\
a Uniform Resource Locator (URL) to a location on the \\
Internet or an intranet. [Note: Using a URL is the \\
preferred way of specifying link-location. end note] \\
If the location specified in link-location does not exist or \\
cannot be navigated, an unspecified error is produced \\
when the cell is clicked. link-location can be a string or a \\
reference to a cell containing a string.
\end{tabular} \\
\hline friendly-name & \begin{tabular}{l} 
text, number, \\
name
\end{tabular} & \begin{tabular}{l} 
The value that is displayed in the cell. If omitted, the cell \\
displays link-location. friendly-name can be a value, a text \\
string, a name, or a cell that contains the jump text or \\
value. If the evaluation of friendly-name results in an \\
error value, the cell displays that error value rather than \\
the jump text.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The value of friendly-name, if it is specified; otherwise, the value of link-location.

\section*{[Example:}

HYPERLINK("http://example.openxmlformats.org/report/budget report.xls","Click for report"), which opens a worksheet named "budget report.xls" that is stored on the Internet at the location example.openxmlformats.org/report, and displays the text "Click for report".

HYPERLINK ("D: \FINANCE \(\backslash 1\) stqtr.xls", H10), which opens the file 1stqtr.xls that is stored in a directory named Finance on drive D , and displays the numeric value stored in cell H 10 .

\section*{end example]}

\subsection*{18.17.7.146 HYPGEOMDIST}

\section*{Syntax:}

HYPGEOMDIST ( sample-successes , number-sample , population-successes , number-population )
Description: Computes the hypergeometric distribution; that is, the probability of a given number of sample successes, given the sample size, population successes, and population size.

\section*{Mathematical Formula:}
\(P(X=x)=h(x, n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}\)
where:
- \(M=\) population-successes argument
- \(N=\) number-population argument
- \(x=\) sample-successes argument
- \(n=\) number-sample argument

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
sample- \\
successes
\end{tabular} & number & \begin{tabular}{l} 
The number of successes in the sample, truncated to \\
integer.
\end{tabular} \\
\hline \begin{tabular}{l} 
number- \\
sample
\end{tabular} & number & The size of the sample, truncated to integer. \\
\hline \begin{tabular}{l} 
population- \\
successes
\end{tabular} & number & \begin{tabular}{l} 
The number of successes in the population, truncated to \\
integer.
\end{tabular} \\
\hline \begin{tabular}{l} 
number- \\
population
\end{tabular} & number & The population size, truncated to integer. \\
\hline
\end{tabular}

Return Type and Value: number - The hypergeometric distribution.
However, if
- sample-successes \(<0\) or sample-successes is greater than the lesser of number-sample and populationsuccesses, \#NUM! is returned.
- sample-successes is less than the larger of 0 or (number-sample - number-population + populationsuccesses), \#NUM! is returned.
- number-sample \(\leq 0\) or number-sample \(>\) number-population, \#NUM! is returned.
- population-successes \(\leq 0\) or population-successes \(>\) number-population, \#NUM! is returned.
- number-population \(\leq 0, \# N U M!\) is returned.

\section*{[Example:}

HYPGEOMDIST( \(1,4,8,20\) ) results in 0.363261
end example]
18.17.7.147 IF

Syntax:
IF ( logical-value , [ value-if-true ][, [ value-if-false ]] )
Description: Tests logical-value, and if it is TRUE, value-if-true is evaluated and returned; otherwise, value-iffalse is evaluated and returned.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline logical-value & logical & The value to be tested. \\
\hline value-if-true & any & \begin{tabular}{l} 
The value returned if logical-value is TRUE. If logical- \\
value is TRUE and value-if-true is omitted, this argument \\
evaluates to 0. value-if-true can contain up to seven \\
levels of nested IF function calls. [Note: value-if-true and \\
value-if-false need not evaluate to results of the same \\
type. end note]
\end{tabular} \\
\hline value-if-false & any & \begin{tabular}{l} 
The value returned if logical-value is FALSE. If logical- \\
value is FALSE and value-if-false and its preceding \\
comma is omitted, this argument evaluates to FALSE. If \\
logical-value is FALSE and value-if-false is omitted, but \\
its preceding comma is present, this argument evaluates \\
to 0. value-if-false can contain at least seven levels of \\
nested IF function calls. [Note: value-if-true and value-if- \\
false need not evaluate to results of the same type. end \\
note]
\end{tabular} \\
\hline
\end{tabular}

If any argument is an array, every element of that array shall be evaluated when that argument is evaluated.
Return Type and Value: any - value-if-true, if logical-value is TRUE; otherwise, value-if-false.

\section*{[Example:}

IF (10>5, "Yes", "No") results in Yes
IF (10>5, "Yes") results in Yes
IF (10>5, "Yes", ) results in Yes
IF ( \(10<5\), "Yes") results in FALSE
IF ( \(10<5\), "Yes", ) results in 0
IF ( \(10>5\), , "No" ) results in 0
\(\operatorname{IF}(10>5,\),\() results in 0\)
IF (10>5, "Yes", 20) results in Yes
IF (10<5, "Yes", 20) results in 20
end example]

\subsection*{18.17.7.148 IFERROR}

\section*{Syntax:}

IFERROR (value , value-if-error )
Description: Provides a simpler and more efficient way of trapping and handling errors. It allows the generation of user-defined error text for a function call that can result in an error.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{\begin{tabular}{c}
\multicolumn{1}{c|}{ Description } \\
\hline value \\
any
\end{tabular} \begin{tabular}{l} 
The value that is checked for an error (i.e., any of the \\
following: \#N/A, \#VALUE!, \#REF!, \#DIV/0!, \#NUM!, \\
\#NAME?, or \#NULL!). If value is an empty cell, it is \\
treated as an empty string.
\end{tabular}} \\
\hline value-if-error & any & \begin{tabular}{l} 
The value to return if value evaluates to an error. If value- \\
if-error is an empty cell, it is treated as an empty string.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - value, if value is not an error; otherwise, value-if-error. If value is an array formula, an array of results for each cell in the range specified in value, is returned.
[Example: Consider the case in which A3 contains 55, and B3 contains 0 :

A3/B3 results in \#DIV/0
IFERROR(A3/B3,"Error in calculation") results in Error in calculation end example]

\subsection*{18.17.7.149 IMABS}

\section*{Syntax:}

IMABS ( complex-number )
Description: Computes the absolute value of complex-number.

\section*{Mathematical Formula:}
\(\operatorname{IMABS}(z)=|z|=\sqrt{x^{2}+y^{2}}\)
where:
- \(\mathrm{z}=\) argument complex-number, expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the absolute value is \\
being computed. complex-number shall be in \(x+y i\) or \\
\(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The absolute value of complex-number.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMABS(" \(3+4 \mathrm{i}\) ") results in 5
IMABS("-2.5-34.6j") results in 34.69020035
end example]

\subsection*{18.17.7.150 IMAGINARY}

Syntax:
IMAGINARY ( complex-number )
Description: Computes the imaginary coefficient of complex-number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the imaginary coefficient \\
is being computed. complex-number shall be in \(x+y i\) or \\
\(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The imaginary coefficient of complex-number.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMAGINARY("3+4i") results in 4
IMAGINARY("-2.5-34.6j") results in 34.6
end example]

\subsection*{18.17.7.151 IMARGUMENT}

Syntax:
IMARGUMENT ( complex-number )
Description: Computes the argument \(\theta\), an angle expressed in radians, such that for a complex number complexnumber having the form \(x+y i\) :
\(x+y i=|x+y i| \times e^{\theta}=|x+y i|(\cos \theta+i \sin \not \theta)\)

\section*{Mathematical Formula:}
\(\operatorname{IMARGUMENT}(z)=\tan ^{-1}\left(\frac{y}{x}\right)=\theta\)
where:
- \(\theta \in(-\pi ; \pi]\)
- \(\mathrm{z}=\) argument complex-number, expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & The complex number in \(x+y i\) or \(x+y j\) text format. \\
\hline
\end{tabular}

Return Type and Value: number - The angle \(\theta\), expressed in radians.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMARGUMENT("13+4i") results in 0. 298498932
IMARGUMENT("-2.5-5j") results in -2.034443936
end example]

\subsection*{18.17.7.152 IMCONJUGATE}

\section*{Syntax:}

IMCONJUGATE ( complex-number )
Description: Computes the complex conjugate of the complex number complex-number.

\section*{Mathematical Formula:}
\(\operatorname{ICONJUGATE}(x+y i)=\bar{z}=(x-y i)\)
where:
- \(\overline{\mathrm{z}}=\) conjugate of the argument complex-number, expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the complex conjugate is \\
being computed. complex-number shall be in \(x+y i\) or \\
\(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the complex conjugate of complex-number, in \(x+y i\) or \(x+y j\) text format.

However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMCONJUGATE("2.3+4.5i") results in 2.3-4.5i
IMCONJUGATE (" \(-1-4 \mathrm{j}\) ") results in \(-1+4 j\)
end example]

\subsection*{18.17.7.153 IMCOS}

\section*{Syntax:}

IMCOS ( complex-number)
Description: Computes the cosine of the complex number complex-number.

\section*{Mathematical Formula:}
\(\cos (x+y i)=\cos (x) \cosh (y)-\sin (x) \sinh (y) i\)
where:
- the argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the cosine is being \\
computed. complex-number shall be in \(x+y i\) or \(x+y j\) text \\
format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the cosine of complex-number, in \(x+y i\) or \(x+y j\) text format.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:
IMCOS("2.3+4.5i") results in -29.9918288739746-33.5589799796873i
IMCOS("-1-4j") results in 14.7547011704838-22.963673499193j

\section*{end example]}

\subsection*{18.17.7.154 IMDIV}

\section*{Syntax:}

IMDIV ( complex-number-1 , complex-number-2 )
Description: Computes the quotient from dividing two complex numbers.

\section*{Mathematical Formula:}
\(\operatorname{IMDIV}\left(z_{1}, z_{2}\right)=\frac{(a+b i)}{(c+d i)}=\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}\)
where:
- \(\mathrm{z}_{1}=\) argument complex-number- 1 expressed in the form of \(\mathrm{a}+\mathrm{bi}\)
- \(\mathrm{z}_{2}=\) argument complex-number- 2 expressed in the form of \(\mathrm{c}+\mathrm{di}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number-
\end{tabular} & text & \begin{tabular}{l} 
Complex numbers in \(x+y i\) or \(x+y j\) text format; they \\
designate the dividend and divisor, respectively.
\end{tabular} \\
\cline { 1 - 1 } \begin{tabular}{l} 
complex- \\
number- 2
\end{tabular} & text & \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the quotient from number-1 / number-2, in \(x+y i\) or \(x+y j\) text format.

However, if complex-number-1 or complex-number- 2 is ill-formed, \#NUM! is returned.
[Example:

IMDIV("13+4i"," \(5+3 i\) ") results in 2.26470588235294-0.558823529411765i
IMDIV("-3-3.5i", "5+3i") results in -0.75-0.25i
end example]

\subsection*{18.17.7.155 IMEXP}

\section*{Syntax:}

IMEXP ( complex-number )
Description: Computes the exponential of the complex number complex-number.

\section*{Mathematical Formula:}
\(\operatorname{IMEXP}(\quad)=e^{(x+y i)}=e^{x} e^{y i}=e^{x}(\cos y+i \sin y)\)
where:
- \(\mathrm{z}=\) the argument complex-number, expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the exponential is being \\
computed. complex-number shall be in \(x+y i\) or \(x+y j\) text \\
format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the exponential of complex-number, in \(x+y i\) or \(x+y j\) text format.

However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMEXP("2.3+4.5i") results in -2.10251576423113-9.75006374866818i
IMEXP("-1-4j") results in \(-0.240462049968584+0.278412079051034 j\)
end example]

\subsection*{18.17.7.156 IMLN}

\section*{Syntax:}

IMLN ( complex-number)
Description: Computes the natural logarithm of complex-number.

\section*{Mathematical Formula:}
\(\ln (x+y i)=\ln \sqrt{x^{2}+y^{2}}+i \tan ^{-1}\left(\frac{y}{x}\right)\)
where:
- the argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the natural logarithm is \\
being computed. complex-number shall be in \(x+y i\) or \\
\(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The natural logarithm of complex-number, in \(x+y i\) or \(x+y j\) text format.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMLN("3+4i") results in 1.6094379124341+0.927295218001612i
IMLN("-2.5-34.6j") results in 3.54645723627033-1.64292531532225j
end example]
18.17.7.157 IMLOG10

Syntax:
IMLOG10 ( complex-number )
Description: Computes the base-10 logarithm of complex-number.

\section*{Mathematical Formula:}

The common logarithm of a complex number can be calculated from the natural logarithm as follows:
\(\log _{10}(x+y i)=\left(\log _{10} e\right) \ln (x+y i)\)
where:
- the argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the base-10 logarithm is \\
being computed. complex-number shall be in \(x+y i\) or \\
\(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The base-10 logarithm of complex-number, in \(x+y i\) or \(x+y j\) text format.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:
IMLOG10("3+4i") results in 10.698970004336019+0.402719196273373i
IMLOG10("-2.5-34.6j") results in 11.54020680801806-0.713513398623614j
end example]

\subsection*{18.17.7.158 IMLOG2}

\section*{Syntax:}

IMLOG2 ( complex-number )
Description: Computes the base-2 logarithm of complex-number.

\section*{Mathematical Formula:}

The base-2 logarithm of a complex number can be calculated from the natural logarithm as follows:
\(\log _{2}(x+y i)=\left(\log _{2} e\right) \ln (x+y i)\)
where:
- the argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the base-2 logarithm is \\
being computed. complex-number shall be in \(x+y i\) or
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & Type & \multicolumn{1}{c|}{ Description } \\
\hline & & \(x+y j\) text format. \\
\hline
\end{tabular}

Return Type and Value: text - The base- 2 logarithm of complex-number, in \(x+y i\) or \(x+y j\) text format.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMLOG2("3+4i") results in 2.32192809506607+1.33780421255394i
IMLOG2("-2.5-34.6j") results in 5.11645626788577-2.37024020514877j
end example]

\subsection*{18.17.7.159 IMPOWER}

Syntax:
IMPOWER (complex-number , y )
Description: Computes the complex number complex-number raised to the power \(y\).
Mathematical Formula:
\((x+y i)^{n}=r^{n} e^{i n \theta}=r^{n} \cos \theta+i r^{n} \sin n\)
where:
\(r=\sqrt{x^{2}+y^{2}}\)
and:
\(=\tan ^{-1}\left(\frac{y}{x}\right)\)
and:
\(\theta \in(-\pi ; \pi]\)
where:
- argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)
- \(n=\operatorname{argument} y\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & The complex number in \(x+y i\) or \(x+y j\) text format. \\
\hline\(y\) & number & The exponent to which complex-number is to be raised. \\
\hline
\end{tabular}

Return Type and Value: text - A string containing complex-number \({ }^{y}\), in \(x+y i\) or \(x+y j\) text format.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMPOWER("2.3+4.5i",2.5) results in \(-52.9752689709953+22.138528463954 i\)
IMPOWER("-1-4j",-3.56) results in \(6.34818926783845 \mathrm{E}-003+1.16156377299512 \mathrm{E}-003 \mathrm{j}\)
end example]

\subsection*{18.17.7.160 IMPRODUCT}

Syntax:
IMPRODUCT ( argument-list )
Description: Multiplies the values of its complex number arguments.

\section*{Mathematical Formula:}
\((a+b i)(c+d i)=(a c-b d)+(a d+b c) i\)
where:
- Each element of argument-list is a complex number expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & text & \begin{tabular}{l} 
Each argument in argument-list is a complex number \\
string in \(x+y i\) or \(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the product of the values of its arguments, in \(x+y i\) or \(x+y j\) text format.

However, if any argument in argument-list is ill-formed, \#NUM! is returned.
[Example:

IMPRODUCT("13+4i") results in \(13+4 i\)
IMPRODUCT("-3-3.5i", " \(5+3 \mathrm{i}\) ") results in \(-4.5-26.5 \mathrm{i}\)
IMPRODUCT("1.3-2j","-3.4+3j","2.3-6j") results in 67.834+15.13j
end example]

\subsection*{18.17.7.161 IMREAL}

\section*{Syntax:}

IMREAL ( complex-number )
Description: Computes the real coefficient of complex-number.
where:
- argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the real coefficient is \\
being computed. complex-number shall be in \(x+y i\) or \\
\(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The real coefficient of complex-number.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMREAL("3+4i") results in 3
IMREAL("-2.5-34.6j") results in -2.5
end example]

\subsection*{18.17.7.162 IMSIN}

\section*{Syntax:}

IMSIN ( complex-number )
Description: Computes the sine of the complex number complex-number.

\section*{Mathematical Formula:}
\(\sin (x+y i)=\sin (x) \cosh (y)-\cos (x) \sinh (y) i\)
where:
- argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the sine is being \\
computed. complex-number shall be in \(x+y i\) or \(x+y j\) text \\
format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the sine of complex-number, in \(x+y i\) or \(x+y j\) text format. However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMSIN("2.3+4.5i") results in 33.567264016308-29.9844272159606i
IMSIN("-1-4j") results in -22.9790855778861-14.7448051885587j
end example]

\subsection*{18.17.7.163 IMSQRT}

\section*{Syntax:}

IMSQRT ( complex-number )
Description: Computes the square root of the complex number complex-number.
Mathematical Formula:
\(\sqrt{x+y i}=\sqrt{r} \cos \left(\frac{\theta}{2}\right)+i \sqrt{r} \sin \left(\frac{\theta}{2}\right)\)
where:
\(r=\sqrt{x^{2}+y^{2}}\)
and:
\(\theta=\tan ^{-1}\left(\frac{y}{x}\right)\)
and:
\(\theta \in(-\pi ; \pi]\)
where:
- argument complex-number is expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number
\end{tabular} & text & \begin{tabular}{l} 
The complex number for which the square root is being \\
computed. complex-number shall be in \(x+y i\) or \(x+y j\) text \\
format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the square root of complex-number, in \(x+y i\) or \(x+y j\) text format.
However, if complex-number is ill-formed, \#NUM! is returned.
[Example:

IMSQRT("2.3+4.5i") results in \(1.91751290835255+1.17339496918073 i\)
IMSQRT("-1-4j") results in 1.24962106768765-1.60048518044024j
end example]

\subsection*{18.17.7.164 IMSUB}

\section*{Syntax:}

IMSUB ( complex-number-1 , complex-number-2 )
Description: Computes the difference of two complex numbers.

\section*{Mathematical Formula:}
\((a+b i)-(c+d i)=(a-c)+(b-d) i\)
\((a+b i)-(c+d i)=(a-c)+(b-d) i\)
where:
- argument complex-number- 1 is expressed in the form a + bi
- argument complex-number- 2 is expressed in the form \(\mathrm{c}+\mathrm{di}\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
complex- \\
number- 1
\end{tabular} & text & \begin{tabular}{l} 
Complex numbers in \(x+y i\) or \(x+y j\) text format; they \\
designate the minuend and subtrahend, respectively.
\end{tabular} \\
\hline complex- & text & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline number-2 & & \\
\hline
\end{tabular}

Return Type and Value: text - A string containing number-1-number-2, in \(x+y i\) or \(x+y j\) text format.
However, if complex-number-1 or complex-number-2 is ill-formed, \#NUM! is returned.
[Example:
IMSUB(" \(13+4 \mathrm{i}\) ", " \(5+3 \mathrm{i}\) ") results in \(8+i\)
IMSUB("-3-3.5i","5+3i") results in -8-6.5i
end example]

\subsection*{18.17.7.165 IMSUM}

\section*{Syntax:}

IMSUM ( argument-list )
Description: Adds the values of its arguments.

\section*{Mathematical Formula:}
\((a+b i)+(c+d i)=(a+c)+(b+d) i\)
where:
- Each element of argument-list is a complex number expressed in the form \(\mathrm{x}+\mathrm{yi}\)

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & text & \begin{tabular}{l} 
Each argument in argument-list is a complex number \\
string in \(x+y i\) or \(x+y j\) text format.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The sum of the values of its arguments, in \(x+y i\) or \(x+y j\) text format. However, if any argument in argument-list is ill-formed, \#NUM! is returned.
[Example:

IMSUM( \(3+4 \mathrm{i}\) ") results in \(3+4 i\)
IMSUM(" \(3+4 \mathrm{i}\) ", " \(5-3 \mathrm{i}\) ") results in \(8+\mathrm{i}\)
end example]
18.17.7.166 INDEX

\section*{Syntax:}
array form: INDEX ( array , [ row-number ] [ , [ column-number ]] )
reference form: INDEX ( reference [ , [ row-number ] [ , [ column-number ] [ , [ area-number ]]]] )
Description: Locates a value or the reference to a value from within a table or range. There are two forms of the INDEX function: the array form and the reference form.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & \begin{tabular}{l} 
Table or range to be searched. If array contains only one \\
row, the corresponding row-number argument is \\
optional. If array contains only one column, the \\
corresponding column-number argument is optional.
\end{tabular} \\
\hline reference & reference & \begin{tabular}{l} 
A reference to one or more cell ranges. If each area \\
(§18.17.2.3) in reference contains only one row, row- \\
number is optional. If each area contains only one \\
column, column-number is optional.
\end{tabular} \\
\hline row-number & number & \begin{tabular}{l} 
row-number indicates the row in array (or reference) \\
from which to return a value (or reference). If row- \\
number is omitted, column-number shall be present. \\
column-number indicates the column in array (or \\
reference) from which to return a value (or reference). If \\
column-number is omitted, row-number shall be present. \\
If both the row-number and column-number arguments \\
are used, INDEX returns the value (or reference) in the \\
number \\
cell at the intersection of row-number and column- \\
number. If array has more than one row and more than \\
one column, and only row-number or column-number is \\
used, INDEX returns an array of the entire row or column \\
in array. If row-number or column-number, but not both, \\
is 0, INDEX returns the array of values for the entire \\
column or row, respectively. In the reference form, if \\
row-number and column-number are both omitted, \\
INDEX returns the area in reference specified by area- \\
number.
\end{tabular} \\
\hline number & &
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & [Example: If reference describes the cells (A1: B4, \\
& & D1:E4, G1:H4), then area-number 1 is the range \\
& & A1:B4, area-number 2 is the range D1:E4, and area- \\
& & number 3 is the range G1:H4. end example] \\
\hline
\end{tabular}

Return Type and Value: various - For the array form, returns a single value, a whole row, or a whole column from a table or an array, depending on the presence and values of the row and column number indexes.

For the reference form, returns a single reference, a whole row, or a whole column from a reference, depending on the presence and values of the row and column number indexes, and the area number.

However, for the array form
- row-number is outside the bounds of array, \#REF! is returned.
- column-number is outside the bounds of array, \#REF! is returned.

For the reference form
- row-number is outside the bounds of reference, \#REF! is returned.
- column-number is outside the bounds of reference, \#REF! is returned.
- area-number is outside the bounds of reference, \#REF! is returned.
[Example:
INDEX(\{"Apples", "Lemons";"Bananas", "Pears"\}, 2, 2) results in Pears
INDEX(\{"Apples", "Lemons";"Bananas", "Pears"\}, 2,1) results in Bananas
INDEX(\{"Apples", "Lemons"\}, , 2) results in Lemons
INDEX(\{"Apples";"Bananas"\},1) results in Apples
Given the following data:
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & Fruit & Price & Count \\
\hline 2 & Apples & 0.69 & 40 \\
\hline 3 & Bananas & 0.34 & 38 \\
\hline 4 & Lemons & 0.55 & 15 \\
\hline 5 & Oranges & 0.25 & 25 \\
\hline 6 & Pears & 0.59 & 40 \\
\hline 7 & Almonds & 2.8 & 10 \\
\hline
\end{tabular}

INDEX(A2:C7, 2, 3) results in 38
INDEX((A2: C4, A6:C7) , 2, 2, 2) results in 2.8
INDEX((A2:C4, A6:C7) , \(2,2,1\) ) results in 0.34
end example]

\subsection*{18.17.7.167 INDIRECT}

\section*{Syntax:}

INDIRECT ( ref-text [ , [ A1-ref-style-flag ]] )
Description: Locates the reference specified by ref-text and evaluates that reference to get to its underlying value. [Note: This function should be used when the reference to a cell within a formula is to be changed without changing the formula itself. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline ref-text & \begin{tabular}{l} 
An A1-style \\
reference, an \\
R1C1-style \\
reference, a \\
name defined as \\
a reference, or a \\
reference to a \\
cell as a string.
\end{tabular} & \begin{tabular}{l} 
If ref-text refers to another workbook (i.e., it's an external \\
reference), that other workbook shall be open.
\end{tabular} \\
\hline \begin{tabular}{l} 
A1-ref-style- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Specifies the kind of reference that is contained in the \\
cell ref-text. If TRUE or omitted, ref-text is interpreted as \\
an A1-style reference (\$18.17.2.3.1); otherwise, ref-text is \\
interpreted as an R1C1-style reference (\$18.17.2.3.2).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The underlying value of the location referred to by ref-text.
However, if
- ref-text is not a cell reference, \#REF! is returned.
- ref-text refers to another workbook yet that other workbook is not currently open, the return value is unspecified.
- ref-text is a name, then the content of the named expression can have implementation-defined constraints.
[Example:

Given the following data:
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Data & Data \\
\hline 2 & B2 & 1.333 \\
\hline 3 & B3 & 45 \\
\hline 4 & George & 10 \\
\hline 5 & 5 & 62 \\
\hline
\end{tabular}
where \(A 2\) contains a reference to \(B 2, A 3\) contains a reference to \(B 3, A 4\) contains the defined name George that refers to \(B 4\), and \(A 5\) contains the row number of \(B 5\) :

INDIRECT (\$A\$2) results in 1.333
INDIRECT (\$A\$3) results in 45
INDIRECT (\$A\$4) results in 10
INDIRECT ("B"\&\$A\$5) results in 62
INDIRECT("R[-1]C", FALSE) uses the cell in the previous row and current column.
end example]

\subsection*{18.17.7.168 INFO}

\section*{Syntax:}

INFO ( category )
Description: Retrieves the operating environment value that corresponds to category.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline category & text & \begin{tabular}{l} 
The string designated by category is not case-sensitive. \\
The permitted strings are shown in the table below.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ category } & \multicolumn{1}{c|}{ Meaning } & \multicolumn{1}{c|}{ Result Type } \\
\hline "directory" & Path of the current directory or folder. & text \\
\hline "memavail" & Amount of memory available, in bytes. & number \\
\hline "memused" & Amount of memory being used for data. & number \\
\hline "numfile" & Number of active worksheets in the open workbooks. & number \\
\hline "origin" & \begin{tabular}{l} 
The absolute cell reference of the top and leftmost cell visible in \\
the window, based on the current scrolling position, prefixed \\
with "\$A:". [Example: Using cell D9 as an example, the return \\
value would be \$A:\$D\$9. end example]
\end{tabular} & text \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ category } & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Result Type } \\
\hline "osversion" & Current operating system version. & text \\
\hline "recalc" & Current recalculation mode: "Automatic" or "Manual" & text \\
\hline "release" & Version of the implementation. & text \\
\hline "system" & Name of the operating environment. & text \\
\hline "totmem" & \begin{tabular}{l} 
Total memory available, including memory already in use, in \\
bytes.
\end{tabular} & number \\
\hline
\end{tabular}

Return Type and Value: text - The operating environment value that corresponds to category.
However, if category is not one of the values defined above, \#VALUE! is returned.
[Example:

INFO("directory") might result in e: \My Documents \(\backslash\)
INFO(A10) might result in e: \(\backslash\) My Documents \(\backslash\), where A10 contains directory
INFO("memavail") might result in 1048576
INFO("memused") might result in 1474464
INFO("numfile") might result in 5
INFO("origin") might result in \$A:\$C\$536
INFO("osversion") might result in Windows (32-bit) NT 5.01
INFO("recalc") might result in Automatic
INFO("release") might result in 11.0
INFO("system") might result in pcdos
INFO("totmem") might result in 2523040
end example]

\subsection*{18.17.7.169 INT}

Syntax:
INT ( \(x\) )
Description: Computes \(x\) rounded down to an integer.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded down. \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-down value of \(x\).
[Example:

INT (8.9) results in 8
INT (-8.9) results in -9
end example]

\subsection*{18.17.7.170 INTERCEPT}

Syntax:
INTERCEPT (known-ys , known-xs )
Description: Computes the point at which a line intersects the \(y\)-axis by using existing \(x\)-values and \(y\)-values. The intercept point is based on a best-fit regression line plotted through the known \(x\)-values and known \(y\)-values.

\section*{Mathematical Formula:}

The equation for the intercept of the regression line, \(a\), is:
\(a=\bar{y}-b \bar{x}\)
where the slope, \(b\), is calculated as:
\(b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (known-xs)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (known-ys)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline known-ys & \begin{tabular}{l} 
number, name, \\
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
The dependent set of observations or data. If an array or \\
reference argument contains text, logical values, or \\
empty cells, those values are ignored; however, cells with \\
the value 0 are included.
\end{tabular} \\
\hline known-xs & \begin{tabular}{l} 
number, name, \\
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
The independent set of observations or data. If an array \\
or reference argument contains text, logical values, or \\
empty cells, those values are ignored; however, cells with \\
the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The point at which a line intersects the \(y\)-axis by using existing \(x\)-values and \(y\) values.

However, if
- known-ys and known-xs contain a different number of data points, the return value is unspecified.
- known-ys or known-xs contain no data points, the return value is unspecified.

\section*{[Example:}

INTERCEPT \((\{2,3,9,1,8\},\{6,5,11,7,5\})\) results in 0.048387097
end example]

\subsection*{18.17.7.171 INTRATE}

\section*{Syntax:}

INTRATE ( settlement , maturity , investment, redemption [, [ basis ]])
Description: Computes the interest rate for a fully invested security.

\section*{Mathematical Formula:}

INTRATE \(=\frac{\text { redemption }- \text { nvestment }}{\text { investment }} \times \frac{B}{\text { DIM }}\)
where:
- \(B=\) number of days in a year, depending on the year basis
- \(D I M=\) number of days from settlement to maturity.
- investment \(=\) argument investment
- redemption \(=\) argument redemption

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline maturity & number & The security's maturity date. \\
\hline investment & number & The amount invested in the security. \\
\hline redemption & number & \begin{tabular}{l} 
The amount to be received at maturity.he security's \\
annual yield.
\end{tabular} \\
\hline basis & number & \begin{tabular}{l} 
The truncated integer type of day count basis to use, as \\
follows:
\end{tabular} \\
\hline \multicolumn{2}{|c|}{ Value } & Day Count Basis \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|l|}{Description} \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 days. \\
\hline & & 2 & Actual/360. Similar to Basis 1, but only has 360 days per year. \\
\hline & & 3 & Actual/365. Similar to Basis 1, but always has 365 days per year. \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The interest rate for a fully invested security.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- investment or redemption \(\leq 0, \# N U M!\) is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}

INTRATE (DATE (2008, 2, 15) , \(\operatorname{DATE}(2008,5,15), 1000000,1014420,2)\) results in \(5.7680 \%\)
end example]

\subsection*{18.17.7.172 IPMT}

\section*{Syntax:}

IPMT (rate , per, nper , pv , [ fv ] [ , [ type ]] )
Description: Computes the interest payment for a given period for an investment based on periodic, constant payments and a constant interest rate.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The interest rate.} \\
\hline per & number & \multicolumn{2}{|l|}{The period for which the interest is to be found, and shal be in the range 1-nper.} \\
\hline nper & number & \multicolumn{2}{|l|}{The total number of payment periods in an annuity.} \\
\hline \(p v\) & number & \multicolumn{2}{|l|}{The present value, or the lump-sum amount that a series of future payments is worth right now.} \\
\hline fv & number & \multicolumn{2}{|l|}{The future value, or a cash balance to be attained after the last payment is made. If omitted, it is assumed to be 0 (i.e., the future value of a loan, for example, is 0 ).} \\
\hline \multirow[t]{4}{*}{type} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The timing of the payment, truncated to integer, as follows:} \\
\hline & & Value & Timing \\
\hline & & 0 & Payment at the end of the period \\
\hline & & 1 & Payment at the beginning of the period \\
\hline
\end{tabular}

Arguments representing cash paid by investor shall be expressed as negative numbers; arguments representing cash received by the investor shall be expressed as positive numbers.

Return Type and Value: number - The interest payment for a given period for an investment based on periodic, constant payments and a constant interest rate.

However, if type is any number other than 0 or 1, \#NUM! is returned.
[Example:
\(\operatorname{IPMT}(0.1 / 12,1 * 3,3,8000)\) results in -22.41
\(\operatorname{IPMT}(0.1,3,3,8000)\) results in -292.45

\section*{end example]}

\subsection*{18.17.7.173 IRR}

IRR ( values [, [ guess ]] )
Description: Computes the internal rate of return for a series of cash flows represented by the numbers in values. (These cash flows do not have to be even, as they would be for an annuity. However, the cash flows shall occur at regular intervals, such as monthly or annually. The internal rate of return is the interest rate received for an investment consisting of payments (negative values) and income (positive values) that occur at regular periods.)

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline values & \begin{tabular}{l} 
array, reference, \\
text, logical
\end{tabular} & \begin{tabular}{l} 
The set of numbers for which the internal rate of return is \\
to be calculated. values shall contain at least one positive \\
value and one negative value to calculate the internal \\
rate of return. The order of numbers in values is \\
significant, so be sure payment and income numbers are \\
in the desired sequence. If values contains elements that \\
are text, logical values, or empty cells, those elements \\
are ignored.
\end{tabular} \\
\hline guess & number & \begin{tabular}{l} 
An estimate of the result of IRR. If omitted, it is assumed \\
to be 0.1 (i.e., 10 percent).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The internal rate of return for a series of cash flows.
However, if the implementation determines that a return value cannot be computed, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{IRR}(\{-70000,12000,15000,18000,21000\})\) results in \(-2.1245 \%\)
\(\operatorname{IRR}(\{-70000,12000,15000,18000,21000,26000\})\) results in \(8.6631 \%\)
\(\operatorname{IRR}(\{-70000,12000,15000\},-0.1)\) results in \(-44.3507 \%\)
end example]

\subsection*{18.17.7.174 ISBLANK}

\section*{Syntax:}

ISBLANK ( value )

Description: Determines if value refers to an empty cell.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value refers to an empty cell; otherwise, FALSE.
[Example:

ISBLANK (A10) results in TRUE, when A10 is empty
ISBLANK (A10) results in FALSE, when A10 contains 123
end example]

\subsection*{18.17.7.175 ISERR}

Syntax:
ISERR (value )
Description: Determines if value is any of the error values other than \#N/A.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value is one of the error values, excluding \#N/A; otherwise, FALSE.
[Example:

ISERR(A1) results in TRUE if A1 evaluates to \#DIV/0!, for example
ISERR (B1) results in FALSE if B1 evaluates to \#N/A
end example]

\subsection*{18.17.7.176 ISERROR}

\section*{Syntax:}

ISERROR (value )

Description: Determines if value is any of the error values.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value is one of the error values; otherwise, FALSE.
[Example:

ISERROR(A1) results in TRUE if A1 evaluates to \#DIV/0!, for example end example]

\subsection*{18.17.7.177 ISEVEN}

Syntax:
ISEVEN (value )
Description: Determines if value is an even number or refers to a cell containing an even number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & number & The value to be tested. It is truncated to an integer. \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value is an even number or refers to a cell containing an even number; otherwise, FALSE.
[Example:

ISEVEN(12.456) results in TRUE
ISEVEN(A10) results in FALSE, when A10 contains - 15
end example]
18.17.7.178 ISLOGICAL

Syntax:
ISLOGICAL ( value )
Description: Determines if value contains a logical value or refers to a cell containing a logical value.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value contains a logical value or refers to a cell containing a logical value; otherwise, FALSE.
[Example:
ISLOGICAL(TRUE) results in TRUE
ISLOGICAL (A10) results in FALSE, when A10 contains 123
ISLOGICAL (\{TRUE, 2\}) results in TRUE
ISLOGICAL ( \(\{2\), TRUE \(\}\) ) results in FALSE
end example]

\subsection*{18.17.7.179 ISNA}

\section*{Syntax:}

ISNA (value )
Description: Determines if value is the error value \#N/A.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value is \#N/A; otherwise, FALSE.
[Example:

ISERR(A1) results in TRUE if A1 evaluates to \#N/A
ISERR(B1) results in TRUE if B1 evaluates to \#DIV/0!, for example
end example]

\subsection*{18.17.7.180 ISNONTEXT}

\section*{Syntax:}

ISNONTEXT (value )
Description: Determines if value does not contain text or does not refer to a cell containing text. An empty cell is not text.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value does not contain text or does not refer to a cell containing text; otherwise, FALSE.

\section*{[Example:}

ISNONTEXT("ABC") results in FALSE
ISNONTEXT (A10) results in TRUE, when A10 contains 123
ISNONTEXT ( \(\{1\), "ABC" \(\}\) ) results in TRUE
ISNONTEXT (\{"ABC", 1\}) results in FALSE

\section*{end example]}

\subsection*{18.17.7.181 ISNUMBER}

\section*{Syntax:}

ISNUMBER (value )
Description: Determines if value contains a number or refers to a cell that contains a number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value contains a number or refers to a cell that contains a number; otherwise, FALSE.
[Example:

ISNUMBER (10.56) results in TRUE
ISNUMBER (A10) results in FALSE, when A10 contains ABC
ISNUMBER ( \(\{1\), "ABC" \(\}\) ) results in TRUE

ISNUMBER(\{"ABC",1\}) results in FALSE
end example]

\subsection*{18.17.7.182 ISO.CEILING}

\section*{Syntax:}

ISO.CEILING ( \(x\), [ significance ] )
Description: Computes a value that is \(x\) rounded-up, to the nearest multiple of significance. Regardless of the \(\operatorname{sign}\) of \(x\), a value is rounded up.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded \\
\hline significance & number & \begin{tabular}{l} 
The optional multiple to which \(x\) is to be rounded. \\
If significance is omitted, its default value is 1. \\
[Note: The absolute value of the multiple is used, so the \\
CEILING function will return the mathematical ceiling \\
irrespective of the signs of \(x\) and significance. end note \(]\)
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-up value of \(x\).
However, if \(x\) and/or significance is zero, zero is returned.
[Example:

ISO. CEILING (4.3) rounds 4.3 up to nearest multiple of 1 ; that is, to 5
ISO.CEILING (-4.3) rounds -4.3 up to nearest multiple of 1 ; that is, to -4
ISO. CEILING \((4.3,2)\) rounds 4.3 up to the nearest multiple of 2 ; that is, to 6
ISO. CEILING \((4.3,-2)\) rounds 4.3 up to the nearest multiple of -2 ; that is, to 6
ISO. CEILING \((-4.3,2)\) rounds -4.3 up to the nearest multiple of 2 ; that is, to -4
ISO. CEILING \((-4.3,-2)\) rounds -4.3 up to the nearest multiple of -2 ; that is, to -4
end example]

\subsection*{18.17.7.183 ISODD}

\section*{Syntax:}

ISODD (value )
Description: Determines if value is an odd number or refers to a cell containing an odd number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & number & The value to be tested. It is truncated to an integer. \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value is an odd number or refers to a cell containing an odd number; otherwise, FALSE.
[Example:

ISODD (12.456) results in FALSE
ISODD(A10) results in TRUE, when A10 contains -15
end example]

\subsection*{18.17.7.184 ISPMT}

\section*{Syntax:}

ISPMT ( rate , per, nper , pv )
Description: Computes the interest paid during a specific period of an investment.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline rate & number & The interest rate for the investment. \\
\hline per & number & \begin{tabular}{l} 
The period for which the interest is to be found, and shall \\
be in the range 1-nper.
\end{tabular} \\
\hline nper & number & The total number of payment periods for the investment. \\
\hline\(p v\) & number & The present value the investment. \\
\hline
\end{tabular}

Arguments representing cash paid by investor shall be expressed as negative numbers; arguments representing cash received by the investor shall be expressed as positive numbers.

Return Type and Value: number - The interest paid during a specific period of an investment.
[Example:

ISPMT ( \(0.1 / 12,1,3^{*} 12,8000000\) ) results in -64814.81
\(\operatorname{ISPMT}(0.1,1,3,8000000)\) results in -533333.33
end example]

\subsection*{18.17.7.185 ISREF}

\section*{Syntax:}

ISREF (value )
Description: Determines if value is a cell reference.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value is a cell reference; otherwise, FALSE.
[Example:

ISREF ("ABC") results in FALSE
ISREF (A10) results in TRUE
end example]

\subsection*{18.17.7.186 ISTEXT}

\section*{Syntax:}

ISTEXT (value )
Description: Determines if value contains text or refers to a cell containing text.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested. No conversion shall take place on \\
an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if value contains text or refers to a cell containing text; otherwise, FALSE.

\section*{[Example:}

ISTEXT("ABC") results in TRUE
ISTEXT (A10) results in FALSE, when A10 contains 123
ISTEXT(\{1, "ABC"\}) results in FALSE
ISTEXT (\{"ABC",1\}) results in TRUE

\section*{end example］}

\section*{18．17．7．187 JIS}

\section*{Syntax：}

JIS（string ）
Description：Creates a string that is the conversion of half－width（single－byte）letters within string to full－width （double－byte）characters．

\section*{Arguments：}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designates the string to be converted．If string does not \\
contain any half－width English letters or katakana， \\
nothing in string is converted．
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value：text－The string resulting from the conversion．
［Example：

JIS（＂ABC＂）results in ABC
JIS（＂エクゃ际）results in エクセル
end example］

\section*{18．17．7．188 KURT}

Syntax：
KURT（ argument－list ）
Description：Computes the kurtosis of a data set．Kurtosis characterizes the relative peakedness or flatness of a distribution compared with the normal distribution．Positive kurtosis indicates a relatively peaked distribution． Negative kurtosis indicates a relatively flat distribution．

\section*{Mathematical Formula：}

Kurtosis is defined as：
\(\left\{\frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum\left(\frac{x_{i}-\bar{x}}{s}\right)^{4}\right\}-\frac{3(n-1)^{2}}{(n-2)(n-3)}\)
where：
n is the number of elements in argument－list．
xj is the value of the j -th element in argument-list.
\(\bar{x}\) is the mean of the values in argument-list.
s is the standard deviation of the values in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
array reference \\
to an array, \\
number, name, \\
or reference to \\
number.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list are the values for which \\
kurtosis is to be calculated. Any argument in argument-list \\
can be an array or a reference to an array. Logical values \\
and text representations of numbers that are directly \\
entered into the list of arguments are included. If an \\
array or reference argument contains text, logical values, \\
or empty cells, those values are ignored; however, cells \\
with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The kurtosis of a data set.
However, if
- There are fewer than four data points, the return value is unspecified.
- The standard deviation of the sample equals zero, the return value is unspecified.
[Example:

KURT \((10.5,12.4,19.4,23.2)\) results in -3.644621343
KURT \((10.5,\{12.4,19.4\}, 23.2)\) results in -3.644621343
end example]

\subsection*{18.17.7.189 LARGE}

\section*{Syntax:}

LARGE ( array , k)
Description: Computes the \(k^{\text {th }}\) largest value in a data set.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & \begin{tabular}{l} 
The set of numbers from which the \(k^{\text {th }}\)-largest value is to \\
be determined.
\end{tabular} \\
\hline\(k\) & number & \begin{tabular}{l} 
The position (from the largest) in the array or cell range \\
of data to return.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The \(k^{\text {th }}\) largest value in a data set.
However, if
- array is empty, the return value is unspecified.
- \(k \leq 0, \# N U M!\) is returned.
- \(k\) is greater than the number of data points, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{LARGE}(\{3,5,3,5,4 ; 4,2,4,6,7\}, 3)\) results in 5
\(\operatorname{LARGE}(\{3,5,3,5,4 ; 4,2,4,6,7\}, 7)\) results in 4
end example]
18.17.7.190 LCM

Syntax:
LCM ( argument-list )
Description: Computes the least common multiple of the one or more arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & number & \begin{tabular}{l} 
argument-list specifies the arguments. Each argument is \\
truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The least common multiple of one or more numbers.
However, if any argument is negative, \#NUM! is returned.
[Example:

LCM(5) results in 5
\(\operatorname{LCM}(5,2)\) results in 10
\(\operatorname{LCM}(24.99,36.45)\) results in 72
\(\operatorname{LCM}(24,36,15)\) results in 360
end example]

\subsection*{18.17.7.191 LEFT}

\section*{Syntax:}

LEFT ( string [, number-chars ] )

Description: Extracts the left-most number-chars characters from string. (LEFT is intended for use with languages that use the single-byte character set (SBCS), whereas LEFTB (§18.17.7.192) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designate the string from which a substring is to be \\
extracted.
\end{tabular} \\
\hline number-chars & number & \begin{tabular}{l} 
The number of characters to be extracted. If omitted, a \\
count of 1 shall be assumed. \(n u m b e r\)-chars shall be at \\
least 0. If number-chars exceeds the length of string, the \\
whole of string shall be extracted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the left-most number-chars characters from string.
However, if number-chars is negative, \#VALUE! is returned.
[Example:
LEFT("abcdef", 2) results in ab
LEFT(A10,4) results in xyz1, when A10 contains xyz123

\section*{end example]}

\subsection*{18.17.7.192 LEFTB}

\section*{Syntax:}

LEFTB ( string [ , number-bytes ] )
Description: Extracts the left-most number-bytes-worth of characters from string. (LEFTB is intended for use with languages that use the double-byte character set (DBCS), whereas LEFT (§18.17.7.192) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designate the string from which a substring is to be \\
extracted.
\end{tabular} \\
\hline number-bytes & number & \begin{tabular}{l} 
The number of bytes to be extracted. If omitted, a count \\
of 1 shall be assumed. \(n u m b e r\)-bytes shall be at least 0. If \\
number-bytes exceeds the length of string, the whole of \\
string shall be extracted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the left-most number-bytes-worth of characters from string.
However, if number-bytes is negative, \#VALUE! is returned.
[Example: Assuming 1-byte characters:

LEFTB("abcdef", 2) results in ab
\(\operatorname{LEFTB}(\mathrm{A} 10,4)\) results in xyz1, when A10 contains xyz123
end example]

\subsection*{18.17.7.193 LEN}

\section*{Syntax:}

\section*{LEN (string )}

Description: Determines the number of characters in string. (LEN is intended for use with languages that use the single-byte character set (SBCS), whereas LENB (§18.17.7.194) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates the string whose length is to be found. \\
\hline
\end{tabular}

Return Type and Value: number - The number of characters in string.
[Example:

LEN("abc") results in 3
\(\operatorname{LEN}(\mathrm{A} 10)\) results in 3 , when A1 contains abc
end example]

\subsection*{18.17.7.194 LENB}

Syntax:
LENB ( string )
Description: Determines the number of bytes in string. (LENB is intended for use with languages that use the double-byte character set (DBCS), whereas LEN (§18.17.7.193) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates the string whose length is to be found. \\
\hline
\end{tabular}

Return Type and Value: number - The number of bytes in string.
[Example: Assuming 1-byte characters:

LENB("abc") results in 3
LENB (A10) results in 3, when A1 contains abc
end example]

\subsection*{18.17.7.195 LINEST}

\section*{Syntax:}

LINEST ( known-ys [ , [ known-xs ] [ , [ const-flag ] [ , stats-flag ]])
Description: Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits the data, and returns an array that describes the line.

\section*{Mathematical Formula:}

The equation for the line is:
\[
y=m x+b
\]
or
```

...
y=m1}\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{}\mp@subsup{x}{2}{}+···+b\mathrm{ (if there are multiple ranges of }\textrm{x}\mathrm{ -values)

```
where the dependent \(y\)-value is a function of the independent \(x\)-values. The \(m\)-values are coefficients corresponding to each \(x\)-value, and \(b\) is a constant value. \(y, x\), and \(m\) can be vectors.

When there is only one independent x -variable, the slope and y -intercept values can be obtained directly by using the following formulas:

Slope: INDEX(LINEST (known-ys, known-xs) , 1)
Y-intercept: INDEX(LINEST(known-ys, known-xs), 2)
The accuracy of the line calculated by LINEST depends on the degree of scatter in the data. The more linear the data, the more accurate the LINEST model. LINEST uses the method of least squares for determining the best
fit for the data. When there is only one independent \(x\)-variable, the calculations for \(m\) and \(b\) are based on the following formulas:
\(m=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}\)
\(b=\bar{y}-m \bar{x}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (known-xs)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (known-ys)

\section*{Arguments:}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline known-ys & array & The set of \(y\)-values already known in the relationship \(\mathrm{y}=\mathrm{mx}+\mathrm{b}\). If the array known- \(y s\) is a single column, then each column of known-xs is interpreted as a separate variable. If the array known-ys is a single row, then each row of known-xs is interpreted as a separate variable. \\
\hline known-xs & array & An optional set of \(x\)-values that might already be known in the relationship \(\mathrm{y}=\mathrm{mx}+\mathrm{b}\). The array known-xs can include one or more sets of variables. If only one variable is used, known-ys and known-xs can be ranges of any shape, as long as they have equal dimensions. If more than one variable is used, known-ys shall be a vector (that is, a range with a height of one row or a width of one column). If known-xs is omitted, it is assumed to be the array \(\{1,2,3, \ldots\}\) that is the same size as known-ys. \\
\hline const-flag & logical & Specifies whether to force the constant \(b\) to be zero. If TRUE or omitted, \(b\) is calculated normally. If FALSE, \(b\) is set to zero, and the m -values are adjusted to fit \(\mathrm{y}=\mathrm{mx}\). \\
\hline stats-flag & logical & Specifies whether to return additional regression statistics. If TRUE, LINEST returns the additional regression statistics (see table below), so the returned array is \(\{m n, m n-1, \ldots, m 1, b\); sen, sen \(-1, \ldots\), se1, seb; \(r 2\), sey; F, df; ssreg, ssresid\}. If FALSE or omitted, LINEST returns only the m -coefficients and the constant b . \\
\hline
\end{tabular}

The additional regression statistics are as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Statistic } & \multicolumn{1}{c|}{ Description } \\
\hline se1, se2, ..., sen & The standard error values for the coefficients \(\mathrm{m} 1, \mathrm{~m} 2, \ldots, \mathrm{mn}\). \\
\hline seb & The standard error value for the constant b. \\
\hline r2 & The coefficient of determination. \\
\hline sey & The standard error for the y estimate. \\
\hline F & The F statistic, or the F-observed value. \\
\hline df & The degrees of freedom. \\
\hline ssreg & The regression sum of squares. \\
\hline ssresid & The residual sum of squares. \\
\hline
\end{tabular}

Return Type and Value: array - The array that describes the line, in the form \(\{m n, m n-1, \ldots, m 1, b\}\). The following illustration shows the order in which the additional regression statistics are returned.
[Example:
\(\operatorname{LINEST}(\{1,9,5,7\},\{0,4,2,3\}\), FALSE \()\) results in a slope of 2 and a y-intercept of 1
end example]

\subsection*{18.17.7.196 LN}

Syntax:
LN ( \(x\) )
Description: Computes the natural logarithm of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The positive real number for which the natural logarithm \\
is being computed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The natural logarithm of \(x\).
However, if \(x\) is zero or negative, \#NUM! is returned.
[Example:

LN(86) results in 4.454347296
LN (2.7182818) results in 0.99999999
LN(EXP (3)) results in 3

\section*{end example]}

\subsection*{18.17.7.197 LOG}

\section*{Syntax:}

LOG ( x [ , base ] )
Description: Computes the logarithm of \(x\) to the base base.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The positive real number for which the logarithm is being \\
computed.
\end{tabular} \\
\hline base & number & The base of the logarithm. If omitted, base 10 is assumed. \\
\hline
\end{tabular}

Return Type and Value: number - The logarithm of \(x\).
However, if
- \(x\) is zero or negative, \#NUM! is returned.
- base is zero or negative, \#NUM! is returned.
[Example:

LOG (10) results in 1
\(\operatorname{LOG}(8,2)\) results in 3
LOG \((86,2.7182818)\) results in 4.454347343
end example]

\subsection*{18.17.7.198 LOG10}

Syntax:
LOG10 ( \(x\) )
Description: Computes the base-10 logarithm of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The positive real number for which the logarithm is being \\
computed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The base-10 logarithm of \(x\).
However, if \(x\) is zero or negative, \#NUM! is returned.
[Example:

LOG10(86) results in 1.934498451
LOG10(10) results in 1
LOG10(1E5) results in 5
LOG10(10^5) results in 5
end example]

\subsection*{18.17.7.199 LOGEST}

Syntax:
LOGEST ( known-ys [ , [ known-xs ] [ , [ const-flag ] [ , stats-flag ]] )
Description: Calculates an exponential curve that fits the data, and returns an array of values that describes the curve.

\section*{Mathematical Formula:}

The equation for the curve is:
\[
y=b \times m^{x}
\]
or
\[
y=b \times m_{1}{ }^{x_{1}} \times m_{2}{ }^{x_{2}} \ldots \text { (if there are multiple } x \text {-values) }
\]
where the dependent \(y\)-value is a function of the independent \(x\)-values. The \(m\)-values are bases corresponding to each exponent x -value, and b is a constant value. [Note: \(\mathrm{y}, \mathrm{x}\), and m can be vectors. end note]

When there is only one independent \(x\)-variable, the \(y\)-intercept (b) values can be obtained directly by using the following formula:

Y-intercept (b): INDEX (LOGEST (known-ys, known-xs), 2)

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline known-ys & array & The set of \(y\)-values already known in the relationship \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
y=b*\({ }^{*}\). If the array known-ys is a single column, then \\
each column of \(k n o w n-x s\) is interpreted as a separate \\
variable. If the array known-ys is a single row, then each \\
row of \(k n o w n-x s\) is interpreted as a separate variable.
\end{tabular} \\
\hline known-xs & array & \begin{tabular}{l} 
An optional set of x -values that might already be known \\
in the relationship \(\mathrm{y}=\mathrm{b}^{*} \mathrm{~m}^{\mathrm{x}}\). The array known-xs can \\
include one or more sets of variables. If only one variable \\
is used, known-ys and known-xs can be ranges of any \\
shape, as long as they have equal dimensions. If more \\
than one variable is used, known-ys shall be a vector (that \\
is, a range with a height of one row or a width of one \\
column). If \(k n o w n-x s ~ i s ~ o m i t t e d, ~ i t ~ i s ~ a s s u m e d ~ t o ~ b e ~ t h e ~\)
\end{tabular} \\
array \(\{1,2,3, . .\).\(\} that is the same size as k n o w n-y s\).
\end{tabular}

The additional regression statistics are described in §18.17.7.195.
Return Type and Value: array - The array that describes the line, in the form \{mn,mn-1,..., m1, b\}. The order in which the additional regression statistics are returned is described in §18.17.7.195.
[Example: Given the following data:
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Month & Units \\
\hline 2 & 11 & 33,100 \\
\hline 3 & 12 & 47,300 \\
\hline 4 & 13 & 69,000 \\
\hline 5 & 14 & 102,000 \\
\hline 6 & 15 & 150,000 \\
\hline 7 & 16 & 220,000 \\
\hline 8 & Formula & \\
\hline 9 & 1.463275628 & 495.3047702 \\
\hline
\end{tabular}

When LOGEST (B2:B7, A2: A7, TRUE , FALSE) is an array formula spanning cells A9:B9, those cells take on the results shown.
end example]

\subsection*{18.17.7.200 LOGINV}

\section*{Syntax:}

LOGINV ( probability , mean , standard-dev )
Description: Calculates the inverse of the lognormal cumulative distribution function of \(x\), where \(\ln (x)\) is normally distributed with parameters mean and standard-dev.

\section*{Mathematical Formula:}
\(\operatorname{LOGINV}(p, \mu, \sigma)=e^{[\mu+\sigma \times(\operatorname{NORMSINV}(p))]}\)
where:
- \(p=\) argument probability
- \(\mu=\) argument mean
- \(\sigma=\) argument standard-dev

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & A probability associated with the lognormal distribution. \\
\hline mean & number & The mean of \(\ln (\mathrm{x})\). \\
\hline standard-dev & number & The standard deviation of \(\ln (\mathrm{x})\). \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the lognormal cumulative distribution function of x .
However, if
- probability \(<0\) or probability \(>1\), \#NUM! is returned.
- standard-dev \(\leq 0\), \#NUM! is returned.

\section*{[Example:}

LOGINV (0.039084, 3.5,1.2) results in 4.000025219
end example]

\subsection*{18.17.7.201 LOGNORMDIST}

\section*{Syntax:}

LOGNORMDIST ( \(x\), mean , standard-dev )
Description: Calculates the cumulative lognormal distribution of \(x\), where \(\ln (x)\) is normally distributed with parameters mean and standard-dev.

\section*{Mathematical Formula:}
\(\operatorname{LOGNORMDIST}(x, \mu, \sigma)=\operatorname{NORMSDIST}\left(\frac{\ln (x)-\mu}{\sigma}\right)\)
where:
- \(x=\operatorname{argument} x\)
- \(\mu=\) argument mean
- \(\sigma=\) argument standard-dev

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which to evaluate the function. \\
\hline mean & number & The mean of \(\ln (\mathrm{x})\). \\
\hline standard-dev & number & The standard deviation of \(\ln (\mathrm{x})\). \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the lognormal cumulative distribution function of \(x\).
However, if
- \(x \leq 0\), \#NUM! is returned.
- standard-dev \(\leq 0, \#\) NUM! is returned.
[Example:
LOGNORMDIST \((4,3.5,1.2)\) results in 0.039083556
end example]

\subsection*{18.17.7.202 LOOKUP}

Syntax:
```

vector form: LOOKUP (lookup-value , lookup-vector, result-vector)
array form: LOOKUP (lookup-value , array)

```

Description: The vector form looks in a vector for a value, and returns a value from the same position in a second vector. The array form looks in the first row or column of an array for the specified value and returns a value from the same position in the last row or column of that array.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline lookup-value & \begin{tabular}{l} 
number, string, \\
logical, name, \\
reference
\end{tabular} & The value to search for in lookup-vector (or array). \\
\hline lookup-vector & reference & \begin{tabular}{l} 
A range that contains only one row or one column. The \\
values in lookup-vector can be strings, numbers, or logical \\
values. These values shall be placed in "ascending" order, \\
as follows: ..., \(-2,-1,0,1,2, \ldots\), A-Z, FALSE, TRUE. \\
Upper- and lowercase strings are equivalent. If LOOKUP \\
can't find the lookup-value, it matches the largest value in \\
lookup-vector (or array) that is less than or equal to \\
lookup-value.
\end{tabular} \\
\hline result-vector & reference & \begin{tabular}{l} 
A range that contains only one row or column. It shall be \\
the same size as lookup-vector.
\end{tabular} \\
\hline array & \begin{tabular}{l} 
text, number, \\
logical
\end{tabular} & \begin{tabular}{l} 
A range of cells whose values are to be compared with \\
lookup-value. These values shall be placed in "ascending" \\
order, as follows: ..., \(-2,-1,0,1,2, \ldots\), A-Z, FALSE, TRUE. \\
Upper- and lowercase strings are equivalent. If array \\
covers an area that has more columns than rows, lookup- \\
value is searched for in the first row. If array is square or \\
has more rows than columns, lookup-value is searched \\
for in the first column.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The vector form looks in a vector for a value, and returns a value from the same position in a second vector. The array form looks in the first row or column of an array for the specified value and returns a value from the same position in the last row or column of that array.

However, if
- lookup-value is smaller than the smallest value in lookup-vector (or the first row or column of array), the return value is unspecified.
- The size of the range specified by result-vector is not the same as that specified by lookup-vector, the return value is unspecified.
- The values in lookup-vector (or array) are not in "ascending" order, the return value is unspecified.
[Example: Given the following data:
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Frequency & Color \\
\hline 2 & 4.14 & red \\
\hline 3 & 4.19 & orange \\
\hline 4 & 5.17 & yellow \\
\hline 5 & 5.77 & green \\
\hline 6 & 6.39 & blue \\
\hline
\end{tabular}

LOOKUP (4.19, A2:A6, B2: B6) results in orange
LOOKUP (5, A2:A6, B2: B6) results in orange
LOOKUP (7.66, A2:A6, B2: B6) results in blue

LOOKUP("C", \{"a", "b", "c", "d";1,2,3,4\}) results in 3
LOOKUP("bump", \{"a",1;"b",2;"c",3\}) results in 2
end example]

\subsection*{18.17.7.203 LOWER}

\section*{Syntax:}

LOWER ( string )
Description: Makes a lowercase version of string by doing a character-by-character conversion of string to lowercase, except as noted below. [Note: The conversion of characters in string is not dependent on position/context of the character within the string, except as noted below. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates the string to be converted. \\
\hline
\end{tabular}

Return Type and Value: text - The lowercase version of string after doing a character-by-character conversion to lowercase. However, there is one exception; when \(\Sigma(U+03 A 3)\) is found in a word-final position, it is converted to \(\varsigma(\mathrm{U}+03 \mathrm{C} 2)\) instead of \(\sigma(\mathrm{U}+03 \mathrm{C} 3)\).

\section*{[Example:}

LOWER("AbCd123\#\$\%^") results in abcd123\#\$\%^
LOWER(A10) results in 234frtqwc\$\#\%, when A10 contains 234FRTqwc\$\#\%

\subsection*{18.17.7.204 MATCH}

\section*{Syntax:}

MATCH (lookup-value , lookup-array [ , [ match-type ]] )
Description: Locates the relative position of an array item that matches a specified value in a specified order. MATCH shall not distinguish between uppercase and lowercase letters when matching strings.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & & Description \\
\hline lookup-value & number, string, logical, name, reference & \multicolumn{2}{|l|}{The value to search for in lookup-array. If match-type is 0 and lookup-value is a string, the wildcard characters, question mark (?) and asterisk (*), can be used in lookupvalue. A question mark matches any single character; an asterisk matches any sequence of characters. To locate a question mark or asterisk, precede that character with a tilde (~).} \\
\hline lookup-array & array, reference & \multicolumn{2}{|l|}{A contiguous range of cells containing possible lookup values.} \\
\hline \multirow[t]{5}{*}{match-type} & \multirow[t]{5}{*}{number} & \multicolumn{2}{|l|}{Specifies how lookup-value is matched with values in lookup-array, as follows:} \\
\hline & & Value & Meaning \\
\hline & & -1 & Finds the smallest value that is greater than or equal to lookupvalue. The values in lookuparray shall be placed in "descending" order: TRUE, FALSE, \(\mathrm{Z}-\mathrm{A}, \ldots, 2,1,0,-1,-2, \ldots\) \\
\hline & & 0 & Finds the first value that is exactly equal to lookup-value. The values in lookup-array can be in any order. \\
\hline & & 1 or omitted & \begin{tabular}{l}
Finds the largest value that is less than or equal to lookupvalue. The values in lookuparray shall be placed in \\
"ascending" order: ..., \(-2,-1,0\), 1, 2, ..., A-Z, FALSE, TRUE.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The relative position of an array item that matches a specified value in a specified order.

However, if
- No match is found, \#N/A is returned.
- match-type's value is out-of-bounds, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{MATCH}(39,\{25,38,40,41\}, 1)\) results in 2
\(\operatorname{MATCH}(41,\{25,38,40,41\}, 0)\) results in 4

\section*{end example]}

\subsection*{18.17.7.205 MAX}

Syntax:
MAX ( argument-list )
Description: Computes the largest of a set of numbers.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, arrays, \\
reference to \\
number. Any \\
argument can be \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values for \\
which the largest value is to be computed. Logical values \\
and text representations of numbers occurring directly in \\
the list of arguments are included. However, logical \\
values and numbers in strings and are ignored inside \\
references. [Note: To include these, use MAXA
\end{tabular} \\
(§18.17.7.206). end note] If an array or reference \\
argument contains text, logical values, or empty cells, \\
those values are ignored; however, cells with the value 0 \\
are included.
\end{tabular}

Return Type and Value: number - The largest of a set of numbers; however, if the arguments contain no numbers, zero is returned.
[Example:
\(\operatorname{MAX}(10.4,-3.5,12.6)\) results in 12.6
\(\operatorname{MAX}(10.4,\{-3.5,12.6\})\) results in 12.6
MAX(\{"ABC", TRUE \(\}\) ) results in 0

Consider the case in which cell B3 contains 0 :
\(\operatorname{MAX}(-10,-12,-15, B 3)\) results in -10
\(\operatorname{MAXA}(-10,-12,-15, B 3)\) results in 0
end example]

\subsection*{18.17.7.206 MAXA}

\section*{Syntax:}

MAXA ( argument-list )
Description: Computes the largest of a set of numbers.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, arrays, \\
reference to \\
number. Any \\
argument can be \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values for \\
which the largest value is to be computed. Logical values \\
and text representations of numbers occurring directly in \\
the list of arguments are included. Logical values and \\
numbers in strings inside references are also included. \\
[Note: To ignore these, use MAX (§18.17.7.205). end note] \\
If an array or reference argument contains non-numeric \\
text or empty cells, those values are ignored; however, \\
cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The largest of a set of numbers; however, if the arguments contain no numbers, zero is returned.
[Example:

MAXA \((10.4,-3.5,12.6)\) results in 12.6
\(\operatorname{MAXA}(10.4,\{-3.5,12.6\})\) results in 12.6
MAXA(\{"ABC", TRUE\}) results in 0
Consider the case in which cell B 3 contains 0 :
\(\operatorname{MAX}(-10,-12,-15, B 3)\) results in -10
\(\operatorname{MAXA}(-10,-12,-15, B 3)\) results in 0
end example]

\subsection*{18.17.7.207 MDETERM}

\section*{Syntax:}
```

MDETERM (array)

```

Description: Computes the determinant of the square matrix of numbers designated by array. The determinant is calculated with an accuracy of at least 15 digits, which can lead to a small numeric error when the calculation is not complete. [Example: The determinant of a singular matrix can differ from zero by 1E-16. end example]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & Designate a square matrix of numbers. \\
\hline
\end{tabular}

Return Type and Value: number - The determinant of array. Some square matrices cannot be inverted. The determinant of a non-invertible matrix is 0 .

However, if
- Any cells in array are empty or contain text, the return value is unspecified.
- The matrix designated by array is not square, \#VALUE! is returned.
[Example:

MDETERM (A2:D5) results in the determinant of the \(4 \times 4\) array designated by the cell range
\(\operatorname{MDETERM}(\{3,6,1 ; 1,1,0 ; 3,10,2\})\) results in 1
\(\operatorname{MDETERM}(\{3,6 ; 1,1\})\) results in -3
end example]

\subsection*{18.17.7.208 MDURATION}

Syntax:
MDURATION ( settlement , maturity , coupon , yld , frequency [ , [ basis ]] )
Description: Computes the modified Macaulay duration for a security with an assumed par value of 100.

\section*{Mathematical Formula:}

MDURATION \(=\frac{\text { DURATION }}{1+\left(\frac{\text { Market yield }}{\text { Coupon payments per yea }}\right)}\)
where:
- Coupon payments per year = argument frequency
- DURATION = DURATION(settlement, maturity, coupon, yld, frequency, [basis])
- Market yield \(=\) argument \(y l d\)

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline coupon & number & \multicolumn{2}{|l|}{The security's annual coupon rate.} \\
\hline yld & number & \multicolumn{2}{|l|}{The security's annual yield.} \\
\hline frequency & number & \multicolumn{2}{|l|}{the number of coupon payments per year. (For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4 .) frequency is truncated to an integer.} \\
\hline \multirow[t]{4}{*}{basis} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The modified Macaulay duration for a security with an assumed par value of 100.

However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- coupon or \(y l d<0\), \#NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{MDURATION}(\operatorname{DATE}(2008,1,1), \operatorname{DATE}(2016,1,1), 0.08,0.09,2,1)\) results in 5.7357
end example]

\subsection*{18.17.7.209 MEDIAN}

\section*{Syntax:}

\section*{MEDIAN ( argument-list )}

Description: Computes the median of the numeric values of its arguments. The median of a set of values is the value for which half the numbers in the set are greater, and half the values are less. For sets with an odd number of values, the median is calculated by finding the value whose rank in the ordered set of all values is equal to half the number of items \((n)\) in the set plus one half (i.e., \(n / 2+1 / 2\) ). If the number of values in the set is even, then the median is defined to be the average of the values of rank \(n / 2\) and \(n / 2+1\).

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, arrays, \\
reference to \\
number.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values \\
whose median is to be computed. Logical values and text \\
representations of numbers entered directly into the list \\
of arguments are included. If an array or reference \\
argument contains text, logical values, or empty cells, \\
those values are ignored; however, cells with the value 0 \\
are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The median of the values of its arguments.

\section*{[Example:}
\(\operatorname{MEDIAN}(10,20)\) results in 15
\(\operatorname{MEDIAN}(-3.5,1.4,6.9,-4.5)\) results in -1.05
\(\operatorname{MEDIAN}(\{-3.5,1.4,6.9\},-4.5)\) results in -1.05
end example]

\subsection*{18.17.7.210 MID}

\section*{Syntax:}

MID ( string , start-pos, number-chars )
Description: Extracts number-chars characters from string, starting at character position start-pos. (MID is intended for use with languages that use the single-byte character set (SBCS), whereas MIDB (§18.17.7.211) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designate the string from which a substring is to be \\
extracted.
\end{tabular} \\
\hline number-chars & number & \begin{tabular}{l} 
The number of characters to be extracted. number-chars \\
shall be at least 0.
\end{tabular} \\
\hline start-pos & number & \begin{tabular}{l} 
The starting position within string, where the first \\
character is position 1. If start-pos is greater than the \\
length of string, or if start-pos and number-chars \\
lombined exceeds the length of string, the whole of \\
string shall be extracted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing number-chars characters from string, starting at character position start-pos.

However, if
- start-pos \(<0, \# V A L U E!\) is returned.
- number-chars \(<0, \# V A L U E!\) is returned.

\section*{[Example:}

MID("abcdef", 3, 2) results in cd
\(\operatorname{MID}(A 10,4,1)\) results in 1 , when A10 contains xyz123
MID("abcdef", 4,5) results in def
end example]

\subsection*{18.17.7.211 MIDB}

\section*{Syntax:}

MIDB ( string , start-pos, number-bytes )
Description: Extracts number-bytes-worth of characters from string, starting at character position start-pos. (MIDB is intended for use with languages that use the double-byte character set (DBCS), whereas MID (§18.17.7.210) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designate the string from which a substring is to be \\
extracted.
\end{tabular} \\
\hline number-bytes & number & \begin{tabular}{l} 
The number of characters to be extracted. number- bytes \\
shall be at least 0.
\end{tabular} \\
\hline start-pos & number & \begin{tabular}{l} 
The starting position within string, where the first byte is \\
position 1. If start-pos is greater than the length of string, \\
or if start- pos and number- bytes combined exceeds the \\
length of string, the whole of string shall be extracted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing number-bytes-worth of characters from string, starting at character position start-pos.

However, if
- start-pos \(<0\), \#VALUE! is returned.
- number-bytes \(<0, \# V A L U E!\) is returned.
[Example: Assuming 1-byte characters:

MIDB("abcdef", 3,2) results in cd
\(\operatorname{MIDB}(\mathrm{A} 10,4,1)\) results in 1 , when A 10 contains xyz123
MIDB("abcdef" \(, 4,5\) ) results in def
end example]
18.17.7.212 MIN

Syntax:
MIN ( argument-list )
Description: Computes the smallest of a set of numbers.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, arrays, \\
reference to \\
number. Any \\
argument can be \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values for \\
which the largest value is to be computed. Logical values \\
and text representations of numbers occurring directly in \\
the list of arguments are included. However, logical \\
values and numbers in strings and are ignored inside \\
references. [Note: To include these, use MINA
\end{tabular} \\
(§18.17.7.213). end note] If an array or reference \\
argument contains text, logical values, or empty cells, \\
those values are ignored; however, cells with the value 0 \\
are included.
\end{tabular}

Return Type and Value: number - The smallest of a set of numbers; however, if the arguments contain no numbers, zero is returned.
[Example:
\(\operatorname{MIN}(10.4,-3.5,12.6)\) results in -3.5
\(\operatorname{MIN}(10.4,\{-3.5,12.6\})\) results in -3.5
\(\operatorname{MIN}(\{\) "ABC", TRUE \(\}\) ) results in 0
Consider the case in which cell B3 contains 0:
\(\operatorname{MIN}(10,12,15, B 3)\) results in 10
\(\operatorname{MINA}(10,12,15, B 3)\) results in 0

\section*{end example]}

\subsection*{18.17.7.213 MINA}

\section*{Syntax:}

MINA ( argument-list )
Description: Computes the smallest of a set of numbers.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, arrays, \\
reference to \\
number. Any \\
argument can be \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values for \\
which the largest value is to be computed. Logical values \\
and text representations of numbers occurring directly in \\
the list of arguments are included. Logical values and \\
numbers in strings inside references are also included. \\
[Note: To ignore these, use MIN (§18.17.7.212). end note] \\
If an array or reference argument contains non-numeric \\
text or empty cells, those values are ignored; however,
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Name & Type & \multicolumn{1}{c|}{ Description } \\
\hline & & cells with the value 0 are included. \\
\hline
\end{tabular}

Any argument in argument-list can be an array or a reference to an array.
Return Type and Value: number - The smallest of a set of numbers; however, if the arguments contain no numbers, zero is returned.
[Example:
MINA (10.4, -3.5, 12.6) results in -3.5
\(\operatorname{MINA}(10.4,\{-3.5,12.6\})\) results in -3.5
MINA(\{"ABC", TRUE \}) results in 0
Consider the case in which cell B 3 contains 0 :
\(\operatorname{MIN}(10,12,15, B 3)\) results in 10
\(\operatorname{MINA}(10,12,15, B 3)\) results in 0
end example]

\subsection*{18.17.7.214 MINUTE}

\section*{Syntax:}

MINUTE ( time-value )
Description: Computes the minute for the date and/or time having the given time-value.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline time-value & number & \begin{tabular}{l} 
The date and/or time whose minute is to be computed. \\
That date and/or time shall be expressed either as a \\
serial date-time, in which case, its integer part is ignored, \\
or as a string-constant having any date and/or time \\
format, in which case, any date information shall be \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The minute for the date and/or time having the given time-value. The returned value shall be in the range 0-59.

However, if time-value is out of range for the current date system, \#NUM! is returned.
[Example:
\(\operatorname{MINUTE}(\operatorname{DATE}(2006,2,26)+\operatorname{TIME}(2,10,20))\) results in 10
MINUTE (TIME \((22,56,34)\) ) results in 56
MINUTE (0) results in 0 , since serial date-time 0 represents 00:00:00
MINUTE (10.5) results in 0 , since serial date-time .5 represents 12:00:00
MINUTE("22-Oct-2001 10:53:12") results in 53
MINUTE("10:53:12 pm") results in 53
MINUTE ("22:53:12") results in 53
end example]

\subsection*{18.17.7.215 MINVERSE}

\section*{Syntax:}

MINVERSE ( array )
Description: Computes the inverse of the square matrix of numbers designated by array. The inverse matrix is calculated with an accuracy of at least 15 digits, which can lead to a small numeric error when the cancellation is not complete.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & Designate a square matrix of numbers. \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the square matrix designated by array.
However, if
- Any cells in array are empty or contain text, the return value is unspecified.
- The matrix designated by array is not square, \#VALUE! is returned.
- The matrix cannot be inverted, the return value is unspecified.
[Example:
\(\operatorname{MINVERSE}(\{3,6,1 ; 1,1,0 ; 3,10,2\})\) results in 2
\(\operatorname{MINVERSE}(\{3,6 ; 1,1\})\) results in -0.333333333
end example]

\subsection*{18.17.7.216 MIRR}

MIRR ( values, finance-rate, reinvest-rate )
Description: Computes the modified internal rate of return for a series of periodic cash flows. (Both the cost of the investment and the interest received on reinvestment of cash are considered.)

\section*{Mathematical Formula:}

The formula for MIRR is:
\(\left(\frac{-N P V(\text { rrate, values }[\text { positive }]) *\left(1+\text { rrate }^{n}{ }^{n}\right.}{N P V(\text { frate, values }[\text { negative }]) *(1+\text { frate }))}\right)^{\frac{1}{n-1}}-1\)
where:
- frate \(=\) argument finance-rate
- \(n=\) number of cash flows in argument values
- rrate \(=\) argument reinvest-rate
- values \(=\) argument values

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline values & array, reference & \begin{tabular}{l} 
Designates a set of numbers for which the rate of return \\
is to be calculated. values shall contain at least one \\
positive value and one negative value to calculate the \\
internal rate of return. The order of numbers in values is \\
significant, so be sure payment and income numbers are \\
in the desired sequence. If values contains elements that \\
are text, logical values, or empty cells, those elements \\
are ignored.
\end{tabular} \\
\hline finance-rate & number & \begin{tabular}{l} 
The interest rate paid pay on the money used in the cash \\
flows.
\end{tabular} \\
\hline reinvest-rate & number & \begin{tabular}{l} 
The interest rate received on the cash flows as they are \\
reinvested.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The modified internal rate of return for a series of periodic cash flows.
However, if values does not contain at least one positive value and one negative value, \#DIV/0! is returned.
[Example:
\(\operatorname{MIRR}(\{-120000,39000,30000,21000,37000,46000\}, 0.1,0.12)\) results in \(12.6094 \%\)
\(\operatorname{MIRR}(\{-120000,39000,30000,21000\}, 0.1,0.12)\) results in \(-4.8045 \%\)
\(\operatorname{MIRR}(\{-120000,39000,30000,21000,37000,46000\}, 0.1,0.14)\) results in \(13.4759 \%\)
end example]
18.17.7.217 MMULT

Syntax:

MMULT ( array-1 , array-2 )
Description: Computes the product of the matrices of numbers designated by array-l and array-2.

\section*{Mathematical Formula:}

The matrix product array \(a\) of two arrays \(b\) and \(c\) is:
\(a_{i j}=\sum_{k=1}^{n} b_{i k} c_{k j}\)
Where:
- \(\mathrm{b}_{\mathrm{ik}}=\) the element in the i -th row and k -th column in argument array- 1
- \(\mathrm{c}_{\mathrm{kj}}=\) the element in the k -th row and j -th column in argument array- 2
- \(i=\) the row number
- \(j=\) the column number

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & \begin{tabular}{l} 
array, reference, \\
name
\end{tabular} & Designate the matrices of numbers to be multiplied. \\
\hline array- 2 & & \\
\hline
\end{tabular}

Return Type and Value: number - The product of the matrices of numbers designated by array-1 and array-2.
However, if
- Any cells in array-1 or array-2 are empty or contain text, the return value is unspecified.
- The number of columns in array-1 is different from the number of rows in array-2, \#VALUE! is returned.
[Example:
\(\operatorname{MMULT}(\{3,6,1 ; 1,1,0\},\{5,7 ; 4,6 ; 2,5\})\) results in 41
end example]

\subsection*{18.17.7.218 MOD}

Syntax:
MOD ( \(x, y\) )
Description: Computes the remainder when \(x\) is divided by \(y\). The result has the same sign as \(y\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number for which the remainder is being sought. \\
\hline\(y\) & number & The number by which \(x\) is to be divided. \\
\hline
\end{tabular}

Return Type and Value: number - The remainder when \(x\) is divided by \(y\). The result has the same sign as \(y\). If \(y\) is 0 , the return value is unspecified.

\section*{[Example:}
```

MOD (3,2) results in 1
MOD (-3,2) results in 1
MOD (3,-2) results in -1
MOD (-3,-2) results in -1

```
end example]

\subsection*{18.17.7.219 MODE}

\section*{Syntax:}

MODE ( argument-list )
Description: Computes the most frequently occurring of the numeric values of its arguments. If the set of values contains more than one most-frequent value, the first occurrence of any most-frequent value in the list is used as the result.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, arrays, \\
reference to \\
number. Any \\
argument can be \\
an array or a \\
reference to an \\
array.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values \\
whose mode is to be computed. If an array or reference \\
argument contains text, logical values, or empty cells, \\
those values are ignored; however, cells with the value 0 \\
are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The most frequently occurring of the values of its arguments.
However, if the data set contains no duplicate data points, \#N/A is returned.
[Example:
\(\operatorname{MODE}(9,1,5,1,9,5,6,6)\) results in 9
\(\operatorname{MODE}(1,9,5,1,9,5,6,6)\) results in 1
\(\operatorname{MODE}(5,1,9,5,1,9,6,6)\) results in 5
end example]

\subsection*{18.17.7.220 MONTH}

\section*{Syntax:}

MONTH ( date-value )
Description: Computes the numeric month in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value, taking into account the current date system. That date and/or time shall be expressed either as a serial date-time, in which case, its fractional part is ignored, or as a string-constant having any date and/or time format, in which case, any time information shall be ignored.

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline date-value & number, text & \begin{tabular}{l} 
The date and/or time whose month is to be computed. \\
That date and/or time shall be expressed either as a \\
serial date-time, in which case, its fractional part is \\
ignored, or as a string-constant having any date and/or \\
time format, in which case, any time information shall be \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The month in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value, in the range 1-12.

However, if date-value is out of range for the current date system, \#NUM! is returned.
[Example:

MONTH(DATE \((2006,1,2))\) results in 1
MONTH(DATE \((2006,0,2))\) results in 12
MONTH("2006/1/2 10:45 AM") results in 1
MONTH (30000) results in 2 for both the 1900 and 1904 date systems
end example]
18.17.7.221 MROUND

\section*{Syntax:}
```

MROUND (}x\mathrm{ , multiple)

```

Description: Computes \(x\) rounded to multiple, away from zero. It rounds up if the remainder of dividing \(x\) by multiple is greater than or equal to half the value of multiple; otherwise, it rounds down.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to round. \\
\hline multiple & number & The multiple to which \(x\) is to be rounded. \\
\hline
\end{tabular}

Return Type and Value: number \(-x\) rounded to multiple.
However, if \(x\) and multiple have different signs, \#NUM! is returned.
[Example:
\(\operatorname{MROUND}(10,3)\) rounds 10 to a nearest multiple of 3 ; that is, to 9
\(\operatorname{MROUND}(-10,-3)\) rounds -10 to a nearest multiple of -3 ; that is, to -9
\(\operatorname{MROUND}(1.3,0.2)\) rounds 1.3 to a nearest multiple of 0.2 ; that is, to 1.4
end example]

\subsection*{18.17.7.222 MULTINOMIAL}

\section*{Syntax:}

MULTINOMIAL ( argument-list )
Description: Computes the ratio of the factorial of the sum of the values in argument-list to the product of the factorials.

\section*{Mathematical Formula:}

The multinomial is:
\(\operatorname{MULTINOMIAL}(a, b, c)=\frac{(a+b+c)!}{a!b!c!}\)
where:
- \(a, b, c, \ldots=\) the elements in argument-list

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & number & \begin{tabular}{l} 
The arguments in argument-list designate the numerical \\
values for which the multinomial is desired.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The ratio of the factorial of the sum of the values in argument-list to the product of the factorials.

However, if any argument is less than zero, \#NUM! is returned.

\section*{[Example:}

MULTINOMIAL (2) results in 1
\(\operatorname{MULTINOMIAL}(2,3)\) results in 10
\(\operatorname{MULTINOMIAL}(2,3,4)\) results in 1260

\section*{end example]}

\subsection*{18.17.7.223 N}

\section*{Syntax:}
```

N (value)

```

Description: Converts value to a number or, if value is a reference to a single cell, converts the value of that cell to a number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & Value to be converted. \\
\hline
\end{tabular}

Return Type and Value: number or error - An integer that is the converted value of value, or, if value is a reference to a single cell, the converted value of that cell, as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ value } & \multicolumn{1}{c|}{ Value Returned } \\
\hline number & That number \\
\hline TRUE & 1 \\
\hline FALSE & 0 \\
\hline error value & That error value \\
\hline \begin{tabular}{l} 
Anything else (including \\
array and text)
\end{tabular} & 0 \\
\hline
\end{tabular}
[Example:
\(N(10.5)\) results in 10.5
\(N(A 10)\) results in -1234 , when \(A 10\) contains the number -1234
\(N(" A B C\) ") results in 0
\(N(A 10)\) results in 0 , when \(A 10\) contains the string \(A B C\)
\(N\) (TRUE) results in 1
\(N(\) A10 ) results in 0 , when A10 contains FALSE
\(\mathrm{N}(\mathrm{A} 10)\) results in \#N/A, when A10 contains \#N/A
\(N(\{12.5,13.6,56.9\}\) results in 12.50
\(\mathrm{N}(\mathrm{A} 10\) : A11) results in 0 , when A10 contains FALSE, and A11 contains 321
end example]
18.17.7.224 NA

Syntax:
NA ()
Description: Gets the error value \#N/A. (The error value \#N/A can be used instead of a call to this function; the result is the same.)

Arguments: None.
Return Type and Value: error - The error value \#N/A.
[Example:

NA() results in \#N/A
IF (ISNA(NA()), "T", "F") results in T
end example]

\subsection*{18.17.7.225 NEGBINOMDIST}

Syntax:
NEGBINOMDIST ( number-failures , number-successes , success-probability )
Description: Computes the negative binomial distribution. NEGBINOMDIST returns the probability that there are number-failures failures before the number-successesth success, when the constant probability of a success is success-probability.

\section*{Mathematical Formula:}
\(n b(x, r, p)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x}\)
where:
- \(p=\) the argument success-probability.
- \(r=\) the argument number-successes
- \(x=\) the argument number-failures

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
number- \\
failures
\end{tabular} & number & The number of failures, truncated to integer. \\
\hline \begin{tabular}{l} 
number- \\
successes
\end{tabular} & number & The threshold number of successes, truncated to integer. \\
\hline \begin{tabular}{l} 
success- \\
probability
\end{tabular} & number & The probability of a success. \\
\hline
\end{tabular}

Return Type and Value: number - The negative binomial distribution.
However, if
- number-failures \(<0\) or number-successes \(<1\), \#NUM! is returned.
- success-probability \(<0\) or success-probability \(>1\), \#NUM! is returned.

\section*{[Example:}

NEGBINOMDIST \((6,10,0.5)\) results in 0.076370239

\section*{end example]}

\subsection*{18.17.7.226 NETWORKDAYS}

\section*{Syntax:}

NETWORKDAYS ( start-date , end-date [ , holidays ] )
Description: Computes the number of whole working days between start-date and end-date. Weekend days (Saturday, Sunday) and any holidays specified by holidays are not considered as working days.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline start-date & number & \begin{tabular}{l} 
The dates for which the difference is to be computed. \\
start-date can be earlier than, the same as, or later than \\
end-date.
\end{tabular} \\
\hline end-date & number & reference, array \\
\hline holidays & \begin{tabular}{l} 
An optional set of one or more dates that are to be \\
excluded from the working day calendar. holidays shall \\
be a range of cells that contain the dates, or an array \\
constant of the serial date-times that represent those
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
dates. The ordering of dates or serial date-times in \\
holidays can be arbitrary.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of whole working days between start-date and end-date, excluding the specified holidays. If start-date is later than end-date, the return value shall be negative, and the magnitude shall be the number of whole working days.

However, if
- start-date is out of range for the current date system, \#NUM! is returned.
- end-date is out of range for the current date system, \#NUM! is returned.

\section*{[Example:}

NETWORKDAYS(DATE \((2006,1,1)\), \(\operatorname{DATE}(2006,1,31))\) results in 23
NETWORKDAYS(DATE \((2006,1,31)\), DATE \((2006,1,1)\) ) results in -23
NETWORKDAYS(DATE (2006,1,1), DATE (2006, 2, 1), \{"2006/1/2", "2006/1/16"\}) results in 21
end example]

\subsection*{18.17.7.227 NETWORKDAYS.INTL}

\section*{Syntax:}

Number form: NETWORKDAYS.INTL ( start-date , end-date [,[weekend-number ][ , holidays ]] ) String form: NETWORKDAYS.INTL ( start-date , end-date [, [weekend-string ][ , holidays ]] )

Description: Computes the number of whole working days between start-date and end-date. Weekend days and any holidays specified by holidays are not considered as working days.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline start-date & Number & \begin{tabular}{l} 
The dates for which the difference is to be computed. \\
start-date can be earlier than, the same as, or later than \\
end-date.
\end{tabular} \\
\hline end-date & Number & Number \\
\hline \begin{tabular}{l} 
weekend- \\
number
\end{tabular} & \begin{tabular}{l} 
Indicates the days of the week that are weekend days \\
and are not included in the number of whole working \\
days between start-date and end-date. Values are shown \\
in the table below.
\end{tabular} \\
\hline \begin{tabular}{l} 
weekend- \\
string
\end{tabular} & String & \begin{tabular}{l} 
Indicates the days of the week that are weekend days \\
and are not included in the number of whole working \\
days between start-date and end-date.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & reference, array & \begin{tabular}{l} 
Values of weekend-string are seven characters long and \\
each character in the string represents a day of the week, \\
beginning with Monday. [Example: "0000011" would \\
result in a weekend that is Saturday and Sunday. end \\
example]
\end{tabular} \\
\hline holidays & \begin{tabular}{l} 
An optional set of one or more dates that are to be \\
excluded from the working day calendar. holidays shall \\
be a range of cells that contain the dates, or an array \\
constant of the serial date-times that represent those \\
dates. The ordering of dates or serial date-times in \\
holidays can be arbitrary.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ weekend-number } & \multicolumn{1}{c|}{ Weekend days } \\
\hline 1 or omitted & Saturday, Sunday \\
\hline 2 & Sunday, Monday \\
\hline 3 & Monday, Tuesday \\
\hline 4 & Tuesday, Wednesday \\
\hline 5 & Wednesday, Thursday \\
\hline 6 & Thursday, Friday \\
\hline 7 & Friday, Saturday \\
\hline 11 & Sunday only \\
\hline 12 & Monday only \\
\hline 13 & Tuesday only \\
\hline 14 & Wednesday only \\
\hline 15 & Thursday only \\
\hline 16 & Friday only \\
\hline 17 & Saturday only \\
\hline
\end{tabular}

Return Type and Value: number - The number of whole working days between start-date and end-date, excluding the specified weekend days and holidays. If start-date is later than end-date, the return value shall be negative, and the magnitude shall be the number of whole working days.

\section*{However, if}
- start-date is out of range for the current date system, \#NUM! is returned.
- end-date is out of range for the current date system, \#NUM! is returned.
[Example:
NETWORKDAYS.INTL(DATE \((2006,1,1), \operatorname{DATE}(2006,1,31))\) results in 23
NETWORKDAYS.INTL(DATE \((2006,1,31)\), \(\operatorname{DATE}(2006,1,1))\) results in -23
NETWORKDAYS.INTL(DATE (2006, 1, 1), DATE (2006, 2, 1), 7, \{"2006/1/2", "2006/1/16"\}) results in 21
NETWORKDAYS.INTL(DATE (2006, 1, 1), DATE (2006, 2, 1), "0000110", \{"2006/1/2", "2006/1/16"\}) results in 21
end example]

\subsection*{18.17.7.228 NOMINAL}

NOMINAL ( effect-rate, npery )
Description: Computes the nominal annual interest rate, given the effective rate and the number of compounding periods per year.

\section*{Mathematical Formula:}

NOMINAL is related to EFFECT:
EFFECT \(=\left(1+\frac{\text { Nominal_rate }}{\text { Npery }}\right)^{\text {Npery }}-1\)
where:
- Nominal_rate \(=\) argument effect-rate
- Npery = argument npery

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline effect-rate & number & The effective interest rate. \\
\hline npery & number & \begin{tabular}{l} 
The number of compounding periods per year, truncated \\
to integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The nominal annual interest rate.
However, if
- effect-rate \(\leq 0, \# N U M\) ! is returned.
- npery <1, \#NUM! is returned.
[Example:

NOMINAL \((0.053543,4)\) results in \(5.2500 \%\)
end example]

\subsection*{18.17.7.229 NORMDIST}

\section*{Syntax:}

NORMDIST ( \(x\), mean , standard-deviation , cumulative-flag )
Description: Computes the normal distribution for the specified mean and standard deviation.

\section*{Mathematical Formula:}

The equation for the normal density function (cumulative-flag \(=\) FALSE) is:
\(f(x, \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)}\)
When cumulative-flag = TRUE, the formula is the integral from negative infinity to x of the given formula.
where:
- \(x=\operatorname{argument} x\)
- \(\mu=\) argument mean
- \(\sigma=\) argument standard-dev

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value for which the distribution is to be computed. \\
\hline mean & number & The arithmetic mean of the distribution. \\
\hline \begin{tabular}{l} 
standard- \\
deviation
\end{tabular} & number & The standard deviation of the distribution. \\
\hline \begin{tabular}{l} 
cumulative- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Determines the form of the function. If TRUE, then the \\
cumulative distribution function is returned; if FALSE, \\
the probability mass function is returned.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The normal distribution for the specified mean and standard deviation.
However, if standard-deviation \(\leq 0, \#\) NUM! is returned.
[Example:

NORMDIST ( \(42,40,1.5\), TRUE \()\) results in 0.90878878
NORMDIST(42,40,1.5,FALSE) results in 0.10934005
end example]

\subsection*{18.17.7.230 \\ NORMINV}

\section*{Syntax:}

NORMINV ( probability , mean , standard-deviation )
Description: Computes the inverse of the normal distribution for the specified mean and standard deviation.Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & The probability corresponding to the normal distribution. \\
\hline mean & number & The arithmetic mean of the distribution. \\
\hline \begin{tabular}{l} 
standard- \\
deviation
\end{tabular} & number & The standard deviation of the distribution. \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the normal distribution for the specified mean and standard deviation.

However, if
- probability \(<0\) or if probability \(>1\), \#NUM! is returned.
- standard-deviation \(\leq 0, \# N U M\) ! is returned.
- the implementation determines that a return value cannot be computed, \(\# \mathrm{~N} / \mathrm{A}\) is returned.
[Example:

NORMINV \((0.908789,40,1.5)\) results in 42.00000201
end example]

\subsection*{18.17.7.231 NORMSDIST}

\section*{Syntax:}

NORMSDIST ( z )
Description: Computes the standard normal distribution for the specified mean and standard deviation.
Mathematical Formula:
\(f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}\)
where:
- \(z=\operatorname{argument} z\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(z\) & number & The value for which the distribution is to be computed. \\
\hline
\end{tabular}

Return Type and Value: number - The standard normal distribution for the specified mean and standard deviation.
[Example:

NORMSDIST(1.333333) results in 0.90878873
NORMSDIST(-1.5) results in 0.06680720

\section*{end example]}

\subsection*{18.17.7.232 NORMSINV}

Syntax:
NORMSINV ( probability )
Description: Computes the inverse of the standard normal distribution. The distribution has a mean of zero and a standard deviation of 1 .

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & The probability corresponding to the normal distribution. \\
\hline
\end{tabular}

Return Type and Value: number - The inverse of the standard normal distribution.
However, if
- probability \(<0\) or if probability \(>1\), \#NUM! is returned.
- the implementation determines that a return value cannot be computed, \(\# \mathrm{~N} / \mathrm{A}\) is returned.
[Example:
NORMSINV (0.945) results in 1.59819314
NORMSINV (0.13) results in -1.12639113
end example]

\subsection*{18.17.7.233 NOT}

\section*{Syntax:}

NOT ( logical-value )
Description: Computes the logical negation of logical-value.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline logical-value & logical & The value to be negated. \\
\hline
\end{tabular}

Return Type and Value: logical - The logical negation of logical-value; that is, it returns TRUE if logical-value is FALSE, and FALSE if logical-value is TRUE.
[Example:

NOT (TRUE) results in FALSE
NOT (FALSE) results in TRUE
NOT (10>5) results in FALSE
NOT (16.567) results in FALSE
end example]

\subsection*{18.17.7.234 NOW}

Syntax:
NOW ()
Description: Computes the serial date-time of the current date and time, taking into account the current date system.

Arguments: None.
Return Type and Value: number - The serial date-time of the current date and time.
[Example: On February 26, 2006, between 23:01 and 23:02, NOW() resulted in 38774.95958611110 for the 1900 date system. On February 26, 2006, between 23:02 and 23:03, NOW () resulted in 37312.95982569440 for the 1904 date system. end example]

\subsection*{18.17.7.235 NPER}

Syntax:
NPER (rate , pmt , pv [ , [ fv ] [ , [ type ]]] )

Description: Computes the number of periods for an investment based on periodic, constant payments and a constant interest rate.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The interest rate per period.} \\
\hline pmt & number & \multicolumn{2}{|l|}{The payment made each period; it cannot change over the life of the annuity. Typically, pmt contains principal and interest but no other fees or taxes.} \\
\hline \(p v\) & number & \multicolumn{2}{|l|}{The present value, or the lump-sum amount that a series of future payments is worth right now.} \\
\hline fv & number & \multicolumn{2}{|l|}{The future value, or a cash balance to be attained after the last payment is made. If \(f v\) is omitted, it is assumed to be 0 (i.e., the future value of a loan, for example, is 0 ).} \\
\hline \multirow[t]{4}{*}{type} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The timing of the payment, truncated to integer, as follows:} \\
\hline & & Value & Timing \\
\hline & & 0 & Payment at the end of the period \\
\hline & & 1 & Payment at the beginning of the period \\
\hline
\end{tabular}

Return Type and Value: number - The number of periods for an investment based on periodic, constant payments and a constant interest rate.

However, if type is any number other than 0 or 1, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{NPER}(0.12 / 12,-100,-1000,10000,1)\) results in 59.67
\(\operatorname{NPER}(0.12 / 12,-100,-1000)\) results in -9.58
end example]

\subsection*{18.17.7.236 NPV}

\section*{Syntax:}

NPV ( rate, argument-list )
Description: Calculates the net present value of an investment by using a discount rate and a series of future payments and income.

The NPV investment begins one period before the date of the first argument cash flow and ends with the last cash flow in the list. The calculation is based on future cash flows. If the first cash flow occurs at the beginning of the first period, the first value shall be added to the NPV result, not included in argument-list.

\section*{Mathematical Formula:}

If n is the number of cash flows in the list of values:
\(N P V=\sum_{i=1}^{n} \frac{\text { values }_{i}}{\left(1+\text { rate }^{i}\right)^{i}}\)
where:
n is the number of elements in argument-list.
values \({ }_{\mathrm{i}}\) valuesj is the value of the i-th element in argument-list.
rate is the rate argument.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline rate & number & \begin{tabular}{l} 
The rate of discount over the length of one period. \\
argument-list \\
number \\
The arguments in argument-list designate the series of \\
future payments (negative values) and income (positive \\
values). arguments shall be equally spaced in time and \\
occur at the end of each period. The order of arguments \\
is significant. arguments that are numbers, empty cells, \\
logical values, or text representations of numbers are \\
included; arguments that are error values or text that \\
cannot be translated into numbers are ignored. If an \\
argument is an array or reference, only numbers in that \\
array or reference are included. Empty cells, logical \\
values, text, or error values in the array or reference are \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - Net present value of an investment by using a discount rate and a series of future payments and income.

\section*{[Example:}

NPV (0.1, \(-10000,3000,4200,6800)\) results in 1188.44
end example]

\section*{Syntax:}

OCT2BIN ( number [ , num-bin-digits ] )
Description: Makes the binary equivalent of number, with the result having num-bin-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & text & \begin{tabular}{l} 
A 10-digit octal number in a string that is to be converted \\
to a binary string. If number has less than 10 digits, \\
leading zero digits are implied until it has exactly \\
10 digits. The 10 digits use twos-complement \\
representation with the left-most bit (30th bit from the \\
right) representing the sign bit.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-bin - \\
digits
\end{tabular} & number & \begin{tabular}{l} 
The number of digits in the result, with leading zeros \\
added as necessary. However, if number is negative, num- \\
bin-digits is ignored and the result has 10 digits. If num- \\
bin-digits is omitted, the minimum number of digits is \\
used in the result. num-bin-digits is truncated to an \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The binary equivalent of number.
However, if
- number is outside the range "7777777000" (111111111111111111111000000000 binary, -512 decimal) to "777" ( 000000000000000000000111111111 binary, 511 decimal), inclusive, \#NUM! is returned.
- number contains one or more non-octal digits, \#NUM! is returned.
- number contains more than 10 octal digits, \#NUM! is returned.
- number needs more digits that num-bin-digits, \#NUM! is returned.
- num-bin-digits \(\leq 0\) or \(>10\), \#NUM! is returned.

\section*{[Example:}

OCT2BIN("67") results in 110111
OCT2BIN("7777777776") results in 1111111110
OCT2BIN("7",5) results in 00111
end example]

\subsection*{18.17.7.238 OCT2DEC}

\section*{Syntax:}
```

OCT2DEC (number)

```

Description: Makes the decimal equivalent of number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & \begin{tabular}{l} 
A 10-digit octal number in a string that is to be converted \\
to a decimal number. If number has less than 10 digits, \\
leading zero digits are implied until it has exactly \\
10 digits. The 10 digits use twos-complement \\
representation with the left-most bit (30th bit from the \\
right) representing the sign bit.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The decimal equivalent of number.
However, if
- number contains one or more non-octal digits, \#NUM! is returned.
- number contains more than 10 octal digits; that is, number is outside the range "4000000000" (\(536,870,912\) decimal) to " 3777777777 " (536,870,911 decimal), inclusive, \#NUM! is returned.

\section*{[Example:}

OCT2DEC("67") results in 55
OCT2DEC("7777777776") results in -2
OCT2DEC("7000000000") results in -134217728
end example]

\subsection*{18.17.7.239 OCT2HEX}

Syntax:
ОСТ2HEX ( number [, num-hex-digits ] )
Description: Makes the hexadecimal equivalent of number, with the result having num-hex-digits digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & text & \begin{tabular}{l} 
A 10-digit octal number in a string that is to be converted \\
to a hexadecimal string. If number has less than 10 digits,
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
leading zero digits are implied until it has exactly \\
10 digits. The 10 digits use twos-complement \\
representation with the left-most bit (30th bit from the \\
right) representing the sign bit.
\end{tabular} \\
\hline \begin{tabular}{l} 
num-hex- \\
digits
\end{tabular} & number & \begin{tabular}{l} 
num-hex-digits is the number of digits in the result, with \\
leading zeros added as necessary. However, if number is \\
negative, num-hex-digits is ignored and the result has \\
10 digits. If \(n u m\)-hex-digits is omitted, the minimum \\
number of digits is used in the result. \(n u m\)-hex-digits is \\
truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The hexadecimal equivalent of number.
However, if
- number contains one or more non-octal digits, \#NUM! is returned.
- number contains more than 10 octal digits; that is, number is outside the range "4000000000" (20000000 hex, -536,870,912 decimal) to "3777777777" (1FFFFFFF hex, 536,870,911 decimal), inclusive, \#NUM! is returned.
- number needs more digits that num-hex-digits, \#NUM! is returned.
- num-hex-digits \(\leq 0\) or \(>10\), \#NUM! is returned.
[Example:

OCT2HEX("777") results in 1FF
ОСТ2HEX("7777777776") results in FFFFFFFFFFE
OCT2HEX("7",5) results in 00007
end example]

\subsection*{18.17.7.240 ODD}

Syntax:
ODD ( \(x\) )
Description: Computes \(x\) rounded to the nearest odd integer, away from zero. Regardless of the sign of \(x\), a value is rounded up when adjusted away from zero.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded. \\
\hline
\end{tabular}

Return Type and Value: number - The rounded value of \(x\).
[Example:

ODD (1.5) rounds 1.5 up to the nearest odd integer; that is, to 3
ODD (3) rounds 3 up to the nearest odd integer; that is, to 3
ODD(2) rounds 2 up to the nearest odd integer; that is, to 3
ODD \((-1)\) rounds -1 up to the nearest odd integer; that is, to -1
ODD \((-2)\) rounds -2 up to the nearest odd integer; that is, to -3
end example]

\subsection*{18.17.7.241 ODDFPRICE}

\section*{Syntax:}

ODDFPRICE ( settlement , maturity , issue , first-coupon , rate , yld , redemption , frequency [ , [ basis ]] )

Description: Computes the price per \(\$ 100\) face value of a security having an odd (short or long) first period.

\section*{Mathematical Formula:}

Odd short first coupon:
\[
\begin{aligned}
\text { ODDFPRICE }= & {\left[\frac{\text { redemption }}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\left(N-1+\frac{D S C}{E}\right)}}\right]+\left[\frac{100 \times \frac{\text { rate }}{\text { frequency }} \times \frac{D F C}{E}}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\frac{D S C}{E}}}\right] } \\
& +\left[\sum_{k=2} \frac{100 \times \frac{\text { rate }}{\text { frequency }}}{\left(1+\frac{y l d}{\text { frequency }}\right)^{\left(k-1+\frac{D S C}{E}\right)}}\right]-\left[100 \times \frac{\text { rate }}{\text { frequency }} \times \frac{A}{E}\right]
\end{aligned}
\]
where:
- \(A=\) number of days from the beginning of the coupon period to the settlement date (accrued days).
- \(D F C=\) number of days from the beginning of the odd first coupon to the first coupon date.
- \(D S C=\) number of days from the settlement to the next coupon date.
- \(E=\) number of days in the coupon period.
- frequency \(=\) argument frequency
- \(N=\) number of coupons payable between the settlement date and the redemption date. (If this number contains a fraction, it is raised to the next whole number.)
- rate = argument rate
- redemption \(=\) argument redemption
- \(y l d=\) argument \(y l d\)

Odd long first coupon:
\[
\begin{aligned}
\text { ODDFPRICE }= & {\left[\frac{\text { redemption }}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\left(N+N_{\mathrm{q}}+\frac{\mathrm{DSC}}{\mathrm{E}}\right)}}\right]+\left[\frac{100 \times \frac{\text { rate }}{\text { frequency }} \times\left[\sum_{\mathrm{i}=1}^{\mathrm{NC}} \frac{\mathrm{DC}_{\mathrm{i}}}{\mathrm{NL}} \mathrm{i}\right.}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\mathrm{N}_{\mathrm{q}}+\frac{\mathrm{DSC}}{\mathrm{E}}}}\right] } \\
& +\left[\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{100 \times \frac{\text { rate }}{\text { frequency }}}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\left(\mathrm{k}-\mathrm{N}_{\mathrm{q}}+\frac{\mathrm{DSC}}{\mathrm{E}}\right)}}\right]-\left[100 \times \frac{\text { rate }}{\text { frequency }} \times \sum_{\mathrm{i}=1}^{\mathrm{NC}} \frac{\mathrm{~A}_{\mathrm{i}}}{\mathrm{NL}_{\mathrm{i}}}\right]
\end{aligned}
\]
where:
- \(A_{i}=\) number of days from the beginning of the ith, or last, quasi-coupon period within odd period.
- \(\mathrm{DC}_{\mathrm{i}}=\) number of days from dated date (or issue date) to first quasi-coupon ( \(\mathrm{i}=1\) ) or number of days in quasi-coupon ( \(\mathrm{i}=2, \ldots, \mathrm{i}=\mathrm{NC}\) ).
- \(D S C=\) number of days from settlement to next coupon date.
- \(E=\) number of days in coupon period.
- frequency \(=\) argument frequency
- \(N=\) number of coupons payable between the first real coupon date and redemption date. (If this number contains a fraction, it is raised to the next whole number.)
- \(N C=\) number of quasi-coupon periods that fit in odd period. (If this number contains a fraction, it is raised to the next whole number.)
- \(\mathrm{NL}_{\mathrm{i}}=\) normal length in days of the full ith, or last, quasi-coupon period within odd period.
- \(\mathrm{N}_{\mathrm{q}}=\) number of whole quasi-coupon periods between settlement date and first coupon.
- rate = argument rate
- redemption \(=\) argument redemption
- \(y l d=\) argument \(y l d\)

\section*{...Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline maturity & number & The security's maturity date. \\
\hline issue & number & The security's issue date. \\
\hline first-coupon & number & The security's first coupon date. \\
\hline rate & number & The security's interest rate. \\
\hline yld & number & The security's annual yield. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per \$100 face value.} \\
\hline frequency & number & \multicolumn{2}{|l|}{the number of coupon payments per year. (For annual payments, frequency is 1 ; for semiannual payments, frequency is 2; for quarterly payments, frequency is 4.)} \\
\hline basis & number & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The price per \(\$ 100\) face value of a security having an odd (short or long) first period.

\section*{However, if}
- settlement, maturity, issue, or first-coupon is out of range for the current date system, \#NUM! is returned.
- The following is not true: maturity is later than first-coupon, which is later than settlement, which is later than issue, so \#NUM! is returned.
- rate or \(y l d<0\), \#NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{ODDFPRICE}(\operatorname{DATE}(2008,11,11), \operatorname{DATE}(2021,3,1), \operatorname{DATE}(2008,10,15), \operatorname{DATE}(2009,3,1)\), \(0.0785,0.0625,100,2,1)\) results in 113.5977

\section*{end example]}

\subsection*{18.17.7.242 ODDFYIELD}

Syntax:
ODDFYIELD ( settlement , maturity , issue , first-coupon , rate , pr, redemption , frequency [, [ basis ]] )

Description: Computes the yield of a security that has an odd (short or long) first period.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline issue & number & \multicolumn{2}{|l|}{The security's issue date.} \\
\hline first-coupon & number & \multicolumn{2}{|l|}{The security's first coupon date.} \\
\hline rate & number & \multicolumn{2}{|l|}{The security's interest rate.} \\
\hline pr & number & \multicolumn{2}{|l|}{The security's price.} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per \$100 face value.} \\
\hline frequency & number & \multicolumn{2}{|l|}{the number of coupon payments per year. (For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4 .)} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & US (NASD) 30/360. Assumes that each \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Name & Type & \multicolumn{3}{|r|}{Description} \\
\hline & &  & & \begin{tabular}{l}
adjusting day counts. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date \\
is 28 or 29 \\
February, it \\
is adjusted \\
to 30 \\
February. \\
- For months with \\
31 days, all dates with a day value of 31 are changed to day 30 , including situations where the first date is 28 or 29 Februar \(y\).
\end{tabular} \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The yield of a security that has an odd (short or long) first period.
However, if
- settlement, maturity, issue, or first-coupon is out of range for the current date system, \#NUM! is returned.
- The following is not true: maturity is later than first-coupon, which is later than settlement, which is later than issue, so \#NUM! is returned.
- rate or \(p r<0\), \#NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{ODDFYIELD}(\operatorname{DATE}(2008,11,11), \operatorname{DATE}(2021,3,1), \operatorname{DATE}(2008,10,15), \operatorname{DATE}(2009,3,1)\),
\(0.0575,84.5,100,2,0)\) results in \(7.7246 \%\)

\section*{end example]}

\subsection*{18.17.7.243 ODDLPRICE}

\section*{Syntax:}

ODDLPRICE ( settlement , maturity , last-interest , rate , yld , redemption , frequency [ , [ basis ]] )
Description: Computes the price per \(\$ 100\) face value of a security having an odd (short or long) last coupon period.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline last-interest & number & \multicolumn{2}{|l|}{The security's last coupon date.} \\
\hline rate & number & \multicolumn{2}{|l|}{The security's interest rate.} \\
\hline yld & number & \multicolumn{2}{|l|}{The security's annual yield.} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per \$100 face value.} \\
\hline frequency & number & \multicolumn{2}{|l|}{the number of coupon payments per year. (For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4 .)} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date
\end{tabular} \\
\hline
\end{tabular}



Time information in the date arguments is ignored.
Return Type and Value: number - The price per \(\$ 100\) face value of a security having an odd (short or long) last coupon period.

However, if
- settlement, maturity, or last-interest is out of range for the current date system, \#NUM! is returned.
- The following is not true: maturity is later than settlement, which is later than last-interest, so \#NUM! is returned.
- rate or \(y l d<0\), \#NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{ODDLPRICE}(\operatorname{DATE}(2008,11,11), \operatorname{DATE}(2021,3,1), \operatorname{DATE}(2008,10,15)\),
\(0.0785,0.0625,100,2,1)\) results in 99.8783

\section*{end example]}

\subsection*{18.17.7.244 ODDLYIELD}

\section*{Syntax:}

ODDLYIELD ( settlement , maturity , last-interest , rate , pr , redemption , frequency [ , [ basis ]] )

Description: Computes the yield of a security that has an odd (short or long) last period.
Mathematical Formula:
\[
\begin{aligned}
O D D L Y I E L D= & {\left[\frac{\left(\text { redemption }+\left(\left(\sum_{i=1}^{N C} \frac{D C_{i}}{N L_{i}}\right) \times \frac{100 \times \text { rate }}{\text { frequency }}\right)\right)-\left(\text { par }+\left(\left(\sum_{i=1}^{N C} \frac{A_{i}}{N L_{i}}\right) \times \frac{100 \times \text { rate }}{\text { frequency }}\right)\right)}{p r+\left(\left(\sum_{i=1}^{N C} \frac{A_{i}}{N L_{i}}\right) \times \frac{100 \times \text { rate }}{\text { frequency }}\right)}\right] } \\
& \times\left[\frac{\text { frequency }}{\left(\sum_{i=1}^{N C} \frac{D S C_{i}}{N L_{i}}\right)}\right]
\end{aligned}
\]
where:
- \(A_{i}\) = number of accrued days for the \(i^{\text {th }}\), or last, quasi-coupon period within odd period counting forward from last interest date before redemption.
- \(\quad \mathrm{DC}_{\mathrm{i}}=\) number of days counted in the \(\mathrm{i}^{\text {th }}\), or last, quasi-coupon period as delimited by the length of the actual coupon period.
- frequency \(=\) argument frequency
- \(N C=\) number of quasi-coupon periods that fit in odd period; if this number contains a fraction it is raised to the next whole number.
- \(\mathrm{NL}_{\mathrm{i}}=\) normal length in days of the \(\mathrm{i}^{\text {th }}\), or last, quasi-coupon period within odd coupon period.
- par = argument par
- rate = argument rate
- redemption \(=\) argument redemption
-

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline maturity & number & The security's maturity date. \\
\hline last-interest & number & The security's last coupon date. \\
\hline rate & number & The security's interest rate. \\
\hline\(p r\) & number & The security's price. \\
\hline redemption & number & The security's redemption value per \$100 face value. \\
\hline frequency & number & \begin{tabular}{l} 
the number of coupon payments per year. (For annual \\
payments, frequency is 1; for semiannual payments, \\
frequency is 2; for quarterly payments, frequency is 4.)
\end{tabular} \\
\hline basis & number & \begin{tabular}{l} 
The truncated integer type of day count basis to use, as \\
follows:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|l|}{} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 days. \\
\hline & & 2 & Actual/360. Similar to Basis 1, but only has 360 days per year. \\
\hline & & 3 & Actual/365. Similar to \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Type & \multicolumn{2}{|c|}{ Description } \\
\hline & & & \begin{tabular}{l} 
Basis 1, but always has \\
365 days per year.
\end{tabular} \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The yield of a security that has an odd (short or long) last period.

However, if
- settlement, maturity, or last-interest is out of range for the current date system, \#NUM! is returned.
- The following is not true: maturity is later than settlement, which is later than last-interest, so \#NUM! is returned.
- rate or \(p r<0, \# N U M\) ! is returned.
- frequency is any number other than 1,2 , or \(4, \# N U M\) ! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}

ODDLYIELD(DATE (2008, 11, 11), \(\operatorname{DATE}(2021,3,1), \operatorname{DATE}(2008,10,15)\),
\(0.0575,84.5,100,2,0)\) results in \(4.5192 \%\)

\section*{end example]}

\subsection*{18.17.7.245 OFFSET}

\section*{Syntax:}

OFFSET (reference , rows , cols [ , [ height ] [ , [ width ]]] )
Description: Gets a reference to a range that is a specified number of rows and columns from a cell or range of cells. The reference that is returned can be a single cell or a range of cells. You can specify the number of rows and the number of columns to be returned.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline reference & reference & \begin{tabular}{l} 
Designates the base. reference shall refer to a cell or \\
range of adjacent cells.
\end{tabular} \\
\hline rows & number & \begin{tabular}{l} 
The number of rows, up or down, that indicates the \\
upper-left cell of the result to refer to. A positive value \\
means below the starting reference; a negative value \\
means above the starting reference.
\end{tabular} \\
\hline cols & number & \begin{tabular}{l} 
The number of columns, to the left or right, that the \\
upper-left cell of the result to refer to. A positive value \\
means to the right of the starting reference; a negative \\
value means to the left of the starting reference.
\end{tabular} \\
\hline height & number & \begin{tabular}{l} 
The height, in rows, of the set of cells referred to by the \\
resulting reference. This height shall be positive. If \\
omitted, it is the same as the height of reference.
\end{tabular} \\
\hline width & number & \begin{tabular}{l} 
The width, in columns, of the set of cells referred to by \\
the resulting reference. The width shall be positive. If \\
omitted, it is the same as the width of reference.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: reference - A reference to a range that is a specified size and number of rows and columns from a cell or range of cells.

However, if
- reference does not refer to a cell or range of adjacent cells, \#VALUE! is returned.
- The combination of rows and cols results outside the worksheet, \#REF! is returned.

\section*{[Example:}
\(\operatorname{OFFSET}(C 3,2,3,1,1)\) results in the value in cell F5
SUM (OFFSET(C3: E5, \(-1,0,3,3)\) ) results in the sum of the range C2: E4
end example]

\subsection*{18.17.7.246 OR}

\section*{Syntax:}

OR ( argument-list)
Description: Tests if any one or more arguments in argument-list are TRUE. The function evaluates all arguments prior to returning a value.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, array, \\
reference.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values to be \\
tested. For an array or cell reference, a cell that contains \\
text or is empty shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: logical - TRUE if any one or more arguments in argument-list are TRUE; otherwise, FALSE.

However, if no logical values are found, the return value is unspecified.

\section*{[Example:}

OR(TRUE) results in TRUE
OR (FALSE, FALSE) results in FALSE
OR \((10=5,3=1+2,0)\) results in TRUE
OR (\{10, \(5,6,7\}\), TRUE , E6:F6) results in TRUE, when E6 contains FALSE and F6 contains 0
end example]

\subsection*{18.17.7.247 PEARSON}

Syntax:
PEARSON ( array-1 , array-2 )
Description: Computes the Pearson product moment correlation coefficient, a dimensionless index that ranges from -1.0 to 1.0 , inclusive, and reflects the extent of a linear relationship between two data sets.

\section*{Mathematical Formula:}

The formula for the Pearson product moment correlation coefficient, \(r\), is:
\(r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean \(\operatorname{AVERAGE}\) (array-1)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (array-2)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & \begin{tabular}{l} 
number, name, \\
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
The set of independent numerical values. If an array or \\
reference argument contains text, logical values, or \\
empty cells, those values are ignored; however, cells with \\
the value 0 are included.
\end{tabular} \\
\hline array-2 & \begin{tabular}{l} 
number, name, \\
array, reference \\
to number
\end{tabular} & \begin{tabular}{l} 
The set of dependent numerical values. If an array or \\
reference argument contains text, logical values, or \\
empty cells, those values are ignored; however, cells with \\
the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Pearson product moment correlation coefficient.
However, if
- array- 1 and array- 2 have a different number of data points, the return value is unspecified.
- array- 1 or array- 2 is empty, the return value is unspecified.
[Example:
\(\operatorname{PEARSON}(\{9,7,5,3,1\},\{10,6,1,5,3\})\) results in 0.699378606
end example]

\subsection*{18.17.7.248 \\ PERCENTILE}

Syntax:
PERCENTILE ( array, \(k\) )
Description: Computes the \(k^{\text {th }}\) percentile of a set of values in a range.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & The set of numerical data that defines relative standing. \\
\hline\(k\) & number & \begin{tabular}{l} 
The percentile value in the range 0-1, inclusive. If \(k\) is not \\
a multiple of \(1 /(n-1)\), PERCENTILE interpolates to \\
determine the value at the \(k^{\text {th }}\) percentile.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The \(k^{\text {th }}\) percentile of a set of values in a range.

\section*{However, if}
- array is empty, the return value is unspecified.
- \(k\) is \(<0\) or \(k>1\), \#NUM! is returned.

\section*{[Example:}

PERCENTILE \((\{1,3,2,4\}, 0.3)\) results in 1.9
\(\operatorname{PERCENTILE}(\{1,3,2,4\}, 0.75)\) results in 3.25
end example]

\subsection*{18.17.7.249 PERCENTRANK}

\section*{Syntax:}

PERCENTRANK ( array , \(x\) [, significance ])
Description: Computes the rank of a value in a data set as a percentage of the data set.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & \begin{tabular}{l} 
array is the set of numerical data that defines relative \\
standing.
\end{tabular} \\
\hline\(x\) & number & \begin{tabular}{l} 
The value for which the rank is to be computed. If \(x\) does \\
not match one of the values in array, PERCENTRANK \\
interpolates to return the correct percentage rank.
\end{tabular} \\
\hline significance & number & \begin{tabular}{l} 
The number of significant digits for the returned \\
percentage value. If omitted, a value of 3 is used.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rank of a value in a data set as a percentage of the data set.
However, if
- array is empty, the return value is unspecified.
- significance \(<1\), \#NUM! is returned.
[Example:
PERCENTRANK \((\{12,6,7,9,3,8\}, 4)\) results in 0.066
PERCENTRANK \((\{12,6,7,9,3,8\}, 5)\) results in 0.133

\section*{end example]}

\subsection*{18.17.7.250 PERMUT}

\section*{Syntax:}

PERMUT ( number, number-chosen )
Description: Computes the number of permutations for number-chosen objects that can be selected from number objects. [Note: A permutation is any set or subset of objects or events where internal order is significant. Permutations are different from combinations, for which the internal order is not significant. Use this function for lottery-style probability calculations. end note]

\section*{Mathematical Formula:}
\(P_{k, n}=\frac{n!}{(n-k)!}\)
where:
- \(k=\) argument number-chosen
- \(n=\) argument number

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & The total number of items available, truncated to integer. \\
\hline \begin{tabular}{l} 
number- \\
chosen
\end{tabular} & number & \begin{tabular}{l} 
The number of items in each permutation, truncated to \\
integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number of different permutations of number-chosen in number.
However, if
- number \(<0\), \#NUM! is returned.
- number-chosen \(<0, \# \mathrm{NUM}\) ! is returned.
- number < number-chosen, \#NUM! is returned.
[Example:

PERMUT \((8,2)\) results in 56
PERMUT \((10,4)\) results in 5040
PERMUT \((6,5)\) results in 720
end example]

\subsection*{18.17.7.251 PHONETIC}

\section*{Syntax:}

PHONETIC ( string )
Description: Extracts the phonetic (furigana) characters from string. [Note: Furigana are aids used to indicate correct pronunciation of Japanese text. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text, reference & \begin{tabular}{l} 
Designates a furigana string. If string is a cell range, the \\
furigana string in the upper-left corner cell of that range \\
is returned.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The phonetic (furigana) characters from string.

However, if string is a range of non-contiguous cells, \#N/A is returned.

\subsection*{18.17.7.252 PI}

Syntax:

PI ()
Description: Computes the value \(\pi\).

Arguments: None.
Return Type and Value: number - The value \(\pi\).
[Example: The following results are displayed using 10 significant digits

PI ( ) results in 3.141592654
PI()\(/ 2\) results in 1.570796327
PI ( \()^{*}\left(2.5^{\wedge} 2\right)\) results in 19.63495408
end example]

\subsection*{18.17.7.253 PMT}

\section*{Syntax:}

PMT ( rate , nper , pv [ , [ fv ] [ , [ type ]]] )
Description: Computes the payment for a loan based on constant payments and a constant interest rate.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The interest rate for the loan.} \\
\hline nper & number & \multicolumn{2}{|l|}{The total number of payment for the loan.} \\
\hline \(p v\) & number & \multicolumn{2}{|l|}{The present value, or the total amount that a series of future payments is worth now; also known as the principal.} \\
\hline fv & number & \multicolumn{2}{|l|}{The future value, or a cash balance to be attained after the last payment is made. If omitted, it is assumed to be 0 (i.e., the future value of a loan, for example, is 0 ).} \\
\hline \multirow[t]{4}{*}{type} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The timing of the payment, truncated to integer, as follows:} \\
\hline & & Value & Timing \\
\hline & & 0 & Payment at the end of the period \\
\hline & & 1 & Payment at the beginning of the period \\
\hline
\end{tabular}

Return Type and Value: number - The payment for a loan based on constant payments and a constant interest rate. (The payment returned by PMT includes principal and interest but no taxes, reserve payments, or fees sometimes associated with loans.)

Howver, if type is any number other than 0 or \(1, \# N U M!\) is returned.

\section*{[Example:}

PMT \((0.08 / 12,10,10000)\) results in \(-1,037.03\)
\(\operatorname{PMT}(0.08 / 12,10,10000,0,1)\) results in \(-1,030.16\)
end example]

\subsection*{18.17.7.254 POISSON}

\section*{Syntax:}

POISSON ( \(x\), mean , cumulative-flag )
Description: Computes the Poisson distribution.

\section*{Mathematical Formula:}

For cumulative-flag \(=\) FALSE:
POISSON \(=\frac{e^{-\lambda} \lambda^{x}}{x!}\)
For cumulative-flag \(=\) TRUE:
CUMPOISSON \(=\sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{k}}{k!}\)
where:
- \(\quad x=\operatorname{argument} x\)
- \(\lambda=\) argument mean

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number of events, truncated to an integer. \\
\hline mean & number & The expected numeric value. \\
\hline \begin{tabular}{l} 
cumulative- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Determines the form of the function. If TRUE, POISSON \\
returns the cumulative Poisson probability that the \\
number of random events occurring are between zero \\
and \(x\), inclusive; if FALSE, it returns the Poisson \\
probability mass function that the number of events \\
occurring is exactly \(x\).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Poisson distribution.
However, if
- \(x<0\), \#NUM! is returned.
- mean \(\leq 0, \# N U M!\) is returned.
[Example:

POISSON ( 2,5 , TRUE) results in 0.124652019
POISSON \((2,5\), FALSE \()\) results in 0.084224337

\section*{end example]}

\subsection*{18.17.7.255 POWER}

\section*{Syntax:}

POWER \((x, y)\)
Description: Computes \(x\) raised to the power \(y\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The base and the number \(y\) is the exponent to which that \\
base is raised.
\end{tabular} \\
\hline\(y\) & number & The exponent to which the base is raised. \\
\hline
\end{tabular}

Return Type and Value: number \(-x^{y}\).

However, if
- The value of \(x\) is negative and \(y\) is not a whole number, \#NUM! is returned.
- \(\quad x\) is zero and \(y\) is less than or equal to zero, \#DIV/0! is returned.
- The result cannot be represented as a number, \#NUM! is returned.
[Example:
\(\operatorname{POWER}(2,3)\) results in 8
\(\operatorname{POWER}(2,0.5)\) results in 1.414213562
POWER ( \(-1.234,5.0\) ) results in -2.861381721
POWER (1.234, 5.1) results in 2.922182358
end example]

\subsection*{18.17.7.256 PPMT}

Syntax:
PPMT (rate , per, nper , pv [ , [ fv ][ , [ type ]]] )
Description: Computes the payment on the principal for a given period for an investment based on periodic, constant payments and a constant interest rate.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The interest rate per period.} \\
\hline per & number & \multicolumn{2}{|l|}{The the period and shall be in the range 1-nper.} \\
\hline nper & number & \multicolumn{2}{|l|}{The total number of payment in an annuity.} \\
\hline \(p v\) & number & \multicolumn{2}{|l|}{The present value, or the total amount that a series of future payments is worth now.} \\
\hline fv & number & \multicolumn{2}{|l|}{The future value, or a cash balance to be attained after the last payment is made. If omitted, it is assumed to be 0 (i.e., the future value of a loan, for example, is 0 ).} \\
\hline \multirow[t]{4}{*}{type} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The timing of the payment, truncated to integer, as follows:} \\
\hline & & Value & Timing \\
\hline & & 0 & Payment at the end of the period \\
\hline & & 1 & Payment at the beginning of the period \\
\hline
\end{tabular}

Return Type and Value: number - The payment on the principal for a given period for an investment based on periodic, constant payments and a constant interest rate.

However, if type is any number other than 0 or 1, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{PPMT}(0.1 / 12,1,2 * 12,2000)\) results in -75.62
\(\operatorname{PPMT}(0.08,10,10,200000)\) results in \(-27,598.05\)
end example]

\subsection*{18.17.7.257 PRICE}

\section*{Syntax:}

PRICE ( settlement , maturity, rate , yld , redemption , frequency [ , [ basis ]])
Description: Computes the price per \(\$ 100\) face value of a security that pays periodic interest.

\section*{Mathematical Formula:}

PRICE \(=\left[\frac{\text { reemption }}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\left(N-1+\frac{D S C}{E}\right)}}\right]+\left[\sum_{k=1}^{N} \frac{100 \times \frac{\text { rate }}{\text { frequency }}}{\left(1+\frac{\text { yld }}{\text { frequency }}\right)^{\left(k-1+\frac{D S C}{E}\right)}}\right]-\left(100 \times \frac{\text { rate }}{\text { frequency }} \times \frac{A}{E}\right)\)
where:
- \(A=\) number of days from beginning of coupon period to settlement date.
- \(D S C=\) number of days from settlement to next coupon date.
- \(E=\) number of days in coupon period in which the settlement date falls.
- frequency \(=\) argument frequency
- \(N=\) number of coupons payable between settlement date and redemption date.
- rate \(=\) argument rate
- redemption = argument redemption
- \(y l d=\) argument \(y l d\)

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline rate & number & \multicolumn{2}{|l|}{The security's interest rate.} \\
\hline yield & number & \multicolumn{2}{|l|}{The security's annual yield.} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per \$100 face value.} \\
\hline frequency & number & \multicolumn{2}{|l|}{the number of coupon payments per year. (For annual payments, frequency is 1 ; for semiannual payments, frequency is 2 ; for quarterly payments, frequency is 4 .) frequency is truncated to an integer.} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Description
\end{tabular}} \\
\hline & & \begin{tabular}{l} 
30 February. \\
For months \\
with 31 days, if \\
the first date \\
has a day value \\
of 31, the date \\
is converted to \\
day 30. If the \\
second date \\
has a day value \\
of 31, it is \\
changed to 30 \\
days as long as \\
the first date \\
was not 28 or \\
29 February, in \\
which case it \\
does not \\
change.
\end{tabular} \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The price per \(\$ 100\) face value of a security that pays periodic interest.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- rate or \(y l d<0\), \#NUM! is returned.
- redemption \(\leq 0, \#\) NUM! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{PRICE}(\operatorname{DATE}(2008,2,15), \operatorname{DATE}(2017,11,15), 0.0575,0.065,100,2,0)\) results in 94.6344
end example]

\subsection*{18.17.7.258 PRICEDISC}

Syntax:

PRICEDISC ( settlement , maturity , discount , redemption [ , [ basis ]] )
Description: Computes the price per \(\$ 100\) face value of a discounted security.

\section*{Mathematical Formula:}

PRICEDISC \(=\) redemption - discount \(\times\) redemption \(\times \frac{D S M}{B}\)
where:
- \(B=\) number of days in year, depending on year basis.
- \(D S M=\) number of days from settlement to maturity.
- discount \(=\) argument discount
- redemption \(=\) argument redemption

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline discount & number & \multicolumn{2}{|l|}{The security's discount rate.} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per \$100 face value.} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30. If the second date
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline & & a day value of 31 are changed to day 30 , including situations where the first date is 28 or 29 Februar y . \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The price per \(\$ 100\) face value of a discounted security.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- discount or redemption \(\leq 0, \# N U M\) ! is returned.
- basis < 0 or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{PRICEDISC}(\operatorname{DATE}(2008,2,16), \operatorname{DATE}(2008,3,1), 0.0525,100,2)\) results in 99.7958
end example]
18.17.7.259 PRICEMAT

Syntax:
PRICEMAT ( settlement , maturity , issue , rate , yld [ , [ basis ]] )
Description: Computes the price per \(\$ 100\) face value of a security that pays interest at maturity.

\section*{Mathematical Formula:}

PRICEMAT \(=\frac{100+\left(\frac{I M}{B} \times \text { rate } \times 100\right)}{1+\left(\frac{D S M}{B} \times y l d\right)}-\left(\frac{A}{B} \times\right.\) rate \(\left.\times 100\right)\)
where:
- \(A=\) number of days from issue to settlement.
- \(B=\) number of days in year, depending on year basis.
- \(D I M=\) number of days from issue to maturity.
- \(D S M=\) number of days from settlement to maturity.
- rate \(=\) argument rate
- \(y l d=\) argument \(y l d\)

\section*{Arguments:}

\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|l|}{} \\
\hline & \multirow[t]{5}{*}{} & \multicolumn{2}{|r|}{\begin{tabular}{l} 
Description \\
\hline
\end{tabular} \begin{tabular}{l} 
29 February, in \\
which case it \\
does not \\
change.
\end{tabular}\(\quad\)\begin{tabular}{l}
\end{tabular}} \\
\hline & & & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 days. \\
\hline & & & Actual/360. Similar to Basis 1, but only has 360 days per year. \\
\hline & & & Actual/365. Similar to Basis 1, but always has 365 days per year. \\
\hline & & & \begin{tabular}{l}
European 30/360. The European method for adjusting day counts. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date \\
is 28 or 29 \\
February, it \\
is adjusted \\
to 30 \\
February. \\
- For months with \\
31 days, all dates with a day value of 31 are changed to day 30 , including situations
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|l|}
\hline Name & Type & \multicolumn{2}{|c|}{ Description } \\
\hline & & & \begin{tabular}{l} 
where the \\
\\
\end{tabular} \\
& & & \\
& & & first date \\
is 28 or \\
& & & 29 Februar \\
& & & \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The price per \(\$ 100\) face value of a security that pays interest at maturity.
However, if
- settlement, maturity, or issue is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- rate or \(y l d<0\), \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{PRICEMAT}(\operatorname{DATE}(2008,2,15), \operatorname{DATE}(2008,4,13), \operatorname{DATE}(2007,11,11), 0.061,0.061,0)\) results in 99.9845
end example]

\subsection*{18.17.7.260 PROB}

\section*{Syntax:}

PROB ( x-range, probability-range ,lower-limit [, upper-limit ] )
Description: Computes the probability that values in a range are between two limits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline x-range & array, reference & \begin{tabular}{l} 
The set of numeric values of \(x\) with which there are \\
associated probabilities.
\end{tabular} \\
\hline \begin{tabular}{l} 
probability- \\
range
\end{tabular} & array, reference & \begin{tabular}{l} 
A set of numeric probabilities associated with the values \\
in \(x\)-range.
\end{tabular} \\
\hline lower-limit & number & \begin{tabular}{l} 
The lower bound on the value for which the probability is \\
to be computed.
\end{tabular} \\
\hline upper-limit & number & \begin{tabular}{l} 
The upper bound on the value for which the probability is \\
to be computed. If omitted, the probability that values in \\
\(x\)-range are equal to lower-limit is returned.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The probability that values in a range are between two limits.
However, if
- Any value in probability-range \(\leq 0\) or any value in probability-range \(>1\), \(\#\) NUM! is returned.
- The sum of the values in probability-range \(<1\), \#NUM! is returned.
- \(x\)-range and probability-range contain a different number of data points, the return value is unspecified.
[Example:
\(\operatorname{PROB}(\{0,1,2,3\},\{0.2,0.3,0.1,0.4\}, 2)\) results in 0.1
\(\operatorname{PROB}(\{0,1,2,3\},\{0.2,0.3,0.1,0.4\}, 1,4)\) results in 0.8
end example]

\subsection*{18.17.7.261 PRODUCT}

\section*{Syntax:}

PRODUCT ( argument-list )
Description: Multiplies the numeric values of arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
text, array, \\
reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers to \\
be multiplied. Arguments that are numbers, logical \\
values, or text representations of numbers shall be \\
counted. If an argument is an array or reference, only \\
numbers in that array or reference shall be counted. \\
Empty cells, logical values, and text in the array or \\
reference shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The product of the values of its arguments.
[Example:

PRODUCT (1) results in 1
\(\operatorname{PRODUCT}(1,2,3,4,5)\) results in 120
\(\operatorname{PRODUCT}(\{1,2 ; 3,4\})\) results in 24
\(\operatorname{PRODUCT}(\{2,3\}, 4, " 5 ")\) results in 120
end example]

\subsection*{18.17.7.262 PROPER}

\section*{Syntax:}
```

PROPER (string)

```

Description: Makes a lowercase version of string except that the first letter in string and any other letters in string that immediately follow a character that is not a letter, are converted to uppercase.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text, reference & Designates the string to be converted. \\
\hline
\end{tabular}

Return Type and Value: text - A version of string such that the first letter in string and any other letters in string that immediately follow a character that is not a letter, are converted to uppercase. All other letters are converted to lowercase, and all other non-letters are unchanged.
[Example:

PROPER("12aBC d123aD\#\$\%sd^") results in 12Abc D123Ad\#\$\%Sd^ PROPER(A10) results in 12Abc D123Ad\#\$\%Sd^, when A10 contains 12aBC d123aD\#\$\%sd^

\section*{end example]}

\subsection*{18.17.7.263 PV}

Syntax:
```

PV (rate , nper , pmt [, [fv][, [type]]])

```

Description: Computes the present value of an investment. (The present value is the total amount that a series of future payments is worth now.)

\section*{Mathematical Formula:}

If rate is not 0 , then:
\(p v *(1+\text { rate })^{\text {nper }}+p m t(1+\) rate \(*\) type \() *\left(\frac{(1+\text { rate })^{\text {nper }}-1}{\text { rate }}\right)+f v=0\)
If rate is 0 , then:
\((\mathrm{pmt} \times \mathrm{nper})+\mathrm{pv}+\mathrm{fv}=0(\mathrm{pmt} * \mathrm{nper})+\mathrm{pv}+\mathrm{fv}=0\)
where:
- \(f v=f v\) argument
- nper \(=\) nper argument
- \(p m t=p m t\) argument
- rate \(=\) rate argument
- type = type argument

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline rate & number & \multicolumn{2}{|l|}{The interest rate per period.} \\
\hline nper & number & \multicolumn{2}{|l|}{The total number of payment in an annuity.} \\
\hline pmt & number & \multicolumn{2}{|l|}{The payment made each period and cannot change over the life of the annuity. If is omitted, \(f v\) shall be provided. [Note: Typically, pmt includes principal and interest but no other fees or taxes. end note]} \\
\hline fv & number & \multicolumn{2}{|l|}{The future value, or a cash balance to be attained after the last payment is made. If omitted, \(p m t\) shall be provided.} \\
\hline \multirow[t]{4}{*}{type} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The timing of the payment, truncated to integer, as follows:} \\
\hline & & Value & Timing \\
\hline & & 0 & Payment at the end of the period \\
\hline & & 1 & Payment at the beginning of the period \\
\hline
\end{tabular}

Return Type and Value: number - The present value of an investment.
However, if type is any number other than 0 or 1, \#NUM! is returned.
[Example:
\(\operatorname{PV}(0.08 / 12,12 * 20,500,0)\) results in \(-59,777.15\)
end example]

\subsection*{18.17.7.264}

Syntax:
QUARTILE ( array, result-category )
Description: Computes the quartile of a data set.

\section*{Arguments:}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{2}{c|}{ Description } \\
\hline array & array, reference & \begin{tabular}{l} 
The set of numeric values for which the quartile value is \\
to be computed.
\end{tabular} \\
\hline \begin{tabular}{l} 
result- \\
category
\end{tabular} & number & \begin{tabular}{l} 
When truncated to an integer, specifies which value is to \\
be returned, as follows:
\end{tabular} \\
\(\qquad\)\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{c|}{ Value } & \multicolumn{1}{c|}{ Value Returned } \\
\hline 0 & Minimum value \\
\hline & & \begin{tabular}{lll}
1 & First quartile (25th percentile) \\
\hline 2 & Median value (50th percentile) \\
\hline
\end{tabular} \\
& & 4
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The quartile of a data set.
However, if
- array is empty, the return value is unspecified.
- result-category \(<0\) or result-category \(>4\), \#NUM! is returned.
[Example:
\(\operatorname{QUARTILE}(\{1,2,4,7,8,9,10,12\}, 1)\) results in 3.5
end example]

\subsection*{18.17.7.265 \\ QUOTIENT}

Syntax:
QUOTIENT (dividend , divisor )
Description: Computes the integer portion of the division of dividend by divisor.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline dividend & number & The dividend \\
\hline divisor & number & The divisor. \\
\hline
\end{tabular}

Return Type and Value: number - The integer portion of the division of dividend by divisor.
[Example:
QUOTIENT \((5,2)\) results in 2
QUOTIENT \((4.5,3.1)\) results in 1
QUOTIENT \((-10,3)\) results in -3
end example]
18.17.7.266 RADIANS

Syntax:
RADIANS ( angle )
Description: Converts angle in degrees into radians.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline angle & number & \begin{tabular}{l} 
The angle expressed in degrees that is to be converted \\
into radians.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - angle in radians.
[Example:

RADIANS (360) results in 6.283185307
RADIANS (270) results in 4.71238898
RADIANS(45) results in 0.785398163
RADIANS (8.5) results in 0.148352986
end example]

\subsection*{18.17.7.267 RAND}

\section*{Syntax:}

RAND ()
Description: Computes an evenly distributed random real number greater than or equal to 0 and less than 1. A new random real number is returned every time the cell's value is calculated.

Arguments: None.
Return Type and Value: number - An evenly distributed random real number greater than or equal to 0 and less than 1.
[Example:

RAND () results in 0.437337454
INT (RAND ( ) * (6-1) +1 ) might result in 3
end example]

\subsection*{18.17.7.268 RANDBETWEEN}

\section*{Syntax:}

RANDBETWEEN (lower-bound , upper-bound )
Description: Computes a random integer number in the range lower-bound-upper-bound. A new random integer number is returned every time the cell's value is calculated.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline lower-bound & number & The smallest integer that is returned. \\
\hline upper-bound & number & The largest integer that is returned. \\
\hline
\end{tabular}

Return Type and Value: number - A random integer number in the range specified.
However, if lower-bound is greater than upper-bound, \#NUM! is returned.
[Example:

RANDBETWEEN \((1,6)\) results in an integer between 1 and 6 , inclusive
RANDBETWEEN \((-10,10)\) results in an integer between -10 and 10 , inclusive
end example]
18.17.7.269 RANK

Syntax:
RANK ( number, number-list [, order ] )
Description: Computes the rank of a number in a list of numbers. RANK gives duplicate numbers the same rank. However, the presence of duplicate numbers affects the ranks of subsequent numbers.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & The number whose rank is to be found. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number-list & reference & \begin{tabular}{l} 
Designates the list of numbers. Non-numeric values in \\
this list are ignored.
\end{tabular} \\
\hline order & number & \begin{tabular}{l} 
Specifies how number is to be ranked. If zero or omitted, \\
number is ranked as if the list were sorted in descending \\
order. If order is any non-zero value, number is ranked as \\
if the list were sorted in ascending order.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rank of a number in a list of numbers.

\section*{[Example:}

When the cells E1: I1 contain 7, 3.5, 3.5, 1, and 2

RANK (E2, E1: I1, 1) results in 3
RANK (E2, E1:I1, 1, 0) results in 2
RANK (E2, E1: I1, 1) results in 2
RANK (E1, E1:I1, 1) results in 5, as the two 3.5 values both have a rank of 3 ; no value has rank 4 .

\section*{end example]}

\subsection*{18.17.7.270 RATE}

Syntax:
RATE ( nper , pmt , pv [ , [ [ fv] [ , [[ type ][ , [ guess ]]]]]])
Description: Computes the interest rate per period of an annuity, using iteration, which can result in zero or more solutions.

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline\(n p e r\) & number & The total number of payment periods. \\
\hline\(p m t\) & number & \begin{tabular}{l} 
The payment made each period and cannot change over \\
the life of the annuity. (Typically, \(p m t\) includes principal \\
and interest but no other fees or taxes.) If omitted, \(f v\) \\
shall be present.
\end{tabular} \\
\hline\(p v\) & number & The present value. \\
\hline\(f v\) & number & \begin{tabular}{l} 
The future value, or a cash balance to be attained after \\
the last payment is made. If omitted, it is assumed to \\
be 0 (i.e., the future value of a loan, for example, is 0 ).
\end{tabular} \\
\hline type & number & \begin{tabular}{l} 
The timing of the payment, truncated to integer, as \\
follows:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{2}{|c|}{ Description } \\
\hline & & \multicolumn{2}{|c|}{ Value } \\
\hline 0 & \multicolumn{1}{c|}{ Timing } \\
\hline & & \begin{tabular}{l} 
Payment at the end of the \\
period
\end{tabular} \\
\hline guess & number & \begin{tabular}{l} 
A guess for what the rate are. If omitted, it is assumed to \\
be 10 percent.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The interest rate per period of an annuity.
However, if
- type is any number other than 0 or \(1, \# N U M!\) is returned.
- The result has not converged after an implementation-defined number of iterations, \#NUM! is returned.

\section*{[Example:}

RATE (4*12, \(-200,8000\) ) results in \(0.7701 \%\)
RATE \((4 * 12,-200,8000) * 12\) results in \(9.2418 \%\)
end example]

\subsection*{18.17.7.271 \\ RECEIVED}

\section*{Syntax:}

RECEIVED ( settlement , maturity , investment , discount [ , [ basis ]] )
Description: Computes the amount received at maturity for a fully invested security.
Mathematical Formula:
RECEIVED \(=\frac{\text { investment }}{1-\left(\text { discount } \times \frac{D I M}{B}\right)}\)
where:
- \(B=\) number of days in a year, depending on the year basis.
- \(D I M=\) number of days from issue to maturity.
- discount = argument discount
- investment \(=\) argument investment

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline investment & number & \multicolumn{2}{|l|}{The amount invested in the security.} \\
\hline discount & number & \multicolumn{2}{|l|}{The security's discount rate.} \\
\hline \multirow[t]{4}{*}{basis} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30. If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The amount received at maturity for a fully invested security.

\section*{However, if}
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- investment or discount \(\leq 0\), \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{RECEIVED}(\operatorname{DATE}(2008,2,15), \operatorname{DATE}(2008,5,15), 1000000,0.0575,2)\) results in 1014584.65
end example]

\subsection*{18.17.7.272 REPLACE}

\section*{Syntax:}

REPLACE ( string-1 , start-pos , number-chars , string-2 )
Description: Produces a new string that is string-1 with number-chars characters starting at position start-pos, replaced by string-2. (REPLACE is intended for use with languages that use the single-byte character set (SBCS), whereas REPLACEB ( \((18.17 .7 .273\) ) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline string-1 & text & Designates a string. \\
\hline start-pos & number & The number of the start position within string-1 from which characters in string-l are to be replaced. The start position of the first character is 1 . start-pos shall be at least 0 . If start-pos is beyond the end of string-1, the result is a new string that is string-2 appended to string1. If start-pos is within the bounds of string-1, but number-chars goes beyond the end of string- 1 , the characters starting at position start-pos through to the end of string- 1 shall be replaced by string- 2 . \\
\hline number-chars & number & The number of characters within string- 1 that are to be replaced by the string designated by string- 2 . \\
\hline string-2 & text & Designates a string. \\
\hline
\end{tabular}

Return Type and Value: text - A copy of string-1 with replacement characters from string-2.
However, if
- start-pos \(<0\), \#VALUE! is returned.
- number-chars \(<0, \# V A L U E!\) is returned.

\section*{[Example:}

REPLACE("abcdefghijk", 3,4, "XY") results in abXYghijk
REPLACE("abcdefghijk", 3,1, "12345") results in ab12345defghijk
REPLACE("abcdefghijk",15,4, "XY") results in abcdefghijkXY

\section*{end example]}

\subsection*{18.17.7.273 REPLACEB}

\section*{Syntax:}

REPLACEB ( string-1 , start-pos , number-bytes , string-2 )
Description: Produces a new string that is string- 1 with number-bytes bytes starting at position start-pos, replaced by string-2. (REPLACEB is intended for use with languages that use the double-byte character set (DBCS), whereas REPLACE (§18.17.7.272) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline string-1 & text & Designates a string. \\
\hline start-pos & number & The number of the start position within string-l from which characters in string-l are to be replaced. The start position of the first character is 1 . start-pos shall be at least 0 . If start-pos is beyond the end of string- 1 , the result is a new string that is string-2 appended to string1. If start-pos is within the bounds of string-1, but number- bytes goes beyond the end of string- 1 , the characters starting at position start-pos through to the end of string- 1 shall be replaced by string- 2 . \\
\hline \begin{tabular}{l}
number- \\
bytes
\end{tabular} & number & The number of characters within string- 1 that are to be replaced by the string designated by string-2. \\
\hline string-2 & text & Designates a string. \\
\hline
\end{tabular}

Return Type and Value: text - A copy of string-l with replacement characters from string-2.
However, if
- start-pos \(<0\), \#VALUE! is returned.
- number-bytes \(<0, \# V A L U E!\) is returned.
[Example: Assuming 1-byte characters:

REPLACEB("abcdefghijk", 3, 4, "XY") results in abXYghijk
REPLACEB("abcdefghijk", 3, 1, "12345") results in ab12345defghijk
REPLACEB("abcdefghijk", 15, 4, "XY") results in abcdefghijkXY
end example]
18.17.7.274 REPT

Syntax:
REPT ( string , replication-count )
Description: Creates a string that is replication-count number of occurrences of string concatenated together.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designate the string to be replicated. \\
\hline \begin{tabular}{l} 
replication- \\
count
\end{tabular} & number & \begin{tabular}{l} 
The number of times string is to be replicated, truncated \\
to integer. If replication-count is 0 , the resulting string is \\
empty.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The final replicated string.
However, if replication-count \(<0, \#\) VALUE! is returned.
[Example:
REPT("ABC", 3) results in ABCABCABC
\(\operatorname{LEN}(\operatorname{REPT}(\) "ABC", 0\()\) ) results in 0
end example]

\subsection*{18.17.7.275 RIGHT}

\section*{Syntax:}

RIGHT ( string [ , number-chars ] )
Description: Extracts the right-most number-chars characters from string. (RIGHT is intended for use with languages that use the single-byte character set (SBCS), whereas RIGHTB (§18.17.7.276) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designate the string from which a substring is to be \\
extracted.
\end{tabular} \\
\hline number-chars & number & \begin{tabular}{l} 
The number of characters to be extracted. If omitted, a \\
count of 1 shall be assumed. \(n u m b e r\)-chars shall be at \\
least 0. If number-chars exceeds the length of string, the \\
whole of string shall be extracted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the right-most number-chars characters from string.
However, if number-chars \(<0, \#\) VALUE! is returned.

\section*{[Example:}

RIGHT("abcdef", 2) results in ef
RIGHT (A10, 4) results in z123, when A10 contains xyz123
end example]

\subsection*{18.17.7.276 RIGHTB}

\section*{Syntax:}

RIGHTB ( string , [ number-bytes ])
Description: Extracts the right-most number-bytes-worth of characters from string. (RIGHTB is intended for use with languages that use the double-byte character set (DBCS), whereas RIGHT (§18.17.7.275) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designate the string from which a substring is to be \\
extracted.
\end{tabular} \\
\hline number-bytes & number & \begin{tabular}{l} 
The number of bytes to be extracted. If omitted, a count \\
of 1 shall be assumed. \(n u m b e r\)-bytes shall be at least 0. If \\
number-bytes exceeds the length of string, the whole of \\
string shall be extracted.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string containing the right-most number-bytes-worth of characters from string.
However, if number-bytes < 0 , \#VALUE! is returned.
[Example: Assuming 1-byte characters:

RIGHTB("abcdef", 2) results in ef
RIGHTB(A10,4) results in z123, when A10 contains xyz123
end example]

\subsection*{18.17.7.277 ROMAN}

\section*{Syntax:}

ROMAN (number, form )
Description: Converts the Arabic number, number, to a Roman number according to form.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & & Description \\
\hline number & number & The Arabic n & mber to be converted. \\
\hline \multirow[t]{6}{*}{form} & \multirow[t]{6}{*}{number} & \multicolumn{2}{|l|}{Specifies the type of Roman numeral to be produced. The Roman numeral style ranges from Classic to Simplified, becoming more concise as the value of form increases, as follows:} \\
\hline & & Value & Type \\
\hline & & 0 , omitted, or TRUE & Classic. Only subtract powers of ten (but not \(L\) or \(V\) ). Do not subtract a number from one that is more than 10 times greater. If another letter follows the larger one, it shall be smaller than the number preceding the larger one. \\
\hline & & 1 & Concise. Allow subtractraction of \(L\) and V as well as powers of ten. Do not subtract a number from one that is more than 10 times greater. If another letter follows the larger one, it shall be smaller than the number preceding the larger one. \\
\hline & & 2 & More concise. Allow subtractraction of \(L\) (but not V) as well as powers of ten. Allow subtraction of a number from one that is more than 10 times greater. If another letter follows the larger one, it shall be smaller than the number preceding the larger one. \\
\hline & & 3 & Most concise. Allow subtractraction of L and V as well as powers of ten. Allow subtraction of a number from one that \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{2}{|c|}{ Description } \\
\hline & & \begin{tabular}{l} 
is more than 10 times greater. If another \\
letter follows the larger one, it shall be \\
smaller than the number preceding the \\
larger one.
\end{tabular} \\
\hline & & \begin{tabular}{l} 
4 or \\
FALSE
\end{tabular} & \begin{tabular}{l} 
Simplified. Produce the fewest Roman \\
digits.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The corresponding Roman number.

\section*{However, if}
- number < 0 or > 3999, \#VALUE! is returned.
- form is not one of the values listed above, \#VALUE! is returned.

\section*{[Example:}

ROMAN \((499,0)\) results in CDXCIX, which is 100 less than 500 , plus 10 less than 100, plus one less than 10.
ROMAN \((499,1)\) results in LDVLIV, which is 50 less than 500 , plus 5 less than 50 , plus one less than 5 .
ROMAN \((499,2)\) results in XDIX, which is 10 less than 500 , plus one less than 10.
ROMAN \((499,3)\) results in VDIV, which is 5 less than 500 , plus one less than 5.
\(\operatorname{ROMAN}(499,4)\) results in ID, which is 1 less than 500.
\(\operatorname{ROMAN}(2013,0)\) results in MMXIII, which is 2,000, plus 10, plus 3.

\section*{end example]}

\subsection*{18.17.7.278 ROUND}

\section*{Syntax:}

ROUND ( \(x\), number-digits )
Description: Rounds \(x\) to the number of digits specified by number-digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded. \\
\hline number-digits & number & \begin{tabular}{l} 
The number of digits to which \(x\) is to be rounded. If \\
number-digits is greater than \(0, x\) is rounded to the \\
specified number of decimal places. If number-digits is 0, \\
\(x\) is rounded to the nearest integer. If number-digits is \\
less than \(0, x\) is rounded to the left of the decimal point.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rounded value of \(x\). When rounding, digits 0-4 round down, while digits 5-9 round up.
[Example:
\(\operatorname{ROUND}(2.15,1)\) results in 2.2
\(\operatorname{ROUND}(2.149,1)\) results in 2.1
ROUND \((-1.475,2)\) results in -1.48
\(\operatorname{ROUND}(21.5,-1)\) results in 20
end example]

\subsection*{18.17.7.279 ROUNDDOWN}

\section*{Syntax:}

ROUNDDOWN ( \(x\), number-digits )
Description: Computes \(x\) rounded down, toward zero, to the number of digits specified by number-digits. [Note: ROUNDDOWN behaves like ROUND (§18.17.7.278), except that ROUNDDOWN always rounds a number down. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded down. \\
\hline number-digits & number & \begin{tabular}{l} 
The number of digits to which \(x\) is to be rounded. If \\
number-digits is greater than \(0, x\) is rounded to the \\
specified number of decimal places. If number-digits is 0, \\
\(x\) is rounded to the nearest integer. If number-digits is \\
less than \(0, x\) is rounded to the left of the decimal point.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-down value of \(x\).

\section*{[Example:}
\(\operatorname{ROUNDDOWN}(3.2,0)\) rounds 3.2 down to zero decimal places; that is, to 3
ROUNDDOWN \((76.9,0)\) rounds 76.9 down to zero decimal places; that is, to 76
ROUNDDOWN \((3.14159,3)\) rounds 3.14159 down to three decimal places; that is, to 3.141
ROUNDDOWN \((-3.14159,1)\) rounds -3.14159 down to one decimal place; that is, to -3.1
ROUNDDOWN ( \(31415.92654,-2\) ) rounds 31415.92654 down to two decimal places to the left of the decimal;
that is, to 31400
end example]

\subsection*{18.17.7.280 ROUNDUP}

\section*{Syntax:}

ROUNDUP ( \(x\), number-digits )
Description: Computes \(x\) rounded up, away from zero, to the number of digits specified by number-digits. [Note: ROUNDUP behaves like ROUND ( \((18.17 .7 .278\) ), except that ROUNDUP always rounds a number up. end note]

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value to be rounded up. \\
\hline number-digits & number & \begin{tabular}{l} 
The number of digits to which \(x\) is to be rounded. If \\
number-digits is greater than \(0, x\) is rounded up to the \\
specified number of decimal places. If number-digits is 0, \\
\(x\) is rounded up to the nearest integer. If number-digits is \\
less than \(0, x\) is rounded up to the left of the decimal \\
point.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The rounded-up value of \(x\).

\section*{[Example:}

ROUNDDOWN \((3.2,0)\) rounds 3.2 down to zero decimal places; that is, to 4
ROUNDDOWN \((76.9,0)\) rounds 76.9 down to zero decimal places; that is, to 77
ROUNDDOWN \((3.14159,3)\) rounds 3.14159 down to three decimal places; that is, to 3.142
ROUNDDOWN \((-3.14159,1)\) rounds -3.14159 down to one decimal place; that is, to -3.2
ROUNDDOWN ( \(31415.92654,-2\) ) rounds 31415.92654 down to two decimal places to the left of the decimal;
that is, to 31500
end example]

\subsection*{18.17.7.281 ROW}

\section*{Syntax:}

ROW ( [ reference ] )
Description: Finds the number of the row(s) corresponding to reference.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline reference & \begin{tabular}{l} 
reference to a \\
single cell or to a \\
range of
\end{tabular} & \begin{tabular}{l} 
If omitted, the behavior is as if reference referred to the \\
cell containing the formula.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline & contiguous cells & \\
\hline
\end{tabular}

Return Type and Value: number - If reference refers to a single cell or to a single row of cells, the corresponding row is returned. If reference refers to a range of cells involving multiple rows, a vertical array of the corresponding rows as numbers is returned.

However, if the range of cells referred to by reference is not contiguous, \#REF! is returned.

\section*{[Example:}

ROW ( ) results in 16, when the cell containing the formula is in row 16
ROW(E17:G17) results in 17
ROW(E16:G17) results in a vertical array containing 16 and 17, respectively
end example]

\subsection*{18.17.7.282 ROWS}

\section*{Syntax:}

Rows ( array )
Description: Finds the number of rows corresponding to array.

\section*{Arguments:}
\begin{tabular}{|l|l|ll|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & & Description \\
\hline array & \begin{tabular}{l} 
array, reference \\
to a single cell, or \\
a reference to a \\
range of \\
contiguous cells
\end{tabular} & A set of rows. & \\
\hline
\end{tabular}

Return Type and Value: number - The number of rows corresponding to array.
However, if the range of cells referred to by array is not contiguous, \#NULL! is returned.
[Example:

ROWS (E16:H16) results in 1
ROWS (E16:G18) results in 3
ROWS \((\{1,2 ; 3,4\})\) results in 2

\section*{end example]}

\subsection*{18.17.7.283 RSQ}

\section*{Syntax:}

RSQ ( known-ys, known-xs )
Description: Computes the square of the Pearson product moment correlation coefficient through data points in known ys and known xs.

\section*{Mathematical Formula:}

The equation for the Pearson product moment correlation coefficient, \(r\), is:
\(r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (known-xs)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (known-ys)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline known-xs & \begin{tabular}{l} 
number, name, \\
array, or \\
reference to \\
number, text, \\
logical
\end{tabular} & \begin{tabular}{l} 
Designate a set of numeric data points. Logical values and \\
text representations of numbers entered directly into the \\
list of arguments are included. If an array or reference \\
argument contains text, logical values, or empty cells, \\
those values are ignored; however, cells with the value 0 \\
are included.
\end{tabular} \\
\hline known-ys & \begin{tabular}{l} 
number, name, \\
array, or \\
reference to \\
number, text, \\
logical
\end{tabular} & \begin{tabular}{l} 
Designate a set of numeric data points. Logical values and \\
text representations of numbers entered directly into the \\
list of arguments are included. If an array or reference \\
argument contains text, logical values, or empty cells, \\
those values are ignored; however, cells with the value 0 \\
are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The square of the Pearson product moment correlation coefficient.
However, if
- known-ys and known-xs are empty or have a different number of data points, the return value is unspecified.
- known-ys and known-xs contain only one data point, the return value is unspecified.

\section*{[Example:}
\(\operatorname{RSQ}(\{2,3,9,1,8,7,5\},\{6,5,11,7,5,4,4\})\) results in 0.057950192

\section*{end example]}

\subsection*{18.17.7.284 RTD}

\section*{Syntax:}
```

RTD (progID , [rtd-server] , argument-list)

```

Description: Retrieves data from a program in real-time. Periodically, this function returns new values and causes recalculation of the expression containing the call to it.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline progID & text & \begin{tabular}{l} 
The name of the program from which the data is to be \\
retrieved.
\end{tabular} \\
\hline rtd-server & text & \begin{tabular}{l} 
An optional string that is specific to the program with \\
which RTD is communicating.
\end{tabular} \\
\hline argument list & any & \begin{tabular}{l} 
The presence and meaning of each argument in \\
argument-list is specific to the program with which RTD is \\
communicating.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: array - The set of values returned by the program with which RTD is communicating.
[Example: Consider a stockprice program that is called as follows:

RTD("stockprice.rtd", "NASD", "MSFT")
The result it returns-the price of the stock MSFT according to NASD—changes over time, often every few seconds.

The \(r\) td-server program could also be written to accept multiple arguments, allowing calls like the following::

RTD("stockprice.rtd", "NASD", "MSFT", "GOOG", "AMZN")
where three stock values are requested.
end example]

\subsection*{18.17.7.285 SEARCH}

\section*{Syntax:}

SEARCH ( string-1 , string-2 [ , start-pos ])
Description: Performs a case-insensitive search, using a lexical comparison, for the first occurrence of string-l in string-2, starting at character position start-pos within string-2. (SEARCH is intended for use with languages that use the single-byte character set (SBCS), whereas SEARCHB ( \((18.17 .7 .286\) ) is intended for use with languages that use the double-byte character set (DBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string- 1 & text & \begin{tabular}{l} 
Designate the string to be searched for within the string \\
designated by string-2. string-l 1 can contain the following \\
wildcard characters: question mark (?) and asterisk (*). A \\
question mark matches any single character; an asterisk \\
matches any sequence of characters. To search for an \\
actual question mark or asterisk, that character shall be \\
preceded by a tilde ( \(\sim\) ).
\end{tabular} \\
\hline string-2 & text & \begin{tabular}{l} 
The number of the start position within string-2 for which \\
string- 1 is to be searched. The start position of the first \\
character is 1. If omitted, a position of 1 shall be \\
assumed. start-pos shall be at least 0.
\end{tabular} \\
\hline start-pos & number &
\end{tabular}

Return Type and Value: number - The start position of the first occurrence of string-1 in string-2, starting at character position start-pos within string-2. If string- 1 is an empty string, it shall always be found in any string-2 at position start-pos, or at position 1 if start-pos is omitted.

However, if
- string-1 is not found within string-2, \#VALUE! is returned.
- start-pos designates a position outside string-2, \#VALUE! is returned.

\section*{[Example:}

SEARCH("de", "abcdEF") results in 4
SEARCH("?c*e", "abcdEF") results in 2
end example]

\subsection*{18.17.7.286 SEARCHB}

\section*{Syntax:}

SEARCHB ( string-1 , string-2 [, start-pos ] )
Description: Performs a case-insensitive search, using a lexical comparison, for the first occurrence of string-l in string-2, starting at byte position start-pos within string-2. (SEARCHB is intended for use with languages that use the double-byte character set (DBCS), whereas SEARCH (§18.17.7.285) is intended for use with languages that use the single-byte character set (SBCS).)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string- 1 & text & \begin{tabular}{l} 
Designate the string to be searched for within the string \\
designated by string-2. string- 1 can contain the following \\
wildcard characters: question mark (?) and asterisk (*). A \\
question mark matches any single character; an asterisk \\
matches any sequence of characters. To search for an \\
actual question mark or asterisk, that character shall be \\
preceded by a tilde ( \(\sim\) ).
\end{tabular} \\
\hline string-2 & text & \begin{tabular}{l} 
The number of the start position within string-2 for which \\
string- 1 is to be searched. The start position of the first \\
byte is 1. If omitted, a position of 1 shall be assumed. \\
start-pos shall be at least 0.
\end{tabular} \\
\hline start-pos & number &
\end{tabular}

Return Type and Value: number - The start position of the first occurrence of string-1 in string-2, starting at character position start-pos within string-2. If string- 1 is an empty string, it shall always be found in any string-2 at position start-pos, or at position 1 if start-pos is omitted.

However, if
- string-1 is not found within string-2, \#VALUE! is returned.
- start-pos designates a position outside string-2, \#VALUE! is returned.
[Example: Assuming 1-byte characters

SEARCHB("de", "abcdEF") results in 4
SEARCHB("?c*e", "abcdEF") results in 2
end example]
18.17.7.287 SECOND

Syntax:
SECOND ( time-value )

Description: Computes the second for the date and/or time having the given time-value.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline time-value & number & \begin{tabular}{l} 
The date and/or time whose second is to be computed. \\
That date and/or time shall be expressed either as a \\
serial date-time, in which case, its integer part is ignored, \\
or as a string-constant having any date and/or time \\
format, in which case, any date information shall be \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The second for the date and/or time having the given time-value.
However, if time-value is out of range for the current date system, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{SECOND}(\operatorname{DATE}(2006,2,26)+\operatorname{TIME}(2,10,20))\) results in 20
\(\operatorname{SECOND}(\operatorname{TIME}(22,56,34))\) results in 34
SECOND (0) results in 0 , since serial date-time 0 represents 00:00:00
SECOND (10.5) results in 0 , since serial date-time .5 represents 12:00:00
SECOND("22-Oct-2001 10:53:12") results in 12
SECOND("10:53:12 pm") results in 12
SECOND("22:53:12") results in 12
end example]

\subsection*{18.17.7.288 SERIESSUM}

Syntax:
SERIESSUM ( input-value , initial-power, step , coefficients )
Description: Computes the sum of a power series.

\section*{Mathematical Formula:}

The sum of a power series is based on the formula:
\(\operatorname{SERIES}(x, n, m, a)=a_{1} x^{n}+a_{2} x^{(n+m)}+a_{3} x^{(n+2 m)}+\cdots+a_{i} x^{(n+(i-1) m)}\)
where:
- \(a=\) argument coefficients
- \(m=\) argument step
- \(n=\) argument initial-power
- \(x=\) argument input-value

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline input-value & number & The input value to the power series; \\
\hline initial-power & number & The initial power to which input-value is to be raised. \\
\hline step & number & \begin{tabular}{l} 
The step by which to increase initial-power for each term \\
in the series;
\end{tabular} \\
\hline coefficients & reference & \begin{tabular}{l} 
A set of coefficients by which each successive power of \\
input-value is multiplied. The number of values in \\
coefficients determines the number of terms in the \\
power series.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of a power series.
[Example: Given the following data:
\begin{tabular}{|l|l|}
\hline & \multicolumn{1}{|c|}{\(A\)} \\
\hline 1 & 1 \\
\hline 2 & \(=-1 / \mathrm{FACT}(2)\) \\
\hline 3 & \(=1 / \mathrm{FACT}(4)\) \\
\hline 4 & \(=-1 / \mathrm{FACT}(6)\) \\
\hline
\end{tabular}

SERIESSUM (PI ()/4, 0, 2, A1:A4) results in 0.707103 , an approximation to the cosine of \(\pi / 4\) radians end example]

\subsection*{18.17.7.289 SIGN}

\section*{Syntax:}

SIGN ( \(x\) )
Description: Determines the sign of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number whose sign is to be determined. \\
\hline
\end{tabular}

Return Type and Value: number -1 if \(x\) is positive, 0 if \(x\) is 0 , and -1 if \(x\) is negative.
[Example:
\(\operatorname{SIGN}(10.5)\) results in 1
\(\operatorname{SIGN}(0)\) results in 0
\(\operatorname{SIGN}(-5.4)\) results in -1
end example]

\subsection*{18.17.7.290 SIN}

\section*{Syntax:}
```

SIN (}x\mathrm{)

```

Description: Computes the sine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number, in radians, whose sine is to be computed. \\
\hline
\end{tabular}

Return Type and Value: number - The sine of \(x\).
[Example:

SIN(-1) results in -0.841470985
\(\operatorname{SIN}(0)\) results in 0
SIN(1) results in 0.841470985
end example]
18.17.7.291 SINH

Syntax:
```

SINH (}x\mathrm{)

```

Description: Computes the hyperbolic sine of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number whose hyperbolic sine is to be computed. \\
\hline
\end{tabular}

Return Type and Value: number - The hyperbolic sine of \(x\).

However, if the magnitude of \(x\) is too large for the result to be represented, \#NUM! is returned.
[Example:|

SINH(1) results in 1.175201194
SINH(10) results in 11013.23287
SINH (100) results in \(1.34406 \mathrm{E}+43\)
end example]

\subsection*{18.17.7.292 SKEW}

\section*{Syntax:}

SKEW ( argument-list )
Description: Computes the skewness of a distribution. [Note: Skewness characterizes the degree of asymmetry of a distribution around its mean. Positive skewness indicates a distribution with an asymmetric tail extending toward more positive values. Negative skewness indicates a distribution with an asymmetric tail extending toward more negative values. end note]

\section*{Mathematical Formula:}
\(\frac{n}{(n-1)(n-2)} \sum\left(\frac{x_{i}-\bar{x}}{s}\right)^{3}\)
where:
- \(n=\) the number of elements in argument-list
- \(s=\) standard deviation of the values in argument-list
- \(x i=\) value of each element in argument-list
- \(\overline{\mathrm{x}}=\) mean of the values in argument-list

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
for which the skewness is to be computed. Logical values \\
and text representations of numbers that are entered \\
directly into the list of arguments are included. If an array \\
or reference argument contains text, logical values, or \\
empty cells, those values are ignored; however, cells with \\
the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The skewness of a distribution.

\section*{However, if}
- There are fewer than three data points, the return value is unspecified.
- The sample standard deviation is zero, the return value is unspecified.

\section*{[Example:}
\(\operatorname{SKEW}(3,4,5,2,3,4,5,6,4,7)\) results in 0.359543071
end example]

\subsection*{18.17.7.293}

SLN ( cost , salvage , life )
Description: Computes the straight-line depreciation of an asset for one period.
Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The number cost is the initial cost of the asset. \\
\hline salvage & number & \begin{tabular}{l} 
The value at the end of the depreciation. (This is \\
sometimes called the salvage value of the asset.)
\end{tabular} \\
\hline life & number & \begin{tabular}{l} 
The number of periods over which the asset is being \\
depreciated. (This is sometimes called the useful life of \\
the asset.)
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The straight-line depreciation of an asset for one period.
[Example:
\(\operatorname{SLN}(30000,7500,10)\) results in \(2,250.00\)
end example]

\subsection*{18.17.7.294 SLOPE}

Syntax:
SLOPE (known-ys, known-xs )
Description: Computes the slope of the linear regression line through data points in known ys and known xs. The slope is the vertical distance divided by the horizontal distance between any two points on the line, which is the rate of change along the regression line.

\section*{Mathematical Formula:}
\(b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (known-xs)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (known-ys)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline known-xs & \begin{tabular}{l} 
number, name, \\
array, or \\
reference to \\
number, text, \\
logical
\end{tabular} & \begin{tabular}{l} 
Designate a set of numeric dependent data points. \\
Logical values and text representations of numbers \\
entered directly into the list of arguments are included. If \\
an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline known-ys & \begin{tabular}{l} 
number, name, \\
array, or \\
reference to \\
number, text, \\
logical
\end{tabular} & \begin{tabular}{l} 
Designate a set of numeric independent data points. \\
Logical values and text representations of numbers \\
entered directly into the list of arguments are included. If \\
an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The slope of the linear regression line through data points in known ys and known xs.

\section*{However, if}
- known-ys and known-xs are empty, the return value is unspecified.
- known-ys and known-xs have a different number of data points, the return value is unspecified.

\section*{[Example:}
\(\operatorname{SLOPE}(\{2,3,9,1,8,7,5\},\{6,5,11,7,5,4,4\})\) results in 0.305555556
end example]

\subsection*{18.17.7.295 SMALL}

\section*{Syntax:}

SMALL ( array , k )

Description: Computes the \(k^{\text {th }}\) smallest value in a data set.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & \begin{tabular}{l} 
The set of numbers from which the \(k^{\text {th }}\)-smallest value is \\
to be determined.
\end{tabular} \\
\hline\(k\) & number & \begin{tabular}{l} 
The position (from the smallest) in the array or cell range \\
of data to return.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The \(k^{\text {th }}\) smallest value in a data set.

\section*{However, if}
- array is empty, the return value is unspecified.
- \(k \leq 0\) or \(k\) is greater than the number of data points, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{SMALL}(\{3,5,3,5,4 ; 4,2,4,6,7\}, 3)\) results in 3
\(\operatorname{SMALL}(\{3,5,3,5,4 ; 4,2,4,6,7\}, 7)\) results in 5
end example]

\subsection*{18.17.7.296 SQRT}

Syntax:
```

SQRT (}x\mathrm{)

```

Description: Computes the positive square root of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The number whose positive root is to be found. \\
\hline
\end{tabular}

Return Type and Value: number - The positive square root of \(x\).
However, if \(x\) is negative, \#NUM! is returned.
[Example:

SQRT (2) results in 1.414213562
SQRT (5) results in 2.236067977
end example]

\subsection*{18.17.7.297 SQRTPI}

Syntax:
SQRTPI ( \(x\) )
Description: Computes the positive square root of \(x \times \pi\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The number, which when multiplied by \(\pi\), whose positive \\
root is to be found.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The positive square root of \(x \times \pi\).
However, if \(x\) is negative, \#NUM! is returned.
[Example:

SQRTPI (1) results in 1.772453851
SQRTPI (2) results in 2.506628275
end example]

\subsection*{18.17.7.298 STANDARDIZE}

Syntax:
STANDARDIZE ( \(x\), mean, standard-dev )
Description: Computes a normalized value from a distribution characterized by mean and standard-dev.

\section*{Mathematical Formula:}
\(Z=\frac{X-\mu}{\sigma}\)
where:
- \(\quad X=\operatorname{argument} x\)
- \(\mu=\) argument mean
- \(\sigma=\) argument standard-dev

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The number whose value is to be normalized. \\
Represented by X in the mathematical formula \\
presented.
\end{tabular} \\
\hline mean & number & \begin{tabular}{l} 
The arithmetic mean of the distribution. Represented by \\
mu \((\mu)\) in the mathematical formula presented.
\end{tabular} \\
\hline standard-dev & number & \begin{tabular}{l} 
The standard deviation of the distribution. Represented \\
by sigma \((\sigma)\) in the mathematical formula presented.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - A normalized value from a distribution.
However, if standard-dev \(\leq 0, \# N U M!\) is returned.
[Example:
STANDARDIZE \((42,40,1.5)\) results in 1.333333333
end example]

\subsection*{18.17.7.299 STDEV}

\section*{Syntax:}

STDEV ( argument-list )
Description: Makes an estimate of the standard deviation based on a sample, using the "unbiased" or " \(\mathrm{n}-1\) " method. [Note: STDEV assumes that its arguments are a sample of the population. If the data represents the entire population, STDEVP should be used instead. If logical values and text representations of numbers in a reference are to be included as part of the calculation, use STDEVA instead. end note]

\section*{Mathematical Formula:}
\(\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument- 1, argument \(-2, \ldots\), argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are samples of the population. argument-list can also \\
be an array of numbers. Logical values and text \\
representations of numbers that are entered directly into \\
the list of arguments are included. If an argument is an \\
array or reference, only numbers in that array or \\
reference are included. Empty cells, logical values, text, \\
or error values in the array or reference are ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - An estimate of the standard deviation based on a sample.
[Example:
\(\operatorname{STDEV}(123,134,143,173,112,109)\) results in 23.72902583

\section*{end example]}

\subsection*{18.17.7.300 STDEVA}

Syntax:
STDEVA ( argument-list)
Description: Makes an estimate of the standard deviation based on a sample, using the "unbiased" or " \(\mathrm{n}-1\) " method. [Note: STDEVA assumes that its arguments are a sample of the population. If the data represents the entire population, STDEVPA should be used instead. If logical values and text representations of numbers in a reference are to be excluded as part of the calculation, use STDEV instead. end note]

\section*{Mathematical Formula:}
\(\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean \(\operatorname{AVERAGE}\) ( argument -1 , argument \(-2, \ldots\), argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & Type & Description \\
\hline argument-list & logical, number, & The arguments in argument-list designate the numbers \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & name, text, & \begin{tabular}{l} 
that are samples of the population. Arguments that \\
array, reference. \\
contain TRUE evaluate as 1; arguments that contain text \\
The argument list \\
or FALSE evaluate as zero. If an argument is an array or \\
reference, only values in that array or reference are used. \\
can also be an \\
array of \\
numbers.
\end{tabular} \\
\begin{tabular}{l} 
Empty cells and text values in the array or reference are \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - An estimate of the standard deviation based on a sample.
[Example:
\(\operatorname{STDEVA}(123,134,143,173,112,109)\) results in 23.72902583
end example]

\subsection*{18.17.7.301 STDEVP}

Syntax:
STDEVP ( argument-list )
Description: Computes the standard deviation of an entire population, using the "biased" or " n " method. [Note: STDEVP assumes that its arguments are the total population. If the data represents a population sample only, STDEVA should be used instead. If logical values and text representations of numbers in a reference are to be included as part of the calculation, use STDEVPA instead. end note]

\section*{Mathematical Formula:}
\[
\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}
\]
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument- 1 , argument \(-2, \ldots\), argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are the members of the population. Logical values, \\
and text representations of numbers that are entered
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The argument list \\
can also be an \\
array of \\
numbers.
\end{tabular} & \begin{tabular}{l} 
directly into the list of arguments are included. If an \\
argument is an array or reference, only numbers in that \\
array or reference are included. Empty cells, logical \\
values, text, or error values in the array or reference are \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The standard deviation of an entire population.
[Example:
\(\operatorname{STDEVP}(123,134,143,173,112,109)\) results in 21.66153785
end example]

\subsection*{18.17.7.302 STDEVPA}

\section*{Syntax:}

STDEVPA ( argument-list )
Description: Computes the standard deviation of an entire population, using the "biased" or "n" method. [Note: STDEVPA assumes that its arguments are the total population. If the data represents a population sample only, STDEVA should be used instead. If logical values and text representations of numbers in a reference are to be excluded as part of the calculation, use STDEVP instead. end note]

\section*{Mathematical Formula:}
\(\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument- 1, argument \(-2, \ldots\), argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference. \\
The argument list \\
can also be an
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are the members of the population.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & Description \\
\hline & \begin{tabular}{l} 
array of \\
numbers.
\end{tabular} & \\
\hline
\end{tabular}

Return Type and Value: number - The standard deviation of an entire population.
Arguments can be numbers; names, arrays, or references that contain numbers; text representations of numbers; or logical values, in a reference. Text representations of numbers that are entered directly into the list of arguments are included. Arguments that contain TRUE evaluate as 1 ; arguments that contain text or FALSE evaluate as zero. If an argument is an array or reference, only values in that array or reference are used. Empty cells and text values in the array or reference are ignored.

\section*{[Example:}

STDEVPA \((123,134,143,173,112,109)\) results in 21.66153785

\section*{end example]}

\subsection*{18.17.7.303 STEYX}

\section*{Syntax:}

STEYX (known-ys, known-xs )
Description: Computes the standard error of the predicted \(y\)-value for each \(x\) in the regression. The standard error is a measure of the amount of error in the prediction of \(y\) for an individual \(x\).

\section*{Mathematical Formula:}
\(\sqrt{\frac{1}{(n-2)}\left[\sum(y-\bar{y})^{2}-\frac{\left[\sum(x-\bar{x})(y-\bar{y})\right]^{2}}{\sum(x-\bar{x})^{2}}\right]}\)
where:
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (known-xs)
- \(y=\) a sample value
- \(\overline{\mathrm{y}}=\) the sample mean AVERAGE (known-ys)

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline known-xs & \begin{tabular}{l} 
number, name, \\
array, or \\
reference to
\end{tabular} & \begin{tabular}{l} 
Designate a set of numeric dependent data points. \\
Logical values and text representations of numbers \\
entered directly into the list of arguments are included. If
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
number, text, \\
logical
\end{tabular} & \begin{tabular}{l} 
an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline known-ys & \begin{tabular}{l} 
number, name, \\
array, or \\
reference to \\
number, text, \\
logical
\end{tabular} & \begin{tabular}{l} 
Designate a set of numeric independent data points. \\
Logical values and text representations of numbers \\
entered directly into the list of arguments are included. If \\
an array or reference argument contains text, logical \\
values, or empty cells, those values are ignored; \\
however, cells with the value 0 are included.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The standard error of the predicted y-value for each \(x\) in the regression.
However, if
- known-ys and known-xs have a different number of data points, the return value is unspecified.
- known-ys and known-xs are empty or have less than three data points, the return value is unspecified.

\section*{[Example:}
\(\operatorname{STEYX}(\{2,3,9,1,8,7,5\},\{6,5,11,7,5,4,4\})\) results in 3.30571895
end example]

\subsection*{18.17.7.304 \\ SUBSTITUTE}

Syntax:
SUBSTITUTE ( string , old-string , new-string [ , occurence ] )
Description: Produces a new string that is string with one or all occurrences of old-string replaced by new-string.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates a string. \\
\hline old-string & text & Designates a string. \\
\hline new string & text & Designates a string. \\
\hline occurence & number & \begin{tabular}{l} 
The occurrence number of the old-string characters \\
within string- 1 that is to be replaced by the string \\
designated by \(n e w\)-string. If omitted, all occurrences of \\
old-string characters shall be replaced.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - A string that is string with one or all occurrences of old-string replaced by newstring.

However, if occurance \(<0\), \#VALUE! is returned.
[Example:
SUBSTITUTE("abcaaabca", "a", "xx") results in xxbcxxxxxxbcxx
SUBSTITUTE("abcaaabca", "a", "",10) results in bcbc
SUBSTITUTE("abcaaabca", "a", "xx", 3) results in abcaxxabca

\section*{end example]}

\subsection*{18.17.7.305 SUBTOTAL}

\section*{Syntax:}

SUBTOTAL ( function-number, argument-list )
Description: Computes a value using the function designated by function-number, using the arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
function- \\
number
\end{tabular} & number & \begin{tabular}{l} 
Indicates the function to be called, as shown in the table \\
below.
\end{tabular} \\
\hline argument-list & number & \begin{tabular}{l} 
Each argument in argument-list is passed to the called \\
function, in the order specified. That shall be no more \\
than 254 arguments.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
function-number \\
(includes hidden values)
\end{tabular} & \begin{tabular}{c} 
function-number \\
(excludes hidden values)
\end{tabular} & \multicolumn{1}{|c|}{ Function } \\
\hline 1 & 101 & AVERAGE \\
\hline 2 & 102 & COUNT \\
\hline 3 & 103 & COUNTA \\
\hline 4 & 104 & MAX \\
\hline 5 & 105 & MIN \\
\hline 6 & 106 & PRODUCT \\
\hline 7 & 107 & STDEV \\
\hline 8 & 108 & STDEVP \\
\hline 9 & 109 & SUM \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
function-number \\
(includes hidden values)
\end{tabular} & \begin{tabular}{c} 
function-number \\
(excludes hidden values)
\end{tabular} & \multicolumn{1}{|c|}{ Function } \\
\hline 10 & 110 & VAR \\
\hline 11 & 111 & VARP \\
\hline
\end{tabular}

If any argument contains a SUBTOTAL function call, that call shall be ignored to avoid double counting.
For the function-number values 1-11, the values of hidden rows are included. For the function-number values 101-111, the values of hidden rows are excluded.

The SUBTOTAL function shall ignore any rows that are not included in the result of a filter, regardless of which function-number value is used.

The SUBTOTAL function is designed for columns of data, or vertical ranges. It is not designed for rows of data, or horizontal ranges. [Example: When a horizontal range is subtotaled using a function-number of 101 or greater, hiding a column does not affect the subtotal. However, hiding a row in a subtotal of a vertical range does affect the subtotal. end example]

Return Type and Value: number - The result from calling the function designated by function-number, using the arguments in argument-list.

However, if function-number does not have one of the values specified above, \#NUM! is returned.

\section*{[Example:}

SUBTOTAL (2, E5: E15) counts the number of values in the cell range E5:E15, including hidden values SUBTOTAL (4, E5: E15) finds the maximum value of the values in the cell range E5: E15, including hidden values SUBTOTAL (106, E5:E15) finds the product of the values in the cell range E5: E15, excluding hidden values

\section*{end example]}

\subsection*{18.17.7.306 SUM}

\section*{Syntax:}

SUM ( argument-list )
Description: Adds the numeric values of arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference.
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numeric \\
values to be added. Arguments that are numbers, logical \\
values, or text representations of numbers shall be
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
counted. If an argument is an array or reference, only \\
numbers in that array or reference shall be counted.
\end{tabular} \\
& & \begin{tabular}{l} 
Empty cells, logical values, and text in the array or \\
reference shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the values of its arguments.
[Example:
\(\operatorname{SUM}(1,2,3,4,5)\) results in 15
\(\operatorname{SUM}(\{1,2 ; 3,4\})\) results in 10
\(\operatorname{SUM}(\{1,2,3,4,5\}, 6, " 7)^{\text {) }}\) ) results in 28
\(\operatorname{SUM}(\{1, " 2\) ", TRUE, 4\(\})\) results in 5 , as the logical value and numeric text are ignored
end example]

\subsection*{18.17.7.307 SUMIF}

\section*{Syntax:}

SUMIF ( cell-range , selection-criteria [, sum-range ] )
Description: Applies selection criteria on the values in one range of cells and sums the values of the cells in a corresponding range.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{\begin{tabular}{c}
\multicolumn{1}{c|}{ Description } \\
\hline cell-range \\
reference
\end{tabular}} \\
\hline \begin{tabular}{l} 
selection- \\
criteria
\end{tabular} & \begin{tabular}{l} 
number, \\
expression, \\
reference, text
\end{tabular} & \begin{tabular}{l} 
Definges which cells are counted. In the case of text, \\
selection-criteria can consist of any comparison operator \\
followed by the operand against which each cell's value is \\
to be compared. selection-criteria can include one or \\
more wildcard characters, question mark (?) and \\
asterisk (*). A question mark matches any single \\
character; an asterisk matches any sequence of \\
characters. To search for a question mark, asterisk, or \\
tilde character, prefix that character with a tilde ( \(\sim\) ).
\end{tabular} \\
\hline sum-range & reference & \begin{tabular}{l} 
If present, sum-range designates the cells whose values \\
are summed. In this case, sum-range does not have to \\
have the same size and shape as cell-range. The actual \\
cells that are added are determined by using the top, left \\
cell in sum-range as the beginning cell, and then including \\
cells that correspond in size and shape to cell-range. If
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
omitted, cell-range also designates the cells whose \\
values are summed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the cells corresponding to those selected.
[Example: Given that A1, B1, C1, and D1, respectively, contain the values 3, 10, 7, and 10

SUMIF (A1:D1, "=10") results in 20
SUMIF (A1:D1, ">5") results in 27
SUMIF (A1:D1, " <>10") results in 10
Given that \(A 2, B 2, C 2\), and \(D 2\), respectively, contain the values apples, melons, 10 , and 15
SUMIF (A2: B2, "*es", C2:D2) results in 10

\section*{end example]}

\subsection*{18.17.7.308 SUMIFS}

\section*{Syntax:}

SUMIFS ( sum-range , cell-range-1 , selection-criteria-1
[, cell-range-2 , selection-criteria-2 [, ... ]] )
Description: Adds the cells in a range that meet multiple criteria.
Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline sum-range & reference & \begin{tabular}{l} 
Designates the cells whose values are summed. In this \\
case, sum-range does not have to have the same size and \\
shape as cell-range- 1 through cell-range- \(n\). The actual \\
cells that are added are determined by using the top, left \\
cell in sum-range as the beginning cell, and then including \\
cells that correspond in size and shape to cell-range- 1 \\
through cell-range- . Each cell in sum-range is summed \\
only if all of the corresponding criteria specified are true \\
for that cell. Cells in sum-range that contain TRUE \\
evaluate to 1; cells in sum-range that contain FALSE \\
evaluate to 0.
\end{tabular} \\
\hline cell-range-1 & reference & \begin{tabular}{l} 
Designates the first range of cells to be inspected.
\end{tabular} \\
\hline \begin{tabular}{l} 
selection- \\
criteria-1
\end{tabular} & \begin{tabular}{l} 
number, \\
expression, \\
reference, text
\end{tabular} & \begin{tabular}{l} 
Specifies the criteria for the first range of cells that is \\
counted. In the case of text, selection-criteria-l can \\
consist of any comparison operator followed by the \\
operand against which each cell's value is to be
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
compared. selection-criteria-l can include one or more \\
wildcard characters, question mark (?) and asterisk (*). A \\
question mark matches any single character; an asterisk \\
matches any sequence of characters. To search for a \\
question mark, asterisk, or tilde character, prefix that \\
character with a tilde ( \(\sim\) ).
\end{tabular} \\
\hline cell-range- \(n\) & reference & \begin{tabular}{l} 
The optional arguments selection-criteria-2 through \\
selection-criteria- \(n\) have corresponding arguments cell- \\
range-2 through cell-range- \(n\), and have the same \\
semantics as selection-criteria-1 and cell-range-1, \\
respectively.
\end{tabular} \\
\hline \begin{tabular}{l} 
selection- \\
criteria-n
\end{tabular} & \begin{tabular}{l} 
number, \\
expression, \\
reference, text
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the cells corresponding to those selected.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } & \multicolumn{1}{c|}{ D } \\
\hline 1 & Sales Person & Tables & Chairs & Desks \\
\hline 2 & Emilio & 34 & 85 & 97 \\
\hline 3 & Julie & 353 & 23 & 18 \\
\hline 4 & Hans & 13 & 67 & 14 \\
\hline 5 & Frederique & 0 & 98 & 0 \\
\hline
\end{tabular}

SUMIFS(B2:C5, A2:A5, "=Julie") results in 353 (the sum of the number of tables and chairs sold by Julie)
SUMIFS(B2:B5,A2:A5, "=Julie", A2:A5, "=Hans") results in 0 (the sum of the number of tables sold by Julie and Hans)

SUMIFS(B2:B5, A3, "=Julie", A4, "=Hans") results in 34 (the sum of the the number of tables sold by Julie and Hans)

SUMIFS(B2:D5,A2:A5, "<>Emilio") results in 768 (the sum of the number of tables, chairs, and desks sold by all sales persons except Emilio)
end example]
18.17.7.309

SUMPRODUCT
Syntax:
SUMPRODUCT ( argument-list )

Description: Multiplies the corresponding elements in the array arguments in argument-list, and returns the sum of those products. An array element that is not numeric is treated as if it contained 0 .

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & Type & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & array of numbers & \begin{tabular}{l} 
The arguments in argument-list designate the numeric \\
values to be multiplied.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the products of the corresponding elements in the arguments in argument-list.

However, if the array arguments do not have the same dimensions, \#NUM! is returned.

\section*{[Example:}

SUMPRODUCT \((\{2,3\})\) results in 5
SUMPRODUCT \((\{2,3\},\{4,5\})\) results in 23
SUMPRODUCT \((\{2,3\},\{4,5\},\{2,2\})\) results in 46
SUMPRODUCT \((\{2,3 ; 4,5\},\{2,2 ; 3,4\})\) results in 42
end example]

\subsection*{18.17.7.310 SUMSQ}

Syntax:
SUMSQ ( argument-list )
Description: Adds the squares of arguments in argument-list.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the values \\
whose squares are to be summed. Arguments that are \\
numbers, logical values, or text representations of \\
numbers shall be counted. If an argument is an array or \\
reference, only numbers in that array or reference shall \\
be counted. Empty cells, logical values, and text in the \\
array or reference shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the squares of its arguments.

\section*{[Example:}

SUMSQ(2) results in 4
SUMSQ \((2.5,-3.6)\) ) results in 19.21
SUMSQ \((\{2.5,-3.6)\}, 2.4)\) results in 24.97
end example]

\subsection*{18.17.7.311 SUMX2MY2}

\section*{Syntax:}

SUMX2MY2 ( array-1 , array-2 )
Description: Computes the sum of the difference of squares of the corresponding numerical elements in two arrays designated by array-1 and array-2.

\section*{Mathematical Formula:}
\(S U M X 2 M Y 2=\sum\left(x^{2}-y^{2}\right)\)
where:
- array- 1 contains the \(x\) values
- array-2 contains the \(y\) values

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & array, reference & \begin{tabular}{l} 
Designated the arrays to be operated on. If an argument \\
contains text, logical values, or empty cells, those \\
elements shall be ignored; however, cells with the \\
value 0 shall be included.
\end{tabular} \\
\hline array-2 & & \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the difference of squares of the corresponding elements in two arrays designated by array-1 and array-2.

However, if array- 1 and array-2 have a different number of values, the return value is unspecified.

\section*{[Example:}
```

SUMX2MY2({2,3,9,1,8,7,5},{6,5,11,7,5,4,4}) results in 55
SUMX2MY2({2,3,9;1,8,7},{6,5,11;7,5,4}) results in -64
end example]

```

\subsection*{18.17.7.312 SUMX2PY2}

\section*{Syntax:}

SUMX2PY2 ( array-1 , array-2 )
Description: Computes the sum of the sum of the squares of the corresponding numerical elements in two arrays designated by array-1 and array- 2 .

\section*{Mathematical Formula:}

SUMX2PY2 \(=\sum\left(x^{2}+y^{2}\right)\)
where:
- array- 1 contains the \(x\) values
- array-2 contains the \(y\) values

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & array, reference & \begin{tabular}{l} 
Designated the arrays to be operated on. If an argument \\
contains text, logical values, or empty cells, those \\
elements shall be ignored; however, cells with the \\
array-2
\end{tabular} \\
\hline value 0 shall be included.
\end{tabular}

Return Type and Value: number - The sum of the sum of the squares of the corresponding elements in two arrays designated by array-1 and array-2.

However, if array-1 and array-2 have a different number of values, the return value is unspecified.

\section*{[Example:}

SUMX2PY2 (\{2, 3, \(9,1,8,7,5\},\{6,5,11,7,5,4,4\})\) results in 521
SUMX2PY2 ( \(\{2,3,9 ; 1,8,7\},\{6,5,11 ; 7,5,4\}\) ) results in 480
end example]

\subsection*{18.17.7.313 SUMXMY2}

\section*{Syntax:}

SUMXMY2 ( array-1 , array-2 )
Description: Computes the sum of the squares of the difference between corresponding numerical elements in two arrays designated by array-1 and array-2.

\section*{Mathematical Formula:}

SUMXMY2 \(=\sum(x-y)^{2}\)
where:
- array- 1 contains the \(x\) values
- array-2 contains the \(y\) values

\section*{Arguments:}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array-1 & array, reference & \begin{tabular}{l} 
Designated the arrays to be operated on. If an argument \\
contains text, logical values, or empty cells, those \\
elements shall be ignored; however, cells with the \\
value 0 shall be included.
\end{tabular} \\
\cline { 1 - 1 } array-2 & & \\
\hline
\end{tabular}

Return Type and Value: number - The sum of the squares of the difference between the corresponding elements in two arrays designated by array-1 and array-2.

However, if array-1 and array-2 have a different number of values, the return value is unspecified.

\section*{[Example:}

SUMXMY2 \((\{2,3,9,1,8,7,5\},\{6,5,11,7,5,4,4\})\) results in 79
SUMXMY2 \((\{2,3,9 ; 1,8,7\},\{6,5,11 ; 7,5,4\})\) results in 78
end example]

\subsection*{18.17.7.314 SYD}
```

SYD (cost , salvage , life , per)

```

Description: Computes the sum-of-years' digits depreciation of an asset for a specified period.

\section*{Mathematical Formula:}

SYD \(=\frac{(\text { cost }- \text { salvage }) *(\text { life }- \text { per }+1) * 2}{(\text { life })(\text { life }+1)}\)
where:
- cost \(=\) argument cost
- life = argument life
- per \(=\) argument \(p e r\)
- salvage = argument salvage

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The initial cost of the asset. \\
\hline salvage & number & \begin{tabular}{l} 
The value at the end of the depreciation. (This is \\
sometimes called the salvage value of the asset.)
\end{tabular} \\
\hline life & number & \begin{tabular}{l} 
The number of periods over which the asset is being \\
depreciated. (This is sometimes called the useful life of \\
the asset.)
\end{tabular} \\
\hline per & number & The period and shall have the same units as life. \\
\hline
\end{tabular}

Return Type and Value: number - The sum-of-years' digits depreciation of an asset for a specified period.

\section*{[Example:}
\(\operatorname{SYD}(30000,7500,10,1)\) results in 4,090.91
\(\operatorname{SYD}(30000,7500,10,10)\) results in 409.09
end example]

\subsection*{18.17.7.315 T}

Syntax:
```

T (value)

```

Description: Retrieves the text referencedby value.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value to be tested for text. No conversion to text \\
shall take place on an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - value if value designates text; otherwise, " ". [Note: T cannot differentiate between text that is an empty string, and any value of non-text type. end note]
[Example:

T("Hello") results in Hello
\(T(123)\) results in an empty string
\(\operatorname{LEN}(T(123))\) results in 0

\section*{end example]}

\subsection*{18.17.7.316 TAN}

\section*{Syntax:}

TAN ( \(x\) )
Description: Computes the tangent of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The number, in radians, whose tangent is to be \\
computed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The tangent of \(x\).
[Example:

TAN (-1) results in -1.557407725
TAN (0) results in 0
TAN(1) results in 1.557407725
end example]

\subsection*{18.17.7.317 TANH}

Syntax:
TANH ( \(x\) )
Description: Computes the hyperbolic tangent of \(x\).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & \begin{tabular}{l} 
The number whose hyperbolic tangent is to be \\
computed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The hyperbolic tangent of \(x\)
[Example:

TANH(-1) results in -0.761594156

TANH (0) results in 0
TANH(1) results in 0.761594156
end example]

\subsection*{18.17.7.318 TBILLEQ}

TBILLEQ ( settlement , maturity , discount )
Description: Computes the bond-equivalent yield for a U.S. Treasury bill.
Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & \begin{tabular}{l} 
The Treasury bill's settlement date. Any time information \\
in the date is ignored.
\end{tabular} \\
\hline maturity & number & \begin{tabular}{l} 
The Treasury bill's maturity date. Any time information in \\
the date is ignored.
\end{tabular} \\
\hline discount & number & The Treasury bill's discount rate. \\
\hline
\end{tabular}

Return Type and Value: number - The bond-equivalent yield for a U.S. Treasury bill.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement > maturity, \#NUM! is returned.
- maturity is more than one year after settlement, \#NUM! is returned.
- discount \(\leq 0, \# N U M!\) is returned.
[Example:

TBILLEQ(DATE \((2008,3,31), \operatorname{DATE}(2008,6,1), 0.0914)\) results in \(9.4151 \%\)
end example]

\subsection*{18.17.7.319 TBILLPRICE}

TBILLPRICE ( settlement , maturity , discount )
Description: Computes the price per \(\$ 100\) face value for a U.S. Treasury bill.

\section*{Mathematical Formula:}
\(T B I L L P R C E=100 \times\left(1-\frac{\text { discunt } \times \text { DSM }}{360}\right)\)
where:
- discount \(=\) argument discount
- \(D S M\) = number of days from settlement to maturity, excluding any maturity date that is more than one calendar year after the settlement date.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & \begin{tabular}{l} 
The Treasury bill's settlement date. Any time information \\
in the date is ignored.
\end{tabular} \\
\hline maturity & number & \begin{tabular}{l} 
The Treasury bill's maturity date. Any time information in \\
the date is ignored.
\end{tabular} \\
\hline discount & number & The Treasury bill's discount rate. \\
\hline
\end{tabular}

Return Type and Value: number - The price per \(\$ 100\) face value for a U.S. Treasury bill.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(>\) maturity, \#NUM! is returned.
- maturity is more than one year after settlement, \#NUM! is returned.
- discount \(\leq 0, \# N U M\) ! is returned.

\section*{[Example:}

TBILLPRICE (DATE (2008, 3, 31), \(\operatorname{DATE}(2008,6,1), 0.09)\) results in 98.4500
end example]

\subsection*{18.17.7.320 TBILLYIELD}

TBILLYIELD ( settlement , maturity , pr )
Description: Computes the yield for a U.S. Treasury bill.

\section*{Mathematical Formula:}
\(T B I L L Y I E L D=\frac{100-p r .}{p r .} \times \frac{360}{D S M}\)
where:
- \(\quad D S M\) = number of days from settlement to maturity, excluding any maturity date that is more than one calendar year after the settlement date.
- \(p r\). \(=\operatorname{argument} p r\)

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & \begin{tabular}{l} 
The Treasury bill's settlement date. Any time information \\
in the date is ignored.
\end{tabular} \\
\hline maturity & number & \begin{tabular}{l} 
The Treasury bill's maturity date. Any time information in \\
the date is ignored.
\end{tabular} \\
\hline\(p r\) & number & The Treasury bill's price per \$100 face value. \\
\hline
\end{tabular}

Return Type and Value: number - The yield for a U.S. Treasury bill.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement > maturity, \#NUM! is returned.
- maturity is more than one year after settlement, \#NUM! is returned.
- \(p r \leq 0, \# N U M!\) is returned.
[Example:

TBILLYIELD(DATE \((2008,3,31), \operatorname{DATE}(2008,6,1), 98.45)\) results in \(9.1417 \%\)
end example]

\subsection*{18.17.7.321 TDIST}

\section*{Syntax:}

TDIST ( \(x\), degrees-freedom , distribution-tails )
Description: Computes the Percentage Points (probability) for the Student t-distribution where a numeric value, \(x\), is a calculated value of \(t\) for which the Percentage Points are to be computed.

\section*{Mathematical Formula:}

If distribution-tails \(=1\), TDIST \(=P(X>x)\), where X is a random variable that follows the t -distribution.
If distribution-tails \(=2\), TDIST \(=P(|X|>x)=P(X>x\) or \(X<-x)\)

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which to evaluate the distribution. \\
\hline \begin{tabular}{l} 
degrees- \\
freedom
\end{tabular} & number & \begin{tabular}{l} 
The number of degrees of freedom, truncated to an \\
integer.
\end{tabular} \\
\hline \begin{tabular}{l} 
distribution- \\
tails
\end{tabular} & number & \begin{tabular}{l} 
The number of distribution tails to return, truncated to \\
an integer. If 1, TDIST returns the one-tailed distribution.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline & & If 2, TDIST returns the two-tailed distribution. \\
\hline
\end{tabular}

Return Type and Value: number - The Percentage Points (probability) for the Student t-distribution.
However, if
- degrees-freedom \(<1\), \#NUM! is returned.
- tails has any value other than 1 or \(2, \# N U M!\) is returned.
- \(x<0\), \#NUM! is returned.

\section*{[Example:}

TDIST \((1.959999998,60,1)\) results in 0.027322464
TDIST \((1.959999998,60,2)\) results in 0.054644927
end example]

\subsection*{18.17.7.322 TEXT}

Syntax:
TEXT ( value , format )
Description: Produces a string containing value formatted according to format.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & number & The number that is to be formatted. \\
\hline format & text & \begin{tabular}{l} 
Designates the number, currency, date, or time format to \\
be used. (See \(\S 18.8 .31\) for the set of formats.)
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The string containing number formatted according to format.
[Example:

TEXT(1234.567,"\$0.00") results in \$1234.57
TEXT (.125," \(\$ 0.0 \%\) ") results in \(12.5 \%\)
TEXT (1234.567, "YYYY-MM-DD HH:MM:SS") results in 1903-05-18 13:36:29 in the 1900 date system.
end example]

\subsection*{18.17.7.323 TIME}

\section*{Syntax:}

TIME ( hour , minute , second )
Description: Computes the serial date-time for the given time.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline hour & number & \begin{tabular}{l} 
A number in the range 0-32767, inclusive, truncated to \\
integer, that represents the hour. Any value greater than \\
23 shall be divided by 24 and the remainder shall be \\
treated as the hour value.
\end{tabular} \\
\hline minute & number & \begin{tabular}{l} 
A number in the range 0-32767, inclusive, truncated to \\
integer, that represents the minute. Any value greater \\
than 59 shall be converted to the corresponding number \\
of hours and minutes.
\end{tabular} \\
\hline second & number & \begin{tabular}{l} 
A number in the range 0-32767, inclusive, truncated to \\
integer, that represents the second. Any value greater \\
than 59 shall be converted to the corresponding number \\
of hours, minutes, and seconds.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time for the given time, as a value greater than or equal to 0 and less than or equal to 1 .

However, if hour, minute, or second are out of range, \#NUM! is returned.
[Example: The following serial date-times are displayed with 16 decimal places.
\(\operatorname{TIME}(0,0,0)\) results in a serial date-time of 0.0000000000000000
\(\operatorname{TIME}(0,0,1)\) results in a serial date-time of 0.0000115740740741
\(\operatorname{TIME}(0,0,2)\) results in a serial date-time of 0.0000231481481481
\(\operatorname{TIME}(0,0,20)\) results in a serial date-time of 0.0002314814814815
\(\operatorname{TIME}(2,3,20)\) results in a serial date-time of 0.0856481481481481
\(\operatorname{TIME}(12,0,0)\) results in a serial date-time of 0.5000000000000000
\(\operatorname{TIME}(23,59,59)\) results in a serial date-time of 0.9999884259259260
\(\operatorname{TIME}(26,120,240)\) results in a serial date-time of 0.1694444444444450
18.17.7.324 TIMEVALUE

\section*{Syntax:}

TIMEVALUE ( date-time-string )
Description: Computes the serial date-time of the time represented by the string date-time-string.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{ll} 
date-time- \\
string
\end{tabular} & text & \begin{tabular}{l} 
The date and/or time whose time component serial date- \\
time is to be computed. date-time-string can have any \\
date and/or time format. Any date information in date- \\
time-string shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time of the time represented by the string date-time-string, as a value greater than or equal to 0 and less than or equal to 1 .

However, if date-time-string is ill-formed, \#VALUE! is returned.
[Example: The following serial date-times are displayed with 16 decimal places.

TIMEVALUE ("10:02:34 ") results in 0.4184490740740740
TIMEVALUE ("01-Feb-2006 10:15:29 AM") results in 0.4274189814823330
TIMEVALUE ("22:02") results in 0.9180555555555560
end example]

\subsection*{18.17.7.325 TINV}

\section*{Syntax:}

TINV ( probability , degrees-freedom )
Description: Computes the t-value of the Student's t-distribution as a function of the probability and the degrees of freedom.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline probability & number & \begin{tabular}{l} 
A probability associated with the two-tailed Student's t- \\
distribution.
\end{tabular} \\
\hline \begin{tabular}{l} 
degrees- \\
freedom
\end{tabular} & number & \begin{tabular}{l} 
The number of degrees of freedom with which to \\
characterize the distribution, truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The t-value of the Student's t-distribution.

However, if
- probability \(<0\) or probability \(>1\), \#NUM! is returned.
- degrees-freedom <1, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{TINV}(0.054644927,60)\) results in 1.95999999
end example]

\subsection*{18.17.7.326 TODAY}

Syntax:
TODAY ( )
Description: Computes the serial date-time of the current date, taking into account the current date base system.

Arguments: None.
Return Type and Value: number - The serial date-time of the current date.

\section*{[Example:}

On February 25, 2006, TODAY ( ) results in 38773 for the 1900 date system, or 37311 for the 1904 date system end example]

\subsection*{18.17.7.327 TRANSPOSE}

\section*{Syntax:}

TRANSPOSE ( array )
Description: Creates a new array that is the transpose of an existing array, by copying the first row of the existing array to the first column of the new array, the second row of the existing array as the second column of the new array, and so on. The formula containing the call to TRANSPOSE shall be an array formula in a range that has the same number of rows and columns, respectively, as array has columns and rows.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & The set of values to be transposed. \\
\hline
\end{tabular}

Return Type and Value: array - The new array.

\section*{[Example:}
\(\operatorname{TRANSPOSE}(\{10,20,30\})\) results in the array \(\{10 ; 20 ; 30\}\)
end example]

\subsection*{18.17.7.328 TREND}

\section*{Syntax:}

TREND ( known-ys [ , [ known-xs ][ , [ new-xs ][ , const-flag ]])
Description: Computes values along a linear trend. Fits a straight line (using the method of least squares) to the arrays known-ys and known-xs. The \(y\)-values along that line for the array of new-xs specified.

\section*{Arguments:}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline known-ys & array & The set of y -values already known in the relationship \(y=m x+b\). If that array is in a single column, each column of known-xs is interpreted as a separate variable. If that array is in a single row, each row of known-xs is interpreted as a separate variable. \\
\hline known-xs & array & An optional set of \(x\)-values that might already be known in the relationship \(y=m x+b\). The array known- \(x s\) can include one or more sets of variables. If only one variable is used, known-ys and known-xs can be ranges of any shape, as long as they have equal dimensions. If more than one variable is used, known-ys shall be a vector. If known-xs is omitted, it is assumed to be the array \(\{1,2,3, \ldots\}\) that is the same size as known-ys. \\
\hline new-xs & array & New \(x\)-values for which TREND is to return corresponding \(y\)-values. new-xs shall include a column (or row) for each independent variable, just as known-xs does. So, if known-ys is in a single column, known-xs and new-xs shall have the same number of columns. If known-ys is in a single row, known-xs and new-xs shall have the same number of rows. If new-xs is omitted, it is assumed to be the same as known-xs. If both known-xs and new-xs are omitted, they are assumed to be the array \(\{1,2,3, \ldots\}\) that is the same size as known-ys. \\
\hline const-flag & logical & Specifies whether to force the constant \(b\) to equal 0 . If TRUE or omitted, \(b\) is calculated normally. If FALSE, \(b\) is set equal to 0 and the m -values are adjusted so that \(y=m x\). \\
\hline
\end{tabular}

Return Type and Value: array - The values along a linear trend, as an array of numbers.

\subsection*{18.17.7.329 TRIM}

\section*{Syntax:}
```

TRIM (string)

```

Description: Makes a string that is a copy of string with the leading and trailing space characters removed, and each sequence of embedded spaces reduced to a single space. The space character referred to here is character U+0020.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates the string to be trimmed. \\
\hline
\end{tabular}

Return Type and Value: text - The trimmed copy of string.
[Example:

TRIM(" abc def ") results in abc def
end example]

\subsection*{18.17.7.330 TRIMMEAN}

\section*{Syntax:}

TRIMMEAN ( array , percent )
Description: Computes the mean of the interior of a data set by excluding a percentage of data points from the top and bottom tails of a data set. TRIMMEAN rounds the number of excluded data points down to the nearest multiple of 2 . For symmetry, TRIMMEAN excludes a single value from the top and bottom of the data set.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array, reference & The numeric values to trim and average. \\
\hline percent & number & \begin{tabular}{l} 
The fractional number of data points to exclude from the \\
calculation. [Example: If percent \(=0.2,4\) points are \\
trimmed from a data set of 20 points (20x0.2): 2 from the \\
top and 2 rom the bottom of the set. end example]
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The mean of the interior of a data set.

However, if percen \(<0\) or percen \(>1\), \#NUM! is returned.
[Example:
\(\operatorname{TRIMMEAN}(\{4,6,2,5,7,8,9\}, 0.2)\) results in 5.857142857
end example]

\subsection*{18.17.7.331 TRUE}

Syntax:
true ()
Description: Computes the value TRUE. (A call to function TRUE is equivalent to using the logical-constant TRUE.)

Arguments: None.
Return Type and Value: logical - The value TRUE.
[Example:
TRUE () results in TRUE
end example]

\subsection*{18.17.7.332 TRUNC}

\section*{Syntax:}

TRUNC ( \(x\) [ , number-digits ] )
Description: Truncates \(x\) to the number of fractional digits by number-digits.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & array, reference & The value to be rounded down. \\
\hline number-digits & number & \begin{tabular}{l} 
The number of fractional digits to which \(x\) is to be \\
truncated. The default value for number-digits is 0.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The truncated value of \(x\).
[Example:
\(\operatorname{TRUNC}(\mathrm{PI}())\) results in 3
\(\operatorname{TRUNC}(\operatorname{PI}(), 1)\) results in 3.1
\(\operatorname{TRUNC}(\operatorname{PI}(), 3)\) results in 3.141
\(\operatorname{TRUNC}(\operatorname{PI}(), 5)\) results in 3.14159
end example]

\subsection*{18.17.7.333 TTEST}

\section*{Syntax:}

TTEST ( array-1, array-2, distribution-tails, test-type )
Description: Computes the probability associated with a Student's t-Test.

\section*{Arguments:}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{2}{c|}{ Description } \\
\hline array-1 & array, reference & The first numerical data set. \\
\hline array-1 & array, reference & The first numerical data set. \\
\hline \begin{tabular}{l} 
distribution- \\
tails
\end{tabular} & number & \begin{tabular}{l} 
Specifies the number of distribution tails, truncated to an \\
integer. If 1, TTEST uses the one-tailed distribution. If 2, \\
TTEST uses the two-tailed distribution.
\end{tabular} \\
\hline test-type & number & \begin{tabular}{l} 
The truncated-to-integer kind of t-Test to perform, as \\
follows:
\end{tabular} \\
& & \begin{tabular}{|l|l|l|}
\hline 1 & Value & \multicolumn{1}{c|}{ Test Performed }
\end{tabular} \\
\hline & & \begin{tabular}{ll} 
Paired \\
\hline
\end{tabular} & \begin{tabular}{l} 
Two-sample equal variance \\
(homoscedastic)
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The probability associated with a Student's t-Test.
However, if
- array-1 and array-2 have a different number of data points, and test-type is 1 , the return value is unspecified.
- distribution-tails is any value other than 1 or 2, \#NUM! is returned.
[Example: Given the following data:
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 1 & Data 1 & Data 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } \\
\hline 2 & 3 & 6 \\
\hline 3 & 4 & 19 \\
\hline 4 & 5 & 3 \\
\hline 5 & 8 & 2 \\
\hline 6 & 9 & 14 \\
\hline 7 & 1 & 4 \\
\hline 8 & 2 & 5 \\
\hline 9 & 4 & 17 \\
\hline 10 & 5 & 1 \\
\hline
\end{tabular}

TTEST(A2:A10, B2: B10, 2,1) results in 0.196016
end example]

\subsection*{18.17.7.334 TYPE}

Syntax:
TYPE (value )
Description: Computes the type of value or, if value is a reference to a single cell, the type of the value in that cell.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline value & any & \begin{tabular}{l} 
The value whose type is to be determined. No conversion \\
shall take place on an argument passed to this function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - An integer that indicates the type of value or, if value is a reference to a single cell, the type of the value in that cell, as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Type of value } & \multicolumn{1}{c|}{ Value Returned } \\
\hline number & 1 \\
\hline text & 2 \\
\hline logical & 4 \\
\hline error value & 16 \\
\hline array of any kind & 64 \\
\hline
\end{tabular}
[Example:

TYPE (10.5) results in 1
TYPE (A10) results in 1, when A10 contains a number
TYPE ("ABC") results in 2
TYPE (A10) results in 2, when A10 contains a string
TYPE (TRUE) results in 4
TYPE (A10) results in 4, when A10 contains a logical value
TYPE (5/0) results in 16
TYPE (A10) results in 16, when A10 contains any error value
\(\operatorname{TYPE}(\{1,2,3\})\) results in 64
TYPE (\{TRUE, 2.5, \#N/A\}) results in 64
TYPE (IF (10>5, "Yes", 20)) results in 2
TYPE (IF (10<5, "Yes", 20)) results in 1
end example]
18.17.7.335 UPPER

Syntax:
UPPER ( string )
Description: Makes an uppercase version of string.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & Designates the string to be converted. \\
\hline
\end{tabular}

Return Type and Value: text - The uppercase version of string.
[Example:

UPPER("AbCd123\#\$\%^") results in ABCD123\#\$\%^
UPPER (A10) results in 234FRTQWC\$\#\%, when A10 contains 234FRTqwc\$\#\%
end example]

\subsection*{18.17.7.336 USDOLLAR}

Syntax:
USDOLLAR ( number [, num-decimal ] )

Description: Produces a string containing number rounded to num-decimal decimal places. The thousands separator is the comma, the radix point is the period, and the currency symbol is "\$". The format used is \$\#,\#\#0.00;(\$\#,\#\#0.00).

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline number & number & The number that is to be formatted. \\
\hline num-decimal & number & \begin{tabular}{l} 
Designate the number of decimal places to be used in the \\
resulting string; it is truncated to an integer. If \(n u m-\) \\
decimal is negative, number is rounded to the left of the \\
decimal point. If omitted, a value of 2 shall be assumed.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: text - The string containing number rounded to num-decimal decimal places, and have a currency symbol and thousands separators.
[Example:

USDOLLAR (1234.567) results in \(\$ 1,234.57\)
USDOLLAR \((1234.567,-2)\) results in \(\$ 1,200\)
USDOLLAR \((-1234.567,4)\) results in \((\$ 1,234.5670)\)

\section*{end example]}

\subsection*{18.17.7.337 VALUE}

\section*{Syntax:}

\section*{VALUE ( string)}

Description: Converts string to a number.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline string & text & \begin{tabular}{l} 
Designates a string that contains a number formatted \\
\\
\\
\end{tabular} \\
& \begin{tabular}{l} 
using any number, currency, date, or time format. (See \\
§18.8.31 for the set of formats.) Date and time strings are \\
converted to their equivalent serial date-time.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The number represented by string.
[Example:

VALUE("123.456") results in 123.456
VALUE ("\$1,000") results in 1000
VALUE ("23-Mar-2002") results in the corresponding serial date-time
VALUE("16:48:00")-VALUE("12:17:12") results in 0.188056
end example]

\subsection*{18.17.7.338 VAR}

Syntax:
VAR ( argument-list )
Description: Makes an estimate of the variance based on a sample. [Note: VAR assumes that its arguments are a sample of the population. If the data represents the entire population, VARP should be used instead. If logical values and text representations of numbers in a reference are to be included as part of the calculation, use VARA instead. end note]

\section*{Mathematical Formula:}
\(\frac{\sum(x-\bar{x})^{2}}{(n-1)}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument-1, argument- 1 , ..., argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are samples of the population. Logical values, and \\
text representations of numbers that are entered directly \\
into the list of arguments are included. If an argument is \\
an array or reference, only numbers in that array or \\
reference are included. Empty cells, logical values, text, \\
or error values in the array or reference are ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - An estimate of the variance based on a sample.
[Example:
\(\operatorname{VAR}(1202,1220,1323,1254,1302)\) results in 2683.2

\section*{end example]}

\subsection*{18.17.7.339 VARA}

\section*{Syntax:}

\section*{VARA ( argument-list )}

Description: Makes an estimate of the variance based on a sample. [Note: VARA assumes that its arguments are a sample of the population. If the data represents the entire population, VARPA should be used instead. If logical values and text representations of numbers in a reference are to be excluded as part of the calculation, use VAR instead. end note]

\section*{Mathematical Formula:}
\(\frac{\sum(x-\bar{x})^{2}}{(n-1)}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument- 1 , argument -1 , ..., argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are samples of the population. Logical values and \\
text representations of numbers that are entered directly \\
into the list of arguments are included. Arguments that \\
contain TRUE evaluate as 1; arguments that contain text \\
or FALSE evaluate as zero. If an argument is an array or \\
reference, only values in that array or reference are used. \\
Empty cells and text values in the array or reference are \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - An estimate of the variance based on a sample.
[Example:
\(\operatorname{VARA}(1202,1220,1323,1254,1302)\) results in 2683.2
end example]

\subsection*{18.17.7.340 VARP}

\section*{Syntax:}
```

VARP (argument-list)

```

Description: Computes the variance of an entire population. [Note: VARP assumes that its arguments are the total population. If the data represents a population sample only, VAR should be used instead. If logical values and text representations of numbers in a reference are to be included as part of the calculation, use VARPA instead. end note]

\section*{Mathematical Formula:}
\(\frac{\sum(-\bar{x})^{2}}{n}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument- 1 , argument- 1 , ..., argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are the members of the population. Logical values, \\
and text representations of numbers that are entered \\
directly into the list of arguments are included. If an \\
argument is an array or reference, only numbers in that \\
array or reference are included. Empty cells, logical \\
values, text, or error values in the array or reference are \\
ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The variance of an entire population.
[Example:
\(\operatorname{VARP}(1202,1220,1323,1254,1302)\) results in 2146.56
end example]

\subsection*{18.17.7.341 VARPA}

\section*{Syntax:}

VARPA ( argument-list )

Description: Makes the variance of an entire population. [Note: VARPA assumes that its arguments are the total population. If the data represents a population sample only, VARA should be used instead. If logical values and text representations of numbers in a reference are to be excluded as part of the calculation, use VARP instead. end note]

\section*{Mathematical Formula:}
\(\frac{\sum(x-\bar{x})^{2}}{n}\)
where:
- \(n=\) the sample size
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (argument- 1 , argument- 1 , ..., argument- \(n\) )

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline argument-list & \begin{tabular}{l} 
logical, number, \\
name, text, \\
array, reference
\end{tabular} & \begin{tabular}{l} 
The arguments in argument-list designate the numbers \\
that are the members of the population.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The variance of an entire population.
Arguments can be numbers; names, arrays, or references that contain numbers; text representations of numbers; or logical values, in a reference. Text representations of numbers that are entered directly into the list of arguments are included. Arguments that contain TRUE evaluate as 1 ; arguments that contain text or FALSE evaluate as zero. If an argument is an array or reference, only values in that array or reference are used. Empty cells and text values in the array or reference are ignored.
[Example:
\(\operatorname{VARPA}(1202,1220,1323,1254,1302)\) results in 2146.56
end example]
18.17.7.342 VDB

VDB ( cost , salvage , life , start-period , end-period [ , [ [ factor ]
[ , [ no-switch-flag ]]]]] )
Description: Computes the depreciation of an asset for the period specified, including partial periods, using the double-declining balance or some other specified method.

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline cost & number & The number cost is the initial cost of the asset. \\
\hline salvage & number & \begin{tabular}{l} 
The value at the end of the depreciation. (This is \\
sometimes called the salvage value of the asset.) This \\
value can be 0.
\end{tabular} \\
\hline life & number & \begin{tabular}{l} 
The number of periods over which the asset is being \\
depreciated. (This is sometimes called the useful life of \\
the asset.)
\end{tabular} \\
\hline start-period & number & \begin{tabular}{l} 
The starting period for which the depreciation is to be \\
calculated. (start-period shall use the same units as life.)
\end{tabular} \\
\hline end-period & number & \begin{tabular}{l} 
The ending period for which the depreciation is to be \\
calculated. (end-period shall use the same units as life.)
\end{tabular} \\
\hline factor & number & \begin{tabular}{l} 
The rate at which the balance declines. If omitted, it is \\
assumed to be 2 (the double-declining balance method).
\end{tabular} \\
\hline \begin{tabular}{l} 
no-switch- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Specifies whether to switch to straight-line depreciation \\
when depreciation is greater than the declining balance \\
\\
calculation. If TRUE, straight-line depreciation is not used \\
even when the depreciation is greater than the declining \\
balance calculation. If FALSE or omitted, the straight-line \\
depreciation is used when depreciation is greater than \\
the declining balance calculation.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The depreciation of an asset for the period specified.
However, if any numerical argument value is non-positive, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{VDB}(2400,300,10 * 365,0,1)\) results in 1.32
\(\operatorname{VDB}(2400,300,10 * 12,0,1)\) results in 40.00
\(\operatorname{VDB}(2400,300,10 * 12,6,18)\) results in 396.31
end example]

\subsection*{18.17.7.343 VLOOKUP}

\section*{Syntax:}

VLOOKUP (lookup-value , table-array, col-index-num [ , [ range-lookup-flag ]])
Description: Performs a vertical search for a value in the left-most column of a table or an array, noting the row in which the matching value is found. From that row, the value from a given column is returned.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline lookup-value & \begin{tabular}{l} 
value of any type \\
or a reference to \\
a value of any \\
type.
\end{tabular} & \begin{tabular}{l} 
The value to be located in the left-most column of the \\
table. If range-lookup is FALSE and lookup-value is a \\
string, the wildcard characters, question mark (?) and \\
asterisk (*), can be included in lookup-value. A question \\
mark matches any single character; an asterisk matches \\
any sequence of characters. To find a question mark or \\
asterisk, use a tilde ( \(\sim\) ) before the character.
\end{tabular} \\
\hline table-array & \begin{tabular}{l} 
array, reference, \\
name
\end{tabular} & \begin{tabular}{l} 
Designates the table of information to be searched. The \\
values in the left-most column of table-array can be text, \\
numbers, or logical values. The values in the left-most \\
column of table-array shall be placed in "ascending \\
order", as follows: ..., -2, -1, 0, \(1,2, \ldots\), A-Z, FALSE, TRUE. \\
Uppercase and lowercase text is treated as equivalent.
\end{tabular} \\
\hline \begin{tabular}{l} 
col-index- \\
num
\end{tabular} & number & \begin{tabular}{l} 
The column number in table-array from which the \\
matching value is to be returned. (A col-index-num of 1 \\
returns the left-most column value in table-array, a col- \\
index-num of 2 returns the next column in table-array, \\
and so on.)
\end{tabular} \\
\hline \begin{tabular}{l} 
range- \\
lookup-flag
\end{tabular} & logical & \begin{tabular}{l} 
Specifies whether HLOOKUP is to find an exact or \\
approximate match. If TRUE or omitted, an approximate \\
match is returned. That is, if an exact match is not found, \\
the next largest value that is less than lookup-value is \\
returned. If FALSE, an exact match is performed, in \\
which case, the values in the left-most column of table- \\
array need not be sorted. If there are two or more values \\
in the left-most column of table-array that match lookup- \\
value, the top-most value found is used.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: any - The value from a given row number, where the column is determined by a search of the top row looking for a match with a given value.

However, if
- An exact match is performed, but no match is found, \(\# N / A\) is returned.
- col-index-num is less than 1 , \#VALUE! is returned.
- col-index-num is greater than the number of columns in table-array, \#REF! is returned.
- lookup-value is smaller than the smallest value in the left-most column of table-array, \(\mathrm{\# N} / \mathrm{A}\) is returned.
[Example: Given the following data:
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 1 & Density & Bearings & Bolts \\
\hline 2 & 0.457 & 3.55 & 500 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline 3 & 0.525 & 3.25 & 400 \\
\hline 4 & 0.616 & 2.93 & 300 \\
\hline 5 & 0.675 & 2.75 & 250 \\
\hline 6 & 0.746 & 2.57 & 200 \\
\hline 7 & 0.835 & 2.38 & 150 \\
\hline 8 & 0.946 & 2.17 & 100 \\
\hline 9 & 1.09 & 1.95 & 50 \\
\hline 10 & 1.29 & 1.71 & 0 \\
\hline
\end{tabular}
\(\operatorname{VLOOKUP}(1, \mathrm{~A} 2: \mathrm{C} 10,2)\) results in 2.17
\(\operatorname{VLOOKUP}(1\), A2: C10, 3, TRUE ) results in 100.00
\(\operatorname{VLOOKUP}(2, \mathrm{~A} 2: \mathrm{C} 10,2\), TRUE \()\) results in 1.71
end example]

\subsection*{18.17.7.344 WEEKDAY}

Syntax:
WEEKDAY ( serial-value [, weekday-start-flag ] )
Description: Computes the weekday number for the date having the given serial-value, taking into account the current date system and weekday-start-flag, if present. See §18.17.4.1 for special handling of certain days in 1900.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & & Description \\
\hline serial-value & number & \multicolumn{2}{|l|}{The date whose weekday number is to be computed. The value of serial-value is truncated to an integer.} \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
weekday- \\
start-flag
\end{tabular}} & \multirow[t]{7}{*}{number} & \multicolumn{2}{|l|}{When truncated to integer, indicates the weekday numbering convention to be used, as follows:} \\
\hline & & Value & Meaning \\
\hline & & 1 or omitted & 1 (Sunday) through 7 (Saturday) \\
\hline & & 2 & 1 (Monday) through 7 (Sunday) \\
\hline & & 3 & 0 (Monday) through 6 (Sunday) \\
\hline & & 11 & 1 (Monday) through 7 (Sunday) \\
\hline & & 12 & 1 (Tuesday) through 7 (Monday) \\
\hline
\end{tabular}


Return Type and Value: number - The weekday number for the date having the given serial date-time.
However, if
- serial-value is out of range for the current date system, \#NUM! is returned.
- weekday-start-flag is out of the range specified in the table above, \#NUM! is returned.
[Example:
```

WEEKDAY(DATE (2006, 2,1)) results in 4 (Wednesday)
WEEKDAY(DATE (2006, 2,1),11) results in 3 (Wednesday)
WEEKDAY(DATE (2006, 2,1),12) results in 2 (Wednesday)
WEEKDAY(DATE (2006, 2,1),3) results in 2 (Wednesday)

```
end example]

\subsection*{18.17.7.345 WEEKNUM}

\section*{Syntax:}

WEEKNUM ( serial-value [, weekday-start-flag ] )
Description: Computes the week number of the date corresponding to serial-value. The function allows two number systems:
- System 1: The week containing January 1 is the first week of the year, and is numbered week 1.
- System 2: The week containing the first Thursday of the year is the first week of the year, and is numbered as week 1 [ISO 8601].

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline serial-value & number & \begin{tabular}{l} 
The date whose week number is to be computed. The \\
value of serial-value is truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Type & \multicolumn{3}{|c|}{Description} \\
\hline \multirow[t]{12}{*}{\begin{tabular}{l}
weekday- \\
start-flag
\end{tabular}} & \multirow[t]{12}{*}{number} & \multicolumn{3}{|l|}{When truncated to integer, indicates the weekday on which the week begins, as follows:} \\
\hline & & \begin{tabular}{l}
weekday- \\
start-flag
\end{tabular} & Meaning & Number System \\
\hline & & 1 or omitted & Week begins on Sunday. & System 1 \\
\hline & & 2 & Week begins on Monday. & System 1 \\
\hline & & 11 & Week begins on Monday. & System 1 \\
\hline & & 12 & Week begins on Tuesday. & System 1 \\
\hline & & 13 & Week begins on Wednesday. & System 1 \\
\hline & & 14 & Week begins on Thursday. & System 1 \\
\hline & & 15 & Week begins on Friday. & System 1 \\
\hline & & 16 & Week begins on Saturday. & System 1 \\
\hline & & 17 & Week begins on Sunday. & System 1 \\
\hline & & 21 & Week begins on Monday. & System 2 \\
\hline
\end{tabular}

Return Type and Value: number - The week number of the date corresponding to serial-value.
However, if
- serial-value is out of range for the current date system, \#NUM! is returned.
- weekday-start-flag is out of the range specified in the table above, \#NUM! is returned.
[Example:

WEEKNUM(DATE \((2006,1,1)\) results in 1
WEEKNUM (DATE \((2006,1,1), 1)\) results in 1
WEEKNUM (DATE \((2006,1,1), 17)\) results in 1
WEEKNUM(DATE \((2006,1,1), 21)\) results in 1
WEEKNUM(DATE \((2006,2,1), 1)\) results in 5

WEEKNUM (DATE \((2006,2,1), 2)\) results in 6
WEEKNUM(DATE \((2006,2,1), 11)\) results in 6
end example]

\subsection*{18.17.7.346 WEIBULL}

\section*{Syntax:}

WEIBULL ( \(x\), alpha , beta , cumulative-flag )
Description: Computes the Weibull distribution.

\section*{Mathematical Formula:}

The equation for the Weibull cumulative distribution function is:
\(F(x, \alpha, \beta)=1-e^{-(x / \beta)^{\alpha}}\)

The equation for the Weibull probability density function is:
\(f(x, \alpha, \beta)=\frac{}{\beta^{\alpha}} x^{\alpha-1} e^{-(x / \beta)^{\alpha}}\)
When alpha \(=1\), WEIBULL returns the exponential distribution with:
\(\lambda=\frac{1}{\beta}\)
where:
- \(\quad x=\operatorname{argument} x\)
- \(\alpha=\) argument alpha
- \(\beta=\) argument beta

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline\(x\) & number & The value at which the distribution is to be evaluated. \\
\hline alpha & number & A parameter of the distribution. \\
\hline beta & number & A parameter of the distribution. \\
\hline \begin{tabular}{l} 
cumulative- \\
flag
\end{tabular} & logical & \begin{tabular}{l} 
Determines the form of the function. If TRUE, \\
GAMMADIST returns the cumulative distribution function; \\
if FALSE, it returns the probability density function.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The Weibull distribution.

However, if
- \(x<0\), \#NUM! is returned.
- alpha \(\leq 0, \#\) NUM! is returned.
- beta \(\leq 0\), \#NUM! is returned.

\section*{[Example:}

WEIBULL ( \(105,20,100\), TRUE \()\) results in 0.92958139
WEIBULL \((105,20,100\), FALSE \()\) results in 0.035588864
end example]

\subsection*{18.17.7.347 WORKDAY}

\section*{Syntax:}

WORKDAY ( start-date , day-offset [, holidays ] )
Description: Computes the serial date-time of the date that is day-offset working days offset from start-date. Weekend days (Saturday and Sunday) and any holidays specified by holidays are not considered as working days.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline start-date & number & The start date, truncated to integer. \\
\hline day-offset & number & \begin{tabular}{l} 
The number of working days before or after start-date. A \\
positive value yields a future date; a negative value yields \\
a past date; a zero value yields the date start-date. day- \\
offset is truncated to an integer.
\end{tabular} \\
\hline holidays & reference, array & \begin{tabular}{l} 
An optional set of one or more dates that are to be \\
excluded from the working day calendar. holidays shall \\
be a range of cells that contain the dates, or an array \\
lonstant of the serial date-times that represent those \\
dates. The ordering of dates or serial date-times in \\
holidays can be arbitrary.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time of the date that is day-offset working days offset from start-date, excluding the specified holidays.

However, if
- start-date is out of range for the current date system, \#NUM! is returned.
- Any date in holidays is out of range for the current date system, \#NUM! is returned.
- start-date plus day-offset does not yield a date, \#NUM! is returned.
[Example:

WORKDAY (DATE \((2006,1,1), 0)\) results in a serial date-time corresponding to 1-Jan-2006 WORKDAY (DATE \((2006,1,1), 10)\) results in a serial date-time corresponding to \(13-J a n-2006\) WORKDAY (DATE \((2006,1,1),-10)\) results in a serial date-time corresponding to 19-Dec-2005 WORKDAY(DATE \((2006,1,1), 20,\{" 2006 / 1 / 2 ", " 2006 / 1 / 16 "\})\) results in a serial date-time corresponding to 31-Jan-2006
end example]

\subsection*{18.17.7.348 WORKDAY.INTL}

\section*{Syntax:}

Number form: WORKDAY.INTL ( start-date , day-offset [,[weekend-number] [, holidays ]] )
String form: WORKDAY.INTL ( start-date , day-offset [, [weekend-string ] [, holidays ]] )
Description: Computes the serial date-time of the date that is day-offset working days offset from start-date. Weekend days and any holidays specified by holidays are not considered as working days.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline start-date & number & The start date, truncated to integer. \\
\hline day-offset & number & \begin{tabular}{l} 
The number of working days before or after start-date. A \\
positive value yields a future date; a negative value yields \\
a past date; a zero value yields the date start-date. day- \\
offset is truncated to an integer.
\end{tabular} \\
\hline \begin{tabular}{l} 
weekend- \\
number
\end{tabular} & number & \begin{tabular}{l} 
Indicates the days of the week that are weekend days \\
and are not considered working days. Values are shown \\
in the table below
\end{tabular} \\
\hline \begin{tabular}{l} 
weekend- \\
string
\end{tabular} & string & \begin{tabular}{l} 
Indicates the days of the week that are weekend days \\
and are not considered working days. \\
Values of weekend-string are seven characters long and \\
each character in the string represents a day of the week, \\
beginning with Monday. [Example: "0000011" would \\
result in a weekend that is Saturday and Sunday. end \\
example]
\end{tabular} \\
\hline holidays & reference, array & \begin{tabular}{l} 
An optional set of one or more dates that are to be \\
excluded from the working day calendar. holidays shall \\
be a range of cells that contain the dates, or an array \\
constant of the serial date-times that represent those
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline & & \begin{tabular}{l} 
dates. The ordering of dates or serial date-times in \\
holidays can be arbitrary.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ weekend-number } & \multicolumn{1}{c|}{ Weekend days } \\
\hline 1 or omitted & Saturday, Sunday \\
\hline 2 & Sunday, Monday \\
\hline 3 & Monday, Tuesday \\
\hline 4 & Tuesday, Wednesday \\
\hline 5 & Wednesday, Thursday \\
\hline 6 & Thursday, Friday \\
\hline 7 & Friday, Saturday \\
\hline 11 & Sunday only \\
\hline 12 & Monday only \\
\hline 13 & Tuesday only \\
\hline 14 & Wednesday only \\
\hline 15 & Thursday only \\
\hline 16 & Friday only \\
\hline 17 & Saturday only \\
\hline
\end{tabular}

Return Type and Value: number - The serial date-time of the date that is day-offset working days offset from start-date, excluding the specified weekend days and holidays.

However, if
- start-date is out of range for the current date system, \#NUM! is returned.
- Any date in holidays is out of range for the current date system, \#NUM! is returned.
- start-date plus day-offset does not yield a date, \#NUM! is returned.
[Example:

WORKDAY.INTL(DATE \((2006,1,1), 0)\) results in a serial date-time corresponding to 1-Jan-2006 WORKDAY. INTL (DATE \((2006,1,1), 10)\) results in a serial date-time corresponding to 13-Jan-2006 WORKDAY. INTL (DATE \((2006,1,1), 10,7)\) results in a serial date-time corresponding to 13-Jan-2006 WORKDAY.INTL (DATE \((2006,1,1),-10)\) results in a serial date-time corresponding to 19-Dec-2005 WORKDAY.INTL(DATE \((2006,1,1), 20,1,\{" 2006 / 1 / 2 ", " 2006 / 1 / 16 "\})\) results in a serial date-time corresponding to 31-Jan-2006
WORKDAY.INTL(DATE (2006, 1, 1), 20, "0000011", \{"2006/1/2", "2006/1/16"\}) results in a serial date-
time corresponding to 31-Jan-2006

\section*{end example]}

\subsection*{18.17.7.349 XIRR}

XIRR ( values, dates [ , [ guess ]] )
Description: Computes the internal rate of return for a schedule of cash flows that is not necessarily periodic. XIRR uses an iterative calculation technique that cycles through the calculation until the result is accurate within 0.000001 percent.

\section*{Mathematical Formula:}

Using a changing rate (starting with guess), XIRR cycles through the calculation until the result is accurate within 0.000001 percent. The rate is changed until:
\(0=\sum_{i=1}^{N} \frac{P_{i}}{(1+\text { rate })^{\frac{\left(d_{i}-d_{1}\right)}{365}}}\)
where:
- \(\mathrm{d}_{\mathrm{i}}=\) the \(\mathrm{i}^{\text {th }}\), or last, payment date.
- \(\mathrm{d}_{1}=\) the \(0^{\text {th }}\) payment date.
- \(P_{i}=\) the \(\mathrm{i}^{\text {th }}\), or last, payment.

Arguments:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline values & array, reference & \begin{tabular}{l} 
A series of cash flows that corresponds to a schedule of \\
payment dates specified in dates. The first payment is \\
optional and corresponds to a cost or payment that \\
occurs at the beginning of the investment. If the first \\
value is a cost or payment, it shall have a negative value. \\
All succeeding payments are discounted based on a 365- \\
day year. The series of values shall contain at least one \\
positive and one negative value.
\end{tabular} \\
\hline dates & reference & \begin{tabular}{l} 
A schedule of payment dates that corresponds to the \\
cash flow payments in values. The first payment date \\
indicates the beginning of the schedule of payments. All \\
other dates shall be later than this date, but they can \\
occur in any order. Time information in the date \\
arguments is ignored.
\end{tabular} \\
\hline guess & number & \begin{tabular}{l} 
An estimate of the result of XIRR. If omitted, it is \\
assumed to be 0.1 (i.e., 10 percent).
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The internal rate of return for a schedule of cash flows that is not necessarily periodic.

However, if
- Any date in dates is out of range for the current date system, \#NUM! is returned.
- Any date in dates precedes the starting date, \#NUM! is returned.
- values and dates contain different numbers of values, \#NUM! is returned.
- The calculation has not converged after an implementation-defined number of tries, \#NUM! is returned.
[Example: When the cells F2397: J2397contain the dates January 1, 2008; March 1,2008; October 30, 2008; February 15, 2009, and April 1, 2009:
\(\operatorname{XIRR}(\{-10000,2750,4250,3250,2750\}, F 2397: J 2397,0.1)\) results in \(37.34 \%\)
end example]

\subsection*{18.17.7.350 XNPV}

XNPV (rate, values, dates )
Description: Computes the net present value for a schedule of cash flows that is not necessarily periodic.

\section*{Mathematical Formula:}
\(X N P V=\sum_{i=1}^{N} \frac{P_{i}}{(1+r t e)^{\frac{\left(d_{i}-d_{1}\right)}{365}}}\)
where:
- \(d_{i}=\) the \(\mathrm{i}^{\text {th }}\), or last, payment date.
- \(\mathrm{d}_{1}=\) the \(0^{\text {th }}\) payment date.
- \(P_{i}=\) the \(\mathrm{i}^{\text {th }}\), or last, payment.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline rate & number & The discount rate to apply to the cash flows. \\
\hline values & array, reference & \begin{tabular}{l} 
A series of cash flows that corresponds to a schedule of \\
payment dates specified in dates. The first payment is \\
optional and corresponds to a cost or payment that \\
occurs at the beginning of the investment. If the first \\
value is a cost or payment, it shall have a negative value. \\
All succeeding payments are discounted based on a 365- \\
day year. The series of values shall contain at least one \\
positive and one negative value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline dates & reference & \begin{tabular}{l} 
A schedule of payment dates that corresponds to the \\
cash flow payments in values. The first payment date \\
indicates the beginning of the schedule of payments. All \\
other dates shall be later than this date, but they can \\
occur in any order. Time information in the date \\
arguments is ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The net present value for a schedule of cash flows that is not necessarily periodic.

\section*{However, if}
- Any date in dates is out of range for the current date system, \#NUM! is returned.
- Any date in dates precedes the starting date, \#NUM! is returned.
- values and dates contain different numbers of values, \#NUM! is returned.
[Example: When the cells F2397: J2397 contain the dates January 1, 2008; March 1,2008; October 30, 2008; February 15, 2009, and April 1, 2009:

XNPV(0.09, \{-10000, 2750, 4250, 3250, 2750\}, F2397:J2397) results in 2086.65
end example]

\subsection*{18.17.7.351 YEAR}

\section*{Syntax:}

\section*{YEAR (date-value )}

Description: Computes the numeric year in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value, taking into account the current date system. That date and/or time shall be expressed either as a serial date-time, in which case, its fractional part is ignored, or as a string-constant having any date and/or time format, in which case, any time information shall be ignored.

\section*{Arguments:}
\begin{tabular}{|c|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline date-value & number, text & \begin{tabular}{l} 
The date and/or time whose year is to be computed. That \\
date and/or time shall be expressed either as a serial \\
date-time, in which case, its fractional part is ignored, or \\
as a string-constant having any date and/or time format, \\
in which case, any time information shall be ignored.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The year in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value. The range of return values is determined by the date system currently in use (§18.17.4).

However, if date-value is out of range for the current date system, \#NUM! is returned.

\section*{[Example:}
\(\operatorname{YEAR}(\operatorname{DATE}(2006,1,2))\) results in 2006
\(\operatorname{YEAR}(\operatorname{DATE}(2006,0,2))\) results in 2005
YEAR("2006/1/2 10:45 AM") results in 2006
YEAR (30000) results in 1982 for the 1900 date system, or 1986 for the 1904 date system

\section*{end example]}

\subsection*{18.17.7.352 YEARFRAC}

\section*{Syntax:}

YEARFRAC ( start-date , end-date [, basis ] )
Description: Computes the fractional number of years represented by the number of whole days between two dates, start-date and end-date., according to basis.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline start-date & number & \multicolumn{2}{|l|}{The period's starting date. start-date can be earlier than, the same as, or later than end-date.} \\
\hline end-date & number & \multicolumn{2}{|l|}{The period's ending date.} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Type & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Description
\end{tabular}} \\
\hline & & \begin{tabular}{l} 
with 31 days, if \\
the first date \\
has a day value \\
of 31, the date \\
is converted to \\
day 30. If the \\
second date \\
has a day value \\
of 31, it is \\
changed to 30 \\
days as long as \\
the first date \\
was not 28 or \\
29 February, in \\
which case it \\
does not \\
change.
\end{tabular} \\
\hline
\end{tabular}


All arguments are truncated to integers.
Return Type and Value: number - The fractional number of years represented by the number of whole days between two dates, start-date and end-date., according to basis. If the Actual/actual basis is used, the year length used is the average length of the years that the range crosses, regardless of where start-date and enddate fall in their respective years.

However, if the value of basis is out of range, \#NUM! is returned.

\section*{[Example:}

YEARFRAC(DATE \((2006,1,1)\), \(\operatorname{DATE}(2006,3,26))\) results in 0.236111111
YEARFRAC(DATE \((2006,3,26), \operatorname{DATE}(2006,1,1))\) results in 0.236111111
YEARFRAC(DATE \((2006,1,1), \operatorname{DATE}(2006,7,1))\) results in 0.5
YEARFRAC(DATE \((2006,1,1)\), \(\operatorname{DATE}(2007,9,1))\) results in 1.666666667
YEARFRAC(DATE \((2006,1,1), \operatorname{DATE}(2006,7,1), 0)\) results in 0.5
YEARFRAC(DATE \((2006,1,1), \operatorname{DATE}(2006,7,1), 1)\) results in 0.495890411
YEARFRAC(DATE \((2006,1,1), \operatorname{DATE}(2006,7,1), 2)\) results in 0.502777778
YEARFRAC(DATE \((2006,1,1), \operatorname{DATE}(2006,7,1), 3)\) results in 0.495890411
\(\operatorname{YEARFRAC}(\operatorname{DATE}(2006,1,1), \operatorname{DATE}(2006,7,1), 4)\) results in 0.5
\(\operatorname{YEARFRAC}(\operatorname{DATE}(2004,3,1), \operatorname{DATE}(2006,3,1), 1)\) results in 1.998175 (because 2004 is a leap year and Actual/actual basis is used, the average year length is 365.3333)

\section*{end example]}

\subsection*{18.17.7.353 YIELD}

\section*{Syntax:}

YIELD ( settlement , maturity , rate , pr , redemption , frequency [ , [ basis ]] )
Description: Computes the yield on a security that pays periodic interest.

\section*{Mathematical Formula:}

If there is one coupon period or less until redemption, YIELD is calculated as follows:
\(Y I E L D=\frac{\left(\frac{\text { redempion }}{100}+\frac{\text { rate }}{\text { frequency }}\right)-\left(\frac{\text { par }}{100}+\left(\frac{A}{E} \times \frac{\text { rate }}{\text { frequency }}\right)\right)}{\frac{\text { par }}{100}+\left(\frac{A}{E} \times \frac{\text { rate }}{\text { frequency }}\right)} \times \frac{\text { frequency } \times E}{D S R}\)
where:
- \(A=\) number of days from the beginning of the coupon period to the settlement date (accrued days).
- \(D S R=\) number of days from the settlement date to the redemption date.
- \(E=\) number of days in the coupon period.
- frequency \(=\) argument frequency
- par = argument \(p r\)
- rate = argument rate
- redemption \(=\) argument redemption

If there is more than one coupon period until redemption, YIELD is calculated through some number of iterations. The resolution uses the Newton method, based on the formula used for the function PRICE. The yield is changed until the estimated price given the yield is close to price.

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline maturity & number & The security's maturity date. \\
\hline rate & number & The security's interest rate. \\
\hline\(p r\) & number & The security's price. \\
\hline redemption & number & The security's redemption value per \$100 face value. \\
\hline frequency & number & \begin{tabular}{l} 
the number of coupon payments per year. (For annual \\
payments, frequency is \(1 ;\) for semiannual payments, \\
frequency is 2; for quarterly payments, frequency is 4.) \\
frequency is truncated to an integer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline \multirow[t]{5}{*}{basis} & \multirow[t]{5}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30. If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the year is 366 days; otherwise it is 365 days. \\
\hline & & 2 & Actual/360. Similar to Basis 1, but only has \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Name & Type & \multicolumn{2}{|c|}{ Description } \\
\hline & & & \begin{tabular}{l} 
360 days per year.
\end{tabular} \\
\hline & & \begin{tabular}{l} 
Actual/365. Similar to \\
Basis 1, but always has \\
365 days per year.
\end{tabular} \\
\hline
\end{tabular}

Time information in the date arguments is ignored.
Return Type and Value: number - The yield on a security that pays periodic interest.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- rate \(<0\), \#NUM! is returned.
- \(p r\) or redemption \(\leq 0, \# N \mathrm{M}\) ! is returned.
- frequency is any number other than 1,2 , or 4, \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}

YIELD(DATE (2008, 2, 15), \(\operatorname{DATE}(2016,11,15), 0.0575,95.04287,100,2,0)\) results in \(6.5000 \%\) end example]

\subsection*{18.17.7.354 YIELDDISC}

Syntax:
YIELDDISC ( settlement , maturity , pr , redemption [ , [ basis ]] )
Description: Computes the annual yield for a discounted security.

\section*{Arguments:}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline settlement & number & \multicolumn{2}{|l|}{The security's settlement date.} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline pr & number & \multicolumn{2}{|l|}{The security's price.} \\
\hline redemption & number & \multicolumn{2}{|l|}{The security's redemption value per \$100 face value.} \\
\hline \multirow[t]{3}{*}{basis} & \multirow[t]{3}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is \(\mathbf{2 8}\) or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date
\end{tabular} \\
\hline
\end{tabular}



Time information in the date arguments is ignored.

Return Type and Value: number - The annual yield for a discounted security.
However, if
- settlement or maturity is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- \(\quad p r\) or redemption \(\leq 0, \# N U M\) ! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.
[Example:

YIELDDISC(DATE \((2008,2,16), \operatorname{DATE}(2008,3,1), 99.795,100,2)\) results in \(5.2823 \%\)
end example]

\subsection*{18.17.7.355 YIELDMAT}

Syntax:
YIELDMAT ( settlement , maturity , issue , rate , pr [ , [ basis ]] )
Description: Computes the annual yield of a security that pays interest at maturity.

\section*{Arguments:}
\begin{tabular}{|c|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline settlement & number & The security's settlement date. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Type & \multicolumn{2}{|r|}{Description} \\
\hline maturity & number & \multicolumn{2}{|l|}{The security's maturity date.} \\
\hline issue & number & \multicolumn{2}{|l|}{The security's issue date.} \\
\hline rate & number & \multicolumn{2}{|l|}{The security's interest rate.} \\
\hline \(p r\) & number & \multicolumn{2}{|l|}{The security's price.} \\
\hline \multirow[t]{4}{*}{basis} & \multirow[t]{4}{*}{number} & \multicolumn{2}{|l|}{The truncated integer type of day count basis to use, as follows:} \\
\hline & & Value & Day Count Basis \\
\hline & & 0 or omitted & \begin{tabular}{l}
US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: \\
- If the date is 28 or 29 February, it is adjusted to 30 February. \\
- For months with 31 days, if the first date has a day value of 31 , the date is converted to day 30 . If the second date has a day value of 31 , it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.
\end{tabular} \\
\hline & & 1 & Actual/actual. The actual number of days between the two dates are counted. If the date range includes the date 29 February, the \\
\hline
\end{tabular}


Time information in the date arguments is ignored.
Return Type and Value: number - The annual yield of a security that pays interest at maturity.

\section*{However, if}
- settlement, maturity, or issue is out of range for the current date system, \#NUM! is returned.
- settlement \(\geq\) maturity, \#NUM! is returned.
- rate or \(p r \leq 0\), \#NUM! is returned.
- basis \(<0\) or basis \(>4\), \#NUM! is returned.

\section*{[Example:}
\(\operatorname{YIELDMAT}(\operatorname{DATE}(2008,3,15), \operatorname{DATE}(2008,11,3), \operatorname{DATE}(2007,11,8), 0.0625\), \(100.0123,0\) ) results in \(6.0954 \%\)
end example]

\subsection*{18.17.7.356 ZTEST}

Syntax:
ZTEST ( array , test-value [, sigma ] )
Description: Computes the one-tailed probability-value of a z-test. For a given hypothesized population mean, test-value, ZTEST returns the probability that the sample mean would be greater than the average of observations in the data set array; that is, the observed sample mean.

\section*{Mathematical Formula:}

When sigma is present:
\(\operatorname{ZTEST}\left(\operatorname{array}, \mu_{0}\right)=1-\operatorname{NORMSDIST}\left(\left(\bar{x}-\mu_{0}\right) /(\operatorname{sigma} / \sqrt{n})\right)\)
When sigma is omitted:
\(\operatorname{ZTEST}\left(\operatorname{array}, \mu_{0}\right)=1-\operatorname{NORMSDIST}\left(\left(\bar{x}-\mu_{0}\right) /(s / \sqrt{n})\right)\)
where:
- \(n=\) the number of observations in the sample COUNT (array)
- \(s=\) the sample standard deviation STDEV (array)
- \(x=\) a sample value
- \(\overline{\mathrm{x}}=\) the sample mean AVERAGE (array)
- \(\mu_{0}=\) the argument test-value

\section*{Arguments:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline array & array & The set of numerical data against which to test test-value. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline test-value & number & The number to test. \\
\hline sigma & number & \begin{tabular}{l} 
The number is the population (known) standard \\
deviation. If omitted, the sample standard deviation is \\
used.
\end{tabular} \\
\hline
\end{tabular}

Return Type and Value: number - The one-tailed probability-value of a z-test.
However, if array is empty, the return value is unspecified.

\section*{[Example:}

ZTEST \((\{3,6,7,8,6,5,4,2,1,9\}, 4)\) results in 0.090574197
\(\operatorname{ZTEST}(\{3,6,7,8,6,5,4,2,1,9\}, 6)\) results in 0.863043389
end example]

\subsection*{18.18 Simple Types}

This is the complete list of simple types dedicated to SpreadsheetML.

\subsection*{18.18.1 ST_Axis (PivotTable Axis)}

This simple type defines the axes for a PivotTable selection.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline axisCol (Column Axis) & Column axis \\
\hline axisPage (Include Count Filter) & Page axis \\
\hline axisRow (Row Axis) & Row axis \\
\hline axisValues (Values Axis) & Values axis \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST Axis) is located in §A.2. end note]

\subsection*{18.18.2 ST_BorderId (Border Id)}

Zero-based index of the border record used by this cell format.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type’s content model (ST Borderld) is located in §A.2. end note]

\subsection*{18.18.3 ST_BorderStyle (Border Line Styles)}

The line style of a border in a cell.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline dashDot (Dash Dot) & \begin{tabular}{l}
The line style of a border is dash-dot. \\
[Example:
\(\qquad\) \\
end example]
\end{tabular} \\
\hline dashDotDot (Dash Dot Dot) & \begin{tabular}{l}
The line style of a border is dash-dot-dot. \\
[Example:
\(\qquad\) \\
end example]
\end{tabular} \\
\hline dashed (Dashed) & \begin{tabular}{l}
The line style of a border is dashed. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline dotted (Dotted) & \begin{tabular}{l}
The line style of a border is dotted. \\
[Example:
\(\qquad\) \\
end example]
\end{tabular} \\
\hline double (Double Line) & The line style of a border is double line. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline hair (Hairline Border) & \begin{tabular}{l}
The line style of a border is hairline. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline medium (Medium Border) & \begin{tabular}{l}
The line style of a border is medium. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline mediumDashDot (Medium Dash Dot) & \begin{tabular}{l}
The line style of a border is medium dash-dot. \\
[Example: \\
end example]
\end{tabular} \\
\hline mediumDashDotDot (Medium Dash Dot Dot) & \begin{tabular}{l}
The line style of a border is medium dash-dot-dot. \\
[Example: \\
end example]
\end{tabular} \\
\hline mediumDashed (Medium Dashed) & \begin{tabular}{l}
The line style of a border is medium dashed. \\
[Example:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
 \\
end example]
\end{tabular} \\
\hline none (None) & \begin{tabular}{l}
The line style of a border is none (no border visible). \\
[Example:
\(\qquad\) \\
end example]
\end{tabular} \\
\hline slantDashDot (Slant Dash Dot) & \begin{tabular}{l}
The line style of a border is slant-dash-dot. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline thick (Thick Line Border) & \begin{tabular}{l}
The line style of a border is 'thick'. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline thin (Thin Border) & \begin{tabular}{l}
The line style of a border is thin. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST BorderStyle) is located in §A.2. end note]

\subsection*{18.18.4 ST_CalcMode (Calculation Mode)}

This simple type defines the supported modes for performing calculations on workbook data.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline auto (Automatic) & \begin{tabular}{l} 
Indicates that calculations in the workbook are \\
performed automatically when cell values change. The \\
application recalculates those cells that are dependent \\
on other cells that contain changed values. This mode \\
of calculation helps to avoid unnecessary calculations.
\end{tabular} \\
\hline autoNoTable (Automatic Calculation (No Tables)) & \begin{tabular}{l} 
Indicates tables be excluded during automatic \\
calculation.
\end{tabular} \\
\hline manual (Manual Calculation Mode) & \begin{tabular}{l} 
Indicates that calculations in the workbook be \\
triggered manually by the user. For example, the \\
application might expose a command in the user \\
interface.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model ( \(\underline{\text { ST CalcMode) }) ~ i s ~ l o c a t e d ~ i n ~ § A . ~} 2\). end note]

\subsection*{18.18.5 ST_CellComments (Cell Comments)}

These enumerations specify how cell comments shall be displayed for paper printing purposes.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline asDisplayed (Print Comments As Displayed) & Print cell comments as displayed. \\
\hline atEnd (Print At End) & Print cell comments at end of document. \\
\hline none (None) & Do not print cell comments. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST CellComments) is located in §A.2. end note]

\subsection*{18.18.6 ST_CellFormulaType (Formula Type)}

Indicates the type of formula in the cell.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline array (Array Formula) & Formula is an array formula. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline dataTable (Table Formula) & Formula is a data table formula. \\
\hline normal (Normal) & Formula is a regular cell formula. \\
\hline shared (Shared Formula) & Formula is part of a shared formula. \\
\hline
\end{tabular}
[ Note: The W3C XML Schema definition of this simple type's content model (ST CellFormulaType) is located in §A.2. end note]

\subsection*{18.18.7 ST_CellRef (Cell Reference)}

Represents a single cell reference in a SpreadsheetML document.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
[Note: The W3C XML Schema definition of this simple type’s content model (ST CellRef) is located in §A.2. end note]

\subsection*{18.18.8 ST_CellSpan (Cell Span Type)}

A single cell span item.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST CellSpan) is located in §A.2. end note]

\subsection*{18.18.9 ST_CellSpans (Cell Spans)}

List of the cell spans of the item.

This simple type allows a list of items of the ST_CellSpan simple type (§18.18.8).
[Note: The W3C XML Schema definition of this simple type’s content model (ST CellSpans) is located in §A.2. end note]

\subsection*{18.18.10 ST_CellStyleXfId (Cell Style Format Id)}

Used by xf records and cellStyle records to reference xf records defined in the cellStyleXfs collection.

This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST CellStyleXfld) is located in §A.2. end note]

\subsection*{18.18.11 ST_CellType (Cell Type)}

Indicates the cell's data type.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline b (Boolean) & Cell containing a boolean. \\
\hline d (Date) & Cell contains a date in the ISO 8601 format. \\
\hline e (Error) & Cell containing an error. \\
\hline inlineStr (Inline String) & \begin{tabular}{l} 
Cell containing an (inline) rich string, i.e., one not in \\
the shared string table. If this cell type is used, then \\
the cell value is in the is element rather than the v \\
element in the cell (c element).
\end{tabular} \\
\hline n (Number) & Cell containing a number. \\
\hline s (Shared String) & Cell containing a shared string. \\
\hline str (String) & Cell containing a formula string. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST CellType) is located in §A.2. end note]

\subsection*{18.18.12 ST_CfType (Conditional Format Type)}

Conditional format rule type.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline aboveAverage (Above or Below Average) & \begin{tabular}{l} 
This conditional formatting rule highlights cells that \\
are above or below the average for all values in the \\
range.
\end{tabular} \\
\hline beginsWith (Begins With) & \begin{tabular}{l} 
This conditional formatting rule highlights cells in the \\
range that begin with the given text. Equivalent to \\
using the LEFT() sheet function and comparing values.
\end{tabular} \\
\hline cellIs (Cell Is) & \begin{tabular}{l} 
This conditional formatting rule compares a cell value \\
to a formula calculated result, using an operator.
\end{tabular} \\
\hline colorScale (Color Scale) & \begin{tabular}{l} 
This conditional formatting rule creates a gradated \\
color scale on the cells.
\end{tabular} \\
\hline containsBlanks (Contains Blanks) & \begin{tabular}{l} 
This conditional formatting rule highlights cells that \\
are completely blank. Equivalent of using LEN(TRIM())). \\
This means that if the cell contains only characters \\
that TRIM() would remove, then it is considered blank. \\
An empty cell is also considered blank.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline containsErrors (Contains Errors) & \begin{tabular}{l} 
This conditional formatting rule highlights cells with \\
formula errors. Equivalent to using ISERROR() sheet \\
function to determine if there is a formula error.
\end{tabular} \\
\hline containsText (Contains Text) & \begin{tabular}{l} 
This conditional formatting rule highlights cells \\
containing given text. Equivalent to using the SEARCH() \\
sheet function to determine whether the cell contains \\
the text.
\end{tabular} \\
\hline dataBar (Data Bar) & \begin{tabular}{l} 
This conditional formatting rule displays a gradated \\
data bar in the range of cells.
\end{tabular} \\
\hline duplicateValues (Duplicate Values) & \begin{tabular}{l} 
This conditional formatting rule highlights duplicated \\
values.
\end{tabular} \\
\hline endsWith (Ends With) & \begin{tabular}{l} 
This conditional formatting rule highlights cells ending \\
with given text. Equivalent to using the RIGHT() sheet \\
function and comparing values.
\end{tabular} \\
\hline expression (Expression) & \begin{tabular}{l} 
This conditional formatting rule contains a formula to \\
evaluate. When the formula result is true, the cell is \\
highlighted.
\end{tabular} \\
\hline iconSet (Icon Set) & \begin{tabular}{l} 
This conditional formatting rule applies icons to cells \\
according to their values.
\end{tabular} \\
\hline notContainsBlanks (Contains No Blanks) & \begin{tabular}{l} 
This conditional formatting rule highlights cells that \\
are not blank. Equivalent of using LEN(TRIM()). This \\
means that if the cell contains only characters that \\
TRIM() would remove, then it is considered blank. An \\
empty cell is also considered blank.
\end{tabular} \\
\hline uniqueValues (Unique Values) & \begin{tabular}{l} 
This conditional formatting rule highlights cells \\
without formula errors. Equivalent to using ISERROR() \\
sheet function to determine if there is a formula error.
\end{tabular} \\
\hline timePeriod (Time Period) & \begin{tabular}{l} 
This conditional formatting rule highlights cells that do \\
not contain given text. Equivalent to using the \\
SEARCH() sheet function.
\end{tabular} \\
\hline notContainsErrors (Contains No Errors) & \begin{tabular}{l} 
This conditional formatting rule highlights cells \\
containing dates in the specified time period. The \\
underlying value of the cell is evaluated, therefore the \\
cell does not need to be formatted as a date to be \\
evaluated. For example, with a cell containing the \\
value 38913 the conditional format shall be applied if \\
the rule requires a value of 7/14/2006.
\end{tabular} \\
\hline This conditional formatting rule highlights cells whose \\
values fall in the top N or bottom N bracket, as \\
specified.
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST CfType) is located in §A.2. end note]

\subsection*{18.18.13 ST_CfvoType (Conditional Format Value Object Type)}

This simple type expresses the type of the conditional formatting value object (cfvo). In general the cfvo specifies one value used in the gradated scale (max, min, midpoint, etc).

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline formula (Formula) & \begin{tabular}{l} 
The minimum/midpoint / maximum value for the \\
gradient is determined by a formula.
\end{tabular} \\
\hline max (Maximum) & \begin{tabular}{l} 
Indicates that the maximum value in the range shall be \\
used as the maximum value for the gradient.
\end{tabular} \\
\hline min (Minimum) & \begin{tabular}{l} 
Indicates that the minimum value in the range shall be \\
used as the minimum value for the gradient.
\end{tabular} \\
\hline num (Number) & \begin{tabular}{l} 
Indicates that the minimum / midpoint / maximum \\
value for the gradient is specified by a constant \\
numeric value.
\end{tabular} \\
\hline percent (Percent) & \begin{tabular}{l} 
Value indicates a percentage between the minimum \\
and maximum values in the range shall be used as the \\
minimum / midpoint / maximum value for the \\
gradient.
\end{tabular} \\
\hline percentile (Percentile) & \begin{tabular}{l} 
Value indicates a percentile ranking in the range shall \\
be used as the minimum / midpoint / maximum value \\
for the gradient.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST CfvoType) is located in §A.2. end note]

\subsection*{18.18.14 ST_Comments (Comment Display Types)}

This simple type defines options for displaying comments in the user interface.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline commIndAndComment (Show Comment \& Indicator) & \begin{tabular}{l} 
Indicates that both the comment indicator and \\
comment text be show in the user interface.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline commIndicator (Show Comment Indicator) & \begin{tabular}{l} 
Indicates that only the comment indicator be shown in \\
the user interface.
\end{tabular} \\
\hline commNone (No Comments) & \begin{tabular}{l} 
Indicates that comments not be shown in the user \\
interface.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST Comments) is located in §A.2. end note]

\subsection*{18.18.15 ST_ConditionalFormattingOperator (Conditional Format Operators)}

These conditional format operators are used for "Highlight Cells That Contain..." rules. For example, "highlight cells that begin with "M2" and contain "Mountain Gear"".

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline beginsWith (Begins With) & 'Begins with' operator \\
\hline between (Between) & 'Between' operator \\
\hline containsText (Contains) & 'Contains' operator \\
\hline endsWith (Ends With) & 'Ends with' operator \\
\hline equal (Equal) & 'Equal to' operator \\
\hline greaterThan (Greater Than) & 'Greater than' operator \\
\hline greaterThanOrEqual (Greater Than Or Equal) & 'Greater than or equal to' operator \\
\hline lessThan (Less Than) & 'Less than' operator \\
\hline lessThanOrEqual (Less Than Or Equal) & 'Less than or equal to' operator \\
\hline notBetween (Not Between) & 'Not between' operator \\
\hline notContains (Does Not Contain) & 'Does not contain' operator \\
\hline notEqual (Not Equal) & 'Not equal to' operator \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST ConditionalFormattingOperator) is located in §A.2. end note]

\subsection*{18.18.16 ST_CredMethod (Credentials Method)}

Credentials method used for server access.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline integrated (Integrated Authentication) & Integrated authentication. \\
\hline none (No Credentials) & Use no credentials at all. \\
\hline prompt (Prompt Credentials) & Prompt for credentials. \\
\hline stored (Stored Credentials) & Use stored credentials. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST CredMethod) is located in §A.2. end note]

\subsection*{18.18.17 ST_DataConsolidateFunction (Data Consolidation Functions)}

Data consolidation functions specified by the user and used to consolidate ranges of data.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline average (Average) & The average of the values. \\
\hline count (Count) & \begin{tabular}{l} 
The number of data values. The Count consolidation \\
function works the same as the COUNTA worksheet \\
function.
\end{tabular} \\
\hline countNums (CountNums) & \begin{tabular}{l} 
The number of data values that are numbers. The \\
Count Nums consolidation function works the same as \\
the COUNT worksheet function.
\end{tabular} \\
\hline max (Maximum) & The largest value. \\
\hline min (Minimum) & The smallest value. \\
\hline product (Product) & The product of the values. \\
\hline stdDev (StdDev) & \begin{tabular}{l} 
An estimate of the standard deviation of a population, \\
where the sample is a subset of the entire population.
\end{tabular} \\
\hline stdDevp (StdDevP) & \begin{tabular}{l} 
The standard deviation of a population, where the \\
population is all of the data to be summarized.
\end{tabular} \\
\hline sum (Sum) & The sum of the values. \\
\hline var (Variance) & \begin{tabular}{l} 
An estimate of the variance of a population, where the \\
sample is a subset of the entire population.
\end{tabular} \\
\hline varp (VarP) & \begin{tabular}{l} 
The variance of a population, where the population is \\
all of the data to be summarized.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DataConsolidateFunction) is located in §A.2. end note]

\subsection*{18.18.18 ST_DataValidationErrorStyle (Data Validation Error Styles)}

The style of data validation error alert.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline information (Information Icon) & \begin{tabular}{l} 
This data validation error style uses an information \\
icon in the error alert. \\
i.)
\end{tabular} \\
\hline stop (Stop Icon) & \begin{tabular}{l} 
This data validation error style uses a stop icon in the \\
error alert.
\end{tabular} \\
\hline warning (Warning Icon) & \begin{tabular}{l} 
This data validation error style uses a warning icon in \\
the error alert.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DataValidationErrorStyle) is located in §A.2. end note]

\subsection*{18.18.19 ST_DataValidationImeMode (Data Validation IME Mode)}

These values specify that the IME (input method editor) mode is controlled by data validation.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline disabled (Disabled IME Mode) & \begin{tabular}{l} 
IME mode is disabled. Forces the IME control to be \\
disabled when this cell is selected.
\end{tabular} \\
\hline fullAlpha (Full-Width Alpha-Numeric IME Mode) & \begin{tabular}{l} 
Forces the IME control to be on and in full-width alph- \\
numeric input mode when the cell is first selected.
\end{tabular} \\
\hline fullHangul (Full Width Hangul) & \begin{tabular}{l} 
Forces the IME control to be on and in full-width \\
Hangul input mode when first selecting the cell. \\
Applies when the application's language is Korean and
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline & a Korean IME control is selected. \\
\hline fullKatakana (Full Katakana IME Mode) & \begin{tabular}{l} 
Forces the IME control to be on and in full-width \\
Katakana input mode when first selecting the cell. \\
Applies when the application's language is Japanese \\
and a Japanese IME control is selected.
\end{tabular} \\
\hline halfAlpha (Half Alpha IME) & \begin{tabular}{l} 
Forces the IME control to be on and in half-width alph- \\
numeric input mode when the cell is first selected.
\end{tabular} \\
\hline halfHangul (Half-Width Hangul IME Mode) & \begin{tabular}{l} 
Forces the IME control to be on and in half-width \\
Hangul input mode when first selecting the cell. \\
Applies when the application's language is Korean and \\
a Korean IME control is selected.
\end{tabular} \\
\hline halfKatakana (Half-Width Katakana) & \begin{tabular}{l} 
Forces the IME control to be on and in half-width \\
Katakana input mode when first selecting the cell. \\
Applies when the application's language is Japanese \\
and a Japanese IME control is selected.
\end{tabular} \\
\hline hiragana (Hiragana IME Mode) & \begin{tabular}{l} 
Forces the IME control to be on and in Hiragana input \\
mode when first selecting the cell. Applies when the \\
application's language is Japanese and a Japanese IME \\
control is selected
\end{tabular} \\
\hline noControl (IME Mode Not Controlled) & \begin{tabular}{l} 
Data validation does not control the IME control's \\
mode.
\end{tabular} \\
\hline off (IME Off) & \begin{tabular}{l} 
Forces the IME control to be off when first selecting \\
the cell (goes to direct cell input mode).
\end{tabular} \\
\hline on (IME On) & \begin{tabular}{l} 
Forces the IME control to be on when first selecting \\
the cell.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DataValidationImeMode) is located in §A.2. end note]

\subsection*{18.18.20 ST_DataValidationOperator (Data Validation Operator)}

The relational operator used in data validation.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline between (Between) & \begin{tabular}{l} 
Data validation which checks if a value is between two \\
other values.
\end{tabular} \\
\hline equal (Equal) & \begin{tabular}{l} 
Data validation which checks if a value is equal to a \\
specified value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline greaterThan (Greater Than) & \begin{tabular}{l} 
Data validation which checks if a value is greater than \\
a specified value.
\end{tabular} \\
\hline greaterThanOrEqual (Greater Than Or Equal) & \begin{tabular}{l} 
Data validation which checks if a value is greater than \\
or equal to a specified value.
\end{tabular} \\
\hline lessThan (Less Than) & \begin{tabular}{l} 
Data validation which checks if a value is less than a \\
specified value.
\end{tabular} \\
\hline lessThanOrEqual (Less Than Or Equal) & \begin{tabular}{l} 
Data validation which checks if a value is less than or \\
equal to a specified value.
\end{tabular} \\
\hline notBetween (Not Between) & \begin{tabular}{l} 
Data validation which checks if a value is not between \\
two other values.
\end{tabular} \\
\hline notEqual (Not Equal) & \begin{tabular}{l} 
Data validation which checks if a value is not equal to a \\
specified value.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DataValidationOperator) is located in §A.2. end note]

\subsection*{18.18.21 ST_DataValidationType (Data Validation Type)}

Specifies the type of data validation used to validate user input.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline custom (Custom) & \begin{tabular}{l} 
Data validation which uses a custom formula to check \\
the cell value.
\end{tabular} \\
\hline date (Date) & \begin{tabular}{l} 
Data validation which checks for date values satisfying \\
the given condition.
\end{tabular} \\
\hline decimal (Decimal) & \begin{tabular}{l} 
Data validation which checks for decimal values \\
satisfying the given condition.
\end{tabular} \\
\hline list (List) & \begin{tabular}{l} 
Data validation which checks for a value matching one \\
of list of values.
\end{tabular} \\
\hline none (None) & No data validation. \\
\hline textLength (Text Length) & \begin{tabular}{l} 
Data validation which checks for text values, whose \\
length satisfies the given condition.
\end{tabular} \\
\hline time (Time) & \begin{tabular}{l} 
Data validation which checks for time values satisfying \\
the given condition.
\end{tabular} \\
\hline whole (Whole Number) & \begin{tabular}{l} 
Data validation which checks for whole number values \\
satisfying the given condition.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DataValidationType) is located in §A.2. end note]

\subsection*{18.18.22 ST_DateTimeGrouping (Date Time Grouping)}

Specifies how to group dateTime values.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline day (Day) & Group by day \\
\hline hour (Group by Hour) & Group by hour \\
\hline minute (Group by Minute) & Group by minute \\
\hline month (Month) & Group by month \\
\hline second (Second) & Group by second \\
\hline year (Group by Year) & Group by year \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DateTimeGrouping) is located in §A.2. end note]

\subsection*{18.18.23 ST_DdeValueType (DDE Value Types)}

This simple type indicates the type of the DDE value.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline b (Boolean) & Indicates that the value is a boolean. \\
\hline e (Error) & Indicates that the value is an error. \\
\hline n (Real Number) & Indicates that the value is a real number. \\
\hline nil (Nil) & Indicates that the value is nil. \\
\hline str (String) & Indicates that the value is a string. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DdeValueType) is located in §A.2. end note]

\subsection*{18.18.24 ST_DvAspect (Data View Aspect Type)}

Specifies the desired data or view aspect of the object when drawing or getting data.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline DVASPECT_CONTENT (Object Display Content) & \begin{tabular}{l} 
Provides a representation of an object so it can be \\
displayed as an embedded object inside of a container.
\end{tabular} \\
\hline DVASPECT_ICON (Object Display Icon) & Provides an iconic representation of an object. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST DvAspect) is located in §A.2. end note]

\subsection*{18.18.25 ST_DxfId (Format Id)}

This simple type defines the identifier to CT_Dxfs in the styles part. This a zero-based index. See §18.8.30 in Style for more information on formats.

This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST Dxfld) is located in §A.2. end note]

\subsection*{18.18.26 ST_DynamicFilterType (Dynamic Filter)}

These are the dynamic filter types. A dynamic filter returns a result set which might vary due to a change in the data itself or a change in the date on which the filter is being applied. For example, for a set of data \(\{1,1,2,3\}\), the aboveAverage filter would return or highlight the last two values in the set. If the data is refreshed or changed to \(\{1,1,1,2\}\), then only the last value would be highlighted. Similarly, the meaning of "lastQuarter" shall be the same for the dates in January, February, and March, but shall change meaning once the date advances from March to April.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline aboveAverage (Above Average) & Shows values that are above average. \\
\hline belowAverage (Below Average) & Shows values that are below average. \\
\hline lastMonth (Last Month) & Shows last month's dates. \\
\hline lastQuarter (Last Quarter) & Shows last calendar quarter's dates. \\
\hline lastWeek (Last Week) & \begin{tabular}{l} 
Shows last week's dates, using Sunday as the first \\
weekday.
\end{tabular} \\
\hline lastYear (Last Year) & Shows last year's dates. \\
\hline M1 (1st Month) & \begin{tabular}{l} 
Shows the dates that are in January, regardless of \\
year.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline M10 (10th Month) & \begin{tabular}{l} 
Shows the dates that are in October, regardless of \\
year.
\end{tabular} \\
\hline M11 (11th Month) & \begin{tabular}{l} 
Shows the dates that are in November, regardless of \\
year.
\end{tabular} \\
\hline M12 (12th Month) & \begin{tabular}{l} 
Shows the dates that are in December, regardless of \\
year.
\end{tabular} \\
\hline M2 (2nd Month) & \begin{tabular}{l} 
Shows the dates that are in February, regardless of \\
year.
\end{tabular} \\
\hline M3 (3rd Month) & Shows the dates that are in March, regardless of year. \\
\hline M4 (4th Month) & Shows the dates that are in April, regardless of year. \\
\hline M5 (5th Month) & Shows the dates that are in May, regardless of year. \\
\hline M6 (6th Month) & Shows the dates that are in June, regardless of year. \\
\hline M7 (7th Month) & Shows the dates that are in July, regardless of year. \\
\hline M8 (8th Month) & Shows the dates that are in August, regardless of year. \\
\hline M9 (9th Month) & \begin{tabular}{l} 
Shows the dates that are in September, regardless of \\
year.
\end{tabular} \\
\hline nextMonth (Next Month) & Shows next month's dates. \\
\hline nextQuarter (Next Quarter) & Shows next calendar quarter's dates. \\
\hline nextWeek (Next Week) & \begin{tabular}{l} 
Shows next week's dates, using Sunday as the first \\
weekday.
\end{tabular} \\
\hline nextYear (Next Year) & Shows next year's dates. \\
\hline null (Null) & Shows tomorrow's dates. \\
\hline Q1 (1st Quarter) & Common filter type not available. \\
\hline Q2 (2nd Quarter) & \begin{tabular}{l} 
Shows the dates that are in the 1st calendar quarter, \\
regardless of year.
\end{tabular} \\
\hline Q3 (3rd Quarter) & \begin{tabular}{l} 
Shows the dates that are in the 2nd calendar quarter, \\
regardless of year.
\end{tabular} \\
\hline today (Today) & \begin{tabular}{l} 
Shows the dates that are in the 3rd calendar quarter, \\
regardless of year.
\end{tabular} \\
\hline thisMonth (This Month) & \begin{tabular}{l} 
Shows the dates that are in the 4th calendar quarter, \\
regardless of year.
\end{tabular} \\
\hline thisQuarter (This Quarter) & Shows this month's dates. \\
\hline thisWeek (This Week) & Shows this calendar quarter's dates. \\
weekday.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline yearToDate (Year To Date) & \begin{tabular}{l} 
Shows the dates between the beginning of the year \\
and today, inclusive.
\end{tabular} \\
\hline yesterday (Yesterday) & Shows yesterday's dates. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST DynamicFilterType) is located in §A.2. end note]

\subsection*{18.18.27 ST_ExternalConnectionType (Text Field Datatype)}

These are the possible data types to use when importing text into the SpreadsheetML document. Strings are converted to these data types in the worksheet.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline DMY (Day Month Year) & Field contains a date in the order: day, month, year. \\
\hline DYM (Day Year Month) & Field contains a date in the order: day, year, month. \\
\hline EMD (East Asian Year Month Day) & \begin{tabular}{l} 
Field contains an East Asian date in the order: EA era \\
year, month, day.
\end{tabular} \\
\hline general (General) & \begin{tabular}{l} 
The SpreadsheetML application decides the best fit \\
data type based on the content.
\end{tabular} \\
\hline MDY (Month Day Year) & Field contains a date in the order: month, day, year. \\
\hline MYD (Month Day Year) & Field contains a date in the order: month, year, day. \\
\hline skip (Skip Field) & Don't import this field at all. \\
\hline text (Text) & Field contains text. \\
\hline YDM (Year Day Month) & Field contains a date in the order: year, day, month. \\
\hline YMD (Year Month Day) & Field contains a date in the order: year, month, day. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST ExternalConnectionType) is located in §A.2. end note]

\subsection*{18.18.28 ST_FieldSortType (Field Sort Type)}

This simple type defines the sort orders that can be applied to fields in a PivotTable.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline ascending (Ascending) & Indicates the field is sorted in ascending order. \\
\hline descending (Descending) & Indicates the field is sorted in descending order. \\
\hline manual (Manual Sort) & Indicates the field is sorted manually. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST FieldSortType) is located in §A.2. end note]

\subsection*{18.18.29 ST_FileType (File Type)}

The file type being used for text import.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline dos (DOS) & DOS (PC-8). \\
\hline lin (Linux) & Linux \\
\hline mac (Macintosh) & Macintosh. \\
\hline other (Other Non-Specified Values) & Other non-specified values at the time of writing. \\
\hline win (Windows (ANSI)) & Windows (ANSI). \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST FileType) is located in §A.2. end note]

\subsection*{18.18.30 ST_FillId (Fill Id)}

Zero-based index used to reference a fill record.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST Fillld) is located in §A.2. end note]

\subsection*{18.18.31 ST_FilterOperator (Filter Operator)}

Operator enumerations for filtering.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline equal (Equal) & Show results which are equal to criteria. \\
\hline greaterThan (Greater Than) & Show results which are greater than criteria. \\
\hline greaterThanOrEqual (Greater Than Or Equal) & \begin{tabular}{l} 
Show results which are greater than or equal to \\
criteria.
\end{tabular} \\
\hline lessThan (Less Than) & Show results which are less than criteria. \\
\hline lessThanOrEqual (Less Than Or Equal) & Show results which are less than or equal to criteria. \\
\hline notEqual (Not Equal) & Show results which are not equal to criteria. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST FilterOperator) is located in §A.2. end note]

\subsection*{18.18.32 ST_FontId (Font Id)}

An integer that represents a zero based index into the <fonts> collection in the style sheet.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST Fontld) is located in §A.2. end note]

\subsection*{18.18.33 ST_FontScheme (Font scheme Styles)}

Defines the font scheme, if any, to which this font belongs.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline major (Major Font) & This font is the major font for this theme. \\
\hline minor (Minor Font) & This font is the minor font for this theme. \\
\hline none (None) & This font is not a theme font. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST FontScheme) is located in §A.2. end note]

\subsection*{18.18.34 ST_FormatAction (PivotTable Format Types)}

This simple type defines the type of formats that can be applied to PivotTables.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline blank (Blank) & \begin{tabular}{l} 
Indicates no format is applied to the PivotTable. This \\
value is used when formatting is cleared from already \\
formatted cells in the PivotTable.
\end{tabular} \\
\hline drill (Drill Type) & Indicates the PivotTable has drill-through format. \\
\hline formatting (Formatting) & Indicates the PivotTable has formatting. \\
\hline formula (Formula Type) & Indicates the PivotTable has formulas. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST FormatAction) is located in §A.2. end note]

\subsection*{18.18.35 ST_Formula (Formula)}

A formula

This simple type's contents are a restriction of the ST_Xstring datatype (§22.9.2.19).
[Note: The W3C XML Schema definition of this simple type's content model (ST Formula) is located in §A.2. end note]

\subsection*{18.18.36 ST_FormulaExpression (Formula Expression Type)}

This simple type specifies an expression type that can comprise a formula.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline area (Area) & Reference to a range of cells. \\
\hline areaError (Area Error) & \begin{tabular}{l} 
Reference to a range of cells that now evaluates to an \\
error.
\end{tabular} \\
\hline computedArea (Computed Area) & Computed area reference. \\
\hline ref (Reference) & Single cell reference. \\
\hline refError (Reference Is Error) & Single cell reference that now evaluates to an error. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST FormulaExpression) is located in §A.2. end note]

\subsection*{18.18.37 ST_GradientType (Gradient Type)}

Type of gradient fill being used, either linear or path.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline linear (Linear Gradient) & \begin{tabular}{l} 
This gradient fill is of linear gradient type. Linear \\
gradient type means that the transition from one color \\
to the next is along a line (e.g., horizontal, vertical, \\
diagonal, etc.).
\end{tabular} \\
\hline path (Path) & \begin{tabular}{l} 
This gradient fill is of path gradient type. Path gradient \\
type means the that the boundary of transition from \\
one color to the next is a rectangle, defined by top, \\
bottom, left, and right attributes on the gradientFill \\
element.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST GradientType) is located in §A.2. end note]

\subsection*{18.18.38 ST_GroupBy (Values Group By)}

This simple type defines types of data grouping that can be performed on a PivotTable.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline days (Days) & Indicates a grouping on "days" for date values. \\
\hline hours (Hours) & Indicates a grouping on "hours" for date values. \\
\hline minutes (Minutes) & Indicates a grouping on "minutes" for date values. \\
\hline months (Months) & Indicates a grouping on "months" for date values. \\
\hline quarters (Quarters) & Indicates a grouping on "quarters" for date values. \\
\hline range (Group By Numeric Ranges) & \begin{tabular}{l} 
Indicates a grouping by numeric ranges for numeric \\
values.
\end{tabular} \\
\hline seconds (Seconds) & Indicates a grouping on "seconds" for date values. \\
\hline years (Years) & Indicates a grouping on "years" for date values. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST GroupBy) is located in §A.2. end note]

\subsection*{18.18.39 ST_GrowShrinkType (Grow Shrink Type)}

This type enumerates behavior patterns for refreshing external data in a query table.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline insertClear (Insert \& Clear On Refresh) & Insert entire rows for new data, clear unused cells. \\
\hline insertDelete (Insert \& Delete On Refresh) & Insert cells for new data, delete unused cells. \\
\hline overwriteClear (Overwrite \& Clear On Refresh) & \begin{tabular}{l} 
Overwrite existing cells with new data, clear unused \\
cells.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST GrowShrinkType) is located in §A.2. end note]

\subsection*{18.18.40 ST_HorizontalAlignment (Horizontal Alignment Type)}

The enumeration value indicating the portion of Cell Alignment in a cell format (XF) that is horizontal alignment, i.e., whether it is aligned general, left, right, horizontally centered, filled (replicated), justified, centered across multiple cells, or distributed.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline center (Centered Horizontal Alignment) & The horizontal alignment is centered, meaning the text is centered across the cell. \\
\hline centerContinuous (Center Continuous Horizontal Alignment) & \begin{tabular}{l}
The horizontal alignment is centered across multiple cells. The information about how many cells to span is expressed in the Sheet Part, in the row of the cell in question. For each cell that is spanned in the alignment, a cell element needs to be written out, with the same style Id which references the centerContinuous alignment. \\
[Example: \\
This shows the value of A1 centered across A1:C1: \\
The XML from the Sheet Part: \\
<row r="1" spans="1:3">
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
\[
\begin{aligned}
& \text { <c r="A1" s="1" t="s"> } \\
& \text { <v>0</v> } \\
& \text { </c> } \\
& \text { <c r="B1" s="1"/> } \\
& \text { <c r="C1" s="1"/> } \\
& \text { </row> }
\end{aligned}
\] \\
The XML from the Styles Part:
```

 <cellXfs count="2">
 <xf numFmtId="0" fontId="0"
 fillId="0" borderId="0" xfId="0"/>
 <xf numFmtId="0" fontId="0"
 fillId="0" borderId="0" xfId="0"
 applyAlignment="1">
 <alignment
 horizontal="centerContinuous"/>
 </xf>
 </cellXfs>
 end example]

```
\end{tabular} \\
\hline distributed (Distributed Horizontal Alignment) & \begin{tabular}{l}
I/ndicates that each 'word' in each line of text inside the cell is evenly distributed across the width of the cell, with flush right and left margins. \\
When there is also an indent value to apply, both the left and right side of the cell are padded by the indent value. \\
A 'word' is a set of characters with no space character in them. \\
Two lines inside a cell are separated by a carriage return. \\
[Example: This shows three lines of text evenly distributed horizontally across the cell. The first line is "abc def ghi", the second line is blank, and the third line is " jkl mno".
\end{tabular} \\
\hline & \begin{tabular}{l|c|ccc|}
\hline & A & \multicolumn{3}{|c|}{ B } \\
\hline 1 & & \multicolumn{3}{|c|}{} \\
\hline & & abc & def & ghi \\
& & & & \\
2 & & jkl & & mno \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
This shows the same example, with an indent value of 2: \\
There is no vertical component to the alignment being shown here. The row has been manually adjusted to display the text. end example]
\end{tabular} \\
\hline fill (Fill) & \begin{tabular}{l}
Indicates that the value of the cell should be filled across the entire width of the cell. If blank cells to the right also have the fill alignment, they are also filled with the value, using a convention similar to centerContinuous. \\
Additional rules: \\
- Only whole values can be appended, not partial values. \\
- The column will not be widened to 'best fit' the filled value \\
- If appending an additional occurrence of the value exceeds the boundary of the cell left/right edge, don't append the additional occurrence of the value. \\
- The display value of the cell is filled, not the underlying raw number. \\
[Example: \\
This cell is filled with the value 1.2345 and has a width
\end{tabular} \\
\hline & \begin{tabular}{l}
\begin{tabular}{|c|c|c|}
\hline & A & B \\
\hline 1 & & \\
\hline 2 & & 1.23451 .2345 \\
\hline
\end{tabular} \\
This cell is filled with the value abc and has width of 15 characters:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
\begin{tabular}{|c|c|c|}
\hline & A & B \\
\hline 1 & & \\
\hline 2 & & \(a b c a b c a b c a b c a b c\) \\
\hline
\end{tabular} \\
- end example]
\end{tabular} \\
\hline general (General Horizontal Alignment) & \begin{tabular}{l}
The horizontal alignment is general-aligned. Text data is left-aligned. Numbers, dates, and times are rightaligned. Boolean types are centered. Changing the alignment does not change the type of data. \\
[Example: These cells are general aligned:
\end{tabular} \\
\hline justify (Justify) & \begin{tabular}{l}
The horizontal alignment is justified (flush left and right). For each line of text, aligns each line of the wrapped text in a cell to the right and left (except the last line). If no single line of text wraps in the cell, then the text is not justified. \\
[Example: There are two lines of text in this cell, and the cell's horizontal alignment is justify: \\
one two three four five six seven eight nine ten eleven twelve thirteen fourteen fifteen sixteen seventeen eighteen nineteen \\
six seven eight nine ten eleven twelve \\
end example]
\end{tabular} \\
\hline left (Left Horizontal Alignment) & The horizontal alignment is left-aligned, even in Right- \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
to-Left mode. Aligns contents at the left edge of the \\
cell. If an indent amount is specified, the contents of \\
the cell is indented from the left by the specified \\
number of character spaces. The character spaces are \\
based on the default font and font size for the \\
workbook.
\end{tabular} \\
\hline right (Right Horizontal Alignment) & \begin{tabular}{l} 
The horizontal alignment is right-aligned, meaning that \\
cell contents are aligned at the right edge of the cell, \\
even in Right-to-Left mode.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST HorizontalAlignment) is located in §A.2. end note]

\subsection*{18.18.41 ST_HtmlFmt (HTML Formatting Handling)}

How to handle formatting from the HTML source.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline all (All) & \begin{tabular}{l} 
Transfer all HTML formatting into the worksheet along \\
with data.
\end{tabular} \\
\hline none (No Formatting) & \begin{tabular}{l} 
Bring data in as unformatted text (setting data types \\
still occurs).
\end{tabular} \\
\hline rtf (Honor Rich Text) & \begin{tabular}{l} 
Translate HTML formatting to rich text formatting on \\
the data brought into the worksheet.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST HtmIFmt) is located in §A.2. end note]

\subsection*{18.18.42 ST_IconSetType (Icon Set Type)}

Icon set type for conditional formatting. The threshold values for triggering the different icons within a set are configurable, and the icon order is reversible. See element iconSet for more information.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline 3Arrows (3 Arrows) & 3 arrows icon set. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & 人 \(\checkmark \sqrt{ }\) \\
\hline 3ArrowsGray (3 Arrows (Gray)) & 3 gray arrows icon set.
\[
\hat{v} \Rightarrow \sqrt{6}
\] \\
\hline 3Flags (3 Flags) & \begin{tabular}{l}
3 flags icon set. \\
\(\beta \beta \beta\)
\end{tabular} \\
\hline 3Signs (3 Signs) & 3 signs icon set. \\
\hline 3Symbols (3 Symbols Circled) & 3 symbols icon set.
® \\
\hline 3Symbols2 (3 Symbols) & 3 Symbols icon set. \\
\hline 3TrafficLights1 (3 Traffic Lights) & 3 traffic lights icon set (\#1). \\
\hline 3TrafficLights2 (3 Traffic Lights Black) & 3 traffic lights icon set with thick black border. \\
\hline 4Arrows (4 Arrows) & \begin{tabular}{l}
4 arrows icon set. \\
个 \(\sqrt{ } \pi \sqrt{4}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline 4ArrowsGray（4 Arrows（Gray）） & \begin{tabular}{l}
4 gray arrows icon set． \\
今 \(\sqrt{4} \sqrt{3}\)
\end{tabular} \\
\hline 4Rating（4 Ratings） & \begin{tabular}{l}
4 ratings icon set． \\
onlll onll oill olll
\end{tabular} \\
\hline 4RedToBlack（4 Red To Black） & 4 ＇red to black＇icon set． \\
\hline 4TrafficLights（4 Traffic Lights） & 4 traffic lights icon set． \\
\hline 5Arrows（5 Arrows） & \begin{tabular}{l}
5 arrows icon set． \\
人 \(\gg \sqrt{4}\)
\end{tabular} \\
\hline 5ArrowsGray（5 Arrows（Gray）） & \begin{tabular}{l}
5 gray arrows icon set． \\
个 \(\pi \Rightarrow \sqrt{\pi}\)
\end{tabular} \\
\hline 5Quarters（5 Quarters） & 5 quarters icon set． \\
\hline 5Rating（5 Ratings Icon Set） & 5 rating icon set． \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST IconSetType) is located in §A.2. end note]

\subsection*{18.18.43 ST_ItemType (PivotItem Type)}

This simple type defines the pivot type for a pivotItem.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline avg (Average) & \begin{tabular}{l} 
Indicates the pivot item represents an "average" \\
aggregate function.
\end{tabular} \\
\hline blank (Blank Pivot Item) & Indicates the pivot item represents a blank line. \\
\hline count (Count) & \begin{tabular}{l} 
Indicates the pivot item represents custom the "count" \\
aggregate."
\end{tabular} \\
\hline countA (CountA) & \begin{tabular}{l} 
Indicates the pivot item represents the "count \\
numbers" aggregate function.
\end{tabular} \\
\hline data (Data) & Indicate the pivot item represents data. \\
\hline default (Default) & \begin{tabular}{l} 
Indicates the pivot item represents the default type for \\
this PivotTable. The default pivot item type is the \\
"total" aggregate function.
\end{tabular} \\
\hline grand (Grand Total Item) & \begin{tabular}{l} 
Indicates the pivot items represents the grand total \\
line.
\end{tabular} \\
\hline max (Max) & \begin{tabular}{l} 
Indicates the pivot item represents the "maximum" \\
aggregate function.
\end{tabular} \\
\hline min (Min) & \begin{tabular}{l} 
Indicates the pivot item represents the "minimum" \\
aggregate function.
\end{tabular} \\
\hline product (Product) & \begin{tabular}{l} 
Indicates the pivot item represents the "product" \\
function.
\end{tabular} \\
\hline stdDev (stdDev) & \begin{tabular}{l} 
Indicates the pivot item represents the "standard \\
deviation" aggregate function.
\end{tabular} \\
\hline stdDevP (StdDevP) & \begin{tabular}{l} 
Indicates the pivot item represents the "standard \\
deviation population" aggregate function.
\end{tabular} \\
\hline sum (Sum) & \begin{tabular}{l} 
Indicates the pivot item represents the "sum" \\
aggregate value.
\end{tabular} \\
\hline var (Var) & \begin{tabular}{l} 
Indicates the pivot item represents the "variance" \\
aggregate value.
\end{tabular} \\
\hline varP (VarP) & \begin{tabular}{l} 
Indicates the pivot item represents the "variance \\
population" aggregate value.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST ItemType) is located in §A.2. end note]

\subsection*{18.18.44 ST_MdxFunctionType (MDX Function Type)}

This simple type is an enumeration representing different MDX function types.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline c (Cube Set Count) & CUBESETCOUNT \\
\hline k (Cube KPI Member) & CUBEKPIMEMBER \\
\hline m (Cube Member) & CUBEMEMBER \\
\hline p (Cube Member Property) & CUBEMEMBERPROPERTY \\
\hline r (Cube Ranked Member) & CUBERANKEDMEMBER \\
\hline s (Cube Set) & CUBESET \\
\hline v (Cube Value) & CUBEVALUE \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST MdxFunctionType) is located in §A.2. end note]

\subsection*{18.18.45 ST_MdxKPIProperty (MDX KPI Property)}

An enumeration representing the different types of KPI properties.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline g (Goal) & Goal. \\
\hline m (Current Time Member) & Current time member. \\
\hline s (Status) & Status. \\
\hline t (Trend) & Trend. \\
\hline v (Value) & Value. \\
\hline w (Weight) & Weight. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST MdxKPIProperty) is located in §A.2. end note]

\subsection*{18.18.46 ST_MdxSetOrder (MDX Set Order)}

This simple type represents an enumeration specifying an MDX set order.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline a (Ascending) & Sort ascending. \\
\hline aa (Alpha Ascending Sort Order) & \begin{tabular}{l} 
Sorted alphabetically in ascending order by the \\
caption.
\end{tabular} \\
\hline ad (Alpha Descending Sort Order) & Sort in descending order alphabetically by the caption. \\
\hline d (Descending) & Sort descending. \\
\hline na (Natural Ascending) & \begin{tabular}{l} 
Sorted in ascending order by the natural order of the \\
data - usually by the key. For instance if there is a list \\
of accounts in a general ledger, this might be in order \\
of account number.
\end{tabular} \\
\hline nd (Natural Descending) & \begin{tabular}{l} 
Sorted in descending order by the natural order of the \\
data - usually by the key. For instance if there is a list \\
of accounts in a general ledger, this might be in order \\
of account number.
\end{tabular} \\
\hline u (Unsorted) & Unsorted. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST MdxSetOrder) is located in §A.2. end note]

\subsection*{18.18.47 ST_NumFmtId (Number Format Id)}

This simple type defines the identifier to a style sheet number format entry in CT_NumFmts. Number formats are written to the styles part. See §18.8.31 for more information on number formats.

This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST NumFmtld) is located in §A.2. end note]

\subsection*{18.18.48 ST_Objects (Object Display Types)}

This simple type defines how the application displays objects in this workbook. Objects might include charts, images, and other object data that the application supports.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline all (All) & Indicates that all objects be shown in the workbook. \\
\hline none (None) & Indicates that all objects be hidden in the workbook. \\
\hline placeholders (Show Placeholders) & \begin{tabular}{l} 
Indicates that the application show placeholders for \\
objects in the workbook.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST Objects) is located in §A.2. end note]

\subsection*{18.18.49 ST_OleUpdate (OLE Update Types)}

Indicates whether the linked object updates the cached data for the linked object automatically or only when the container calls IOleObject::Update or IOleLink::Update methods.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline OLEUPDATE_ALWAYS (Always Update OLE) & \begin{tabular}{l} 
Update the link object whenever possible, this option \\
corresponds to the 'automatic update' option in the \\
Links dialog box.
\end{tabular} \\
\hline OLEUPDATE_ONCALL (Update OLE On Call) & \begin{tabular}{l} 
Update the link object only when IOleObject::Update \\
or IOleLink::Update is called, this option coresponds to \\
the Manual update option in the Links dialog box.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST OleUpdate) is located in §A.2. end note]

\subsection*{18.18.50 ST_Orientation (Orientation)}

Print orientation for this sheet.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline default (Default) & Orientation not specified, use the default. \\
\hline landscape (Landscape) & Landscape orientation. \\
\hline portrait (Portrait) & Portrait orientation. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST Orientation) is located in §A.2. end note]

\subsection*{18.18.51 ST_PageOrder (Page Order)}

Specifies printed page order.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline downThenOver (Down Then Over) & Order pages vertically first, then move horizontally. \\
\hline overThenDown (Over Then Down) & Order pages horizontally first, then move vertically \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PageOrder) is located in §A.2. end note]

\subsection*{18.18.52 ST_Pane (Pane Types)}

Defines the names of the four possible panes into which the view of a workbook in the application can be split.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline bottomLeft (Bottom Left Pane) & \begin{tabular}{l} 
Bottom left pane, when both vertical and horizontal \\
splits are applied. \\
This value is also used when only a horizontal split has \\
been applied, dividing the pane into upper and lower \\
regions. In that case, this value specifies the bottom \\
pane.
\end{tabular} \\
\hline bottomRight (Bottom Right Pane) & \begin{tabular}{l} 
Bottom right pane, when both vertical and horizontal \\
splits are applied.
\end{tabular} \\
\hline topLeft (Top Left Pane) & \begin{tabular}{l} 
Top left pane, when both vertical and horizontal splits \\
are applied.
\end{tabular} \\
\begin{tabular}{l} 
This value is also used when only a horizontal split has \\
been applied, dividing the pane into upper and lower \\
regions. In that case, this value specifies the top pane. \\
This value is also used when only a vertical split has \\
been applied, dividing the pane into right and left \\
regions. In that case, this value specifies the left pane
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline topRight (Top Right Pane) & \begin{tabular}{l} 
Top right pane, when both vertical and horizontal \\
splits are applied.
\end{tabular} \\
& \begin{tabular}{l} 
This value is also used when only a vertical split has \\
been applied, dividing the pane into right and left \\
regions. In that case, this value specifies the right \\
pane.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST Pane) is located in §A.2. end note]

\subsection*{18.18.53 ST_PaneState (Pane State)}

State of the sheet's pane.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline frozen (Frozen) & \begin{tabular}{l} 
Panes are frozen, but were not split being frozen. In \\
this state, when the panes are unfrozen again, a single \\
pane results, with no split.
\end{tabular} \\
In this state, the split bars are not adjustable.
\end{tabular}, \begin{tabular}{l} 
Panes are frozen and were split before being frozen. In \\
this state, when the panes are unfrozen again, the split \\
remains, but is adjustable.
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST PaneState) is located in §A.2. end note]

\subsection*{18.18.54 ST_ParameterType (Parameter Type)}

Parameter Type.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline cell (Parameter From Cell) & Get the parameter value from a cell on each refresh. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline prompt (Prompt on Refresh) & \begin{tabular}{l} 
Prompt the user on each refresh for a parameter \\
value.
\end{tabular} \\
\hline value (Value) & \begin{tabular}{l} 
Use a constant value on each refresh for the \\
parameter value.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST ParameterType) is located in §A.2. end note]

\subsection*{18.18.55 ST_PatternType (Pattern Type)}

Indicates the style of fill pattern being used for a cell format.
The examples below use yellow background and black foreground colors.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline darkDown (Dark Down) & The fill style is 'dark down'. [Example: \\
\hline darkGray (Dary Gray) & \begin{tabular}{l}
The fill style is 'dark gray'. \\
[Example: \\
end example]
\end{tabular} \\
\hline darkGrid (Dark Grid) & The fill style is 'dark grid'. [Example: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 end example]
\end{tabular} \\
\hline darkHorizontal (Dark Horizontal) & \begin{tabular}{l}
The fill style is dark horizontal. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline darkTrellis (Dark Trellis) & \begin{tabular}{l}
The fill style is 'dark trellis'. [Example: \\
end example]
\end{tabular} \\
\hline darkUp (Dark Up) & \begin{tabular}{l}
The fill style is 'dark up'. \\
[Example:
\(\qquad\) \\

\(\square\) \(+\) end example]
\end{tabular} \\
\hline darkVertical (Dark Vertical) & The fill style is 'dark vertical'. [Example: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & end example] \\
\hline gray0625 (Gray 0.0625) & \begin{tabular}{l}
The fill style is grayscale of \(0.0625(1 / 16)\) value. [Example: \\
end example]
\end{tabular} \\
\hline gray125 (Gray 0.125) & \begin{tabular}{l}
The fill style is grayscale of \(0.125(1 / 8)\) value. [Example: \\
end example]
\end{tabular} \\
\hline lightDown (Light Down) & \begin{tabular}{l}
The fill style is 'light down'. \\
[Example: \\
end example]
\end{tabular} \\
\hline lightGray (Light Gray) & The fill style is light gray. [Example: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
Ba: \\
end example]
\end{tabular} \\
\hline lightGrid (Light Grid) & \begin{tabular}{l}
The fill style is 'light grid'. [Example: \\
end example]
\end{tabular} \\
\hline lightHorizontal (Light Horizontal) & \begin{tabular}{l}
The fill style is light horizontal. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline lightTrellis (Light Trellis) & \begin{tabular}{l}
The fill style is 'light trellis'. \\
[Example: \\
end example]
\end{tabular} \\
\hline lightUp (Light Up) & The fill style is light up. [Example: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline &  end example] \\
\hline lightVertical (Light Vertical) & The fill style is light vertical. \\
\hline mediumGray (Medium Gray) & The fill style is medium gray. \\
\hline none (None) & \begin{tabular}{l}
The fill style is none (no fill). When foreground and/or background colors are specified, a pattern of 'none' overrides and means the cell has no fill. \\
[Example:
\(\square\) \\
end example]
\end{tabular} \\
\hline solid (Solid) & \begin{tabular}{l}
The fill style is solid. When solid is specified, the foreground color ( fgColor ) is the only color rendered, even when a background color (bgColor) is also specified. \\
[Example:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PatternType) is located in §A.2. end note]

\subsection*{18.18.56 ST_PhoneticAlignment (Phonetic Alignment Types)}

Phonetic alignment settings. These specify how to align the phonetic text, which represent the sounds, above the base text or base word.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline center (Center Alignment) & \begin{tabular}{l} 
Center the phonetic characters over the base word, \\
per word.
\end{tabular} \\
\hline distributed (Distributed) & \begin{tabular}{l} 
Each phonetic character is distributed above each base \\
word character, per word.
\end{tabular} \\
\hline left (Left Alignment) & \begin{tabular}{l} 
Each phonetic character is left justified with respect to \\
the base text., per word.
\end{tabular} \\
\hline noControl (No Control) & \begin{tabular}{l} 
Each phonetic character is left justified without \\
respect to the base text (so it is not per word).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PhoneticAlignment) is located in §A.2. end note]

\subsection*{18.18.57 ST_PhoneticType (Phonetic Type)}

Represents the different East Asian character sets that shall be used for displaying phonetic hints.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline fullwidthKatakana (Full-Width Katakana) & Full-width Katakana is used \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline halfwidthKatakana (Half-Width Katakana) & \begin{tabular}{l} 
Half-width Katakana is used, this is the same Katakana \\
character set, just half as wide so it takes up less \\
space.
\end{tabular} \\
\hline Hiragana (Hiragana) & Hiragana is used \\
\hline noConversion (No Conversion) & \begin{tabular}{l} 
Any characters are allowed. In this case the \\
spreadsheet application shall leave the text as \\
entered.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PhoneticType) is located in §A.2. end note]

\subsection*{18.18.58 ST_PivotAreaType (Rule Type)}

Indicates the type of rule being used to describe an area or aspect of the PivotTable.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline all (All) & Refers to the whole PivotTable. \\
\hline button (Field Button) & Refers to a field button. \\
\hline data (Data) & Refers to something in the data area. \\
\hline none (None) & Refers to no Pivot area. \\
\hline normal (Normal) & Refers to a header or item. \\
\hline origin (Origin) & \begin{tabular}{l} 
Refers to the blank cells at the top-left of the \\
PivotTable (top-left to LTR sheets, top-right for RTL \\
sheets).
\end{tabular} \\
\hline topEnd (Top End) & \begin{tabular}{l} 
Refers to the blank cells at the top of the PivotTable, \\
on its trailing edge (top-right for LTR sheets, top-left \\
for RTL sheets).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PivotAreaType) is located in §A.2. end note]

\subsection*{18.18.59 ST_PivotFilterType (Pivot Filter Types)}

This simple type defines filters that can be applied to PivotTables.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline captionBeginsWith (Caption Begins With) & Indicates the "begins with" filter for field captions. \\
\hline captionBetween (Caption Is Between) & Indicates the "is between" filter for field captions. \\
\hline captionContains (Caption Contains) & Indicates the "contains" filter for field captions. \\
\hline captionEndsWith (Caption Ends With) & Indicates the "ends with" filter for field captions. \\
\hline captionEqual (Caption Equals) & Indicates the "equal" filter for field captions. \\
\hline captionGreaterThan (Caption Is Greater Than) & Indicates the "is greater than" filter for field captions. \\
\hline captionGreaterThanOrEqual (Caption Is Greater Than Or Equal To) & Indicates the "is greater than or equal to" filter for field captions. \\
\hline captionLessThan (Caption Is Less Than) & Indicates the "is less than" filter for field captions. \\
\hline captionLessThanOrEqual (Caption Is Less Than Or Equal To) & Indicates the "is less than or equal to" filter for field captions. \\
\hline captionNotBeginsWith (Caption Does Not Begin With) & Indicates the "does not begin with" filter for field captions. \\
\hline captionNotBetween (Caption Is Not Between) & Indicates the "is not between" filter for field captions. \\
\hline captionNotContains (Caption Does Not Contain) & Indicates the "does not contain" filter for field captions. \\
\hline captionNotEndsWith (Caption Does Not End With) & Indicates the "does not end with" filter for field captions. \\
\hline captionNotEqual (Caption Not Equal) & Indicates the "not equal" filter for field captions. \\
\hline count (Count) & Indicates the "count" filter. \\
\hline dateBetween (Date Between) & Indicates the "between" filter for date values. \\
\hline dateEqual (Date Equals) & Indicates the "equals" filter for date values. \\
\hline dateNewerThan (Date Newer Than) & Indicates the "newer than" filter for date values. \\
\hline dateNewerThanOrEqual (Date Newer Than or Equal To) & Indicates the "newer than or equal to" filter for date values. \\
\hline dateNotBetween (Date Not Between) & Indicates the "not between" filter for date values. \\
\hline dateNotEqual (Date Does Not Equal) & Indicates the "does not equal" filter for date values. \\
\hline dateOlderThan (Date Older Than) & Indicates the "older than" filter for date values. \\
\hline dateOlderThanOrEqual (Date Older Than Or Equal) & Indicates the "older than or equal to" filter for date values. \\
\hline lastMonth (Last Month) & Indicates the "last month" filter for date values. \\
\hline lastQuarter (Last Quarter) & Indicates the "last quarter" filter for date values. \\
\hline lastWeek (Last Week) & Indicates the "last week" filter for date values. \\
\hline lastYear (Last Year) & Indicates the "last year" filter for date values. \\
\hline M1 (January) & Indicates the "January" filter for date values. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline M10 (Dates in October) & Indicates the "October" filter for date values. \\
\hline M11 (Dates in November) & Indicates the "November" filter for date values. \\
\hline M12 (Dates in December) & Indicates the "December" filter for date values. \\
\hline M2 (Dates in February) & Indicates the "February" filter for date values. \\
\hline M3 (Dates in March) & Indicates the "March" filter for date values. \\
\hline M4 (Dates in April) & Indicates the "April" filter for date values. \\
\hline M5 (Dates in May) & Indicates the "May" filter for date values. \\
\hline M6 (Dates in June) & Indicates the "June" filter for date values. \\
\hline M7 (Dates in July) & Indicates the "July" filter for date values. \\
\hline M8 (Dates in August) & Indicates the "August" filter for date values. \\
\hline M9 (Dates in September) & Indicates the "September" filter for date values. \\
\hline nextMonth (Next Month) & Indicates the "next month" filter for date values. \\
\hline nextQuarter (Next Quarter) & Indicates the "next quarter" for date values. \\
\hline nextWeek (Next Week) & Indicates the "next week" for date values. \\
\hline nextYear (Next Year) & Indicates the "next year" filter for date values. \\
\hline percent (Percent) & Indicates the "percent" filter for numeric values. \\
\hline Q1 (First Quarter) & Indicates the "first quarter" filter for date values. \\
\hline Q2 (Second Quarter) & Indicates the "second quarter" filter for date values. \\
\hline Q3 (Third Quarter) & Indicates the "third quarter" filter for date values. \\
\hline Q4 (Fourth Quarter) & Indicates the "fourth quarter" filter for date values. \\
\hline sum (Sum) & Indicates the "sum" filter for numeric values. \\
\hline thisMonth (This Month) & Indicates the "this month" filter for date values. \\
\hline thisQuarter (This Quarter) & Indicates the "this quarter" filter for date values. \\
\hline thisWeek (This Week) & Indicates the "this week" filter for date values. \\
\hline thisYear (This Year) & Indicate the "this year" filter for date values. \\
\hline today (Today) & Indicates the "today" filter for date values. \\
\hline tomorrow (Tomorrow) & Indicates the "tomorrow" filter for date values. \\
\hline unknown (Unknown) & \begin{tabular}{l} 
Indicates the PivotTable filter is unknown to the \\
application.
\end{tabular} \\
\hline valueGreaterThan (Value Greater Than) & \begin{tabular}{l} 
Indicates the "Value between" filter for than" fext and \\
numeric values.
\end{tabular} \\
\hline valueBetween (Value Between) & \begin{tabular}{l} 
Indicatest and \\
values. \\
\hline
\end{tabular} \\
\hline valueEqual (Value Equal) & nalue equal" filter for text and numeric \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
valueGreaterThanOrEqual (Value Greater Than Or \\
Equal To)
\end{tabular} & \begin{tabular}{l} 
Indicates the "value greater than or equal to" filter for \\
text and numeric values.
\end{tabular} \\
\hline valueLessThan (Value Less Than) & \begin{tabular}{l} 
Indicates the "value less than" filter for text and \\
numeric values.
\end{tabular} \\
\hline valueLessThanOrEqual (Value Less Than Or Equal To) & \begin{tabular}{l} 
Indicates the "value less than or equal to" filter for text \\
and numeric values
\end{tabular} \\
\hline valueNotBetween (Value Not Between) & \begin{tabular}{l} 
Indicates the "value not between" filter for text and \\
numeric values.
\end{tabular} \\
\hline valueNotEqual (Value Not Equal) & \begin{tabular}{l} 
Indicates the "value not equal" filter for text and \\
numeric values.
\end{tabular} \\
\hline yearToDate (Year-To-Date) & Indicates the "year-to-date" filter for date values. \\
\hline yesterday (Yesterday) & Indicates the "yesterday" filter for date values. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PivotFilterType) is located in §A.2. end note]

\subsection*{18.18.60 ST_PrintError (Print Errors)}

This enumeration specifies how to display cells with errors when printing the worksheet.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline blank (Show Cell Errors As Blank) & Display cell errors as blank. \\
\hline dash (Dash Cell Errors) & Display cell errors as dashes. \\
\hline displayed (Display Cell Errors) & Display cell errors as displayed on screen. \\
\hline NA (NA) & Display cell errors as \#N/A. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST PrintError) is located in §A.2. end note]

\subsection*{18.18.61 ST_Qualifier (Qualifier)}

Qualifier to use to denote string data types in when text is imported from an external file.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline doubleQuote (Double Quote) & Quotation mark -- double quote ("). \\
\hline none (No Text Qualifier) & No text string qualifier used. \\
\hline singleQuote (Single Quote) & Apostrophe mark -- single quote ('). \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST Qualifier) is located in §A.2. end note]

\subsection*{18.18.62 ST_Ref (Cell References)}

This simple type defines a reference to a range of cells within a sheet in the workbook. A reference identifies a cell or a range of cells on a worksheet and tells the application where to look for the values or data you want to use in a formula. With references, you can use data contained in different parts of a worksheet in one formula or use the value from one cell in several formulas. You can also refer to cells on other sheets in the same workbook, and to other workbooks. References to cells in other workbooks are called links.

SpreadsheetML defines two reference styles defined in the ST_RefMode simple type.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST Ref) is located in §A.2. end note]

\subsection*{18.18.63 ST_RefA (Single Cell Reference)}

This simple type specifies a single cell reference that might be absolute.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST RefA) is located in §A.2. end note]

\subsection*{18.18.64 ST_RefMode (Reference Mode)}

This simple type defines the supported reference styles or modes for a workbook in SpreadsheetML.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline A1 (A1 Mode) & \begin{tabular}{l} 
Indicates that the workbook uses A1 reference style. \\
This is the default for SpreadsheetML. A1 reference \\
style refers to columns with letters and refers to rows \\
with numbers. For example, A1 refers to the cell at the \\
intersection of column A and row 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline R1C1 (R1C1 Reference Mode) & \begin{tabular}{l} 
Indicates that the workbook uses the R1C1 reference \\
style. R1C1 reference style refers to both the rows and \\
the columns on the worksheet with numbers. The \\
location of a cell is indicated with an "R" followed by a \\
row number and a "C" followed by a column number. \\
For example, R1C1 refers to the cell at the intersection \\
of row R1 and column C1.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST RefMode) is located in §A.2. end note]

\subsection*{18.18.65 ST_RevisionAction (Revision Action Types)}

Identifies what kind of action the user performed. Applies to Comment and Custom View revision record.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline add (Add) & Add action. \\
\hline delete (Delete) & Delete action. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST RevisionAction) is located in §A.2. end note]

\subsection*{18.18.66 ST_rwColActionType (Row Column Action Type)}

Identifies what kind of an action was applied to a row or column.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline deleteCol (Delete Column) & Column delete revision. \\
\hline deleteRow (Delete Row) & Row delete revision. \\
\hline insertCol (Column Insert) & Column insert revision. \\
\hline insertRow (Insert Row) & Row insert revision. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST rwColActionType) is located in §A.2. end note]

\subsection*{18.18.67 ST_Scope (Conditional Formatting Scope)}

This simple type defines the scope of conditional formatting applied in the PivotTable.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline data (Data Fields) & \begin{tabular}{l} 
Indicates that conditional formatting is applied to the \\
selected data fields.
\end{tabular} \\
\hline field (Field Intersections) & \begin{tabular}{l} 
Indicates that conditional formatting is applied to the \\
selected PivotTable field intersections.
\end{tabular} \\
\hline selection (Selection) & \begin{tabular}{l} 
Indicates that conditional formatting is applied to the \\
selected cells.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST Scope) is located in §A.2. end note]

\subsection*{18.18.68 ST_SheetState (Sheet Visibility Types)}

This simple type defines the possible states for sheet visibility.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline hidden (Hidden) & \begin{tabular}{l} 
Indicates the workbook window is hidden, but can be \\
shown by the user via the user interface.
\end{tabular} \\
\hline veryHidden (Very Hidden) & \begin{tabular}{l} 
Indicates the sheet is hidden and cannot be shown in \\
the user interface (UI). This state is only available \\
programmatically.
\end{tabular} \\
\hline visible (Visible) & Indicates the sheet is visible. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SheetState) is located in §A.2. end note]

\subsection*{18.18.69 ST_SheetViewType (Sheet View Type)}

Defines the view setting of the sheet.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline normal (Normal View) & Normal view \\
\hline pageBreakPreview (Page Break Preview) & Page break preview \\
\hline pageLayout (Page Layout View) & Page Layout View \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SheetViewType) is located in §A.2. end note]

\subsection*{18.18.70 ST_ShowDataAs (Show Data As)}

This simple type defines the data formats for a field in the PivotTable.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline difference (Difference) & \begin{tabular}{l} 
Indicates the field is shown as the "difference from" a \\
value.
\end{tabular} \\
\hline index (Index) & Indicates the field is shown as the "index. \\
\hline normal (Normal Data Type) & \begin{tabular}{l} 
Indicates that the field is shown as its normal data \\
type.
\end{tabular} \\
\hline percent (Percentage Of) & Indicates the field is show as the "percentage of \\
\hline percentDiff (Percentage Difference) & \begin{tabular}{l} 
Indicates the field is shown as the "percentage \\
difference from" a value.
\end{tabular} \\
\hline percentOfCol (Percent of Column) & \begin{tabular}{l} 
Indicates the field is shown as the percentage of \\
column.
\end{tabular} \\
\hline percentOfRow (Percentage of Row) & Indicates the field is shown as the percentage of row \\
\hline percentOfTotal (Percentage of Total) & Indicates the field is shown as percentage of total. \\
\hline runTotal (Running Total) & \begin{tabular}{l} 
Indicates the field is shown as running total in the \\
table.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST ShowDataAs) is located in §A.2. end note]

\subsection*{18.18.71 ST_SmartTagShow (Smart Tag Display Types)}

This simple type defines options for displaying smart tags in the user interface.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline all (All) & \begin{tabular}{l} 
Indicates that smart tags are enabled and shown in the \\
user interface.
\end{tabular} \\
\hline noIndicator (No Smart Tag Indicator) & \begin{tabular}{l} 
Indicates that the smart tags are enabled but the \\
indicator not be shown in the user interface.
\end{tabular} \\
\hline none (None) & \begin{tabular}{l} 
Indicates that smart tags are disabled and not \\
displayed in the user interface.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SmartTagShow) is located in §A.2. end note]

\subsection*{18.18.72 ST_SortBy (Sort By)}

Specifies what to sort by. In many cases a range of cells are sorted by their values. However, cells can also be sorted by their background color, font color, and type of icon in the cell.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline cellColor (Sort by Cell Color) & Sort by cell color \\
\hline fontColor (Sort by Font Color) & Sort by font color \\
\hline icon (Sort by Icon) & Sort by icon \\
\hline value (Value) & Sort by value \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST SortBy) is located in §A.2. end note]

\subsection*{18.18.73 ST_SortMethod (Sort Method)}

Sort method. Chinese Simplified, Chinese Traditional, and Japanese support alternate sort methods (multiple sort options are available). All other languages support only 1 sort option. In that case, the value pinYin is used.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline none (None) & Not specified, use default sort method. \\
\hline pinYin (PinYin Sort) & \begin{tabular}{l} 
Default sort method. This is the only sort option for \\
most languages.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
For Chinese Simplified, Chinese Traditional, and \\
Japanese, pinYin means sort by phonetic value. \\
\(\bullet\)
\end{tabular} \\
\hline stroke (Sort by Stroke) & \begin{tabular}{l} 
Sort by stroke count of the characters. Only applies to \\
Chinese Simplified, Chinese Traditional, and Japanese.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SortMethod) is located in §A.2. end note]

\subsection*{18.18.74 ST_SortType (Set Sort Order)}

This simple type defines the possible sort order for the PivotTable.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline ascending (Ascending) & \begin{tabular}{l} 
Indicates that the PivotTable data is sorted in \\
ascending order.
\end{tabular} \\
\hline ascendingAlpha (Ascending Alpha) & \begin{tabular}{l} 
Indicates that the PivotTable data is sorted in \\
alphabetic order with ascending values.
\end{tabular} \\
\hline ascendingNatural (Ascending Natural) & \begin{tabular}{l} 
Indicates that the PivotTable data is sorted in natural \\
order with ascending.
\end{tabular} \\
\hline descending (Descending) & \begin{tabular}{l} 
Indicates that the PivotTable data is sorted in \\
descending.
\end{tabular} \\
\hline descendingAlpha (Alphabetic Order Descending) & \begin{tabular}{l} 
Indicates that the PivotTable data is sorted in \\
alphabetic order with descending values.
\end{tabular} \\
\hline descendingNatural (Natural Order Descending) & \begin{tabular}{l} 
Indicates that the PivotTable data is sorted in natural \\
order with descending values.
\end{tabular} \\
\hline none (None) & Indicates that the PivotTable data is not sorted. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST SortType) is located in §A.2. end note]

\subsection*{18.18.75 ST_SourceType (PivotCache Type)}

This simple type defines the cache types for PivotTables.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline consolidation (Consolidation Ranges) & \begin{tabular}{l} 
Indicates that the cache contains data that \\
consolidates ranges.
\end{tabular} \\
\hline external (External) & \begin{tabular}{l} 
Indicates that the cache contains data from an \\
external data source.
\end{tabular} \\
\hline scenario (Scenario Summary Report) & \begin{tabular}{l} 
Indicates that the cache contains a scenario summary \\
report
\end{tabular} \\
\hline worksheet (Worksheet) & Indicates that the cache contains worksheet data. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST SourceType) is located in §A.2. end note]

\subsection*{18.18.76 ST_Sqref (Reference Sequence)}

A sequence of cell references, space delimited.
This simple type allows a list of items of the ST_Ref simple type (§18.18.62).
[Note: The W3C XML Schema definition of this simple type's content model (ST Sqref) is located in §A.2. end note]

\subsection*{18.18.77 ST_TableStyleType (Table Style Type)}

Enumeration of the different structured regions of a Table or PivotTable which can be formatted. Specifies which region is being formatted by this table style element.

Table Regions


\section*{PivotTable Regions}

\section*{Blank Row}

Only applies when "Insert blank row after each item" is ON.


Whole Table


Page Field Labels
\begin{tabular}{|c|c|c|}
\hline Country & [All \({ }^{\text {a }}\) & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & \\
\hline & -2001 & \\
\hline & \multicolumn{2}{|l|}{-3} \\
\hline & Ejuly & July Total \\
\hline Row Labels & - No Discount & \\
\hline ENew South Wales & 75625.4664 & 75625.4664 \\
\hline \(\square\) Coffs Harbour & 699.0982 & 699.0982 \\
\hline - Bikes & 699.0982 & 699.0982 \\
\hline \(\Theta\) Road Bikes & 699.0982 & 699.0982 \\
\hline
\end{tabular}

Page Field Values
\begin{tabular}{|c|c|c|}
\hline Country & [All & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & \\
\hline & \(\oplus 2001\) & \\
\hline & \multicolumn{2}{|l|}{®3} \\
\hline & EJuly & July Total \\
\hline Row Labels & - No Discount & \\
\hline \(\square\) New South Wales & 75625.4664 & 75625.4664 \\
\hline \(\square\) Coffs Harbour & 699.0982 & 699.0982 \\
\hline - Bikes & 699.0982 & 699.0982 \\
\hline GRoad Bikes & 699.0982 & 699.0982 \\
\hline
\end{tabular}

First Column Stripe
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & [All] & & & & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & & & & \\
\hline & \(\oplus 2001\) & & & & \\
\hline & ®3 & & & & \\
\hline & Ejuly & July Total & \(\bullet\) August & August Total & \(\square\) September \\
\hline Row Labels & \(\checkmark\) No Discount & & No Discount & & No Discount \\
\hline ENew South Wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 \\
\hline \(\bullet\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 \\
\hline - Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 \\
\hline -Road Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 \\
\hline Road-150 Red, 48 & & & & & 3578.27 \\
\hline Road-150 Red, 52 & & & 3578.27 & 3578.27 & 3578.27 \\
\hline Road-150 Red, 62 & & & 3578.27 & 3578.27 & \\
\hline
\end{tabular}

\footnotetext{
Second Column Stripe
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & [All \({ }^{\text {a }}\) & & & & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & & & & \\
\hline & \(\bullet 2001\) & & & & \\
\hline & \(\oplus 3\) & & & & \\
\hline & EJuly & July Total & August & August Total & \(\Theta\) September \\
\hline Row Labels & - No Discount & & No Discount & & No Discount \\
\hline \(\bullet\) New South wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 \\
\hline \(\bullet\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 \\
\hline \(\bullet\) Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 \\
\hline \(\Theta\) Road Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 \\
\hline Road-150Red, 48 & & & & & 3578.27 \\
\hline Road-150Red, 52 & & & 3578.27 & 3578.27 & 3578.27 \\
\hline Road-150Red, 62 & & & 3578.27 & 3578.27 & \\
\hline Road-650Red, 44 & 699.0982 & 699.0982 & & & \\
\hline \(\bullet\) Darlinghurst & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 7156.54 \\
\hline - Bikes & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 7156.54 \\
\hline QRoad Bikes & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 7156.54 \\
\hline Road-150 Red, 48 & & & 3578.27 & 3578.27 & \\
\hline Road-150 Red, 56 & 3578.27 & 3578.27 & & & 3578.27 \\
\hline Road-150Red, 62 & & & & & 3578.27 \\
\hline
\end{tabular}

First Row Stripe


\section*{Second Row Stripe}


First Column


Header Row
\begin{tabular}{|c|c|c|c|}
\hline Country & [All] & & \\
\hline Sum of Sales Amount & \[
\begin{aligned}
& \text { Column Labels } \\
& =2001
\end{aligned}
\] & & \\
\hline Row Labels & \begin{tabular}{l}
\(\square\) July \\
- No Discount
\end{tabular} & July Total & \(\boxminus\) August No Discount \\
\hline ENew South Wales & 75625.4664 & 75625.4664 & 119823.881 \\
\hline \(\bullet\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 \\
\hline - Bikes & 699.0982 & 699.0982 & 7156.54 \\
\hline \(\bullet\) Road Bikes & 699.0982 & 699.0982 & 7156.54 \\
\hline Road-150 Red, 48 & & & \\
\hline Road-150 Red, 52 & & & 3578.27 \\
\hline Road-150 Red, 62 & & & 3578.27 \\
\hline Road-650Red, 44 & 699.0982 & 699.0982 & \\
\hline
\end{tabular}

First Header Cell
\begin{tabular}{|c|c|c|c|}
\hline Country & [All] & & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & & \\
\hline & \(\oplus 2001\) & & \\
\hline & \multicolumn{3}{|l|}{\(\bullet 3\)} \\
\hline & EJuly & July Total & August \\
\hline Row Labels & \(\checkmark\) No Discount & & No Discount \\
\hline ENew South Wales & 75625.4664 & 75625.4664 & 119823.881 \\
\hline \(\bullet\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 \\
\hline \(\bullet\) Bikes & 699.0982 & 699.0982 & 7156.54 \\
\hline \(\bullet\) Road Bikes & 699.0982 & 699.0982 & 7156.54 \\
\hline Road-150Red, 48 & & & \\
\hline Road-150Red, 52 & & & 3578.27 \\
\hline Road-150Red, 62 & & & 3578.27 \\
\hline Road-650Red, 44 & 699.0982 & 699.0982 & \\
\hline
\end{tabular}

\section*{Subtotal Column 1}


\section*{Subtotal Column 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Country & [All & & & & & & & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & & & & & & & \multirow{5}{*}{2001 Total} \\
\hline & \(\bullet 2001\) & & & & & & & \\
\hline & \(\oplus 3\) & & & & & & 3 Total & \\
\hline & EJuly & July Total & © August & August Total & \(\Theta\) September & September Total & & \\
\hline Row Labels & - No Discount & & No Discount & & No Discount & & & \\
\hline \(\square\) New South Wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 & 83698.4064 & 279147.7538 & 279147.7538 \\
\hline \(\bullet\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline -Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline \(\Theta\) Road Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline Road-150 Red, 48 & & & & & 3578.27 & 3578.27 & 3578.27 & 3578.27 \\
\hline Road-150 Red, 52 & & & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 7156.54 & 7156.54 \\
\hline Road-150Red, 62 & & & 3578.27 & 3578.27 & & & 3578.27 & 3578.27 \\
\hline Road-650Red, 44 & 699.0982 & 699.0982 & & & & & 699.0982 & 699.0982 \\
\hline
\end{tabular}

ISO/IEC 29500-1:2012(E)

\section*{Subtotal Column 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Country & [All \(\}\) & & & & & & & \\
\hline \multirow[t]{4}{*}{Sum of Sales Amount} & Column Labels & & & & & & & \\
\hline & \(\bigcirc 2001\) & & & & & & & 2001 Total \\
\hline & -3 & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{3 Total}} \\
\hline & \begin{tabular}{l}
-July \\
- No Discount
\end{tabular} & July Total & \begin{tabular}{l}
- August \\
No Discount
\end{tabular} & August Total & \(\Theta\) September No Discount & September Total & & \\
\hline \(\Theta\) New South wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 & 83698.4064 & 279147.7538 & 279147.7538 \\
\hline ©Coffs Harbour & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline \(\square\) Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline \(\bigcirc\) Road Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline Road-150Red, 48 & & & & & 3578.27 & 3578.27 & 3578.27 & 3578.27 \\
\hline Road-150 Red, 52 & & & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 7156.54 & 7156.54 \\
\hline Road-150 Red, 62 & & & 3578.27 & 3578.27 & & & 3578.27 & 3578.27 \\
\hline Road-650 Red, 44 & 699.0982 & 699.0982 & & & & & 699.0982 & 699.0982 \\
\hline
\end{tabular}

\section*{Subtotal Row 1}


\section*{Subtotal Row 2}


\section*{Subtotal Row 3}


Column Subheading 1


\section*{Column Subheading 2}


\section*{Column Subheading 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Country & [All \({ }^{\text {a }}\) & & & & & & & \\
\hline Sum of Sales Amount & Column Labels & & & & & & & \\
\hline & \(\square^{-} 2001\) & & & & & & & 2001 Total \\
\hline & \(\bullet 3\) & & & & & & 3 Total & \\
\hline & \(\square\) July & July Total & \(\square\) August & August Total & \(\square\) September & September Total & & \\
\hline Row Labels & - No Discount & & No Discount & & No Discount & & & \\
\hline ©New South Wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 & 83698.4064 & 279147.7538 & 279147.7538 \\
\hline \(\square\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline \(\Theta\) Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline \(\Theta\) Road Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 \\
\hline
\end{tabular}

Row Subheading 1



Row Subheading 3


Grand Total Column
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Country & [All \(\}\) & & & & & & & & \\
\hline \multirow[t]{5}{*}{Sum of Sales Amount
Row Labels} & \multicolumn{9}{|l|}{Column Labels -} \\
\hline & \(\bigcirc 2001\) & & & & & & & 2001 Total & Grand Total \\
\hline & \(\Theta 3\) & & & & & & 3 Total & & \\
\hline & ©July & July Total & \(\bullet\) August & August Total & September & mber Total & & & \\
\hline & \(\checkmark\) No Discount & & No Discount & & Discount & & & & \\
\hline \(\Theta\) New South Wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 & 83698.4064 & 279147.7538 & 279147.7538 & 279147.7538 \\
\hline \(\bigcirc\) Coffs Harbour & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 & 15012.1782 \\
\hline \(\bullet\) Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 & 15012.1782 \\
\hline \(\boxminus\) Road Bikes & 699.0982 & 699.0982 & 7156.54 & 7156.54 & 7156.54 & 7156.54 & 15012.1782 & 15012.1782 & 15012.1782 \\
\hline Road-150 Red, 48 & & & & & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 3578.27 \\
\hline Road-150 Red, 52 & & & 3578.27 & 3578.27 & 3578.27 & 3578.27 & 7156.54 & 7156.54 & 7156.54 \\
\hline Road-150 Red, 62 & & & 3578.27 & 3578.27 & & & 3578.27 & 3578.27 & 3578.27 \\
\hline Road-650 Red, 44 & 699.0982 & 699.0982 & & & & & 699.0982 & 699.0982 & 699.0982 \\
\hline
\end{tabular}

\section*{Grand Total Row}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Country & [All \(\}\) & & & & & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sum of Sales Amount Column Labels \(\square\)}} \\
\hline & & & & & & & & & \\
\hline & \(\bullet 2001\) & & & & & & & 2001 Total & Grand Total \\
\hline & \(\bullet 3\) & & & & & & 3 Total & & \\
\hline & Ejuly & July Total & \(\bullet\) August & August Total & \(\bullet\) September & September Total & & & \\
\hline Row Labels & No Discount & & No Discount & & No Discount & & & & \\
\hline \(\pm\) New South Wales & 75625.4664 & 75625.4664 & 119823.881 & 119823.881 & 83698.4064 & 83698.4064 & 279147.7538 & 279147.7538 & 279147.7538 \\
\hline (Queensland & 53228.4682 & 53228.4682 & 35376.14 & 35376.14 & 29821.0764 & 29821.0764 & 118425.6846 & 118425.6846 & 118425.6846 \\
\hline \(\pm\) South Australia & 7156.54 & 7156.54 & 11255.6282 & 11255.6282 & 6978.26 & 6978.26 & 25390.4282 & 25390.4282 & 25390.4282 \\
\hline \(\pm\) Tasmania & 6978.26 & 6978.26 & 10531.53 & 10531.53 & 3578.27 & 3578.27 & 21088.06 & 21088.06 & 21088.06 \\
\hline \(\pm\) Victoria & 66664.17 & 66664.17 & 45551.11 & 45551.11 & 49917.5 & 49917.5 & 162132.78 & 162132.78 & 162132.78 \\
\hline Grand Total & 209652.9046 & 209652.9046 & 222538.2892 & 222538.2892 & 173993.5128 & 173993.5128 & 606184.7066 & 606184.7066 & 606184.7066 \\
\hline
\end{tabular}

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline blankRow (Blank Row Style) & \begin{tabular}{l} 
Table style element that applies to PivotTable's blank \\
rows.
\end{tabular} \\
\hline firstColumn (First Column Style) & Table style element that applies to table's first column. \\
\hline firstColumnStripe (First Column Stripe Style) & \begin{tabular}{l} 
Table style element that applies to table's first column \\
stripes.
\end{tabular} \\
\hline \begin{tabular}{l} 
firstColumnSubheading (First Column Subheading \\
Style)
\end{tabular} & \begin{tabular}{l} 
Table style element that applies to PivotTable's first \\
column subheading.
\end{tabular} \\
\hline firstHeaderCell (First Header Row Style) & \begin{tabular}{l} 
Table style element that applies to table's first header \\
row cell.
\end{tabular} \\
\hline firstRowStripe (First Row Stripe Style) & \begin{tabular}{l} 
Table style element that applies to table's first row \\
stripes.
\end{tabular} \\
\hline firstRowSubheading (First Row Subheading Style) & \begin{tabular}{l} 
Table style element that applies to PivotTable's first \\
row subheading.
\end{tabular} \\
\hline firstSubtotalColumn (First Subtotal Column Style) & \begin{tabular}{l} 
Table style element that applies to PivotTable's first \\
subtotal column.
\end{tabular} \\
\hline firstSubtotalRow (First Subtotal Row Style) & \begin{tabular}{l} 
Table style element that applies to pivot table's first \\
subtotal row.
\end{tabular} \\
\hline firstTotalCell (First Total Row Style) & \begin{tabular}{l} 
Table style element that applies to table's first total \\
row cell.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline headerRow (Header Row Style) & Table style element that applies to table's header row. \\
\hline lastColumn (Last Column Style) & Table style element that applies to table's last column. \\
\hline lastHeaderCell (Last Header Style) & \begin{tabular}{l} 
Table style element that applies to table's last header \\
row cell.
\end{tabular} \\
\hline lastTotalCell (Last Total Row Style) & \begin{tabular}{l} 
Table style element that applies to table's last total \\
row cell.
\end{tabular} \\
\hline pageFieldLabels (Page Field Labels Style) & \begin{tabular}{l} 
Table style element that applies to pivot table's page \\
field labels.
\end{tabular} \\
\hline pageFieldValues (Page Field Values Style) & \begin{tabular}{l} 
Table style element that applies to pivot table's page \\
field values.
\end{tabular} \\
\hline secondColumnStripe (Second Column Stipe Style) & \begin{tabular}{l} 
Table style element that applies to table's second \\
column stripes.
\end{tabular} \\
\hline \begin{tabular}{l} 
secondColumnSubheading (Second Column \\
Subheading Style)
\end{tabular} & \begin{tabular}{l} 
Table style element that applies to pivot table's second \\
column subheading.
\end{tabular} \\
\hline secondRowStripe (Second Row Stripe Style) & \begin{tabular}{l} 
Table style element that applies to table's second row \\
stripes.
\end{tabular} \\
\hline \begin{tabular}{l} 
secondRowSubheading (Second Row Subheading \\
Style)
\end{tabular} & \begin{tabular}{l} 
Table style element that applies to pivot table's second \\
row subheading.
\end{tabular} \\
\hline \begin{tabular}{l} 
secondSubtotalColumn (Second Subtotal Column \\
Style)
\end{tabular} & \begin{tabular}{l} 
Table style element that applies to PivotTable's second \\
subtotal column.
\end{tabular} \\
\hline secondSubtotalRow (Second Subtotal Row Style) & \begin{tabular}{l} 
Table style element that applies to PivotTable's second \\
subtotal row.
\end{tabular} \\
\hline thirdColumnSubheading (Third Column Subheading & \begin{tabular}{l} 
Table style element that applies to PivotTable's third \\
column subheading.
\end{tabular} \\
\hline Style) & thirdSubtotalRow (Third Subtotal Row Style) \\
\hline thirdRowSubheading (Third Row Subheading Style) & \begin{tabular}{l} 
Table style element that applies to PivotTable's third \\
row subheading.
\end{tabular} \\
\hline wholeTable (Whole Table Style) & \begin{tabular}{l} 
Table style element that applies to PivotTable's third \\
subtotal row.
\end{tabular} \\
\hline Table style element that applies to pivot table's third \\
tabtotal column.
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TableStyleType) is located in §A.2. end note]

\subsection*{18.18.78 ST_TableType (Table Type)}

An enumeration that specifies what the table data is based on.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline queryTable (Query Table) & A table based on an external data query. \\
\hline worksheet (Worksheet) & A table based on a worksheet data range. \\
\hline xml (XML) & A table based on an XML mapping. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST TableType) is located in §A.2. end note]

\subsection*{18.18.79 ST_TargetScreenSize (Target Screen Size Types)}

This simple type defines the collection of screen resolutions that are supported for this workbook.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline \(1024 \times 768(1024 \times 768\) Resolution \()\) & Sescription \\
\hline \(1152 \times 882(1152 \times 882\) Resolution \()\) & Sets the target screen resolution to \(1152 \times 882\) pixels. \\
\hline \(1152 \times 900(1152 \times 900\) Resolution \()\) & Sets the target screen resolution to \(1152 \times 900\) pixels \\
\hline \(1280 \times 1024(1280 \times 1024\) Resolution) & Sets the target screen resolution to \(1280 \times 1024\) pixels. \\
\hline \(1600 \times 1200(1600 \times 1200\) Resolution) & Sets the target screen resolution to \(1600 \times 1200\) pixels. \\
\hline \(1800 \times 1440(1800 \times 1440\) Resolution \()\) & Sets the target screen resolution to \(1800 \times 1440\) pixels. \\
\hline \(1920 \times 1200(1920 \times 1200\) Resolution) & Sets the target screen resolution to \(1920 \times 1200\) pixels. \\
\hline \(544 \times 376(544 \times 376\) Resolution) & Sets the target screen resolution to \(544 \times 376\) pixels. \\
\hline \(640 \times 480(640 \times 480\) Resolution \()\) & Sets the target screen resolution to \(640 \times 480\) pixels. \\
\hline \(720 \times 512(720 \times 512\) Resolution \()\) & Sets the target screen resolution to \(720 \times 512\) pixels. \\
\hline \(800 \times 600(800 \times 600\) Resolution) & Sets the target screen resolution to \(800 \times 600\) pixels. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TargetScreenSize) is located in §A.2. end note]

\subsection*{18.18.80 ST_TextHAlign (Comment Text Horizontal Alignment)}

This simple type specifies the horizontal alignment of the text within a comment text field.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline center (Center Alignment) & Specifies that the text is centered horizontally. \\
\hline distributed (Distributed Alignment) & Specifies that the text is distributed horizontally. \\
\hline justify (Justify Alignment) & Specifies that the text is justified horizontally. \\
\hline left (Left Alignment) & Specifies that the text is left-aligned. \\
\hline right (Right Alignment) & Specifies that the text is right-aligned. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TextHAlign) is located in §A.2. end note]

\subsection*{18.18.81 ST_TextVAlign (Comment Text Vertical Alignment)}

This simple type specifies the vertical alignment of the text within a comment text field.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline bottom (Bottom Alignment) & Specifies that the text is bottom-aligned. \\
\hline center (Center Alignment) & Specifies that the text is centered vertically. \\
\hline distributed (Distributed Alignment) & Specifies that the text is distributed vertically. \\
\hline justify (Justify Alignment) & Specifies that the text is justified vertically. \\
\hline top (Top Alignment) & Specifies that the text is top-aligned. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST TextVAlign) is located in §A.2. end note]

\subsection*{18.18.82 ST_TimePeriod (Time Period Types)}

Used in a "contains dates" conditional formatting rule. These are dynamic time periods, which change based on the date the conditional formatting is refreshed / applied.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline last7Days (Last 7 Days) & A date in the last seven days. \\
\hline lastMonth (Last Month) & A date occuring in the last calendar month. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline lastWeek (Last Week) & A date occuring last week. \\
\hline nextMonth (Next Month) & A date occuring in the next calendar month. \\
\hline nextWeek (Next Week) & A date occuring next week. \\
\hline thisMonth (This Month) & A date occuring in this calendar month. \\
\hline thisWeek (This Week) & A date occuring this week. \\
\hline today (Today) & Today's date. \\
\hline tomorrow (Tomorrow) & Tomorrow's date. \\
\hline yesterday (Yesterday) & Yesterday's date. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TimePeriod) is located in §A.2. end note]

\subsection*{18.18.83 ST_TotalsRowFunction (Totals Row Function Types)}

An enumeration that specifies what function is used to aggregate the data in a column before it is displayed in the totals row.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline average (Average) & Represents the arithmetic mean. \\
\hline count (Non Empty Cell Count) & Represents a count of the number of non-empty cells. \\
\hline countNums (Count Numbers) & Represents the number of cells that contain numbers. \\
\hline custom (Custom Formula) & \begin{tabular}{l} 
Represents the formula provided in \\
totalsRowFormula.
\end{tabular} \\
\hline max (Maximum) & Represents the largest value. \\
\hline min (Minimum) & Represents the smallest value. \\
\hline none (None) & No total row. \\
\hline stdDev (StdDev) & Represents the estimated standard deviation. \\
\hline sum (Sum) & Represents the arithmetic sum. \\
\hline var (Var) & Represents the estimated variance. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TotalsRowFunction) is located in §A.2. end note]

\subsection*{18.18.84 ST_Type (Top N Evaluation Type)}

This simple type defines the values for the Top N conditional formatting evaluation for the PivotTable. For more information on Top \(N\) conditional formatting, see the Sheet (§18.3.1) reference material.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline all (All) & \begin{tabular}{l} 
Indicates that Top N conditional formatting is \\
evaluated across the entire scope range.
\end{tabular} \\
\hline column (Column Top N) & \begin{tabular}{l} 
Indicates that Top N conditional formatting is \\
evaluated for each column.
\end{tabular} \\
\hline none (Top N None) & \begin{tabular}{l} 
Indicates that Top N conditional formatting is not \\
evaluated
\end{tabular} \\
\hline row (Row Top N) & \begin{tabular}{l} 
Indicates that Top N conditional formatting is \\
evaluated for each row.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST Type) is located in §A.2. end note]

\subsection*{18.18.85 ST_UnderlineValues (Underline Types)}

Represents the different types of possible underline formatting.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline double (Double Underline) & Double-line underlining under each character in the cell. underlines are drawn through the descenders of characters such as \(g\) and \(p\).
\[
1.23
\] \\
\hline doubleAccounting (Accounting Double Underline) & Double-line accounting underlining under each character in the cell. The underlines are drawn under the descenders of characters such as g and p .
\[
\underline{\underline{1.23}}
\] \\
\hline none (None) & No underline. \\
\hline single (Single Underline) & Single-line underlining under each character in the cell. The underline is drawn through the descenders of characters such as \(g\) and \(p\).
\[
\underline{1.23}
\] \\
\hline singleAccounting (Accounting Single Underline) & Single-line accounting underlining under each \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Enumeration Value & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
character in the cell. The underline is drawn under the \\
descenders of characters such as \(g\) and \(p\).
\end{tabular} \\
& \(\underline{1.23}\) \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST UnderlineValues) is located in §A.2. end note]

\subsection*{18.18.86 ST_UnsignedIntHex (Hex Unsigned Integer)}

This simple type represents the Hex representation of an unsigned integer.
This simple type's contents are a restriction of the W3C XML Schema hexBinary datatype.
This simple type also specifies the following restrictions:
- This simple type's contents have a length of exactly 8 hexadecimal digit(s).
[Note: The W3C XML Schema definition of this simple type's content model (ST UnsignedIntHex) is located in §A.2. end note]

\subsection*{18.18.87 ST_UpdateLinks (Update Links Behavior Types)}

This simple type defines when the application updates links to other workbooks when the workbook is opened.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline always (Always Update Links) & \begin{tabular}{l} 
Indicates that links to other workbooks are always \\
updated when the workbook is opened. The \\
application will not display an alert in the user \\
interface (UI).
\end{tabular} \\
\hline never (Never Update Links) & \begin{tabular}{l} 
Indicates that links to other workbooks are never \\
updated when the workbook is opened. The \\
application will not display an alert in the user \\
interface.
\end{tabular} \\
\hline userSet (User Set) & \begin{tabular}{l} 
Indicates that the end-user specified whether they \\
receive an alert to update links to other workbooks \\
when the workbook is opened. [Example: The \\
application can expose this option in an application \\
settings dialog. end example]
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST UpdateLinks) is located in §A. 2. end note]

\subsection*{18.18.88 ST_VerticalAlignment (Vertical Alignment Types)}

This enumeration value indicates the type of vertical alignment for a cell, i.e., whether it is aligned top, bottom, vertically centered, justified or distributed.

This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline bottom (Aligned To Bottom) & The vertical alignment is aligned-to-bottom.
\end{tabular}\(\left.\left.\left.\left.| \begin{array}{l}\text { The vertical alignment is centered across the height of } \\
\text { the cell. }\end{array}\right] \begin{array}{l}\text { When text direction is horizontal: the vertical } \\
\text { alignment of lines of text is distributed vertically, } \\
\text { where each line of text inside the cell is evenly } \\
\text { distributed across the height of the cell, with flush top } \\
\text { and bottom margins. }\end{array}\right\} \begin{array}{l}\text { When text direction is vertical: behaves exactly as } \\
\text { distributed horizontal alignment. The first words in a } \\
\text { line of text (appearing at the top of the cell) are flush } \\
\text { with the top edge of the cell, and the last words of a } \\
\text { line of text are flush with the bottom edge of the cell, } \\
\text { and the line of text is distributed evenly from top to } \\
\text { bottom. }\end{array}\right\} \begin{array}{l}\text { [Example: Horizontal text: this first example shows } \\
\text { four lines of text (read horizontally from left to right) } \\
\text { distributed vertically across the height of the cell. The } \\
\text { first line is "abc", the second line is "def", the third line } \\
\text { is "ghi" and the fourth line is "jkl". }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
\begin{tabular}{|c|c|c|c|}
\hline 1 & A & \multicolumn{1}{|c|}{B} \\
\hline 1 & & \\
\hline & & \(a b c\) \\
& & def \\
\hline 2 & & & \\
\hline
\end{tabular} \\
Vertical text: this second example shows three lines of text (read vertically from top to bottom) distributed vertically across the height of the cell. The lines of text are: \\
abcd efg hijklmnop qrs tuv wx \\
yzabc defg hijk Imnop \\
The rendering looks like this: \\
end example]
\end{tabular} \\
\hline justify (Justified Vertically) & When text direction is horizontal: the vertical alignment of lines of text is distributed vertically, where each line of text inside the cell is evenly distributed across the height of the cell, with flush top \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline \multirow[t]{4}{*}{} & \begin{tabular}{l}
and bottom margins. \\
When text direction is vertical: similar behavior as horizontal justification. The alignment is justified (flush top and bottom in this case). For each line of text, each line of the wrapped text in a cell is aligned to the top and bottom (except the last line). If no single line of text wraps in the cell, then the text is not justified. \\
[Example: Horizontal text: this first example shows four lines of text (read horizontally from left to right) justified vertically across the height of the cell. The first line is "abc", the second line is "def", the third line is "ghi" and the fourth line is "jkl".
\end{tabular} \\
\hline & \begin{tabular}{|l|l|l|}
\hline & A & B \\
\hline 1 & & \\
\hline
\end{tabular} \\
\hline &  \\
\hline & \begin{tabular}{l}
Vertical text: this second example shows three lines of text (read vertically from top to bottom) distributed vertically across the height of the cell. The lines of text are: \\
abcd efg hijklmnop qrs \\
tuv wx \\
yzabc defg hijk Imnop \\
The rendering looks like this:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline & \begin{tabular}{l}
 \\
end example]
\end{tabular} \\
\hline top (Align Top) & The vertical alignment is aligned-to-top. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST VerticalAlignment) is located in §A.2. end note]

\subsection*{18.18.89 ST_Visibility (Visibility Types)}

This simple type defines the possible states for sheet visibility.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline hidden (Hidden) & \begin{tabular}{l} 
Indicates the workbook window is hidden, but can be \\
shown by the user via the user interface.
\end{tabular} \\
\hline veryHidden (Very Hidden) & \begin{tabular}{l} 
Indicates the sheet is hidden and cannot be shown in \\
the user interface (UI). This state is only available \\
programmatically.
\end{tabular} \\
\hline visible (Visible) & Indicates the workbook window is visible. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST Visibility) is located in §A.2. end note]

\subsection*{18.18.90 ST_VolDepType (Volatile Dependency Types)}

This simple type defines the dependency types available for this workbook.
This simple type's contents are a restriction of the W3C XML Schema string datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline olapFunctions (OLAP Formulas) & Indicates that the type is Cube Functions. \\
\hline realTimeData (Real Time Data) & Indicates that the type is Real Time Data (RTD). \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST VolDepType) is located in §A.2. end note]

\subsection*{18.18.91 ST_VolValueType (Volatile Dependency Value Types)}

This simple type defines the data type of the values in the dependency cache.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline b (Boolean) & Indicates topic value is a boolean. \\
\hline e (Error) & Indicates topic value is an error. \\
\hline n (Real Number) & Indicates topic value is a real number. \\
\hline s (String) & Indicates topic value is a string. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST VolValueType) is located in §A.2. end note]

\subsection*{18.18.92 ST_WebSourceType (Web Source Type)}

This is an enumeration of types of objects which can be selected from the workbook to be published as HTML. For example, the entire sheet can be published, or a narrower set of objects on the sheet can be published, like a chart or a range.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline autoFilter (AutoFilter) & Auto filter \\
\hline chart (Chart) & Chart \\
\hline label (Label) & Label \\
\hline pivotTable (PivotTable) & PivotTable \\
\hline printArea (Print Area) & Print area \\
\hline query (QueryTable) & Query Table \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline range (Range) & Range of cells \\
\hline sheet (All Sheet Content) & All content of a sheet \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST WebSourceType) is located in §A.2. end note]

\subsection*{18.18.93 ST_XmlDataType (XML Data Types)}

Represents a W3C XML built-in datatype name (http://www.w3.org/TR/xmlschema-2/). The values permitted by this type are the names of the simple datatypes defined by the XMLSchema Library, http://www.w3.org/2001/XML-Schema-datatypes.

This simple type's contents are a restriction of the W3C XML Schema string datatype.
Note: The W3C XML Schema definition of this simple type's content model (ST XmIDataType) is located in §A.2. end note]

\subsection*{18.18.94 ST_FontFamily (Font Family)}

This simple type specifies a font family. A font family is a set of fonts having common stroke width and serif characteristics. This is system-level font information.

This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Value } & \multicolumn{1}{c|}{ Font Family } \\
\hline 0 & Not applicable. \\
\hline 1 & Roman \\
\hline 2 & Swiss \\
\hline 3 & Modern \\
\hline 4 & Script \\
\hline 5 & Decorative \\
\hline 6 & Reserved for future use \\
\hline 7 & Reserved for future use \\
\hline 8 & Reserved for future use \\
\hline 9 & Reserved for future use \\
\hline 10 & Reserved for future use \\
\hline 11 & Reserved for future use \\
\hline 12 & Reserved for future use \\
\hline 13 & Reserved for future use \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Value & \multicolumn{1}{c|}{ Font Family } \\
\hline 14 & Reserved for future use \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST_FontFamily) is located in §A.2. end note]

\section*{19. PresentationML Reference Material}
[Note: For further information on the mapping of elements and attributes to OPC parts, see the Bibliography
entry, "Information on elements, attributes, and OPC parts in ISO/IEC 29500 (OOXML)". end note]

The subordinate subclauses specify the semantics for the XML markup comprising a PresentationML document, as defined by \(\S 13\) of this Part of ISO/IEC 29500.

\subsection*{19.1 Table of Contents}

\section*{This subclause is informative.}
19.2 Presentation ..... 2517
19.2.1 Presentation Properties. ..... 2517
19.2.1.1 bold (Bold Embedded Font) ..... 2517
19.2.1.2 boldItalic (Bold Italic Embedded Font) ..... 2518
19.2.1.3 browse (Browse Slide Show Mode) ..... 2519
19.2.1.4 clrMru (Color MRU) ..... 2519
19.2.1.5 custShow (Custom Show) ..... 2520
19.2.1.6 custShow (Custom Show) ..... 2521
19.2.1.7 custShowLst (List of Custom Shows) ..... 2521
19.2.1.8 defaultTextStyle (Presentation Default Text Style) ..... 2521
19.2.1.9 embeddedFont (Embedded Font) ..... 2522
19.2.1.10 embeddedFontLst (Embedded Font List) ..... 2522
19.2.1.11 ext (Extension) ..... 2522
19.2.1.12 extLst (Extension List) ..... 2523
19.2.1.13 font (Embedded Font Name) ..... 2523
19.2.1.14 handoutMasterld (Handout Master ID) ..... 2524
19.2.1.15 handoutMasterIdLst (List of Handout Master IDs) ..... 2524
19.2.1.16 italic (Italic Embedded Font) ..... 2525
19.2.1.17 kinsoku (Kinsoku Settings) ..... 2525
19.2.1.18 kiosk (Kiosk Slide Show Mode) ..... 2526
19.2.1.19 modifyVerifier (Modification Verifier) ..... 2527
19.2.1.20 notesMasterld (Notes Master ID) ..... 2530
19.2.1.21 notesMasterIdLst (List of Notes Master IDs) ..... 2531
19.2.1.22 notesSz (Notes Slide Size) ..... 2531
19.2.1.23 penClr (Pen Color for Slide Show) ..... 2532
19.2.1.24 photoAlbum (Photo Album Information) ..... 2532
19.2.1.25 present (Presenter Slide Show Mode) ..... 2533
19.2.1.26 presentation (Presentation) ..... 2533
19.2.1.27 presentationPr (Presentation-wide Properties) ..... 2536
19.2.1.28 prnPr (Printing Properties) ..... 2536
19.2.1.29 regular (Regular Embedded Font) ..... 2537
19.2.1.30 showPr (Presentation-wide Show Properties) ..... 2537
19.2.1.31 sld (Presentation Slide) ..... 2538
19.2.1.32 sldAll (All Slides) ..... 2539
19.2.1.33 sldid (Slide ID) ..... 2539
19.2.1.34 sldIdLst (List of Slide IDs) ..... 2540
19.2.1.35 sldLst (List of Presentation Slides) ..... 2540
19.2.1.36 sldMasterld (Slide Master ID) ..... 2540
19.2.1.37 sldMasterIdLst (List of Slide Master IDs) ..... 2541
19.2.1.38 sldRg (Slide Range) ..... 2541
19.2.1.39 sldSz (Presentation Slide Size) ..... 2541
19.2.1.40 smartTags (Smart Tags) ..... 2542
19.2.2 View Properties ..... 2544
19.2.2.1 cSIdViewPr (Common Slide View Properties) ..... 2544
19.2.2.2 cViewPr (Common View Properties) ..... 2544
19.2.2.3 gridSpacing (Grid Spacing) ..... 2544
19.2.2.4 guide (A Guide) ..... 2545
19.2.2.5 guideLst (List of Guides) ..... 2546
19.2.2.6 normalViewPr (Normal View Properties) ..... 2546
19.2.2.7 notesTextViewPr (Notes Text View Properties) ..... 2547
19.2.2.8 notesViewPr (Notes View Properties) ..... 2547
19.2.2.9 origin (View Origin) ..... 2547
19.2.2.10 outlineViewPr (Outline View Properties) ..... 2548
19.2.2.11 restoredLeft (Normal View Restored Left Properties) ..... 2548
19.2.2.12 restoredTop (Normal View Restored Top Properties). ..... 2549
19.2.2.13 scale (View Scale) ..... 2549
19.2.2.14 sld (Presentation Slide) ..... 2549
19.2.2.15 sldLst (List of Presentation Slides) ..... 2550
19.2.2.16 slideViewPr (Slide View Properties) ..... 2550
19.2.2.17 sorterViewPr (Slide Sorter View Properties) ..... 2551
19.2.2.18 viewPr (Presentation-wide View Properties) ..... 2551
19.3 Slides ..... 2551
19.3.1 Slides ..... 2552
19.3.1.1 bg (Slide Background) ..... 2552
19.3.1.2 bgPr (Background Properties) ..... 2552
19.3.1.3 bgRef (Background Style Reference) ..... 2553
19.3.1.4 blipFill (Picture Fill) ..... 2554
19.3.1.5 bodyStyle (Slide Master Body Text Style) ..... 2557
19.3.1.6 clrMap (Color Scheme Map) ..... 2557
19.3.1.7 clrMapOvr (Color Scheme Map Override) ..... 2559
19.3.1.8 cNvCxnSpPr (Non-Visual Connector Shape Drawing Properties) ..... 2559
19.3.1.9 cNvGraphicFramePr (Non-Visual Graphic Frame Drawing Properties) ..... 2559
19.3.1.10 cNvGrpSpPr (Non-Visual Group Shape Drawing Properties) ..... 2559
19.3.1.11 cNvPicPr (Non-Visual Picture Drawing Properties) ..... 2560
19.3.1.12 cNvPr (Non-Visual Drawing Properties) ..... 2560
19.3.1.13 cNvSpPr (Non-Visual Drawing Properties for a Shape) ..... 2563
19.3.1.14 contentPart (Content Part) ..... 2563
19.3.1.15 controls (List of controls) ..... 2566
19.3.1.16 cSId (Common Slide Data) ..... 2567
19.3.1.17 custData (Customer Data) ..... 2567
19.3.1.18 custDataLst (Customer Data List) ..... 2568
19.3.1.19 cxnSp (Connection Shape) ..... 2568
19.3.1.20 extLst (Extension List with Modification Flag) ..... 2569
19.3.1.21 graphicFrame (Graphic Frame) ..... 2570
19.3.1.22 grpSp (Group Shape) ..... 2570
19.3.1.23 grpSpPr (Group Shape Properties) ..... 2571
19.3.1.24 handoutMaster (Handout Master). ..... 2571
19.3.1.25 hf (Header/Footer information for a slide master) ..... 2572
19.3.1.26 notes (Notes Slide) ..... 2572
19.3.1.27 notesMaster (Notes Master) ..... 2573
19.3.1.28 notesStyle (Notes Text Style) ..... 2573
19.3.1.29 nvCxnSpPr (Non-Visual Properties for a Connection Shape) ..... 2574
19.3.1.30 nvGraphicFramePr (Non-Visual Properties for a Graphic Frame) ..... 2574
19.3.1.31 nvGrpSpPr (Non-Visual Properties for a Group Shape) ..... 2574
19.3.1.32 nvPicPr (Non-Visual Properties for a Picture) ..... 2574
19.3.1.33 nvPr (Non-Visual Properties). ..... 2575
19.3.1.34 nvSpPr (Non-Visual Properties for a Shape) ..... 2575
19.3.1.35 otherStyle (Slide Master Other Text Style) ..... 2575
19.3.1.36 ph (Placeholder Shape). ..... 2576
19.3.1.37 pic (Picture). ..... 2576
19.3.1.38 sld (Presentation Slide). ..... 2577
19.3.1.39 sldLayout (Slide Layout) ..... 2578
19.3.1.40 sldLayoutld (Slide Layout Id). ..... 2579
19.3.1.41 sldLayoutldLst (List of Slide Layouts) ..... 2579
19.3.1.42 sldMaster (Slide Master) ..... 2580
19.3.1.43 sp (Shape) ..... 2580
19.3.1.44 spPr (Shape Properties) ..... 2581
19.3.1.45 spTree (Shape Tree) ..... 2581
19.3.1.46 style (Shape Style) ..... 2583
19.3.1.47 tags (Customer Data Tags) ..... 2583
19.3.1.48 timing (Slide Timing Information for a Slide Layout) ..... 2584
19.3.1.49 titleStyle (Slide Master Title Text Style) ..... 2584
19.3.1.50 transition (Slide Transition for a Slide Layout) ..... 2584
19.3.1.51 txBody (Shape Text Body) ..... 2585
19.3.1.52 txStyles (Slide Master Text Styles) ..... 2585
19.3.1.53 xfrm (2D Transform for Graphic Frame) ..... 2586
19.3.2 Embedded Objects ..... 2587
19.3.2.1 control (Embedded Control) ..... 2587
19.3.2.2 embed (Embedded Object or Control) ..... 2587
19.3.2.3 link (Linked Object or Control) ..... 2588
19.3.2.4 oleObj (Global Element for Embedded objects and Controls) ..... 2588
19.3.3 Programmable Tags ..... 2589
19.3.3.1 tag (Programmable Extensibility Tag). ..... 2589
19.3.3.2 tagLst (Programmable Tab List) ..... 2590
19.4 Comments ..... 2590
19.4.1 cm (Comment) ..... 2590
19.4.2 cmAuthor (Comment Author) ..... 2591
19.4.3 cmAuthorLst (List of Comment Authors) ..... 2592
19.4.4 cmLst (Comment List) ..... 2592
19.4.5 pos (Comment Position) ..... 2593
19.4.6 text (Comment's Text Content) ..... 2594
19.5 Animation ..... 2594
19.5.1 anim (Animate) ..... 2595
19.5.2 animClr (Animate Color Behavior) ..... 2596
19.5.3 animEffect (Animate Effect) ..... 2597
19.5.4 animMotion (Animate Motion) ..... 2603
19.5.5 animRot (Animate Rotation) ..... 2604
19.5.6 animScale (Animate Scale) ..... 2605
19.5.7 attrName (Attribute Name) ..... 2606
19.5.8 attrNameLst (Attribute Name List) ..... 2607
19.5.9 audio (Audio) ..... 2608
19.5.10 bg (Background). ..... 2609
19.5.11 bldAsOne (Build As One) ..... 2609
19.5.12 bldDgm (Build Diagram) ..... 2609
19.5.13 bldGraphic (Build Graphics) ..... 2610
19.5.14 bldLst (Build List) ..... 2611
19.5.15 bldOleChart (Build Embedded Chart) ..... 2612
19.5.16 bldP (Build Paragraph) ..... 2613
19.5.17 bldSub (Build Sub Elements). ..... 2615
19.5.18 blinds (Blinds Slide Transition) ..... 2615
19.5.19 boolVal (Boolean Variant) ..... 2616
19.5.20 by (By) ..... 2617
19.5.21 by (By). ..... 2617
19.5.22 cBhvr (Common Behavior) ..... 2618
19.5.23 charRg (Character Range) ..... 2619
19.5.24 checker (Checker Slide Transition) ..... 2620
19.5.25 childTnLst (Children Time Node List) ..... 2621
19.5.26 circle (Circle Slide Transition) ..... 2622
19.5.27 clrVal (Color Value) ..... 2622
19.5.28 cmd (Command) ..... 2623
19.5.29 cMediaNode (Common Media Node Properties) ..... 2625
19.5.30 comb (Comb Slide Transition) ..... 2626
19.5.31 cond (Condition) ..... 2626
19.5.32 cover (Cover Slide Transition). ..... 2627
19.5.33 cTn (Common Time Node Properties) ..... 2629
19.5.34 cut (Cut Slide Transition) ..... 2632
19.5.35 diamond (Diamond Slide Transition) ..... 2633
19.5.36 dissolve (Dissolve Slide Transition) ..... 2633
19.5.37 endCondLst (End Conditions List) ..... 2634
19.5.38 endSnd (Stop Sound Action) ..... 2635
19.5.39 endSync (EndSync) ..... 2635
19.5.40 excl (Exclusive) ..... 2636
19.5.41 fade (Fade Slide Transition) ..... 2636
19.5.42 fltVal (Float Value) ..... 2637
19.5.43 from (From) ..... 2638
19.5.44 from (From) ..... 2638
19.5.45 graphicEl (Graphic Element) ..... 2639
19.5.46 hsl (HSL) ..... 2640
19.5.47 inkTgt (Ink Target) ..... 2640
19.5.48 intVal (Integer) ..... 2641
19.5.49 iterate (Iterate) ..... 2641
19.5.50 newsflash (Newsflash Slide Transition) ..... 2642
19.5.51 nextCondLst (Next Conditions List) ..... 2643
19.5.52 oleChartEl (Embedded Chart Element) ..... 2643
19.5.53 par (Parallel Time Node) ..... 2644
19.5.54 plus (Plus Slide Transition) ..... 2645
19.5.55 prevCondLst (Previous Conditions List) ..... 2646
19.5.56 pRg (Paragraph Text Range) ..... 2646
19.5.57 progress (Progress) ..... 2647
19.5.58 pull (Pull Slide Transition) ..... 2647
19.5.59 push (Push Slide Transition) ..... 2649
19.5.60 random (Random Slide Transition) ..... 2651
19.5.61 randomBar (Random Bar Slide Transition) ..... 2651
19.5.62 rCtr (Rotation Center) ..... 2652
19.5.63 rgb (RGB) ..... 2653
19.5.64 rtn (Runtime Node Trigger Choice) ..... 2654
19.5.65 seq (Sequence Time Node) ..... 2654
19.5.66 set (Set Time Node Behavior) ..... 2656
19.5.67 sldTgt (Slide Target) ..... 2657
19.5.68 snd (Sound) ..... 2657
19.5.69 sndAc (Sound Action) ..... 2658
19.5.70 sndTgt (Sound Target) ..... 2659
19.5.71 split (Split Slide Transition) ..... 2659
19.5.72 spTgt (Shape Target) ..... 2661
19.5.73 stCondLst (Start Conditions List) ..... 2661
19.5.74 strips (Strips Slide Transition) ..... 2662
19.5.75 strVal (String Value) ..... 2663
19.5.76 stSnd (Start Sound Action) ..... 2664
19.5.77 subSp (Subshape) ..... 2664
19.5.78 subTnLst (Sub-TimeNodes List) ..... 2665
19.5.79 tav (Time Animate Value) ..... 2665
19.5.80 tavLst (Time Animated Value List) ..... 2670
19.5.81 tgtEl (Target Element). ..... 2670
19.5.82 tmAbs (Time Absolute) ..... 2671
19.5.83 tmPct (Time Percentage) ..... 2671
19.5.84 tmpl (Template Effects) ..... 2672
19.5.85 tmplLst (Template effects) ..... 2673
19.5.86 tn (Time Node) ..... 2673
19.5.87 tnLst (Time Node List) ..... 2674
19.5.88 to (To) ..... 2674
19.5.89 to (To) ..... 2675
19.5.90 to (To) ..... 2676
19.5.91 txEl (Text Element) ..... 2676
19.5.92 val (Value) ..... 2676
19.5.93 video (Video) ..... 2677
19.5.94 wedge (Wedge Slide Transition) ..... 2678
19.5.95 wheel (Wheel Slide Transition) ..... 2679
19.5.96 wipe (Wipe Slide Transition). ..... 2680
19.5.97 zoom (Zoom Slide Transition) ..... 2682
19.6 Slide Synchronization Data ..... 2682
19.6.1 sldSyncPr (Slide Synchronization Properties) ..... 2683
19.7 Simple Types ..... 2683
19.7.1 ST_BookmarkIdSeed (Bookmark ID Seed) ..... 2684
19.7.2 ST_Direction (Direction) ..... 2684
19.7.3 ST_Index (Index) ..... 2684
19.7.4 ST_IterateType (Iterate Type). ..... 2684
19.7.5 ST_Name (Name string). ..... 2685
19.7.6 ST_OleObjectFollowColorScheme (Embedded object to Follow Color Scheme) ..... 2685
19.7.7 ST_PhotoAlbumFrameShape (Photo Album Shape for Photo Mask) ..... 2685
19.7.8 ST_PhotoAlbumLayout (Photo Album Layout Definition) ..... 2686
19.7.9 ST_PlaceholderSize (Placeholder Size) ..... 2688
19.7.10 ST_PlaceholderType (Placeholder IDs) ..... 2688
19.7.11 ST_PrintColorMode (Print Color Mode) ..... 2690
19.7.12 ST_PrintWhat (Default print output) ..... 2690
19.7.13 ST_Slideld (Slide Identifier). ..... 2690
19.7.14 ST_SlideLayoutld (Slide Layout ID) ..... 2691
19.7.15 ST_SlideLayoutType (Slide Layout Type) ..... 2691
19.7.16 ST_SlideMasterId (Slide Master ID) ..... 2694
19.7.17 ST_SlideSizeCoordinate (Slide Size Coordinate) ..... 2695
19.7.18 ST_SlideSizeType (Slide Size Type) ..... 2695
19.7.19 ST_SplitterBarState (Splitter Bar State) ..... 2696
19.7.20 ST_TLAnimateBehaviorCalcMode (Time List Animate Behavior Calculate Mode). ..... 2696
19.7.21 ST_TLAnimateBehaviorValueType (Time List Animate Behavior Value Types). ..... 2696
19.7.22 ST_TLAnimateColorDirection (Time List Animate Color Direction) ..... 2697
19.7.23 ST_TLAnimateColorSpace (Time List Animate Color Space) ..... 2697
19.7.24 ST_TLAnimateEffectTransition (Time List Animate Effect Transition) ..... 2697
19.7.25 ST_TLAnimateMotionBehaviorOrigin (Time List Animate Motion Behavior Origin). ..... 2698
19.7.26 ST_TLAnimateMotionPathEditMode (Time List Animate Motion Path Edit Mode). ..... 2698
19.7.27 ST_TLBehaviorAccumulateType (Behavior Accumulate Type). ..... 2698
19.7.28 ST_TLBehaviorAdditiveType (Behavior Additive Type) ..... 2699
19.7.29 ST_TLBehaviorOverrideType (Behavior Override Type) ..... 2699
19.7.30 ST_TLBehaviorTransformType (Behavior Transform Type) ..... 2700
19.7.31 ST_TLChartSubelementType (Chart Subelement Type) ..... 2700
19.7.32 ST_TLCommandType (Command Type) ..... 2700
19.7.33 ST_TLDiagramBuildType (Diagram Build Types) ..... 2701
19.7.34 ST_TLNextActionType (Next Action Type) ..... 2702
19.7.35 ST_TLOleChartBuildType (Embedded Chart Build Type). ..... 2702
19.7.36 ST_TLParaBuildType (Paragraph Build Type) ..... 2702
19.7.37 ST_TLPreviousActionType (Previous Action Type) ..... 2703
19.7.38 ST_TLTime (Time) ..... 2703
19.7.39 ST_TLTimeAnimateValueTime (Animation Time) ..... 2703
19.7.40 ST_TLTimeIndefinite (Indefinite Time Declaration) ..... 2704
19.7.41 ST_TLTimeNodeFilltype (Time Node Fill Type) ..... 2704
19.7.42 ST_TLTimeNodeID (Time Node ID) ..... 2704
19.7.43 ST_TLTimeNodeMasterRelation (Time Node Master Relation) ..... 2705
19.7.44 ST_TLTimeNodePresetClassType (Time Node Preset Class Type) ..... 2705
19.7.45 ST_TLTimeNodeRestartType (Time Node Restart Type) ..... 2705
19.7.46 ST_TLTimeNodeSyncType (Time Node Sync Type). ..... 2706
19.7.47 ST_TLTimeNodeType (Time Node Type) ..... 2706
19.7.48 ST_TLTriggerEvent (Trigger Event) ..... 2707
19.7.49 ST_TLTriggerRuntimeNode (Trigger RunTime Node) ..... 2707
19.7.50 ST_TransitionCornerDirectionType (Transition Corner Direction Type) ..... 2708
19.7.51 ST_TransitionEightDirectionType (Transition Eight Direction) ..... 2708
19.7.52 ST_TransitionInOutDirectionType (Transition In/Out Direction Type) ..... 2708
19.7.53 ST_TransitionSideDirectionType (Transition Side Direction Type). ..... 2709
19.7.54 ST_TransitionSpeed (Transition Speed) ..... 2709
19.7.55 ST_ViewType (List of View Types) ..... 2710

\section*{End of informative text.}

\subsection*{19.2 Presentation}

The Presentation portion of the PresentationML framework houses a set of elements that describe the storing of presentation-wide and view-specific properties. The presentation-wide properties are those that pertain to the entire presentation. The view-specific properties assist the generating application and viewing application by storing parameters that pertain to the final delivery of the presentation.

\subsection*{19.2.1 Presentation Properties}

This section contains all presentation-level properties that pertain to a presentation document:

\subsection*{19.2.1.1 bold (Bold Embedded Font)}

This element specifies a bold embedded font that is linked to a parent typeface. Once specified, this bold version of the given typeface name is available for use within the presentation. The actual font data is referenced using a relationships file that contains links to all fonts available. This font data contains font information for each of the characters to be made available.
[Example: Consider the following embedded font with a bold version specified.
```

 <p:embeddedFont>
 <p:font typeface="MyFont" pitchFamily="34" charset="0"/>
 <p:bold r:id="rId2"/>
 </p:embeddedFont>
end example]

```
[Note: Not all characters for a typeface must be stored. It is up to the generating application to determine which characters are to be stored in the corresponding font data files. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location of this embedded font that is referenced in a \\
Identif)
\end{tabular} \\
presentation. \\
Namespace: & \\
\begin{tabular}{l} 
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedFontDatald) is located in §A.3. end note]

\subsection*{19.2.1.2 boldItalic (Bold Italic Embedded Font)}

This element specifies a bold italic embedded font that is linked to a parent typeface. Once specified, this bold italic version of the given typeface name is available for use within the presentation. The actual font data is referenced using a relationships file that contains links to all fonts available. This font data contains font information for each of the characters to be made available.
[Example: Consider the following embedded font with a bold italic version specified.
```

<p:embeddedFont>
<p:font typeface="MyFont" pitchFamily="34" charset="0"/>
<p:boldItalic r:id="rId2"/>
</p:embeddedFont>
end example]

```
[Note: Not all characters for a typeface must be stored. It is up to the generating application to determine which characters are to be stored in the corresponding font data files. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location of this embedded font that is referenced in a \\
presentation.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
( \(\$ 22.8 .2 .1)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedFontDatald) is located in §A.3. end note]

\subsection*{19.2.1.3 browse (Browse Slide Show Mode)}

This element specifies that the presentation slide show should be viewed in a single window or browse mode, instead of full screen.
[Example: Consider the following presentation that is to be viewed in a browse mode.
```

<p:presentationPr xmlns:a="..." xmlns:r="..." xmlns:p="...">
<p:showPr>
<p:browse showScrollbar="0"/>
..
</p:showPr>
</p:presentationPr>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
showScrollbar \\
(Show Scroll Bar in \\
Window)
\end{tabular} & \begin{tabular}{l} 
Specifies whether to show the scroll bar in the viewing window. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ShowInfoBrowse) is located in §A.3. end note]

\subsection*{19.2.1.4 clrMru (Color MRU)}

This specifies the most recently used user-selected colors within the presentation. This list contains custom user-selected colors outside the presentation's theme colors, enabling the application to expose these additional color choices for easy reuse. The first item in the list is the most recently used color.
[Example: Consider the following presentation with two user-selected colors in the color MRU list.
```

<p:presentationPr xmlns:a="..." xmlns:r="..." xmlns:p="...">
...
<p:clrMru>
<a:srgbClr val="5361EB"/>
<a:srgbClr val="CCECFF"/>
</p:clrMru>
...
</p:presentationPr>

```
end example]
[Note: The W3C XML Schema definition of this element’s content model (CT ColorMRU) is located in §A.4.1. end note]

\subsection*{19.2.1.5 custShow (Custom Show)}

This element specifies a custom show which is an ordered list of a group of slides that are contained within the presentation. The custom show element allows for the specification of a presentation order that is different from the order in which the slides themselves are stored.
[Example: Consider the following custom show list that outlines a couple custom shows for a given set of slides.
```

<p:custShowLst>
<p:custShow name="Custom Show 1" id="0">
<p:sldLst>
<p:sld r:id="rId4"/>
<p:sld r:id="rId3"/>
<p:sld r:id="rId2"/>
<p:sld r:id="rId5"/>
</p:sldLst>
</p:custShow>
<p:custShow name="Custom Show 2" id="1">
<p:sldLst>
<p:sld r:id="rId4"/>
<p:sld r:id="rId5"/>
</p:sldLst>
</p:custShow>
</p:custShowLst>

```

In the above example there are two custom shows specified. The first specifies to present the slides in the order of \(4,3,2\) then 5 while the second specifies to play only slide 4 then 5 . end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Custom Show \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the custom show identification number. This is a number given \\
that should be unique within the presentation document.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT CustomShowld) is located in §A.3. end note]

\subsection*{19.2.1.6 custShow (Custom Show)}

This element specifies a custom show that defines a specific slide sequence that the slides are displayed in. This allows for many variants of the same set of slides to be presented.
[Example: Consider the following custom show using three slides.
```

<p:custShow name="Custom Show 1" id="0">
<p:sldLst>
<p:sld r:id="rId5"/>
<p:sld r:id="rId2"/>
<p:sld r:id="rId4"/>
</p:sldLst>
</p:custShow>

```

Notice here that the custom show specifies a show, or presentation, where slide 5 is shown first, then slide 2 and finally slide 4. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Custom Show ID) & \begin{tabular}{l} 
Specifies the identification number for this custom show. This should be unique among \\
all the custom shows within the corresponding presentation. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
name (Custom \\
Show Name)
\end{tabular} & \begin{tabular}{l} 
Specifies a name for the custom show. \\
The possible values for this attribute are defined by the ST_Name simple type (§19.7.5). \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT CustomShow) is located in §A.3. end note]

\subsection*{19.2.1.7 custShowLst (List of Custom Shows)}

This element specifies a list of all custom shows that are available within the corresponding presentation. A custom show is a defined slide sequence that allows for the displaying of the slides with the presentation in any arbitrary order.
[Note: The W3C XML Schema definition of this element's content model (CT CustomShowList) is located in §A.3. end note]

\subsection*{19.2.1.8 defaultTextStyle (Presentation Default Text Style)}

This element specifies the default text styles that are to be used within the presentation. The text style defined here can be referenced when inserting a new slide if that slide is not associated with a master slide or if no styling information has been otherwise specified for the text within the presentation slide.
[Note: The W3C XML Schema definition of this element's content model (CT TextListStyle) is located in §A.4.1. end note]

\subsection*{19.2.1.9 embeddedFont (Embedded Font)}

This element specifies an embedded font. Once specified, this font is available for use within the presentation. Within a font specification there can be regular, bold, italic and boldItalic versions of the font specified. The actual font data for each of these is referenced using a relationships file that contains links to all available fonts. This font data contains font information for each of the characters to be made available in each version of the font.
[Example: Consider the following embedded font.
```

<p:embeddedFont>
<p:font typeface="MyFont" pitchFamily="34" charset="0"/>
<p:regular r:id="rId2"/>
</p:embeddedFont>

```
end example]
[Note: Not all characters for a typeface must be stored. It is up to the generating application to determine which characters are to be stored in the corresponding font data files. end note]
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedFontListEntry) is located in §A.3. end note]

\subsection*{19.2.1.10 embeddedFontLst (Embedded Font List)}

This element specifies a list of fonts that are embedded within the corresponding presentation. The font data for these fonts is stored alongside the other document parts within the document container. The actual font data is referenced within the embeddedFont element.
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedFontList) is located in §A.3. end note]

\subsection*{19.2.1.11 ext (Extension)}

This element specifies an extension that is used for future extensions to the current version of DrawingML. This allows for the specifying of currently unknown elements for later versions of generating applications.
[Note: This element is not intended to reintroduce transitional schema into the strict conformance class. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
uri (Uniform \\
Resource Identifier)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the URI, or uniform resource identifier that represents the data \\
stored under this tag. The URI is used to identify the correct 'server' that can process \\
the contents of this tag.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema token \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Extension) is located in §A.3. end note]

\subsection*{19.2.1.12 extLst (Extension List)}

This element specifies the extension list within which all future extensions of element type ext are defined. The extension list along with corresponding future extensions is used to extend the storage capabilities of the PresentationML framework. This allows for various new kinds of data to be stored natively within the framework.
[Note: The W3C XML Schema definition of this element's content model (CT ExtensionList) is located in §A.3. end note]

\subsection*{19.2.1.13 font (Embedded Font Name)}

This element specifies specific properties describing an embedded font. Once specified, this font is available for use within the presentation. Within a font specification there can be regular, bold, italic and boldItalic versions of the font specified. The actual font data for each of these is referenced using a relationships file that contains links to all available fonts. This font data contains font information for each of the characters to be made available in each version of the font.
[Example: Consider the following embedded font.
<p:embeddedFont>
<p:font typeface="MyFont" pitchFamily="34" charset="0"/>
<p:regular r:id="rId2"/>
</p:embeddedFont>
end example]
Font Substitution Logic:
If the specified font is not available on a system being used for rendering, then the attributes of this element are to be utilized in selecting an alternate font.
[Note: Not all characters for a typeface must be stored. It is up to the generating application to determine which characters are to be stored in the corresponding font data files. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
typeface (Text \\
Typeface)
\end{tabular} & \begin{tabular}{l} 
Specifies the typeface, or name of the font that is to be used. The typeface is a string \\
name of the specific font that should be used in rendering the presentation. If this font is
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
not available within the font list of the generating application than font substitution logic \\
should be utilized in order to select an alternate font.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_TextTypeface simple type \\
(§20.1.10.80).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TextFont) is located in §A.4.1. end note]

\subsection*{19.2.1.14 handoutMasterId (Handout Master ID)}

This element specifies a handout master that is available within the corresponding presentation. A handout master is a slide that is specifically designed for printing as a handout.
[Example: Consider the following specification of a handout master within a presentation
```

 <p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">
 <p:handoutMasterIdLst>
 <p:handoutMasterId r:id="rId8"/>
 </p:handoutMasterIdLst>
 ..
 </p:presentation>
 end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location within a presentation of the handoutMaster \\
Identifier)
\end{tabular} \\
element defining this handout master.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT HandoutMasterldListEntry) is located in §A.3. end note]

\subsection*{19.2.1.15 handoutMasterIdLst (List of Handout Master IDs)}

This element specifies a list of identification information for the handout master slides that are available within the corresponding presentation. A handout master is a slide that is specifically designed for printing as a handout.
[Note: The W3C XML Schema definition of this element's content model (CT HandoutMasterldList) is located in §A.3. end note]

\subsection*{19.2.1.16 italic (Italic Embedded Font)}

This element specifies an italic embedded font that is linked to a parent typeface. Once specified, this italic version of the given typeface name is available for use within the presentation. The actual font data is referenced using a relationships file that contains links to all fonts available. This font data contains font information for each of the characters to be made available.
[Example: Consider the following embedded font with a italic version specified.
<p:embeddedFont>
<p:font typeface="MyFont" pitchFamily="34" charset="0"/>
<p:italic r:id="rId2"/>
</p:embeddedFont>
end example]
[Note: Not all characters for a typeface must be stored. It is up to the generating application to determine which characters are to be stored in the corresponding font data files. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location of this embedded font that is referenced in a \\
presentation.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(\$22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedFontDatald) is located in §A.3. end note]

\subsection*{19.2.1.17 kinsoku (Kinsoku Settings)}

This element specifies the presentation-wide kinsoku settings that define the line breaking behaviour of East Asian text within the corresponding presentation.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
invalEndChars \\
(Invalid Kinsoku End \\
Characters)
\end{tabular} & \begin{tabular}{l} 
Specifies the characters that cannot end a line of text. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline invalStChars & Specifies the characters that cannot start a line of text. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
(Invalid Kinsoku \\
Start Characters)
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline lang (Language) & \begin{tabular}{l} 
Specifies the corresponding East Asian language that these settings apply to. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Kinsoku) is located in §A.3. end note]

\subsection*{19.2.1.18 kiosk (Kiosk Slide Show Mode)}

This element specifies that the presentation slide show should be viewed in a full-screen kiosk mode. A presentation viewed in kiosk mode should have user input disabled and restarts after a specified interval.
[Example: Consider the following presentation that is set to be viewed in a looping kiosk mode.
```

 <p:presentationPr xmlns:a="..." xmlns:r="..." xmlns:p="...">
 <p:showPr loop="1" showNarration="1">
 ...
 <p:kiosk/>
 ...
 </p:showPr>
 </p:presentationPr>
 end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
restart (Restart \\
Show)
\end{tabular} & \begin{tabular}{l} 
Specifies the time length that the presentation should run until it is to be restarted. That \\
is, the presentation should loop back to the first slide specified in the presentation or \\
custom show. This value is specified in 1/1000ths of a second and measured from the \\
most recent time the presentation started or restarted.
\end{tabular} \\
[Note: The counter is reset when a presentation is restarted due to automatic looping at \\
the end of a show, if specified by the loop attribute of showPr. end note] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ShowInfoKiosk) is located in §A.3. end note]

\subsection*{19.2.1.19 modifyVerifier (Modification Verifier)}

This element specifies the write protection settings which have been applied to a PresentationML document. Write protection refers to a mode in which the document's contents should not be modified, and the document should not be resaved using the same file name.

When present, the application shall require a password to enable modifications to the document. If the supplied password does not match the hash value in this attribute, then write protection shall be enabled. If this element is omitted, then no write protection shall be applied to the current document. Since this protection does not encrypt the document, malicious applications might circumvent its use.

The password supplied to the algorithm is to be a UTF-16LE encoded string; strings longer than 510 octets are truncated to 510 octets. If there is a leading BOM character (U+FEFF) in the encoded password it is removed before hash calculation. The attributes of this element specify the algorithm to be used to verify the password provided by the user.
[Example: Consider a PresentationML document that can only be opened in a write protected state unless a password is provided, in which case the file would be opened in an editable state. This requirement would be specified using the following PresentationML:
```

<p:modifyVerifier p:algorithmName="SHA-512" ...
p:hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" ... />

```
...In order for the hosting application to enable edits to the document, the hosting application would have to be provided with a password that the hosting application would then hash using the algorithm specified by the algorithm attributes and compare to the value of the hashValue attribute ( \(90 \mathrm{NTnWkCAyEZib1RomSJTjmPpCY}=\) ). If the two values matched, the file would be opened in an editable state. end example]
\begin{tabular}{|c|c|c|}
\hline Attributes & & Description \\
\hline \multirow[t]{4}{*}{algorithmName (Cryptographic Algorithm Name)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Specifies the specific cryptographic hashing algorithm which shall be used along with the salt attribute and input password in order to compute the hash value. \\
The following values are reserved:
\end{tabular}} \\
\hline & Value & Algorithm \\
\hline & MD2 & \begin{tabular}{l}
Specifies that the MD2 algorithm, as defined by RFC 1319, shall be used. \\
[Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
\end{tabular} \\
\hline & MD4 & \begin{tabular}{l}
Specifies that the MD4 algorithm, as defined by RFC 1320, shall be used. \\
[Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Attributes & \multicolumn{2}{|r|}{Description} \\
\hline \multirow[t]{10}{*}{} & & breaks. end note] \\
\hline & MD5 & \begin{tabular}{l}
Specifies that the MD5 algorithm, as defined by RFC 1321, shall be used. \\
[Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
\end{tabular} \\
\hline & RIPEMD-128 & \begin{tabular}{l}
Specifies that the RIPEMD-128 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. \\
[Note: It is recommended that applications should avoid using this algorithm to store new hash values, due to publically known breaks. end note]
\end{tabular} \\
\hline & RIPEMD-160 & Specifies that the RIPEMD-160 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. \\
\hline & SHA-1 & Specifies that the SHA-1 algorithm, as defined by ISO/IEC 101183:2004 shall be used. \\
\hline & SHA-256 & Specifies that the SHA-256 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. \\
\hline & SHA-384 & Specifies that the SHA-384 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. \\
\hline & SHA-512 & Specifies that the SHA-512 algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. \\
\hline & WHIRLPOOL & Specifies that the WHIRLPOOL algorithm, as defined by ISO/IEC 10118-3:2004 shall be used. \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
[Example: Consider an Office Open XML document with the following information stored in one of its protection elements:
```

 < ... algorithmName="SHA-1"
 hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />
    ``` \\
The algorithmName attribute value of "SHA-1" specifies that the SHA-1 hashing algorithm must be used to generate a hash from the user-defined password. end example] \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular}} \\
\hline hashValue (Password Hash Value) & \multicolumn{2}{|l|}{Specifies the hash value for the password required to edit this chartsheet. This value shall be compared with the resulting hash value after hashing the user-supplied password using the algorithm specified by the preceding attributes and parent XML element, and if the two values match, the protection shall no longer be enforced.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline & \begin{tabular}{l} 
If this value is omitted, then the reservationPassword attribute shall contain the \\
password hash for the workbook. \\
[Example: Consider an Office Open XML document with the following information stored \\
in one of its protection elements: \\
<... algorithmName="SHA-1" \\
hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />
\end{tabular} \\
\hline & \begin{tabular}{l} 
The hashValue attribute value of 9oN7nWkCAyEZib1RomSJTjmPpCY= specifies that the \\
user-supplied password must be hashed using the pre-processing defined by the parent \\
element (if any) followed by the SHA-1 algorithm (specified via the algorithmName \\
attribute value of SHA-1) and that the resulting has value must be \\
9oN7nWkCAyEZib1RomSJTjmPpCY= for the protection to be disabled. end example]
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema base64Binary \\
datatype.
\end{tabular}\(\quad\)\begin{tabular}{l} 
Specifies the salt which was prepended to the user-supplied password before it was \\
hashed using the hashing algorithm defined by the preceding attribute values to generate \\
the hashValue attribute, and which shall also be prepended to the user-supplied \\
password before attempting to generate a hash value for comparison. A salt is a random \\
string which is added to a user-supplied password before it is hashed in order to prevent \\
a malicious party from pre-calculating all possible password/hash combinations and \\
simply using those pre-calculated values (often referred to as a "dictionary attack"). \\
If this attribute is omitted, then no salt shall be prepended to the user-supplied password \\
before it is hashed for comparison with the stored hash value.
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
[Rationale: Running the algorithm many times increases the cost of exhaustive search \\
attacks correspondingly. Storing this value allows for the number of iterations to be \\
increased over time to accommodate faster hardware (and hence the ability to run more \\
iterations in less time). end rationale] \\
[Example: Consider an Office Open XML document with the following information stored \\
in one of its protection elements: \\
<... spinCount="1000000" \\
hashValue="9oN7nWkCAyEZib1RomSJTjmPpCY=" />
\end{tabular} \\
The spinCount attribute value of 100000 specifies that the hashing function must be run \\
one hundred thousand times to generate a hash value for comparison with the \\
hashValue attribute. end example] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ModifyVerifier) is located in §A.3. end note]

\subsection*{19.2.1.20 notesMasterId (Notes Master ID)}

This element specifies a notes master that is available within the corresponding presentation. A notes master is a slide that is specifically designed for the printing of the slide along with any attached notes.
[Example: Consider the following specification of a notes master within a presentation
```

<p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">
..
<p:notesMasterIdLst>
<p:notesMasterId r:id="rId8"/>
</p:notesMasterIdLst>
..
</p:presentation>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location within a presentation of the notesMaster element \\
defining this notes master.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or
\end{tabular} & The possible values for this attribute are defined by the ST_RelationshipId simple type \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline \multicolumn{1}{|c|}{ Attributes } & & Description \\
\hline \begin{tabular}{l} 
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & (§22.8.2.1). & \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NotesMasterldListEntry) is located in §A.3. end note]

\subsection*{19.2.1.21 notesMasterIdLst (List of Notes Master IDs)}

This element specifies a list of identification information for the notes master slides that are available within the corresponding presentation. A notes master is a slide that is specifically designed for the printing of the slide along with any attached notes.
[Note: The W3C XML Schema definition of this element's content model (CT NotesMasterldList) is located in §A.3. end note]

\subsection*{19.2.1.22 notesSz (Notes Slide Size)}

This element specifies the size of slide surface used for notes slides and handout slides. Objects within a notes slide can be specified outside these extents, but the notes slide has a background surface of the specified size when presented or printed. This element is intended to specify the region to which content is fitted in any special format of printout the application might choose to generate, such as an outline handout.
[Example: Consider the following specifying of the size of a notes slide.
```

 <p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">
 ..
 <p:notesSz cx="9144000" cy="6858000"/>
 ...
 </p:presentation>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline cx (Extent Length) & \begin{tabular}{l} 
Specifies the length of the extents rectangle in EMUs. This rectangle shall dictate the size \\
of the object as displayed (the result of any scaling to the original object).
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
[Example: Consider a DrawingML object specified as follows: \\
<... cx="1828800" cy="200000" />
\end{tabular} \\
& \begin{tabular}{l} 
The cx attributes specifies that this object has a height of 1828800 EMUs (English Metric \\
Units). end example] \\
The possible values for this attribute are defined by the ST_PositiveCoordinate simple
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & type (§20.1.10.41). \\
\hline \begin{tabular}{l} 
Namespace: (Extent Width) \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
Specifies the width of the extents rectangle in EMUs. This rectangle shall dictate the size \\
of the object as displayed (the result of any scaling to the original object). \\
[Example: Consider a DrawingML object specified as follows:
\end{tabular} \\
& \begin{tabular}{l} 
< ... cx="1828800" cy=" \(200000 " />\) \\
The cy attribute specifies that this object has a width of 200000 EMUs (English Metric \\
Units). end example]
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the ST_PositiveCoordinate simple \\
type (§20.1.10.41).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PositiveSize2D) is located in §A.4.1. end note]

\subsection*{19.2.1.23 penClr (Pen Color for Slide Show)}

This element specifies the pen color that should be used to make markings on the slides while in a presentation.
[Note: The W3C XML Schema definition of this element’s content model (CT Color) is located in §A.4.1. end note]

\subsection*{19.2.1.24 photoAlbum (Photo Album Information)}

This element specifies that the corresponding presentation contains a photo album. A photo album specifies a list of images within the presentation that spread across one or more slides, all of which share a consistent layout. Each image in the album is formatted with a consistent style. This functionality enables the application to manage all of the images together and modify their ordering, layout, and formatting as a set.

This element does not enforce the specified properties on individual photo album images; rather, it specifies common settings that should be applied by default to all photo album images and their containing slides. Images that are part of the photo album are identified by the presence of the isPhoto element in the definition of the picture.
[Example: Consider the following presentation that has been specified as a photo album
```

 <p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">
 ...
 <p:photoAlbum bw="1" layout="2pic"/>
 ...
 </p:presentation>
 end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
bw (Black and \\
White)
\end{tabular} & \begin{tabular}{l} 
Specifies whether all pictures in the photo album are to be displayed as black and white. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline frame (Frame Type) & \begin{tabular}{l} 
Specifies the frame type that is to be used on all the pictures in the photo album. \\
The possible values for this attribute are defined by the ST_PhotoAlbumFrameShape \\
simple type (§19.7.7).
\end{tabular} \\
\hline \begin{tabular}{l} 
layout (Photo \\
Album Layout)
\end{tabular} & \begin{tabular}{l} 
Specifies the layout that is to be used to arrange the pictures in the photo album on \\
individual slides.
\end{tabular} \\
The possible values for this attribute are defined by the ST_PhotoAlbumLayout simple \\
type (§19.7.8).
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT PhotoAlbum) is located in §A.3. end note]

\subsection*{19.2.1.25 present (Presenter Slide Show Mode)}

This element specifies that the presentation slide show should be viewed in a full-screen presenter mode. In this mode, the presentation is displayed on one monitor while a different monitor displays notes and provides navigation controls intended to be viewed only by the presenter.
[Example: Consider the following presentation that is set to be viewed in a present mode.
```

<p:presentationPr xmlns:a="..." xmlns:r="..." xmlns:p="...">
<p:showPr>
..
<p:present/>
...
</p:showPr>
</p:presentationPr>

```
end example]
[Note: The W3C XML Schema definition of this element’s content model (CT Empty) is located in §A.3. end note]

\subsection*{19.2.1.26 presentation (Presentation)}

This element specifies within it fundamental presentation-wide properties.
[Example: Consider the following presentation with a single slide master and two slides. In addition to these commonly used elements there can also be the specification of other properties such as slide size, notes size and default text styles.
```

<p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="...">
<p:sldMasterIdLst>
<p:sldMasterId id="2147483648" r:id="rId1"/>
</p:sldMasterIdLst>
<p:sldIdLst>
<p:sldId id="256" r:id="rId3"/>
<p:sldId id="257" r:id="rId4"/>
</p:sldIdLst>
<p:sldSz cx="9144000" cy="6858000" type="screen4x3"/>
<p:notesSz cx="6858000" cy="9144000"/>
<p:defaultTextStyle>
</p:defaultTextStyle>
</p:presentation>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
autoCompressPict \\
ures (Automatically \\
Compress Pictures)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the generating application should automatically compress all pictures \\
for this presentation. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
bookmarkIdSeed \\
(Bookmark ID Seed)
\end{tabular} & \begin{tabular}{l} 
Specifies a seed for generating bookmark IDs to ensure IDs remain unique across the \\
document. This value specifies the number to be used as the ID for the next new \\
bookmark created.
\end{tabular} \\
The possible values for this attribute are defined by the ST_BookmarkIdSeed simple \\
type (§19.7.1).
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
```

<p:presentation conformance="strict">
...
</p:presentation>

``` \\
This document has a conformance attribute value of strict, therefore it conforms to the PML Strict conformance class. end example] \\
The possible values for this attribute are defined by the ST_ConformanceClass simple type (§22.9.2.2).
\end{tabular} \\
\hline embedTrueTypeFo nts (Embed True Type Fonts) & \begin{tabular}{l}
Specifies whether the generating application should automatically embed true type fonts or not. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline firstSlideNum (First Slide Number) & \begin{tabular}{l}
Specifies the first slide number in the presentation. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
removePersonalinf \\
oOnSave (Remove \\
Personal \\
Information on \\
Save)
\end{tabular} & \begin{tabular}{l}
Specifies whether to automatically remove personal information when the presentation document is saved. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline rtl (Right-To-Left Views) & \begin{tabular}{l}
Specifies if the current view of the user interface is oriented right-to-left or left-to-right. The view is right-to-left is this value is set to true, and left-to-right otherwise. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline saveSubsetFonts (Save Subset Fonts) & \begin{tabular}{l}
Specifies to save only the subset of characters used in the presentation when a font is embedded. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline serverZoom (Server Zoom) & \begin{tabular}{l}
Specifies the scaling to be used when the presentation is embedded in another document. The embedded slides are to be scaled by this percentage. \\
The possible values for this attribute are defined by the ST_Percentage simple type ( \(\$ 20.1 .10 .40\) ).
\end{tabular} \\
\hline showSpecialPlsOn TitleSld (Show Header and Footer Placeholders on Titles) & \begin{tabular}{l}
Specifies whether to show the header and footer placeholders on the title slides. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline strictFirstAndLastC & Specifies whether to use strict characters for starting and ending lines of Japanese text. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
hars (Strict First and \\
Last Characters)
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Presentation) is located in §A.3. end note]

\subsection*{19.2.1.27 presentationPr (Presentation-wide Properties)}

This element functions as a parent element within which additional presentation-wide document properties are contained. All properties and their corresponding settings are defined within the child elements.
[Note: The W3C XML Schema definition of this element's content model (CT PresentationProperties) is located in §A.3. end note]

\subsection*{19.2.1.28 prnPr (Printing Properties)}

This element specifies the default printing properties associated with this presentation document.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
clrMode (Print \\
Color Mode)
\end{tabular} & \begin{tabular}{l} 
Specifies the color mode to be used when printing. \\
The possible values for this attribute are defined by the ST_PrintColorMode simple type \\
(§19.7.11).
\end{tabular} \\
\hline \begin{tabular}{l} 
frameSlides (Frame \\
slides when \\
printing)
\end{tabular} & \begin{tabular}{l} 
Specifies whether slides should be framed when printing. When framed, an outline \\
border is printed for each slide. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
hiddenSlides (Print \\
Hidden Slides)
\end{tabular} & \begin{tabular}{l} 
Specifies whether hidden slides should be printed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
prnWhat (Print \\
Output)
\end{tabular} & \begin{tabular}{l} 
Specifies what the default print output is in terms of content layout. \\
The possible values for this attribute are defined by the ST_PrintWhat simple type \\
(§19.7.12).
\end{tabular} \\
\hline \begin{tabular}{l} 
scaleToFitPaper \\
(Scale to Fit Paper \\
when printing)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the print output should be scaled to fit the paper being used. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT PrintProperties) is located in §A.3. end note]

\subsection*{19.2.1.29 regular (Regular Embedded Font)}

This element specifies a regular embedded font that is linked to a parent typeface. Once specified, this regular version of the given typeface name is available for use within the presentation. The actual font data is referenced using a relationships file that contains links to all fonts available. This font data contains font information for each of the characters to be made available.
[Example: Consider the following embedded font with a regular version specified.
<p:embeddedFont>
<p:font typeface="MyFont" pitchFamily="34" charset="0" />
<p:regular r:id="rId2"/>
</p:embeddedFont>
end example]
[Note: Not all characters for a typeface must be stored. It is up to the generating application to determine which characters are to be stored in the corresponding font data files. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location of this embedded font that is referenced in a \\
presentation.
\end{tabular} \\
Namespace: & \\
http://purl.oclc.or & The possible values for this attribute are defined by the ST_RelationshipId simple type \\
g/ooxml/officeDoc \\
ument/relationshi & \((\S 22.8 .2 .1)\). \\
ps & \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedFontDatald) is located in §A.3. end note]

\subsection*{19.2.1.30 showPr (Presentation-wide Show Properties)}

This element functions as a parent element within which all presentation-wide show properties are contained. All properties and their corresponding settings are defined within the child elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
loop (Loop Slide \\
Show)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the slide show should be set to loop at the end. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline showAnimation & Specifies whether slide show animation should be shown when presenting. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
(Show Animation in \\
Slide Show)
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
showNarration \\
(Show Narration in \\
Slide Show)
\end{tabular} & \begin{tabular}{l} 
Specifies whether slide show narration should be played when presenting. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
useTimings (Use \\
Timings in Slide \\
Show)
\end{tabular} & \begin{tabular}{l} 
Specifies whether slide transition timings should be used to advance slides when \\
presenting. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ShowProperties) is located in §A.3. end note]

\subsection*{19.2.1.31 sld (Presentation Slide)}

This element specifies a slide within a slide list. The slide list is used to specify an ordering of slides.
[Example: Consider the following custom show with an ordering of slides.
```

<p:custShowLst>
<p:custShow name="Custom Show 1" id="0">
<p:sldLst>
<p:sld r:id="rId4"/>
<p:sld r:id="rId3"/>
<p:sld r:id="rId2"/>
<p:sld r:id="rId5"/>
</p:sldLst>
</p:custShow>
</p:custShowLst>

```

In the above example the order specified to present the slides is slide 4, then 3, 2 and finally 5 . end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship ID) & \begin{tabular}{l} 
This attribute specifies the relationship id that is used to reference to the actual slide \\
\\
XML file that contains all the information to the slide listed within the slide list. \\
Namespace:
\end{tabular} \\
\begin{tabular}{ll} 
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideRelationshipListEntry) is located in §A.3. end note]

\subsection*{19.2.1.32 sldAll (All Slides)}

This attribute specifies all slides instead of a given range of slides for use within the html publishing properties as well as the show properties.
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.2.1.33 sldId (Slide ID)}

This element specifies a presentation slide that is available within the corresponding presentation. A slide contains the information that is specific to a single slide such as slide-specific shape and text information.
[Example: Consider the following specification of a slide master within a presentation
```

<p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">
<p:sldIdLst>
<p:sldId id="256" r:id="rId3"/>
<p:sldId id="257" r:id="rId4"/>
<p:sldId id="258" r:id="rId5"/>
<p:sldId id="259" r:id="rId6"/>
<p:sldId id="260" r:id="rId7"/>
</p:sldIdLst>
</p:presentation>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location within a presentation of the sld element defining \\
this slide.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline id (Slide Identifier) & \begin{tabular}{l} 
Specifies the slide identifier that is to contain a value that is unique throughout the \\
presentation.
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_SlideId simple type \\
(§19.7.13).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideldListEntry) is located in §A.3. end note]

\subsection*{19.2.1.34 sldIdLst (List of Slide IDs)}

This element specifies a list of identification information for the slides that are available within the corresponding presentation. A slide contains the information that is specific to a single slide such as slidespecific shape and text information.
[Note: The W3C XML Schema definition of this element's content model (CT SlideldList) is located in §A.3. end note]

\subsection*{19.2.1.35 sldLst (List of Presentation Slides)}

This element specifies a list of presentation slides. A presentation slide contains the information that is specific to a single slide such as slide-specific shape and text information.
[Note: The W3C XML Schema definition of this element's content model (CT SlideRelationshipList) is located in §A.3. end note]

\subsection*{19.2.1.36 sldMasterId (Slide Master ID)}

This element specifies a slide master that is available within the corresponding presentation. A slide master is a slide that is specifically designed to be a template for all related child layout slides.
[Example: Consider the following specification of a slide master within a presentation
```

<p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">
<p:sldMasterIdLst>
<p:sldMasterId id="2147483648" r:id="rId1"/>
</p:sldMasterIdLst>
...
</p:presentation>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location within a presentation of the sldMaster element \\
defining this slide master.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l} 
id (Slide Master \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the slide master identifier that is to contain a value that is unique throughout \\
the presentation.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_SlideMasterId simple type \\
(§19.7.16).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideMasterldListEntry) is located in §A.3. end note]

\subsection*{19.2.1.37 sldMasterIdLst (List of Slide Master IDs)}

This element specifies a list of identification information for the slide master slides that are available within the corresponding presentation. A slide master is a slide that is specifically designed to be a template for all related child layout slides.
[Note: The W3C XML Schema definition of this element's content model (CT SlideMasterldList) is located in §A.3. end note]

\subsection*{19.2.1.38 sldRg (Slide Range)}

This element specifies a slide range for use within the html publishing properties as well as the show properties.
[Note: The indexes used here correlate directly with the presentation slide numbers which they reference to. That is the slide range must be greater than or equal to 1 and also less than or equal to the number of slides in the presentation document. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline end (End) & \begin{tabular}{l} 
This attribute defines the end of the index range. \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular} \\
\hline st (Start) & \begin{tabular}{l} 
This attribute defines the start of the index range. \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT IndexRange) is located in §A.3. end note]

\subsection*{19.2.1.39 sldSz (Presentation Slide Size)}

This element specifies the size of the presentation slide surface. Objects within a presentation slide can be specified outside these extents, but this is the size of background surface that is shown when the slide is presented or printed..
[Example: Consider the following specifying of the size of a presentation slide.
```

<p:presentation xmlns:a="..." xmlns:r="..." xmlns:p="..." embedTrueTypeFonts="1">

```

[Note: The W3C XML Schema definition of this element's content model (CT SlideSize) is located in §A.3. end note]

\subsection*{19.2.1.40 smartTags (Smart Tags)}

This element specifies that references to smart tags exist within this document. [Note: For a complete definition of smart tags, which are semantically identical throughout Office Open XML, see §17.5.1. end note] To denote the location of smart tags on individual runs of text, there smart tag identifier attributes are specified for each run to which a smart tag applies. These are further specified in the run property attributes within DrawingML.
[Example: Consider the following PresentationML markup:
```

<p:presentation>
<p:smartTags r:id="rId1"/>
</p:presentation>

```

The presence of the smartTags element specifies that there is smart tag information within the PresentationML package. Individual runs are then inspected for the value of the smtId attribute to determine where smart tags might apply, for example:
```

<p:txBody>
<a:bodyPr/>
<a:lstStyle/>
<a:p>
<a:r>
<a:rPr lang="en-US" dirty="0" smtId="1"/>
<a:t>CNTS</a:t>
</a:r>
<a:endParaRPr lang="en-US" dirty="0"/>
</a:p>
</p:txBody>

```

In the sample above there is a smart tag identifier of 1 specified for this run of text to denote that the text should be inspected for smart tag information. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location of this smart tag.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
\((\S 22.8 .2 .1)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SmartTags) is located in §A.3. end note]

\subsection*{19.2.2 View Properties}

This section contains all properties that pertain to the viewing of the presentation.

\subsection*{19.2.2.1 cSldViewPr (Common Slide View Properties)}

This element functions as a container for slide view properties that are common across multiple view property elements. The specific properties and associated values for these view properties reside within the child elements and attributes.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
showGuides (Show \\
Guides in View)
\end{tabular} & \begin{tabular}{l} 
Specifies whether to show guides when editing the presentation. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
snapToGrid (Snap \\
Objects to Grid)
\end{tabular} & \begin{tabular}{l} 
Specifies whether objects should snap to underlying presentation grid when editing. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
snapToObjects \\
(Snap Objects to \\
Objects)
\end{tabular} & \begin{tabular}{l} 
Specifies whether objects should snap to other objects when editing the presentation. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT CommonSlideViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.2 cViewPr (Common View Properties)}

This element specifies the view properties that are common across multiple view property elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
varScale (Variable \\
Scale)
\end{tabular} & \begin{tabular}{l} 
Specifies that the view content should automatically scale to best fit the current window \\
size.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT CommonViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.3 gridSpacing (Grid Spacing)}

This element specifies the grid spacing that should be used for the grid underlying the presentation document. The grid can be used to align objects on the slide and to display visual positioning cues.
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
cx (Extent Length) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies the length of the extents rectangle in EMUs. This rectangle shall dictate the size of the object as displayed (the result of any scaling to the original object). \\
[Example: Consider a DrawingML object specified as follows:
<... cx="1828800" cy="200000"/> \\
The cx attributes specifies that this object has a height of 1828800 EMUs (English Metric Units). end example] \\
The possible values for this attribute are defined by the ST_PositiveCoordinate simple type (\$20.1.10.41).
\end{tabular} \\
\hline \begin{tabular}{l}
cy (Extent Width) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies the width of the extents rectangle in EMUs. This rectangle shall dictate the size of the object as displayed (the result of any scaling to the original object). \\
[Example: Consider a DrawingML object specified as follows:
< ... cx="1828800" cy="200000"/> \\
The cy attribute specifies that this object has a width of 200000 EMUs (English Metric Units). end example] \\
The possible values for this attribute are defined by the ST_PositiveCoordinate simple type (§20.1.10.41).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT PositiveSize2D) is located in §A.4.1. end note]

\subsection*{19.2.2.4 guide (A Guide)}

This element specifies a guide within the presentation. Guides are lines used for arranging layouts and content and never appear except as an aid in editing slides.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
orient (Guide \\
Orientation)
\end{tabular} & \begin{tabular}{l} 
Specifies the orientation for a guide. \\
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline pos (Guide Position) & \begin{tabular}{l} 
Specifies the position information for a guide. \\
The possible values for this attribute are defined by the ST_Coordinate32 simple type \\
(§20.1.10.17).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Guide) is located in §A.3. end note]

\subsection*{19.2.2.5 guideLst (List of Guides)}

This element specifies a list of guides for a particular view of the presentation.
[Note: The W3C XML Schema definition of this element's content model (CT GuideList) is located in §A.3. end note]

\subsection*{19.2.2.6 normalViewPr (Normal View Properties)}

This element specifies the view properties associated with the normal view mode. The normal view consists of three content regions: the slide itself, a side content region, and a bottom content region. The content of the side content region and bottom content region is determined by the generating application. Properties pertaining to the positioning of the different content regions are stored in this element. This information allows the application to save its view state to the file, so that when reopened the view is in the same state as when the presentation was last saved.

A vertical splitter bar separates the slide from the side content region. A horizontal splitter bar separates the slide from the content region below the slide. If the presentation is set to left-to-right, the side content region is to the left of the slide. If the presentation is set to right-to-left, the side content region is to the right of the slide.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
horzBarState (State \\
of the Horizontal \\
Splitter Bar)
\end{tabular} & \begin{tabular}{l} 
Specifies the state that the horizontal splitter bar should be in when in normal view \\
mode. The region to be maximized or minimized is the side content region. \\
The possible values for this attribute are defined by the ST_SplitterBarState simple type \\
(§19.7.19).
\end{tabular} \\
\hline \begin{tabular}{l} 
preferSingleView \\
(Prefer Single View)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the user prefers to see a full-window single-content region over the \\
standard normal view with three content regions. If enabled, the application can choose \\
to display one of the content regions in the entire window.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
showOutlineIcons \\
(Show Outline Icons \\
in Normal View)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the application should show icons if displaying outline content in any \\
of the content regions of normal view mode. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
snapVertSplitter \\
(Snap Vertical \\
Splitter)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the vertical splitter should snap to a minimized state when the side \\
region is sufficiently small. The specific parameters of this behaviour are left to the \\
generating application.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NormalViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.7 notesTextViewPr (Notes Text View Properties)}

This element functions as a parent element within which all properties associated with the notes text view are contained. All properties are defined within the child elements.
[Note: The W3C XML Schema definition of this element's content model (CT NotesTextViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.8 notesViewPr (Notes View Properties)}

This element functions as a parent element within which all view properties associated with notes are contained. All properties are defined within the child elements.
[Note: The W3C XML Schema definition of this element's content model (CT NotesViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.9 origin (View Origin)}

This element specifies the origin of the slide when it is being viewed with various scaling factors using the scale element.
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline x (X-Axis & Specifies a coordinate on the x-axis. The origin point for this coordinate shall be specified \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline Coordinate) & by the parent XML element. \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
[Example: Consider the following point on a basic wrapping polygon for a DrawingML \\
object: \\
<... \(\mathrm{x}=\) "0" \(\mathrm{y}=\) "100" />
\end{tabular} \\
The x attribute defines an x -coordinate of 0. end example] \\
The possible values for this attribute are defined by the ST_Coordinate simple type \\
(§20.1.10.16).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Point2D) is located in §A.4.1. end note]

\subsection*{19.2.2.10 outlineViewPr (Outline View Properties)}

This element functions as a parent element within which all view properties associated with the outline view mode are contained. All properties are defined within the child elements.

Outline view displays only the textual content of a presentation. The presentation is formatted as an outline, with slide titles as the first level of the outline. Body text on slides is indented below the slide title.
[Note: The W3C XML Schema definition of this element's content model (CT OutlineViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.11 restoredLeft (Normal View Restored Left Properties)}

This element specifies the sizing of the side content region of the normal view, when the region is of a variable restored size (neither minimized nor maximized).
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline autoAdjust (Auto & Specifies whether the size of the side content region should compensate for the new size \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Adjust Normal \\
View)
\end{tabular} & \begin{tabular}{l} 
when resizing the window containing the view within the application. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
sz (Normal View \\
Dimension Size)
\end{tabular} & \begin{tabular}{l} 
Specifies the size of the slide region (width when a child of restoredTop, height when a \\
child of restoredLeft). \\
The possible values for this attribute are defined by the ST_PositiveFixedPercentage \\
simple type (\$20.1.10.44).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NormalViewPortion) is located in §A.3. end note]

\subsection*{19.2.2.12 restoredTop (Normal View Restored Top Properties)}

This element specifies the sizing of the top slide region of the normal view, when the region is of a variable restored size (neither minimized nor maximized).
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
autoAdjust (Auto \\
Adjust Normal \\
View)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the size of the side content region should compensate for the new size \\
when resizing the window containing the view within the application. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
sz (Normal View \\
Dimension Size)
\end{tabular} & \begin{tabular}{l} 
Specifies the size of the slide region (width when a child of restoredTop, height when a \\
child of restoredLeft). \\
The possible values for this attribute are defined by the ST_PositiveFixedPercentage \\
simple type (\$20.1.10.44).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NormalViewPortion) is located in §A.3. end note]

\subsection*{19.2.2.13 scale (View Scale)}

This element specifies the view scaling factors that the presentation was last viewed with.
[Note: The W3C XML Schema definition of this element's content model (CT Scale2D) is located in §A.4.1. end note]

\subsection*{19.2.2.14 sld (Presentation Slide)}

This element specifies a presentation slide and properties specific to the slide's appearance in outline view.
[Example: Consider the following presentation slide that has been collapsed in outline view.
```

 <p:viewPr xmlns:a="..." xmlns:r="..." xmlns:p="..." lastView="outlineView">
 <p:outlineViewPr>
 <p:sldLst>
 <p:sld r:id="rId1" collapse="1"/>
 </p:sldLst>
 ...
 </p:outlineViewPr>
 </p:viewPr>
 end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline collapse (Collapsed) & \begin{tabular}{l} 
Specifies whether this presentation slide is to be shown as collapsed within outline view. \\
That is, all text other than the slide title is not shown to the user. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
id (Relationship \\
Identifier)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship identifier that is used in conjunction with a corresponding \\
relationship file to resolve the location of this presentation slide within a presentation.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OutlineViewSlideEntry) is located in §A.3. end note]

\subsection*{19.2.2.15 sldLst (List of Presentation Slides)}

This element specifies a list of presentation slides. A presentation slide contains the information that is specific to a single slide such as slide-specific shape and text information.
[Note: The W3C XML Schema definition of this element's content model (CT OutlineViewSlideList) is located in §A.3. end note]

\subsection*{19.2.2.16 slideViewPr (Slide View Properties)}

This element functions as a parent element within which all view properties associated with the slide view mode are contained. All properties are defined within the child elements.
[Note: The W3C XML Schema definition of this element's content model (CT SlideViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.17 sorterViewPr (Slide Sorter View Properties)}

This element functions as a parent element within which all view properties associated with the slide sorter view mode are contained. All properties are defined within the child elements.

The slide sorter view displays thumbnails of multiple slides at once; the number of slides and size of thumbnails depends on the scaling factor of the view.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
showFormatting \\
(Show Formatting)
\end{tabular} & \begin{tabular}{l} 
Specifies whether to show associated slide formatting when in slide sorter view mode. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideSorterViewProperties) is located in §A.3. end note]

\subsection*{19.2.2.18 viewPr (Presentation-wide View Properties)}

This element functions as a parent element within which all presentation-wide view properties are contained. All properties and their corresponding settings are defined within the child elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
lastView (Last \\
View)
\end{tabular} & \begin{tabular}{l} 
Specifies the view mode that was used when the presentation document was last saved. \\
The possible values for this attribute are defined by the ST_ViewType simple type \\
\((\S 19.7 .55)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
showComments \\
(Show Comments)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the slide comments should be shown. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ViewProperties) is located in §A.3. end note]

\subsection*{19.3 Slides}

The Slides portion of the PresentationML framework stores all information pertaining specifically to slides of various slide types. These slide types and corresponding parts can be broken down into three distinct parts, namely slides, embedded objects, and programmable tags.

\subsection*{19.3.1 Slides}

Being the main segment of this section of PresentationML, the slides elements encompass all data that is to be contained within a slide. The best way to think of a slide is a container for all data that is to be on that slide. The specific shapes, images and relations within a slide do not come into play here. The elements here pertain to the six different slide types that can be described within PresentationML, namely slide, slide layout, slide master, handout master, notes master and notes slide.

\subsection*{19.3.1.1 bg (Slide Background)}

This element specifies the background appearance information for a slide. The slide background covers the entire slide and is visible where no objects exist and as the background for transparent objects.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
bwMode (Black and \\
White Mode)
\end{tabular} & \begin{tabular}{l} 
Specifies that the background should be rendered using only black and white coloring. \\
That is, the coloring information for the background should be converted to either black \\
or white when rendering the picture.
\end{tabular} \\
[Note: No gray is to be used in rendering this background, only stark black and stark \\
white. end note]
\end{tabular}\(\quad\)\begin{tabular}{l} 
The possible values for this attribute are defined by the ST_BlackWhiteMode simple type \\
(§20.1.10.10).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Background) is located in §A.3. end note]

\subsection*{19.3.1.2 bgPr (Background Properties)}

This element specifies visual effects used to render the slide background. This includes any fill, image, or effects that are to make up the background of the slide.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
shadeToTitle \\
(Shade to Title)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the background of the slide is of a shade to title background type. This \\
kind of gradient fill is on the slide background and changes based on the placement of \\
the slide title placeholder. An example is shown below.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
Click to add title \\
Click to add subtitle \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT BackgroundProperties) is located in §A.3. end note]

\subsection*{19.3.1.3 bgRef (Background Style Reference)}

This element specifies the slide background is to use a fill style defined in the style matrix. The idx attribute refers to the index of a background fill style or fill style within the presentation's style matrix, defined by the fmtScheme element. A value of 0 or 1000 indicates no background, values 1-999 refer to the index of a fill style within the fillStyleLst element, and values 1001 and above refer to the index of a background fill style within the bgFillStyleLst element. The value 1001 corresponds to the first background fill style, 1002 to the second background fill style, and so on.
[Example:
```

<p:bgRef idx="2">
<a:schemeClr val="bg2"/>
</p:bgRef>

```

The above code indicates a slide background with the style's second fill style using the second background color of the color scheme.
```

end example]

```

\section*{[Example:}
```

<p:bgRef idx="1001">
<a:schemeClr val="bg2"/>
</p:bgRef>

```

The above code indicates a slide background with the style's first background fill style using the second background color of the color scheme.
```

end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline idx (Style Matrix & Specifies the style matrix index of the style referred to. \\
Index) & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_StyleMatrixColumnIndex \\
simple type (§20.1.10.56).
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT StyleMatrixReference) is located in §A.4.1. end note]

\subsection*{19.3.1.4 blipFill (Picture Fill)}

This element specifies the kind of picture fill that the picture object has. Because a picture has a picture fill already by default, it is possible to have two fills specified for a picture object. An example of this is shown below.
[Example: Consider the picture below that has a blip fill applied to it. The image used to fill this picture object has transparent pixels instead of white pixels.
```

<p:pic>
<p:blipFill>
<a:blip r:embed="rId2"/>
<a:stretch>
<a:fillRect/>
</a:stretch>
</p:blipFill>
...
</p:pic>

```


The above picture object is shown as an example of this fill type. end example]
[Example: Consider now the same picture object but with an additional gradient fill applied within the shape properties portion of the picture.
```

<p:pic>
...
<p:blipFill>
<a:blip r:embed="rId2"/>
<a:stretch>
<a:fillRect/>
</a:stretch>
</p:blipFill>
<p:spPr>
<a:gradFill>
<a:gsLst>
<a:gs pos="0">
<a:schemeClr val="tx2">
<a:shade val="50000"/>
</a:schemeClr>
</a:gs>
<a:gs pos="39999">
<a:schemeClr val="tx2">
<a:tint val="20000"/>
</a:schemeClr>
</a:gs>
<a:gs pos="70000">
<a:srgbClr val="C4D6EB"/>
</a:gs>
<a:gs pos="100000">
<a:schemeClr val="bg1"/>

```
```

 </a:gs>
 </a:gsLst>
 </a:gradFill>
 </p:spPr>
 </p:pic>
    ```


The above picture object is shown as an example of this double fill type. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dpi (DPI Setting) & \begin{tabular}{l} 
Specifies the DPI (dots per inch) used to calculate the size of the blip. If not present or \\
zero, the DPI in the blip is used.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
[Note: This attribute is primarily used to keep track of the picture quality within a \\
document. There are different levels of quality needed for print than on-screen viewing \\
and thus a need to track this information. end note] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
rotWithShape \\
(Rotate With Shape)
\end{tabular} & \begin{tabular}{l} 
Specifies that the fill should rotate with the shape. That is, when the shape that has been \\
filled with a picture and the containing shape (say a rectangle) is transformed with a \\
rotation then the fill is transformed with the same rotation.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT BlipFillProperties) is located in §A.4.1. end note]

\subsection*{19.3.1.5 bodyStyle (Slide Master Body Text Style)}

This element specifies the text formatting style for all body text within a master slide. This formatting is used on all body text within presentation slides related to this master. The text formatting is specified by utilizing the DrawingML framework just as within a regular presentation slide. Within the bodyStyle element there can be many different style types defined as there are different kinds of text stored within the body of a slide.
[Note: The W3C XML Schema definition of this element's content model (CT TextListStyle) is located in §A.4.1. end note]

\subsection*{19.3.1.6 clrMap (Color Scheme Map)}

This element specifies the mapping layer that transforms one color scheme definition to another. Each attribute represents a color name that can be referenced in this master, and the value is the corresponding color in the theme.
[Example: Consider the following mapping of colors that applies to a slide master:
```

<p:clrMap bg1="dk1" tx1="lt1" bg2="dk2" tx2="lt2" accent1="accent1"
accent2="accent2" accent3="accent3" accent4="accent4" accent5="accent5"
accent6="accent6" hlink="hlink" folHlink="folHlink"/>

```
end example]
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
accent1 (Accent 1) \\
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
\(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the accent 1 color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
accent2 (Accent 2) \\
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
\(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the accent 2 color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
accent3 (Accent 3) \\
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
\(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the accent 3 color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline accent4 (Accent 4) & Specifies a color defined which is associated as the accent 4 color. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14). \\
\hline \begin{tabular}{l}
accent5 (Accent 5) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the accent 5 color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
accent6 (Accent 6) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the accent 6 color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
bg1 (Background 1) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
A color defined which is associated as the first background color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
bg2 (Background 2) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the second background color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
folHlink (Followed Hyperlink) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the color for a followed hyperlink. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
hlink (Hyperlink) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the color for a hyperlink. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple type (§20.1.10.14).
\end{tabular} \\
\hline \begin{tabular}{l}
tx1 (Text 1) \\
Namespace:
\end{tabular} & \begin{tabular}{l}
Specifies a color defined which is associated as the first text color. \\
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & type (§20.1.10.14). \\
\hline tx2 (Text 2) & Specifies a color defined which is associated as the second text color. \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_ColorSchemeIndex simple \\
type (§20.1.10.14).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT ColorMapping) is located in §A.4.1. end note]

\subsection*{19.3.1.7 clrMapOvr (Color Scheme Map Override)}

This element provides a mechanism with which to override the color schemes listed within the ClrMap element. If the masterClrMapping element is present, the color scheme defined by the master is used. If the overrideClrMapping element is present, it defines a new color scheme specific to the parent notes slide, presentation slide, or slide layout.
[Note: The W3C XML Schema definition of this element's content model (CT ColorMappingOverride) is located in §A.4.1. end note]

\subsection*{19.3.1.8 cNvCxnSpPr (Non-Visual Connector Shape Drawing Properties)}

This element specifies the non-visual drawing properties specific to a connector shape. This includes information specifying the shapes to which the connector shape is connected.
[Note: The W3C XML Schema definition of this element's content model (CT NonVisualConnectorProperties) is located in §A.4.1. end note]

\subsection*{19.3.1.9 cNvGraphicFramePr (Non-Visual Graphic Frame Drawing Properties)}

This element specifies the non-visual drawing properties for a graphic frame. These non-visual properties are properties that the generating application would utilize when rendering the slide surface.
[Note: The W3C XML Schema definition of this element's content model (CT NonVisualGraphicFrameProperties) is located in §A.4.1. end note]

\subsection*{19.3.1.10 cNvGrpSpPr (Non-Visual Group Shape Drawing Properties)}

This element specifies the non-visual drawing properties for a group shape. These non-visual properties are properties that the generating application would utilize when rendering the slide surface.
[Note: The W3C XML Schema definition of this element's content model (CT NonVisualGroupDrawingShapeProps) is located in §A.4.1. end note]

\subsection*{19.3.1.11 cNvPicPr (Non-Visual Picture Drawing Properties)}

This element specifies the non-visual properties for the picture canvas. These properties are to be used by the generating application to determine how certain properties are to be changed for the picture object in question.
[Example: Consider the following DrawingML.
```

 <p:pic>
 ...
 <p:nvPicPr>
 <p:cNvPr id="4" name="Lilly_by_Lisher.jpg"/>
 <p:cNvPicPr>
 <a:picLocks noChangeAspect="1"/>
 </p:cNvPicPr>
 <p:nvPr/>
 </p:nvPicPr>
 ..
 </p:pic>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \(\begin{array}{l}\text { preferRelativeResi } \\
\text { ze (Relative Resize } \\
\text { Preferred) }\end{array}\) & \(\begin{array}{l}\text { Specifies if the user interface should show the resizing of the picture based on the } \\
\text { picture's current size or its original size. If this attribute is set to true, then scaling is } \\
\text { relative to the original picture size as opposed to the current picture size. }\end{array}\) \\
\(\begin{array}{l}\text { Namespace: } \\
\text { http://purl.oclc.or } \\
\text { g/ooxml/drawing } \\
\text { ml/main }\end{array}\) & \(\begin{array}{l}\text { [Example: Consider the case where a picture has been resized within a document and is } \\
\text { now 50\% of the originally inserted picture size. Now if the user chooses to make a later } \\
\text { adjustment to the size of this picture within the generating application, then the value of } \\
\text { this attribute should be checked. }\end{array}\) \\
If this attribute is set to true then a value of 50\% is shown. Similarly, if this attribute is set \\
to false, then a value of 100\% should be shown because the picture has not yet been \\
resized from its current (smaller) size. end example]
\end{tabular}\(\}\)\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NonVisualPictureProperties) is located in §A.4.1. end note]

\subsection*{19.3.1.12 cNvPr (Non-Visual Drawing Properties)}

This element specifies non-visual canvas properties. This allows for additional information that does not affect the appearance of the picture to be stored.
[Example: Consider the following DrawingML.
```

 <p:pic>
 ..
 <p:nvPicPr>
 <p:cNvPr id="4" name="Lilly_by_Lisher.jpg"/>
 </p:nvPicPr>
 ..
 </p:pic>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \(\begin{array}{l}\text { descr (Alternative } \\
\text { Text for Object) }\end{array}\) & \(\begin{array}{l}\text { Specifies alternative text for the current DrawingML object, for use by assistive } \\
\text { technologies or applications which do not display the current object. } \\
\text { http://purl.oclc.or } \\
\text { g/ooxml/drawing } \\
\text { ml/main }\end{array}\) \\
If this element is omitted, then no alternative text is present for the parent object. \\
[Example: Consider a DrawingML object defined as follows: \\
<... descr="A picture of a bowl of fruit" >
\end{tabular}\(]\)\begin{tabular}{l} 
The descr attribute contains alternative text which can be used in place of the actual \\
DrawingML object. end example] \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
Identifier) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
document. This ID can be used to assist in uniquely identifying this object so that it can be referred to by other parts of the document. \\
If multiple objects within the same document share the same id attribute value, then the document shall be considered non-conformant. \\
[Example: Consider a DrawingML object defined as follows:
<... id="10" ... > \\
The id attribute has a value of 10 , which is the unique identifier for this DrawingML object. end example] \\
The possible values for this attribute are defined by the ST_DrawingElementId simple type (§20.1.10.21).
\end{tabular} \\
\hline \begin{tabular}{l}
name (Name) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies the name of the object. [Note: Typically, this is used to store the original file name of a picture object. end note] \\
[Example: Consider a DrawingML object defined as follows:
< ... name="foo.jpg" > \\
The name attribute has a value of foo.jpg, which is the name of this DrawingML object. end example] \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
title (Title) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies the title (caption) of the current DrawingML object. \\
If this attribute is omitted, then no title text is present for the parent object. \\
[Example: Consider a DrawingML object defined as follows: \\
<... title="Process Flow Diagram"> \\
end example] \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NonVisualDrawingProps) is located in §A.4.1. end note]

\subsection*{19.3.1.13 cNvSpPr (Non-Visual Drawing Properties for a Shape)}

This element specifies the non-visual drawing properties for a shape. These properties are to be used by the generating application to determine how the shape should be dealt with
[Example: Consider the shape that has a shape lock applied to it.
```

<p:sp>
<p:nvSpPr>
<p:cNvPr id="2" name="Rectangle 1"/>
<p:cNvSpPr>
<a:spLocks noGrp="1"/>
</p:cNvSpPr>
</p:nvSpPr>
...
</p:sp>

```

This shape lock is stored within the non-visual drawing properties for this shape. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline txBox (Text Box) & \begin{tabular}{l} 
Specifies that the corresponding shape is a text box and thus should be treated as such \\
by the generating application. If this attribute is omitted then it is assumed that the \\
corresponding shape is not specifically a text box.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
[Note: Because a shape is not specified to be a text box does not mean that it cannot \\
have text attached to it. A text box is merely a specialized shape with specific properties. \\
end note]
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NonVisualDrawingShapeProps) is located in §A.4.1. end note]

\subsection*{19.3.1.14 contentPart (Content Part)}

This element specifies a reference to XML content in a format not defined by ISO/IEC 29500. [Note: This part allows the native use of other commonly used interchange formats, such as:
- MathML (http://www.w3.org/TR/MathML2/)
- SMIL (http://www.w3.org/TR/REC-smil/)
- SVG (http://www.w3.org/TR/SVG11/)
end note]

The relationship type of the explicit relationship specified by this element shall be http://purl.oclc.org/ooxml/officeDocument/relationships/customXml and have a TargetMode attribute value of Internal. If an application cannot process content of the content type specified by the targeted part, then it should continue to process the file. If possible, it should also provide some indication that unknown content was not imported.
[Note: For better interoperability, only standard XML formats should be used. end note]
[Example: Consider a PresentationML document which includes the following SMIL markup in a part named smil1.xml:
<!--
Copyright: Copyright 1998-2001 W3C (MIT, INRIA, Keio), All Rights
Reserved.
See http://www.w3.org/Consortium/Legal/.
Author: Aaron Cohen (Intel)
Version: February 7, 2001
Module: Animation Module
Feature: animation
File Name: animation-add-BE-05.smil
Media Components: none
Expected Behavior: Nine red rectangles numbered 1 to 9 shrink to squares
over 2 s as follows:
at 2s \#1 shrinks.
at 5s \#2 shrinks, 1s after \#1 completes
at 8s \#3 shrinks.
\#4 shrinks when it is clicked on.
\#5 shrinks 1 s after it is clicked on.
\#6 shrinks 2 s after it is clicked on.
\#7 shrinks when the accesskey '1' is pressed.
\#8 should be shrunk from 0s since it's wallclock time is in
the past.
\#9 will not shrink unless a DOM call causes it to begin.
-->
<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<head>
<layout>
<root-layout width="640" height="480" backgroundColor="white"/>
<region id="whole" width="640" height="480" z-index="0"/>
<region id="rect1" top="50px" left="90px" height="50px" width="30px"
backgroundColor="red" z-index="1"/> <region id="rect2" top="50px" left="234px" height="50px" width="30px"
backgroundColor="red" z-index="1"/>
<region id="rect4" top="160px" left="90px" height="50px" width="30px" backgroundColor="transparent" z-index="1"/> <region id="rect5" top="160px" left="234px" height="50px" width="30px" backgroundColor="transparent" z-index="1"/>
<region id="rect6" top="160px" left="380px" height="50px" width="30px" backgroundColor="transparent" z-index="1"/>
<region id="rect7" top="270px" left="90px" height="50px" width="30px" backgroundColor="red" z-index="1"/>
<region id="rect8" top="270px" left="234px" height="50px" width="30px" backgroundColor="red" z-index="1"/>
<region id="rect9" top="270px" left="380px" height="50px" width="30px"
backgroundColor="red" z-index="1"/>
</layout>
</head>
<!-- Copyright 1998-2001 W3C (MIT, INRIA, Keio), All Rights Reserved.
See http://www.w3.org/Consortium/Legal/. -->
<body>
<par dur="indefinite">
<img src="../images/animation-timing-BE-05.jpg" region="whole"/> <animate id="anim1" targetElement="rect1" attributeName="height" from="50" to="25" begin="2s" dur="2s" fill="freeze"/>
<animate id="anim2" targetElement="rect2" attributeName="height" from="50" to="25" begin="anim1.end+1s" dur="2s" fill="freeze"/>
<brush id="brush4" color="red" region="rect4" height="50px" width="30px"/> <animate id="anim4" targetElement="brush4" attributeName="height" from="50" to="25" begin="brush4.activateEvent" dur="2s" fill="freeze"/> <brush id="brush5" color="red" region="rect5" height="50px" width="30px"/> <animate id="anim5" targetElement="brush5" attributeName="height"
```

from="50" to="25" begin="brush5.activateEvent+1s" dur="2s" fill="freeze"/>

```
    <brush id="brush6" color="red" region="rect6" height="50px" width="30px"/>
    <animate id="anim6a" targetElement="brush6" attributeName="width"
repeatCount="3" from="30" to="30" begin="brush6.activateEvent" dur="1s"
fill="freeze"/>
    <animate id="anim6b" targetElement="brush6" attributeName="height"
from="50" to="25" begin="anim6a.repeat(2)" dur="2s" fill="freeze"/>
    <animate id="anim7" targetElement="rect7" attributeName="height" from="50"
to="25" begin="accesskey(1)" dur="2s" fill="freeze"/>
            <animate id="anim8" targetElement="rect8" attributeName="height" from="50"
to="25" begin="wallclock(2000-01-01T00:00:00Z)" dur="2s" fill="freeze"/>
            <animate id="anim9" targetElement="rect9" attributeName="width" from="30"
to="30" begin="indefinite" dur="1s" fill="freeze"/>
        </par>
    </body>
```

</smil>

```

A Slide Part would reference this content as follows:
```

<p:spTree>
<p:contentPart r:id="smil01"/>
...
</p:spTree>

```

The contentPart element specifies that the content targeted by the relationship with an ID of smil01 is part of the PresentationML document. Examining the contents of the corresponding relationship part item, we can see the targets for that relationship:
```

<Relationships ... >
..
<Relationship Id="smil01" TargetMode="Internal"
Type="http://purl.oclc.org/ooxml/officeDocument/relationships/customXml"
Target="smil1.xml" />
</Relationships>

```

The corresponding relationship part item shows that the SMIL content is located next to the slide and is named smil1.xml. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ ttributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship to \\
Part)
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship ID to a content part. \\
[Example: Consider an XML element which has the following id attribute:
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
<... r:id="rId1" /> \\
The markup specifies the associated relationship part with relationship ID rId1 contains \\
the corresponding relationship information for the parent XML element. end example]
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model ( \(\underline{C T}\) Rel ) is located in §A.3. end note]

\subsection*{19.3.1.15 controls (List of controls)}

This element specifies a list of embedded controls for the corresponding slide. Custom embedded controls can be embedded on slides.
[Note: The W3C XML Schema definition of this element's content model (CT ControlList) is located in §A.3. end note]

\subsection*{19.3.1.16 cSld (Common Slide Data)}

This element specifies a container for slide information that is relevant to all of the slide types. All slides share a common set of properties that is independent of the slide type; the description of these properties for any particular slide is stored within the slide's cSld container. Slide data specific to the slide type indicated by the parent element is stored elsewhere.
[Note: The actual data in cSld describe only the particular parent slide; it is only the kind of information stored that is common across all slides. end note]
[Example: Consider the following PresentationML slide
```

<p:sld>
<p:cSld>
<p:spTree>
</p:spTree>
</p:cSld>
..
</p:sld>

```

As the above example shows, the shape tree of a slide (spTree) is a child element of cSld because all slide types can contain a shape tree. Other slide properties specific to the slide type (such as transitions for sld slides) are specified elsewhere. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline name (Name) & \begin{tabular}{l} 
Specifies the slide name property that is used to further identify this unique configuration \\
of common slide data. This might be used to aid in distinguishing different slide layouts or \\
various other slide types.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT CommonSlideData) is located in §A.3. end note]

\subsection*{19.3.1.17 custData (Customer Data)}

This element specifies customer data which allows for the specifying and persistence of customer specific data within the presentation.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship ID) & \begin{tabular}{l} 
This attribute specifies the relationship id for referencing other resources outside the \\
scope of the current PresentationML file.
\end{tabular} \\
\begin{tabular}{ll} 
Namespace: & http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[ Note: The W3C XML Schema definition of this element's content model (CT CustomerData) is located in §A.3. end note]

\subsection*{19.3.1.18 custDataLst (Customer Data List)}

This element allows for the specifying of customer defined data within the PresentationML framework.
References to custom data or tags can be defined within this list.
[Note: The W3C XML Schema definition of this element's content model (CT CustomerDataList) is located in §A.3. end note]

\subsection*{19.3.1.19 cxnSp (Connection Shape)}

This element specifies a connection shape that is used to connect two sp elements. Once a connection is specified using a cxnSp, it is left to the generating application to determine the exact path the connector takes. That is the connector routing algorithm is left up to the generating application as the desired path might be different depending on the specific needs of the application.

[Example: Consider the following connector shape that connects two regular shapes.
```

<p:spTree>
..
<p:sp>
<p:nvSpPr>
<p:cNvPr id="1" name="Rectangle 1"/>
<p:cNvSpPr/>
<p:nvPr/>
</p:nvSpPr>
</p:sp>
<p:sp>
<p:nvSpPr>

```
```

 <p:cNvPr id="2" name="Rectangle 2"/>
 <p:cNvSpPr/>
 <p:nvPr/>
 </p:nvSpPr>
 </p:sp>
 <p:cxnSp>
 <p:nvCxnSpPr>
 <p:cNvPr id="3" name="Elbow Connector 3"/>
 <p:cNvCxnSpPr>
 <a:stCxn id="1" idx="3"/>
 <a:endCxn id="2" idx="1"/>
 </p:cNvCxnSpPr>
 <p:nvPr/>
 </p:nvCxnSpPr>
 ..
 </p:cxnSp>
 </p:spTree>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT Connector) is located in §A.3. end note]

\subsection*{19.3.1.20 extLst (Extension List with Modification Flag)}

This element specifies the extension list with modification ability within which all future extensions of element type ext are defined. The extension list along with corresponding future extensions is used to extend the storage capabilities of the PresentationML framework. This allows for various new kinds of data to be stored natively within the framework.
[Note: Using this extLst element allows the generating application to store whether this extension property has been modified. end note]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline mod (Modify) & \begin{tabular}{l} 
This attribute specifies whether the data contained within this element has been \\
modified and should thus be processed again by the generating application.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ExtensionListModify) is located in §A.3. end note]

\subsection*{19.3.1.21 graphicFrame (Graphic Frame)}

This element specifies the existence of a graphics frame. This frame contains a graphic that was generated by an external source and needs a container in which to be displayed on the slide surface.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
bwMode (Black and \\
White Mode)
\end{tabular} & \begin{tabular}{l} 
Specifies how the graphical object should be rendered, using color, black or white, \\
or grayscale.
\end{tabular} \\
Namespace: \\
\(\ldots /\) drawingmI/2006/main & \begin{tabular}{l} 
[Note: This does not mean that the graphical object itself is stored with only black \\
and white or grayscale information. This attribute instead sets the rendering mode \\
that the graphical object uses. end note]
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the ST_BlackWhiteMode simple \\
type (§20.1.10.10).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT GraphicalObjectFrame) is located in §A.3. end note]

\subsection*{19.3.1.22 grpSp (Group Shape)}

This element specifies a group shape that represents many shapes grouped together. This shape is to be treated just as if it were a regular shape but instead of being described by a single geometry it is made up of all the shape geometries encompassed within it. Within a group shape each of the shapes that make up the group are specified just as they normally would. The idea behind grouping elements however is that a single transform can apply to many shapes at the same time.
[Example: Consider the following group shape.
```

<p:grpSp>
<p:nvGrpSpPr>
<p:cNvPr id="10" name="Group 9"/>
<p:cNvGrpSpPr/>
<p:nvPr/>
</p:nvGrpSpPr>
<p:grpSpPr>
<a:xfrm>
<a:off x="838200" y="990600"/>
<a:ext cx="2426208" cy="978408"/>
<a:chOff x="838200" y="990600"/>
<a:chExt cx="2426208" cy="978408"/>
</a:xfrm>
</p:grpSpPr>
<p:sp>

```
```

 </p:sp>
 <p:sp>
 ..
 </p:sp>
 <p:sp>
 ...
 </p:sp>
 </p:grpSp>

```

In the above example we see three shapes specified within a single group. These three shapes have their position and sizes specified just as they normally would within the shape tree. The generating application should apply the transformation after the bounding box for the group shape has been calculated. end example]
[Note: The W3C XML Schema definition of this element's content model (CT GroupShape) is located in §A.3. end note]

\subsection*{19.3.1.23 grpSpPr (Group Shape Properties)}

This element specifies the properties that are to be common across all of the shapes within the corresponding group. If there are any conflicting properties within the group shape properties and the individual shape properties then the individual shape properties should take precedence.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
bwMode (Black and \\
White Mode)
\end{tabular} & \begin{tabular}{l} 
Specifies that the group shape should be rendered using only black and white coloring. \\
That is the coloring information for the group shape should be converted to either black \\
or white when rendering the corresponding shapes.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & No gray is to be used in rendering this image, only stark black and stark white. \\
& \begin{tabular}{l} 
[Note: This does not mean that the group shapes themselves are stored with only black \\
and white color information. This attribute instead sets the rendering mode that the \\
shapes use when rendering. end note]
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_BlackWhiteMode simple type \\
(§20.1.10.10).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT GroupShapeProperties) is located in §A.4.1. end note]

\subsection*{19.3.1.24 handoutMaster (Handout Master)}

This element specifies an instance of a handout master slide. Within a handout master slide are contained all elements that describe the objects and their corresponding formatting for within a handout slide. Within a handout master slide the cSld element specifies the common slide elements such as shapes and their attached
text bodies. There are other properties within a handout master slide but cSld encompasses the majority of the intended purpose for a handoutMaster slide.
[Note: The W3C XML Schema definition of this element's content model (CT HandoutMaster) is located in §A.3. end note]

\subsection*{19.3.1.25 hf (Header/Footer information for a slide master)}

This element specifies the header and footer information for a slide. Headers and footers consist of placeholders for text that should be consistent across all slides and slide types, such as a date and time, slide numbering, and custom header and footer text.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
dt (Date/Time \\
Placeholder)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the Date/Time placeholder is enabled for this master. If this attribute is \\
not specified, a value of true should be assumed by the generating application. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
ftr (Footer \\
Placeholder)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the Footer placeholder is enabled for this master. If this attribute is not \\
specified, a value of true should be assumed by the generating application. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
hdr (Header \\
Placeholder)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the Header placeholder is enabled for this master. If this attribute is \\
not specified, a value of true should be assumed by the generating application.
\end{tabular} \\
\hline \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
sldNum (Slide \\
Number \\
Placeholder)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the slide number placeholder is enabled. If this attribute is not \\
specified, a value of true should be assumed by the generating application.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT HeaderFooter) is located in §A.3. end note]

\subsection*{19.3.1.26 notes (Notes Slide)}

This element specifies the existence of a notes slide along with its corresponding data. Contained within a notes slide are all the common slide elements along with addition properties that are specific to the notes element.
[Example: Consider the following PresentationML notes slide
```

<p:notes>
<p:cSld>

```
```

 ..
 </p:cSld>
 ...
 </p:notes>

```

In the above example a notes element specifies the existence of a notes slide with all of its parts. Notice the cSld element, that specifies the common elements that can appear on any slide type and then any elements specify additional non-common properties for this notes slide. end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
showMasterPhAni \\
m (Show Master \\
Placeholder \\
Animations)
\end{tabular} & \begin{tabular}{l} 
Specifies whether or not to display animations on placeholders from the master slide. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
showMasterSp \\
(Show Master \\
Shapes)
\end{tabular} & Specifies if shapes on the master slide should be shown on slides or not. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT NotesSlide) is located in §A.3. end note]

\subsection*{19.3.1.27 notesMaster (Notes Master)}

This element specifies an instance of a handout master slide. Within a handout master slide are contained all elements that describe the objects and their corresponding formatting for within a handout slide. Within a handout master slide the cSld element specifies the common slide elements such as shapes and their attached text bodies. There are other properties within a handout master slide but cSld encompasses the majority of the intended purpose for a handoutMaster slide.
[Note: The W3C XML Schema definition of this element's content model (CT NotesMaster) is located in §A.3. end note]

\subsection*{19.3.1.28 notesStyle (Notes Text Style)}

This element specifies the text formatting style for the all other text within a notes slide. This formatting is used on all text within the corresponding notes slides. The text formatting is specified by utilizing the DrawingML framework just as within a regular presentation slide. Within the notesStyle element there can be many different style types defined as there are different kinds of text stored within a notes slide.
[Note: The W3C XML Schema definition of this element's content model (CT TextListStyle) is located in §A.4.1. end note]

\subsection*{19.3.1.29 nvCxnSpPr (Non-Visual Properties for a Connection Shape)}

This element specifies all non-visual properties for a connection shape. This element is a container for the nonvisual identification properties, shape properties and application properties that are to be associated with a connection shape. This allows for additional information that does not affect the appearance of the connection shape to be stored.
[Note: The W3C XML Schema definition of this element's content model (CT ConnectorNonVisual) is located in §A.3. end note]

\subsection*{19.3.1.30 nvGraphicFramePr (Non-Visual Properties for a Graphic Frame)}

This element specifies all non-visual properties for a graphic frame. This element is a container for the non-visual identification properties, shape properties and application properties that are to be associated with a graphic frame. This allows for additional information that does not affect the appearance of the graphic frame to be stored.
[Note: The W3C XML Schema definition of this element's content model (CT GraphicalObjectFrameNonVisual) is located in §A.3. end note]

\subsection*{19.3.1.31 nvGrpSpPr (Non-Visual Properties for a Group Shape)}

This element specifies all non-visual properties for a group shape. This element is a container for the non-visual identification properties, shape properties and application properties that are to be associated with a group shape. This allows for additional information that does not affect the appearance of the group shape to be stored.
[Note: The W3C XML Schema definition of this element's content model (CT GroupShapeNonVisual) is located in §A.3. end note]

\subsection*{19.3.1.32 nvPicPr (Non-Visual Properties for a Picture)}

This element specifies all non-visual properties for a picture. This element is a container for the non-visual identification properties, shape properties and application properties that are to be associated with a picture. This allows for additional information that does not affect the appearance of the picture to be stored.
[Example: Consider the following PresentationML.
```

<p:pic>
..
<p:nvPicPr>
</p:nvPicPr>
..
</p:pic>
end example]

```
[ Note: The W3C XML Schema definition of this element's content model (CT PictureNonVisual) is located in §A.3. end note]

\subsection*{19.3.1.33 nvPr (Non-Visual Properties)}

This element specifies non-visual properties for objects. These properties include multimedia content associated with an object and properties indicating how the object is to be used or displayed in different contexts.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
isPhoto (Is a Photo \\
Album)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the picture belongs to a photo album and should thus be included \\
when editing a photo album within the generating application. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
userDrawn (Is User \\
Drawn)
\end{tabular} & \begin{tabular}{l} 
Specifies if the corresponding object has been drawn by the user and should thus not be \\
deleted. This allows for the flagging of slides that contain user drawn data.
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model
(CT ApplicationNonVisualDrawingProps) is located in §A.3. end note]

\subsection*{19.3.1.34 nvSpPr (Non-Visual Properties for a Shape)}

This element specifies all non-visual properties for a shape. This element is a container for the non-visual identification properties, shape properties and application properties that are to be associated with a shape. This allows for additional information that does not affect the appearance of the shape to be stored.
[Note: The W3C XML Schema definition of this element’s content model (CT ShapeNonVisual) is located in §A.3. end note]

\subsection*{19.3.1.35 otherStyle (Slide Master Other Text Style)}

This element specifies the text formatting style for the all other text within a master slide. This formatting is used on all text not covered by the titleStyle or bodyStyle elements within related presentation slides. The text formatting is specified by utilizing the DrawingML framework just as within a regular presentation slide. Within the otherStyle element there can be many different style types defined as there are different kinds of text stored within a slide.
[Note: The otherStyle element is to be used for specifying the text formatting of text within a slide shape but not within a text box. Text box styling is handled from within the bodyStyle element. end note]
[Note: The W3C XML Schema definition of this element's content model (CT TextListStyle) is located in §A.4.1. end note]

\subsection*{19.3.1.36 ph (Placeholder Shape)}

This element specifies that the corresponding shape should be represented by the generating application as a placeholder. When a shape is considered a placeholder by the generating application it can have special properties to alert the user that they can enter content into the shape. Different placeholder types are allowed and can be specified by using the placeholder type attribute for this element.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
hasCustomPrompt \\
(Placeholder has \\
custom prompt)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the corresponding placeholder should have a custom prompt or not. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
idx (Placeholder \\
Index)
\end{tabular} & \begin{tabular}{l} 
Specifies the placeholder index. This is used when applying templates or changing \\
layouts to match a placeholder on one template/master to another. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
orient (Placeholder \\
Orientation)
\end{tabular} & \begin{tabular}{l} 
Specifies the orientation of a placeholder. \\
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline sz (Placeholder Size) & \begin{tabular}{l} 
Specifies the size of a placeholder. \\
The possible values for this attribute are defined by the ST_PlaceholderSize simple type \\
(§19.7.9).
\end{tabular} \\
\hline \begin{tabular}{l} 
type (Placeholder \\
Type)
\end{tabular} & \begin{tabular}{l} 
Specifies what content type a placeholder is intended to contain. \\
The possible values for this attribute are defined by the ST_PlaceholderType simple type \\
(§19.7.10).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Placeholder) is located in §A.3. end note]

\subsection*{19.3.1.37 pic (Picture)}

This element specifies the existence of a picture object within the document.
[Example: Consider the following PresentationML that specifies the existence of a picture within a document. This picture can have non-visual properties, a picture fill as well as shape properties attached to it.
```

<p:pic>
<p:nvPicPr>
<p:cNvPr id="4" name="lake.JPG" descr="Picture of a Lake" />
<p:cNvPicPr>
<a:picLocks noChangeAspect="1"/>

```
```

 </p:cNvPicPr>
 <p:nvPr/>
 </p:nvPicPr>
 <p:blipFill>
 </p:blipFill>
 <p:spPr>
 ..
 </p:spPr>
 </p:pic>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT Picture) is located in §A.3. end note]

\subsection*{19.3.1.38 sld (Presentation Slide)}

This element specifies a slide within a slide list. The slide list is used to specify an ordering of slides.
[Example: Consider the following custom show with an ordering of slides.
```

<p:custShowLst>
<p:custShow name="Custom Show 1" id="0">
<p:sldLst>
<p:sld r:id="rId4"/>
<p:sld r:id="rId3"/>
<p:sld r:id="rId2"/>
<p:sld r:id="rId5"/>
</p:sldLst>
</p:custShow>
</p:custShowLst>

```

In the above example the order specified to present the slides is slide 4, then 3, 2 and finally 5 . end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
show (Show Slide in \\
Slide Show)
\end{tabular} & \begin{tabular}{l} 
Specifies that the current slide should be shown in slide show. If this attribute is omitted \\
then a value of true is assumed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
showMasterPhAni \\
m (Show Master \\
Placeholder
\end{tabular} & \begin{tabular}{l} 
Specifies whether or not to display animations on placeholders from the master slide. \\
The possible values for this attribute are defined by the W3C XML Schema boolean
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline Animations) & datatype. \\
\hline \begin{tabular}{l} 
showMasterSp \\
(Show Master \\
Shapes)
\end{tabular} & Specifies if shapes on the master slide should be shown on slides or not. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Slide) is located in §A.3. end note]

\subsection*{19.3.1.39 sldLayout (Slide Layout)}

This element specifies an instance of a slide layout. The slide layout contains in essence a template slide design that can be applied to any existing slide. When applied to an existing slide all corresponding content should be mapped to the new slide layout.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
matchingName \\
(Matching Name)
\end{tabular} & \begin{tabular}{l} 
Specifies a name to be used in place of the name attribute within the cSld element. This \\
is used for layout matching in response to layout changes and template applications. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
preserve (Preserve \\
Slide Layout)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the corresponding slide layout is deleted when all the slides that follow \\
that layout are deleted. If this attribute is not specified then a value of false should be \\
assumed by the generating application. This would mean that the slide would in fact be \\
deleted if no slides within the presentation were related to it.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT SlideLayout) is located in §A.3. end note]

\subsection*{19.3.1.40 sldLayoutId (Slide Layout Id)}

This element specifies the relationship information for each slide layout that is used within the slide master. The slide master has relationship identifiers that it uses internally for determining the slide layouts that should be used. Then, to resolve what these slide layouts should be the sldLayoutId elements in the sldLayoutIdLst are utilized.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (ID Tag) & \begin{tabular}{l} 
Specifies the relationship id value that the generating application can use to resolve \\
which slide layout is used in the creation of the slide. This relationship id is used within \\
the relationship file for the master slide to expose the location of the corresponding \\
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
layent/relationshi \\
ps file within the presentation.
\end{tabular} \\
\hline id (ID Tag) & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(\$22.8.2.1).
\end{tabular} \\
\hline & \begin{tabular}{l} 
Specifies the identification number that uniquely identifies this slide layout within the \\
presentation file.
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_SlideLayoutId simple type \\
(§19.7.14).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideLayoutldListEntry) is located in §A.3. end note]

\subsection*{19.3.1.41 sldLayoutIdLst (List of Slide Layouts)}

This element specifies the existence of the slide layout identification list. This list is contained within the slide master and is used to determine which layouts are being used within the slide master file. Each layout within the list of slide layouts has its own identification number and relationship identifier that uniquely identifies it within both the presentation document and the particular master slide within which it is used.
[Note: The W3C XML Schema definition of this element's content model (CT SlideLayoutldList) is located in §A.3. end note]

\subsection*{19.3.1.42 sldMaster (Slide Master)}

This element specifies an instance of a slide master slide. Within a slide master slide are contained all elements that describe the objects and their corresponding formatting for within a presentation slide. Within a slide master slide are two main elements. The cSld element specifies the common slide elements such as shapes and their attached text bodies. Then the txStyles element specifies the formatting for the text within each of these shapes. The other properties within a slide master slide specify other properties for within a presentation slide such as color information, headers and footers, as well as timing and transition information for all corresponding presentation slides.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
preserve (Preserve \\
Slide Master)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the corresponding slide layout is deleted when all the slides that follow \\
that layout are deleted. If this attribute is not specified then a value of false should be \\
assumed by the generating application. This would mean that the slide would in fact be \\
deleted if no slides within the presentation were related to it. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideMaster) is located in §A.3. end note]

\subsection*{19.3.1.43 sp (Shape)}

This element specifies the existence of a single shape. A shape can either be a preset or a custom geometry, defined using the DrawingML framework. In addition to a geometry each shape can have both visual and nonvisual properties attached. Text and corresponding styling information can also be attached to a shape. This shape is specified along with all other shapes within either the shape tree or group shape elements.
[Note: Shapes are the preferred mechanism for specifying text on a slide. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
useBgFill (Use \\
Background Fill)
\end{tabular} & \begin{tabular}{l} 
Specifies that the shape fill should be set to that of the slide background surface. \\
[Note: This attribute does not set the fill of the shape to be transparent but instead sets it \\
to be filled with the portion of the slide background that is directly behind it. end note]
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Shape) is located in §A.3. end note]

\subsection*{19.3.1.44 spPr (Shape Properties)}

This element specifies the visual shape properties that can be applied to a shape. These properties include the shape fill, outline, geometry, effects, and 3D orientation.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
bwMode (Black and \\
White Mode)
\end{tabular} & \begin{tabular}{l} 
Specifies that the picture should be rendered using only black and white coloring. That is \\
the coloring information for the picture should be converted to either black or white \\
when rendering the picture.
\end{tabular} \\
\begin{tabular}{l} 
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & No gray is to be used in rendering this image, only stark black and stark white. \\
[Note: This does not mean that the picture itself that is stored within the file is \\
necessarily a black and white picture. This attribute instead sets the rendering mode that \\
the picture has applied to when rendering. end note] \\
The possible values for this attribute are defined by the ST_BlackWhiteMode simple type \\
(§20.1.10.10).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT ShapeProperties) is located in §A.4.1. end note]

\subsection*{19.3.1.45 spTree (Shape Tree)}

This element specifies all shape-based objects, either grouped or not, that can be referenced on a given slide. As most objects within a slide are shapes, this represents the majority of content within a slide. Text and effects are attached to shapes that are contained within the spTree element.
[Example: Consider the following PresentationML slide
```

<p:sld>
<p:cSld>
<p:spTree>
<p:nvGrpSpPr>
...
</p:nvGrpSpPr>
<p:grpSpPr>
...
</p:grpSpPr>
<p:sp>
</p:sp>
</p:spTree>
</p:cSld>

```
```

</p:sld>

```

In the above example the shape tree specifies all the shape properties for this slide. end example]
Each shape-based object within the shape tree, whether grouped or not, shall represent one unique level of zordering on the slide. The z-order for each shape-based object shall be determined by the lexical ordering of each shape-based object within the shape tree: the first shape-based object shall have the lowest z-order, while the last shape-based object shall have the highest z-order.

The z-ordering of shape-based objects within the shape tree shall also determine the navigation (tab) order of the shape-based objects: the shape-based object with the lowest z-order (the first shape in lexical order) shall be first in navigation order, with objects being navigated in ascending z-order.
[Example: Consider the following PresentationML slide with two shapes
```

<p:sld>
<p:cSld>
<p:spTree>
..
<p:sp>
<p:nvSpPr>
<p:cNvPr id="5" name="Oval 4" />
..
</p:nvSpPr>
...
</p:sp>
<p:sp>
<p:nvSpPr>
<p:cNvPr id="4" name="Isosceles Triangle 3" />
..
</p:nvSpPr>
...
</p:sp>
</p:spTree>
</p:cSld>
..
</p:sld>

```

In the above example the shape with name Oval 4 has the lowest z-order value since that shape is the first shape in the shape tree. Oval 4 is also the first shape in navigation order. The shape with name Isosceles Triangle 3 has the highest \(z\) positioning value since that shape is the last shape in the shape tree. Isosceles Triangle 3 is also the last shape in navigation order. end example]
[Note: The W3C XML Schema definition of this element’s content model (CT GroupShape) is located in §A.3. end note]

\subsection*{19.3.1.46 \\ style (Shape Style)}

This element specifies the style information for a shape. This is used to define a shape's appearance in terms of the preset styles defined by the style matrix for the theme.

\section*{[Example:}
```

<p:style>
<a:lnRef idx="3">
<a:schemeClr val="lt1"/>
</a:lnRef>
<a:fillRef idx="1">
<a:schemeClr val="accent3"/>
</a:fillRef>
<a:effectRef idx="1">
<a:schemeClr val="accent3"/>
</a:effectRef>
<a:fontRef idx="minor">
<a:schemeClr val="lt1"/>
</a:fontRef>
</p:style>

```

The parent shape of the above code is to have an outline that uses the third line style defined by the theme, use the first fill defined by the scheme, and be rendered with the first effect defined by the theme. Text inside the shape is to use the minor font defined by the theme.
end example]
[Note: The W3C XML Schema definition of this element's content model (CT ShapeStyle) is located in §A.4.1. end note]

\subsection*{19.3.1.47 tags (Customer Data Tags)}

This element specifies the existence of customer data in the form of tags. This allows for the storage of customer data within the PresentationML framework. While this is similar to the ext tag in that it can be used store information, this tag mainly focuses on referencing to other parts of the presentation document. This is accomplished via the relationship identification attribute that is required for all specified tags.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship ID) & \begin{tabular}{l} 
This attribute specifies the relationship identifier for the customer data tag. This allows \\
for a link to a resource that is external from the current XML document but still contained \\
within the presentation document.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT TagsData) is located in §A.3. end note]

\subsection*{19.3.1.4 timing (Slide Timing Information for a Slide Layout)}

This element specifies the timing information for handling all animations and timed events within the corresponding slide. This information is tracked via time nodes within the timing element. More information on the specifics of these time nodes and how they are to be defined can be found within the Animation section of the PresentationML framework.
[Note: The W3C XML Schema definition of this element’s content model (CT SlideTiming) is located in §A.3. end note]

\subsection*{19.3.1.49 titleStyle (Slide Master Title Text Style)}

This element specifies the text formatting style for the title text within a master slide. This formatting is used on all title text within related presentation slides. The text formatting is specified by utilizing the DrawingML framework just as within a regular presentation slide. Within a title style there can be many different style types defined as there are different kinds of text stored within a slide title.
[Note: The W3C XML Schema definition of this element's content model (CT TextListStyle) is located in §A.4.1. end note]

\subsection*{19.3.1.50 transition (Slide Transition for a Slide Layout)}

This element specifies the kind of slide transition that should be used to transition to the current slide from the previous slide. That is, the transition information is stored on the slide that appears after the transition is complete.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
advClick (Advance \\
on Click)
\end{tabular} & \begin{tabular}{l} 
Specifies whether a mouse click advances the slide or not. If this attribute is not specified \\
then a value of true is assumed. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
advTm (Advance \\
after time)
\end{tabular} & \begin{tabular}{l} 
Specifies the time, in milliseconds, after which the transition should start. This setting can \\
be used in conjunction with the advClick attribute. If this attribute is not specified then it \\
is assumed that no auto-advance occurs. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
spd (Transition \\
Speed)
\end{tabular} & \begin{tabular}{l} 
Specifies the transition speed that is to be used when transitioning from the current slide \\
to the next.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the ST_TransitionSpeed simple type \\
(§19.7.54).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideTransition) is located in §A.3. end note]

\subsection*{19.3.1.51 txBody (Shape Text Body)}

This element specifies the existence of text to be contained within the corresponding shape. All visible text and visible text related properties are contained within this element. There can be multiple paragraphs and within paragraphs multiple runs of text.
[Note: The W3C XML Schema definition of this element's content model (CT TextBody) is located in §A.4.1. end note]

\subsection*{19.3.1.52 txStyles (Slide Master Text Styles)}

This element specifies the text styles within a slide master. Within this element is the styling information for title text, the body text and other slide text as well. This element is only for use within the Slide Master and thus sets the text styles for the corresponding presentation slides.
[Example: Consider the case where we would like to specify the title text for a master slide.
```

<p:txStyles>
<p:titleStyle>
<a:lvl1pPr algn="ctr" rtl="0" latinLnBrk="0">
<a:spcBef>
<a:spcPct val="0"/>
</a:spcBef>
<a:buNone/>
<a:defRPr sz="4400" kern="1200">
<a:solidFill>
<a:schemeClr val="tx1"/>
</a:solidFill>
<a:latin typeface="+mj-lt"/>
<a:ea typeface="+mj-ea"/>
<a:cs typeface="+mj-cs"/>
</a:defRPr>
</a:lvl1pPr>
</p:titleStyle>
</p:txStyles>

```

In the above example the title text is set according to the above formatting for all related slides within the presentation. end example]
[Note: The W3C XML Schema definition of this element's content model (CT SlideMasterTextStyles) is located in §A.3. end note]

\subsection*{19.3.1.53 xfrm (2D Transform for Graphic Frame)}

This element specifies the transform to be applied to the corresponding graphic frame. This transformation is applied to the graphic frame just as it would be for a shape or group shape.
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
flipH (Horizontal \\
Flip) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a horizontal flip. When true, this attribute defines that the shape is flipped horizontally about the center of its bounding box. \\
[Example: The following illustrates the effect of a horizontal flip. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
flipV (Vertical Flip) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a vertical flip. When true, this attribute defines that the group is flipped vertically about the center of its bounding box. \\
[Example: The following illustrates the effect of a vertical flip. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
rot (Rotation) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies the rotation of the Graphic Frame. The units for which this attribute is specified in reside within the simple type definition referenced below. \\
The possible values for this attribute are defined by the ST_Angle simple type (§20.1.10.3).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT Transform2D) is located in §A.4.1. end note]

\subsection*{19.3.2 Embedded Objects}

Within the slides portion of PresentationML, there are the embedded elements. These are objects that can be embedded within a slide. As we defined a slide to be a container it can be seen that it does not just contain shapes, pictures and text but embedded objects as well that are not necessarily native to the PresentationML platform.

\subsection*{19.3.2.1 control (Embedded Control)}

This element specifies the existence of an embedded control in the slide.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
id (Relationship ID) \\
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
Specifies the relationship id that is used to identify this Embedded object from within a \\
slide. \\
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l} 
imgH (Image \\
Height)
\end{tabular} & \begin{tabular}{l} 
Specifies the height of the embedded control. \\
The possible values for this attribute are defined by the ST_PositiveCoordinate32 simple \\
type (§20.1.10.42).
\end{tabular} \\
\hline \begin{tabular}{l} 
imgW (Image \\
Width)
\end{tabular} & \begin{tabular}{l} 
Specifies the width of the embedded control. \\
The possible values for this attribute are defined by the ST_PositiveCoordinate32 simple \\
type (§20.1.10.42).
\end{tabular} \\
\hline \begin{tabular}{l} 
name (Embedded \\
Object Name)
\end{tabular} & \begin{tabular}{l} 
Specifies the identifying name class used by scripting languages. This name is also used to \\
construct the clipboard name. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
showAsIcon (Show \\
Embedded Object \\
As Icon)
\end{tabular} & \begin{tabular}{l} 
Specifies whether the Embedded object shows as an icon or using its native \\
representation. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Control) is located in §A.3. end note]

\subsection*{19.3.2.2 embed (Embedded Object or Control)}

This element specifies an Embedded object or Control that is embedded within the presentation.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
followColorScheme \\
(Color Scheme \\
Properties for \\
Embedded object)
\end{tabular} & \begin{tabular}{l} 
Specifies the Color Scheme Properties for the corresponding Embedded object being \\
specified.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
The possible values for this attribute are defined by the \\
ST_OleObjectFollowColorScheme simple type (§19.7.6).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OleObjectEmbed) is located in §A.3. end note]

\subsection*{19.3.2.3 link (Linked Object or Control)}

This element specifies a link to an external Embedded object or Control.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
updateAutomatic \\
(Update Linked \\
Embedded Objects \\
Automatically)
\end{tabular} & \begin{tabular}{l} 
This attribute determines if linked embedded objects are automatically updated when \\
the presentation is opened or printed.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OleObjectLink) is located in §A.3. end note]

\subsection*{19.3.2.4 oleObj (Global Element for Embedded objects and Controls)}

This element specifies a global element to be used for an Embedded object and Control.
When the oleObject element contains a pic child element, the identifier specified by the pic/nvPicPr/cNvPr@id attribute shall be ignored and the identifier specified by the graphicFrame/nvGraphicFramePr/cNvPr@id attribute shall be used when deciding which identifier to use for the OLE object.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline id (Relationship ID) & \begin{tabular}{l} 
Specifies the relationship id that is used to identify this Embedded object from within a \\
slide.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
\((\S 22.8 .2 .1)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
imgH (Image \\
Height)
\end{tabular} & \begin{tabular}{l} 
Specifies the height of the embedded control. \\
The possible values for this attribute are defined by the ST_PositiveCoordinate32 simple
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & type (§20.1.10.42).
\end{tabular} \left\lvert\, \begin{tabular}{l} 
Specifies the width of the embedded control. \\
The possible values for this attribute are defined by the ST_PositiveCoordinate32 simple \\
type (§20.1.10.42).
\end{tabular}.\right.
[Note: The W3C XML Schema definition of this element's content model (CT OleObject) is located in §A.3. end note]

\subsection*{19.3.3 Programmable Tags}

Within the slides portion of PresentationML there are the tag elements. These are extensibility names and values that assist in the storage of legacy variables from older file formats.

\subsection*{19.3.3.1 \(\quad\) tag (Programmable Extensibility Tag)}

This element specifies a programmable extensibility tag to be used for storage of legacy variables.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline name (Name) & \begin{tabular}{l} 
Specifies the name associated with this specific programmable tag. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline val (Value) & \begin{tabular}{l} 
Specifies the value associated with this specific programmable tag. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT StringTag) is located in §A.3. end note]

\subsection*{19.3.3.2 tagLst (Programmable Tab List)}

This element specifies the list of programmable extensibility tags that are used to store variables from legacy file formats.
[Note: The W3C XML Schema definition of this element's content model (CT TagList) is located in §A.3. end note]

\subsection*{19.4 Comments}

A comment is a text note attached to a slide, with the primary purpose of allowing readers of a presentation to provide feedback to the presentation author. Each comment contains an unformatted text string and information about its author, and is attached to a particular location on a slide. Comments can be visible while editing the presentation, but do not appear when a slide show is given. The displaying application decides when to display comments and determines their visual appearance.

\subsection*{19.4.1 cm (Comment)}

This element specifies a single comment attached to a slide. It contains the text of the comment, its position on the slide, and attributes referring to its author and date.

\section*{[Example:}
```

<p:cm authorId="0" dt="2006-08-28T17:26:44.129" idx="1">
<p:pos x="10" y="10"/>
<p:text>Add diagram to clarify.</p:text>
</p:cm>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
authorId (Comment \\
Author ID)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the author of the comment. It refers to the ID of an author in the \\
comment author list for the document. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
dt (Comment \\
Date/Time)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the date and time this comment was last modified. \\
The possible values for this attribute are defined by the W3C XML Schema dateTime \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
idx (Comment \\
Index)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies an identifier for this comment that is unique within a list of all \\
comments by this author in this document. An author's first comment in a document \\
has index 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
[Note: Because the index is unique only for the comment author, a document can contain \\
multiple comments with the same index created by different authors. end note \(]\)
\end{tabular} \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Comment) is located in §A.3. end note]

\subsection*{19.4.2 cmAuthor (Comment Author)}

This element specifies a single author with comments in the document. It contains a unique author ID, the author's name and initials, the index of the author's last comment, and the index of a color associated with the author.

\section*{[Example:}
```

 <p:cmAuthor id="0" name="Julie Lee" initials="JL" lastIdx="1" clrIdx="0"/>
 end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
clrIdx (Comment \\
Author Color Index)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies an index into the generating application's comments color table to \\
allow for visual (color) differentiation of different author's comments. This color is used \\
for all comments by this author. If more authors exist than there are entries in the color \\
table, the color index wraps around to the beginning of the table. \\
[Note: It is left entirely up to the generating application to determine the amount of \\
colors used in the comments color table and in what order these are used when \\
rendering comments on a slide surface. end note] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
id (Comment \\
Author ID)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies a unique (within the document) zero-based identifier that refers \\
to a single comment author. \\
[Note: The method of generating an author id is determined by the application and need \\
not be sequential, provided each id is unique within the list of comment authors for the \\
document. end note]
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & The possible values for this attribute are defined by the ST_Name simple type (§19.7.5).
\end{tabular} \left\lvert\, \begin{tabular}{ll} 
lastIdx (Index of \\
Comment Author's \\
last comment)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Index of the last comment added to this document by this author. New comments by this \\
author are counted starting with the value one greater than this index. \\
[Note: The index of a deleted comment is not reused; therefore, this value is not an \\
accurate count of the total number of comments by the author. end note] \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular}\right.
[Note: The W3C XML Schema definition of this element's content model (CT CommentAuthor) is located in §A.3. end note]

\subsection*{19.4.3 cmAuthorLst (List of Comment Authors)}

This element specifies a list of authors with comments in the current document. Each comment in a document shall refer to an author in this list. To determine if a new author is in this list, the author's name and initials shall both match; otherwise, the new author is considered unique and a separate cmAuthor element is added.
[Example: A document contains comments left by two authors.
```

<p:cmAuthorLst>
<p:cmAuthor id="0" name="Julie Lee" initials="JL" lastIdx="1" clrIdx="0"/>
<p:cmAuthor id="1" name="Fred Jones" initials="FJ" lastIdx="2" clrIdx="1"/>
</p:cmAuthorLst>

```
end example]
[ Note: The W3C XML Schema definition of this element's content model (CT CommentAuthorList) is located in §A.3. end note]

\subsection*{19.4.4 cmLst (Comment List)}

This element specifies a list of comments for a particular slide.
[Example: A slide contains two comments, each left by a different author. This example demonstrates that two comments can have the same index if they are created by different authors.
```

<p:cmLst>

```
```

 <p:cm authorId="0" dt="2006-08-28T17:26:44.129" idx="1">
 <p:pos x="10" y="10"/>
 <p:text>Add diagram to clarify.</p:text>
 </p:cm>
 <p:cm authorId="1" dt="2006-08-28T17:44:19.679" idx="1">
 <p:pos x="1426" y="660"/>
 <p:text>Clean up this text.</p:text>
 </p:cm>
 </p:cmLst>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT CommentList) is located in §A.3. end note]

\subsection*{19.4.5 pos (Comment Position)}

This element specifies the positioning information for the placement of a comment on a slide surface. In LTR versions of the generating application, this position information should refer to the upper left point of the comment shape. In RTL versions of the generating application, this position information should refer to the upper right point of the comment shape.
[Note: The anchoring point on the slide surface is unaffected by a right-to-left or left-to-right layout change. That is the anchoring point remains the same for all language versions. end note]
[Note: Because there is no specified size or formatting for comments, this UI widget used to display a comment can be any size and thus the lower right point of the comment shape is determined by how the viewing application chooses to display comments. end note]

\section*{[Example:}
<p:pos x="1426" y="660"/>
end example]
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \begin{tabular}{l}
x (X-Axis \\
Coordinate) \\
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
\(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a coordinate on the x-axis. The origin point for this coordinate shall be specified by the parent XML element. \\
[Example: Consider the following point on a basic wrapping polygon for a DrawingML object:
<... x="0" y="100" /> \\
The x attribute defines an x -coordinate of 0 . end example] \\
The possible values for this attribute are defined by the ST_Coordinate simple type
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & (\$20.1.10.16). \\
\hline \begin{tabular}{l}
y (Y-Axis \\
Coordinate) \\
Namespace: \\
http://purl.oclc.or g/ooxml/drawing \(\mathrm{ml} /\) main
\end{tabular} & \begin{tabular}{l}
Specifies a coordinate on the \(x\)-axis. The origin point for this coordinate shall be specified by the parent XML element. \\
[Example: Consider the following point on a basic wrapping polygon for a DrawingML object:
<... x="0" y="100" /> \\
The \(y\) attribute defines a \(y\)-coordinate of 100. end example] \\
The possible values for this attribute are defined by the ST_Coordinate simple type ( \(\$ 20.1 .10 .16\) ).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT Point2D) is located in §A.4.1. end note]

\subsection*{19.4.6 text (Comment's Text Content)}

This element specifies the content of a comment. This is the text with which the author has annotated the slide.

\section*{[Example:}
```

 <p:text>Add diagram to clarify.</p:text>
    ```
end example]
The possible values for this element are defined by the W3C XML Schema string datatype.

\subsection*{19.5 Animation}

The Animation section of the PresentationML framework stores the movement and related information of objects.

This schema is loosely based on the syntax and concepts from the Synchronized Multimedia Integration Language (SMIL), a W3C Recommendation for describing multimedia presentations using XML.

The schema describes all the animations effects that reside on a slide and also the animation that occurs when going from slide to slide (slide transition).

Animations on a slide are inherently time-based and consist of an animation effects on an object or text. Slide transitions however do not follow this concept and always appear before any animation on a slide.

All elements described in this schema are contained within the slide XML file. More specifically they are in the <transition> and the <timing> element as shown below:
```

<p:sld>
<p:cSld> ... </p:cSld>
<p:clrMapOvr> ... </p:clrMapOvr>
<p:transition> ... </p:transition>
<p:timing> ... </p:timing>
</p:sld>

```

\subsection*{19.5.1 anim (Animate)}

This element is a generic animation element that requires little or no semantic understanding of the attribute being animated. It can animate text within a shape or even the shape itself.
[Example: Consider trying to emphasize text within a shape by changing the size of its font by \(150 \%\). The <anim> element should be used as follows:
```

<p:anim to="1.5" calcmode="lin" valueType="num">
<p:cBhvr override="childStyle">
<p:cTn id="1" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="1">
<p:txEl>
<p:charRg st="1" end="4"/>
</p:txEl>
</p:spTgt>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>style.fontSize</p:attrName>
</p:attrNameLst>
</p:cBhvr>
</p:anim>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline by (By) & \begin{tabular}{l} 
This attribute specifies a relative offset value for the animation with respect to its \\
position before the start of the animation.
\end{tabular} \\
\hline \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
calcmode \\
(Calculation Mode)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the interpolation mode for the animation. \\
The possible values for this attribute are defined by the \\
ST_TLAnimateBehaviorCalcMode simple type (§19.7.20).
\end{tabular} \\
\hline from (From) & This attribute specifies the starting value of the animation. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline to (To) & \begin{tabular}{l} 
This attribute specifies the ending value for the animation as a percentage. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
valueType (Value \\
Type)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the type of property value. \\
The possible values for this attribute are defined by the \\
ST_TLAnimateBehaviorValueType simple type (§19.7.21).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimateBehavior) is located in §A.3. end note]

\subsection*{19.5.2 animClr (Animate Color Behavior)}

This animation element is responsible for animating the color of an object.
[Example: Consider trying to emphasize a shape by changing its fill color to scheme color accent2. The <animClr> element should be used as follows:
```

<p:animClr clrSpc="rgb">
<p:cBhvr>
<p:cTn id="1" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="1"/>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>fillcolor</p:attrName>
</p:attrNameLst>
</p:cBhvr>
<p:to>
<a:schemeClr val="accent2"/>
</p:to>
</p:animClr>

```
end example]
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline clrSpc (Color Space) & \begin{tabular}{l} 
This attribute specifies the color space in which to interpolate the animation. Values for \\
example can be HSL \& RGB.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The values for from/to/by/etc. can still be specified in any supported color format \\
without affecting the color space within which the animation happens.
\end{tabular} \\
\hline The RGB color space is best used for doing animations between two different colors since \\
it doesn't require going through any other hues between the two colors specified. The \\
HSL space is useful for animating through a rainbow of colors or for modifying just the \\
saturation by 30\% for example. \\
The possible values for this attribute are defined by the ST_TLAnimateColorSpace \\
simple type (§19.7.23).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimateColorBehavior) is located in §A.3. end note]

\subsection*{19.5.3 animEffect (Animate Effect)}

This animation behavior provides the ability to do image transform/filter effects on elements. Some visual effects are dynamic in nature and have a progress that animates from 0 to 1 over a period of time to do visual transitions between hidden and visible states. Other filters are static and apply a effects like a blur or dropshadow which aren't inherently time-based.
[Example: Consider trying to emphasize a shape by creating an entrance animation using a "blinds" motion.
```

<p:animEffect transition="in" filter="blinds(horizontal)">
<p:cBhvr>
<p:cTn id="7" dur="500"/>
<p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & Description \\
\hline filter (Filter) & \\
& \\
& \\
\hline
\end{tabular}



\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \multirow[t]{7}{*}{} & wheel(4) \\
\hline & wheel(8) \\
\hline &  \\
\hline & wipe(left) \(\square \square \square \square \square\) \\
\hline & wipe(down) \\
\hline &  \\
\hline & \begin{tabular}{l}
[Note: The renderings shown above are for example purposes only. Exact rendering of any animation is determined by the rendering application. As such, the same animation can have many variations, depending on the implementation. More detail for each rendering above can be found in transition (§19.3.1.50). end note] \\
[Example: Consider the following animation effect:
```

<p:animEffect transition="in"
filter="blinds(horizontal);blinds(vertical)">
<p:cBhvr>
<p:cTn id="7" dur="500"/>
<p:tgtEl>
<p:spTgtspid="5"/>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>

``` \\
There are two animation filters shown in this example. The first is the blinds (horizontal), which the rendering application is to use as the primary animation effect. If, however, the rendering application does not support this animation, the blinds (vertical) animation is used. In this example there are only two animation filters listed, a primary and a
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
fallback, but it is possible to list multiple fallback filters using the syntax defined above. end example] \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline prLst (Property List) & \begin{tabular}{l}
This attribute specifies a list of properties that coincide with the effect specified. Although there are many animation types allowed, this attribute allows the setting of specific property settings in order to describe an even wider variety of animation types. \\
The syntax used for the prLst attribute value is as follows: "name:value;name:value". When multiple animation types are listed in the filter attribute, the rendering application attempts to apply each property value even though some might not apply to it. \\
Reserved Names(values): \\
- opacity (float values of 0.0-1.0) \\
[Example: Consider the following animation effect:
```

<p:animEffect filter="image" prLst="opacity: 0.5">
<p:cBhvr rctx="IE">
<p:cTn id="7" dur="indefinite"/>
<p:tgtEl>
<p:spTgtspid="3"/>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>

``` \\
The animation filter specified is an image filter type that has a specific property called opacity set to a value of 0.5 . end example] \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
transition \\
(Transition)
\end{tabular} & \begin{tabular}{l}
This attribute specifies whether to transition the element in or out or treat it as a static filter. The values are "none", "in" and "out", and the default value is "in". \\
When a value of "in" is specified, the element is not visible at the start of the animation and is completely visible be the end of the duration. When "out" is specified, the element is visible at the start and not visible at the end of the effect. This visibility is in addition to the effect of setting CSS visibility or display attributes. \\
The possible values for this attribute are defined by the ST_TLAnimateEffectTransition simple type (§19.7.24).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimateEffectBehavior) is located in §A.3. end note]

\subsection*{19.5.4 animMotion (Animate Motion)}

Animate motion provides an abstracted way to move positioned elements. It provides the ability to specify from/to/by motion as well as to use more detailed path descriptions for motion over polylines or bezier curves.
[Example: Consider animating a shape from its original position to the right.. The <animMotion> element should be used as follows:
```

 <p:animMotion origin="layout" path="M 0 0 L 0.25 0 E" pathEditMode="relative">
 <p:cBhvr>
 <p:cTn id="1" dur="2000" fill="hold"/>
 <p:tgtEl>
 <p:spTgt spid="1"/>
 </p:tgtEl>
 <p:attrNameLst>
 <p:attrName>ppt_x</p:attrName>
 <p:attrName>ppt_y</p:attrName>
 </p:attrNameLst>
 </p:cBhvr>
 </p:animMotion>
end example]

```
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline origin (Origin) & \begin{tabular}{l}
Specifies what the origin of the motion path is relative to such as the layout of the slide, or the parent. \\
The possible values for this attribute are defined by the ST_TLAnimateMotionBehaviorOrigin simple type (§19.7.25).
\end{tabular} \\
\hline path (Path) & \begin{tabular}{l}
Specifies the path primitive followed by coordinates for the animation motion. The allowed values that are understood within a path are as follows: \\
\(\mathrm{M}=\) move to, \(\mathrm{L}=\) line to, \(\mathrm{C}=\) curve to, \(\mathrm{Z}=\) close loop, \(\mathrm{E}=\) end \\
UPPERCASE = absolute coords, lowercase = relative coords \\
Thus total allowed set \(=\{M, L, C, Z, E, m, I, c, z, e)\) \\
[Example: The following string is a sample path. \\
path: "M00L11c123444Z" \\
end example] \\
The possible values for this attribute are defined by the W3C XML Schema string
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & datatype. \\
\hline \begin{tabular}{l} 
pathEditMode \\
(Path Edit Mode)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies how the motion path moves when the target element is moved. \\
The possible values for this attribute are defined by the \\
ST_TLAnimateMotionPathEditMode simple type (\$19.7.26).
\end{tabular} \\
\hline \begin{tabular}{l} 
ptsTypes (Points \\
Types)
\end{tabular} & \begin{tabular}{l} 
This attribute describes the point type of the points in the path attribute. The allowed \\
values that are understood for the ptsTypes attribute are as follows: \\
A = Auto, \(\mathrm{F}=\) Corner, \(\mathrm{T}=\) Straight, \(\mathrm{S}=\) Smooth \\
UPPERCASE = Straight Line follows point, lowercase = curve follows point. \\
Thus, the total allowed set = \{A,F,T,S,a,f,t,s \(\}\)
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimateMotionBehavior) is located in §A.3. end note]

\subsection*{19.5.5 animRot (Animate Rotation)}

This animation element is responsible for animating the rotation of an object. Rotation values set in the "by", "to, and "from" attributes are specified in degrees measured to a 60,000th, i.e 1 degree is 60,000. Rotation values can be larger than \(360^{\circ}\).

The sign of the rotation angle specifies the direction for rotation. A negative rotation specifies that the rotation should appear in the host to go counter-clockwise".
[Example: Consider trying to emphasize a shape by rotating it 360 degrees clockwise. The <animRot> element should be used as follows:
```

<p:animRot by="21600000">
<p:cBhvr>
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="5"/>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>r</p:attrName>
</p:attrNameLst>

```
</p:cBhvr>
</p:animRot>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline by (By) & \begin{tabular}{l} 
This attribute describes the relative offset value for the animation. \\
The possible values for this attribute are defined by the ST_Angle simple type \\
(§20.1.10.3).
\end{tabular} \\
\hline from (From) & \begin{tabular}{l} 
This attribute describes the starting value for the animation. \\
The possible values for this attribute are defined by the ST_Angle simple type \\
(§20.1.10.3).
\end{tabular} \\
\hline to (To) & \begin{tabular}{l} 
This attribute describes the ending value for the animation. \\
The possible values for this attribute are defined by the ST_Angle simple type \\
(§20.1.10.3).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimateRotationBehavior) is located in §A.3. end note]

\subsection*{19.5.6 animScale (Animate Scale)}

This animation element is responsible for animating the scale of an object. When animating the scale, the element shall scale around the reference point of the element and the positioning system used should be consistent with the one used for motion paths. When animating the width and height of an element, all of the width/height animation values are calculated first then the scale animations are applied on top of that. So for example, an animation from 0 to 100 of the width with a concurrent scale from \(100 \%\) to \(200 \%\) would result in the element appearing to scale from 0 to 200.
[Example: Consider trying to emphasize a shape by scaling it larger by 150\%. The <animScale> element should be used as follows:
```

<p:childTnLst>
<p:animScale>
<p:cBhvr>
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="5"/>
</p:tgtEl>
</p:cBhvr>
<p:by x="150000" y="150000"/>
</p:animScale>

```
</p:childTnLst>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
zoomContents \\
(Zoom Content)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies whether to zoom the contents of an object when doing a scaling \\
animation. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimateScaleBehavior) is located in §A.3. end note]

\subsection*{19.5.7 attrName (Attribute Name)}

This element is used to contain an attribute value for an Attribute Name List. This value defines the specific attribute that an animation should be applied to, such as fill, style, and shadow, etc. A specific property is defined by using a "property.sub-property" format which is often extended to multiple sub properties as seen in the allowed values below.

Allowed property values:
```

style.opacity, style.rotation, style.visibility, style.color, style.fontSize,
style.fontWeight, style.fontStyle, style.fontFamily, style.textEffectEmboss,
style.textShadow, style.textTransform, style.textDecorationUnderline,
style.textEffectOutline, style.textDecorationLineThrough, style.sRotation,
imageData.cropTop, imageData.cropBottom, imageData.cropLeft,
imageData.cropRight, imageData.cropRight, imageData.gain, imageData.blacklevel,
imageData.gamma, imageData.grayscale, imageData.chromakey, fill.on, fill.type,
fill.color, fill.opacity, fill.color2, fill.method, fill.opacity2, fill.angle,
fill.focus, fill.focusposition.x, fill.focusposition.y, fill.focussize.x,
fill.focussize.y, stroke.on, stroke.color, stroke.weight, stroke.opacity,
stroke.linestyle, stroke.dashstyle, stroke.filltype, stroke.src, stroke.color2,
stroke.imagesize.x, stroke.imagesize.y, stroke.startArrow, stroke.endArrow,
stroke.startArrowWidth, stroke.startArrowLength, stroke.endArrowWidth,
stroke.endArrowLength, shadow.on, shadow.type, shadow.color, shadow.color2,
shadow.opacity, shadow.offset.x, shadow.offset.y, shadow.offset2.x,
shadow.offset2.y, shadow.origin.x, shadow.origin.y, shadow.matrix.xtox,
shadow.matrix.ytox, shadow.matrix.xtox, shadow.matrix.ytoy,
shadow.matrix.perspectiveX, shadow.matrix.perspectiveY, skew.on, skew.offset.x,
skew.offset.y, skew.origin.x, skew.origin.y, skew.matrix.xtox, skew.matrix.ytox,
skew.matrix.xtox, skew.matrix.ytoy, skew.matrix.perspectiveX,

```
```

skew.matrix.perspectiveY, extrusion.on, extrusion.type, extrusion.render,
extrusion.viewpointorigin.x, extrusion.viewpointorigin.y, extrusion.viewpoint.x,
extrusion.viewpoint.y, extrusion.viewpoint.z, extrusion.plane,
extrusion.skewangle, extrusion.skewamt, extrusion.backdepth,
extrusion.foredepth, extrusion.orientation.x, extrusion.orientation.y,
extrusion.orientation.z, extrusion.orientationangle, extrusion.color,
extrusion.rotationangle.x, extrusion.rotationangle.y,
extrusion.lockrotationcenter, extrusion.autorotationcenter,
extrusion.rotationcenter.x, extrusion.rotationcenter.y,
extrusion.rotationcenter.z, and extrusion.colormode.

```
[Example: Consider trying to emphasize the txt font size within the body of a shape. The attribute would be 'style.fontSize' and this can be done by doing the following:
```

<p:anim to="1.5" calcmode="lin" valueType="num">
<p:cBhvr override="childStyle">
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="3">
<p:txEl>
<p:charRg st="4294967295" end="4294967295"/>
</p:txEl>
</p:spTgt>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>style.fontSize</p:attrName>
</p:attrNameLst>
</p:cBhvr>
</p:anim>

```
end example]
The possible values for this element are defined by the W3C XML Schema string datatype.

\subsection*{19.5.8 attrNameLst (Attribute Name List)}

This element is used to describe a list of attributes in which to apply an animation to.
[Example: Consider trying to emphasize the txt font size within the body of a shape. The attribute would be 'style.fontSize' and this can be done by doing the following:
```

<p:anim to="1.5" calcmode="lin" valueType="num">
<p:cBhvr override="childStyle">
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="3">

```
```

 <p:txEl>
 <p:charRg st="4294967295" end="4294967295"/>
 </p:txEl>
 </p:spTgt>
 </p:tgtEl>
 <p:attrNameLst>
 <p:attrName>style.fontSize</p:attrName>
 </p:attrNameLst>
 </p:cBhvr>
 </p:anim>
 end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLBehaviorAttributeNameList) is located in §A.3. end note]

\subsection*{19.5.9 audio (Audio)}

This element is used to include audio during an animation. This element specifies that this node within the animation tree triggers the playback of an audio file; the actual audio file used is specified by the sndTgt element (§19.5.70).
[Example: Consider adding applause sound to an animation sequence. The audio element is used as follows:
```

<p:cTn ...>
<p:stCondLst>...</p:stCondLst>
<p:childTnLst>...</p:childTnLst>
<p:subTnLst>
<p:audio>
<p:cMediaNode vol="50%">...
<p:tgtEl>
<p:sndTgt r:embed="rId2" />
</p:tgtEl>
</p:cMediaNode>
</p:audio>
</p:subTnLst>
</p:cTn>

```

The audio element specifies the location of the audio playback within the animation; its child sndTgt element specifies that the audio to be played is the target of the relationship with ID rId2.
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
isNarration (Is \\
Narration)
\end{tabular} & This attribute indicates whether the audio is a narration for the slide. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLMediaNodeAudio) is located in §A.3. end note]

\subsection*{19.5.10 bg (Background)}

This element is used to specify animating the background of an object.
[Example: Consider adding animation to the background of Shape Id 3 . The <bg> tag can be used as follows:
```

<p:tgtEl>
<p:spTgt spid="3">
<p:bg/>
</p:spTgt>
</p:tgtEl>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.11 bldAsOne (Build As One)}

This element specifies in the build list to build the entire graphical object as one entity.
[Example: Consider having a graph appear as on entity as opposed to by category. The <bldAsOne> element should be used as follows:
```

<p:bldLst>
<p:bldGraphic spid="4" grpId="0">
<p:bldAsOne/>
</p:bldGraphic>
</p:bldLst>

```

\section*{end example]}
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.12 bldDgm (Build Diagram)}

This element specifies how to build the animation for a diagram.
[Example: Consider the following example where a chart is specified to be animated by category rather than as one entity. Thus, the bldChart element should be used as follows:
<p:bdldLst>
```

 <p:bldGraphic spid="4" grpId="0">
 <p:bldSub>
 <a:bldChart bld="category"/>
 </p:bldSub>
 </p:bldGraphic>
 </p:bldLst>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
bld (Diagram Build \\
Types)
\end{tabular} & \begin{tabular}{l} 
This attribute describes how the diagram is built. The animation animates the sub- \\
elements in the container in the particular order defined by this attribute. \\
The possible values for this attribute are defined by the ST_TLDiagramBuildType simple \\
type (§19.7.33).
\end{tabular} \\
\hline grpId (Group ID) & \begin{tabular}{l} 
This attribute ties effects persisted in the animation to the build information. The \\
attribute is used by the editor when changes to the build information are made. \\
GroupIDs are unique for a given shape. They are not guaranteed to be unique IDs across \\
all shapes on a slide. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline spid (Shape ID) & \begin{tabular}{l} 
This attribute specifies the shape to which the build applies. \\
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline \begin{tabular}{l} 
uiExpand (Expand \\
UI)
\end{tabular} \begin{tabular}{l} 
This attribute describes the view option indicating if the build should be displayed \\
expanded.
\end{tabular} \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLBuildDiagram) is located in §A.3. end note]

\subsection*{19.5.13 bldGraphic (Build Graphics)}

This element specifies how to build a graphical element.
[Example: Consider having a chart graphical element appear as a whole as opposed to by a category. The <bldGraphic> element should be used as follows:
```

<p:bldLdst>
<p:bldGraphic spid="3" grpId="0">
<p:bldSub>

```
```

 <a:bldChart bld="category"/>
 </p:bldSub>
 </p:bldGraphic>
 </p:bldLst>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline grpId (Group ID) & \begin{tabular}{l} 
This attribute ties effects persisted in the animation to the build information. The \\
attribute is used by the editor when changes to the build information are made. \\
GroupIDs are unique for a given shape. They are not guaranteed to be unique IDs across \\
all shapes on a slide. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline spid (Shape ID) & \begin{tabular}{l} 
This attribute specifies the shape to which the build applies. \\
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline \begin{tabular}{l} 
uiExpand (Expand \\
UI)
\end{tabular} & \begin{tabular}{l} 
This attribute describes the view option indicating if the build should be displayed \\
expanded. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLGraphicalObjectBuild) is located in §A.3. end note]

\subsection*{19.5.14 bldLst (Build List)}

This element specifies the list of graphic elements to build. This refers to how the different sub-shapes or subcomponents of a object are displayed. The different objects that can have build properties are text, diagrams, and charts.
[Example: Consider animating a pie chart but based on category as shown below:


The <bldList> element should be used as follows:
```

<p:bldLst>
<p:bldGraphic spid="1" grpId="0">
<p:bldSub>
<a:bldChart bld="category"/>
</p:bldSub>
</p:bldGraphic>
</p:bldLst>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT BuildList) is located in §A.3. end note]

\subsection*{19.5.15 bldOleChart (Build Embedded Chart)}

This element describes animation an a embedded Chart.
[Example: Consider displaying animation on a embedded graphical chart. The <bldOleChart>element should be use as follows:
```

<p:bldLst>

```
\begin{tabular}{l} 
<p:bldOleChart spid="1025" grpId=" 0 "/> \\
</p:bldLst> \\
end example] \\
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
animBg (Animate \\
Background)
\end{tabular} & \begin{tabular}{l} 
This attribute describes whether to animate the background of the shape. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline bld (Build) & \begin{tabular}{l} 
This attribute describes how the diagram is built. The animation animates the sub- \\
elements in the container in the particular order defined by this attribute.
\end{tabular} \\
The possible values for this attribute are defined by the ST_TLOleChartBuildType simple \\
type (§19.7.35).
\end{tabular} \\
\hline grpId (Group ID) \\
\begin{tabular}{l} 
This attribute ties effects persisted in the animation to the build information. The \\
attribute is used by the editor when changes to the build information are made. \\
GroupIDs are unique for a given shape. They are not guaranteed to be unique IDs across \\
all shapes on a slide. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline spid (Shape ID) \\
\begin{tabular}{l} 
This attribute specifies the shape to which the build applies. \\
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline uiExpand (Expand \\
UI) \begin{tabular}{l} 
This attribute describes the view option indicating if the build should be displayed \\
expanded. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT TLOleBuildChart) is located in §A.3. end note]

\subsection*{19.5.16 bldP (Build Paragraph)}

This element specifies how to build paragraph level properties.
[Example: Consider having animation applied only to 1st level paragraphs. The <bldP> element should be used as follows:
```

<p:bldLst>
<p:bldP spid="3" grpId="0" build="p"/>
</p:bldLst>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
advAuto (Auto \\
Advance Time)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies time after which to automatically advance the build to the next \\
step. \\
The possible values for this attribute are defined by the ST_TLTime simple type \\
(§19.7.38).
\end{tabular} \\
\hline \begin{tabular}{l} 
animBg (Animate \\
Background)
\end{tabular} & \begin{tabular}{l} 
This attribute indicates whether to animate the background of the shape associated with \\
the text. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
autoUpdateAnimB \\
g (Auto Update \\
Animation \\
Background)
\end{tabular} & \begin{tabular}{l} 
This attribute indicates whether to automatically update the "animateBg" setting to true \\
when the shape associated with the text has a fill or line.
\end{tabular} \\
\hline bldLvl (Build Level) & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\begin{tabular}{l} 
This attribute describes the build level for the paragraph. It is only supported in \\
paragraph type builds i.e the build attribute shall also be set to "byParagraph" for this \\
attribute to apply.
\end{tabular} \\
\hline spid (Shape ID) & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline This attribute specifies the shape to which the build applies. \\
\hline grev (Reverse) & \begin{tabular}{l} 
This attribute describe the build types. \\
The possible values for this attribute are defined by the ST_TLParaBuildType simple \\
type (§19.7.36).
\end{tabular} \\
\hline The possible values for this attribute are defined by the W3C XML Schema boolean
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline \begin{tabular}{l} 
uiExpand (Expand \\
UI)
\end{tabular} & \begin{tabular}{l} 
This attribute describes the view option indicating if the build should be displayed \\
expanded. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLBuildParagraph) is located in §A.3. end note]

\subsection*{19.5.17 bldSub (Build Sub Elements)}

This element specifies the animation properties of a graphical object's sub-elements.
[Example: Consider applying animation to a graphical element consisting of a diagram. The <bldSub> element should be used as follows:
```

<p:bldLst>
<p:bldGraphic spid="5" grpId="0">
<p:bldSub>
<a:bldDgm bld="one"/>
</p:bldSub>
</p:bldGraphic>
</p:bldLst>
end example]

```
[Note: The W3C XML Schema definition of this element's content model
(CT AnimationGraphicalObjectBuildProperties) is located in §A.4.1. end note]

\subsection*{19.5.18 blinds (Blinds Slide Transition)}

This element describes the blinds slide transition effect, which uses a set of horizontal or vertical bars and wipes them either left-to-right or top-to-bottom, respectively, until the new slide is fully shown. The rendering of this transition depends upon the attributes specified.
[Example: Consider the following cases in which the "blinds" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:blinds dir="horz"/>
</p:transition>

```

<p:transition>
<p:blinds dir="vert"/>
</p:transition>


\section*{end example]}
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
dir (Transition \\
Direction)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies a horizontal or vertical transition. \\
\\
\\
\\
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OrientationTransition) is located in §A.3. end note]

\subsection*{19.5.19 boolVal (Boolean Variant)}

This element specifies a boolean value to be used for evaluation by a parent element. The exact meaning of the value contained within this element is not defined here but is dependent on the usage of this element in conjunction with one of the listed parent elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & \begin{tabular}{l} 
This attribute specifies the boolean value that this element contains and that should be \\
used in evaluating this element.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariantBooleanVal) is located in §A.3. end note]

\subsection*{19.5.20 by (By)}

This element describes the relative offset value for the color animation.
[Example: Consider a shape with a lightening emphasis animation applied to it. The <by> element should be used as follows:
```

<p:animClr clrSpc="hsl">
<p:cBhvr>
<p:cTn id="8" dur="500" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>stroke.color</p:attrName>
</p:attrNameLst>
</p:cBhvr>
<p:by>
<p:hsl h="0" s="0" l="0"/>
</p:by>
</p:animClr>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TLByAnimateColorTransform) is located in §A.3. end note]

\subsection*{19.5.21 by (By)}

This element describes the relative offset value for the animation.
[Example: Consider a shape with an animation effect that scales the size of an object by \(150 \%\). The <by> element should be used as follows:
```

<p:animScale>
<p:cBhvr>
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
</p:cBhvr>
<p:by x="150.000%" y="150.000%"/>
</p:animScale>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline x (X coordinate) & \begin{tabular}{l} 
This attribute describes the X coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
( \(£ 20.1 .10 .40)\).
\end{tabular} \\
\hline y (Y coordinate) & \begin{tabular}{l} 
This attribute describes the Y coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
( \(\$ 20.1 .10 .40)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLPoint) is located in §A.3. end note]

\subsection*{19.5.22 cBhvr (Common Behavior)}

This element describes the common behaviors of animations.
[Example: Consider trying to emphasize text within a shape by changing the size of its font. The <anim> element should be used as follows:
```

<p:anim to="1.5" calcmode="lin" valueType="num">
<p:cBhvr override="childStyle">
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="3">
<p:txEl>
<p:charRg st="4294967295" end="4294967295"/>
</p:txEl>
</p:spTgt>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>style.fontSize</p:attrName>
</p:attrNameLst>
</p:cBhvr>
</p:anim>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
accumulate \\
(Accumulate)
\end{tabular} & \begin{tabular}{l} 
This attribute makes a repeating animation build with each iteration when set to \\
"always."
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_TLBehaviorAccumulateType \\
simple type (§19.7.27).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline additive (Additive) & \(\begin{array}{l}\text { This attribute specifies how to apply the animation values to the original value for the } \\
\text { property. } \\
\text { The possible values for this attribute are defined by the ST_TLBehaviorAdditiveType } \\
\text { simple type (§19.7.28). }\end{array}\) \\
\hline by (By) & \(\begin{array}{l}\text { This attribute specifies a relative offset value for the animation.. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema string } \\
\text { datatype. }\end{array}\) \\
\hline from (From) & \(\begin{array}{l}\text { This attribute specifies the starting value of the animation. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema string } \\
\text { datatype. }\end{array}\) \\
\hline override (Override) & \(\begin{array}{l}\text { This attribute specifies how a behavior should override values of the attribute being } \\
\text { animated on the target element. The "childStyle" clears the attributes on the children } \\
\text { contained inside the target element. } \\
\text { The possible values for this attribute are defined by the ST_TLBehaviorOverrideType } \\
\text { simple type (§19.7.29). }\end{array}\) \\
\hline \(\begin{array}{l}\text { rctx (Runtime } \\
\text { Context) }\end{array}\) & \(\begin{array}{l}\text { This attribute describes the runtime context of the animation. The currently-understood } \\
\text { values are "PPT" and "IE." This is used to specify the behavior used when animating in the } \\
\text { PPT slideshow vs. IE HTML runtime. An example can be seen with the transparency } \\
\text { effect. In IE, the transparency is animated as a bitmap, where in PPT, the style.opacity } \\
\text { property of a shape is used to animate the transparency. }\end{array}\) \\
\hline to (To) & \(\begin{array}{l}\text { xfrmType } \\
\text { (Transform Type) } \\
\text { The possible values for this attribute are defined by the W3C XML Schema string } \\
\text { datatype. }\end{array}\) \\
\hline \(\begin{array}{l}\text { This attribute specifies the ending value of the animation. } \\
\text { The possible values for this attribute are defined by the W3C XML Schema string } \\
\text { datatype. }\end{array}\) \\
This attribute specifies the kind of transform to be used. \\
The possible values for this attribute are defined by the ST_TLBehaviorTransformType \\
simple type (§19.7.30).
\end{tabular}\(\}\)
[Note: The W3C XML Schema definition of this element's content model (CT TLCommonBehaviorData) is located in §A.3. end note]

\subsection*{19.5.23 charRg (Character Range)}

This element specifies animation on a character range defined by a start and end character position.
[Example: Consider animating the first word (characters 1 through 9) within a sentence. The <charRg> element should be used as follows:
```

<p:animMotion>
<p:cBhvr>
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="3">
<p:txEl>
<p:charRg st="0" end="9"/>
</p:txEl>
</p:spTgt>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>ppt_x</p:attrName>
<p:attrName>ppt_y</p:attrName>
</p:attrNameLst>
</p:cBhvr>
</p:animMotion>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline end (End) & \begin{tabular}{l} 
This attribute defines the end of the index range. \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular} \\
\hline st (Start) & \begin{tabular}{l} 
This attribute defines the start of the index range. \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT IndexRange) is located in §A.3. end note]

\subsection*{19.5.24 checker (Checker Slide Transition)}

This element describes the checker slide transition effect, which uses a set of horizontal or vertical checkerboard squares and wipes them either left-to-right or top-to-bottom, respectively, until the new slide is fully shown. The rendering of this transition depends upon the attributes specified.
[Example: Consider the following cases in which the "checker" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:checker dir="horz"/>
</p:transition>

```

<p:transition>
<p:checker dir="vert"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
dir (Transition \\
Direction)
\end{tabular} & This attribute specifies a horizontal or vertical transition. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OrientationTransition) is located in §A.3. end note]

\subsection*{19.5.25 childTnLst (Children Time Node List)}

This element describes the list of time nodes that have a fixed location in the timing tree based on their parent time node. The children's start time is defined relative to their parent time node's start.
[Note: The W3C XML Schema definition of this element’s content model (CT TimeNodeList) is located in §A.3. end note]

\subsection*{19.5.26 circle (Circle Slide Transition)}

This element describes the circle slide transition effect, which uses a circle pattern centered on the slide that increases in size until the new slide is fully shown. The rendering of this transition has been shown below.
[Example: Consider the following case in which the "circle" slide transition is applied to a slide, along with a set of attributes. The proper usage and a sample rendering are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:circle/>
</p:transition>

```

[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.27 clrVal (Color Value)}

This element describes the color variant. This is used to specify a color that is to be used for animating the color property of an object.
[Example: Consider trying to emphasize text within a shape by changing the color its font.
```

<p:set>
<p:cBhvr override="childStyle">
...
</p:cBhvr>
<p:to>
<p:clrVal>
<a:schemeClr val="accent2"/>
</p:clrVal>
</p:to>
</p:set>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT Color) is located in §A.4.1. end note]

\subsection*{19.5.28 cmd (Command)}

This element describes the several non-durational commands that can be executed within a timeline. This can be used to send events, call functions on elements, and send verbs to embedded objects. For example "Object Action" effects for Embedded objects and Media commands for sounds/movies such as "PlayFrom(0.0)" and "togglePause".
\begin{tabular}{|c|c|c|}
\hline Attributes & & Description \\
\hline \multirow[t]{15}{*}{cmd (Command)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
This attribute defines the actual command to be issued. Depending on the command specified, the actual command can be made to invoke a wide range of actions on the linked or embedded object. \\
Reserved Values (when type = "call"):
\end{tabular}} \\
\hline & Value & Description \\
\hline & play & play corresponding media \\
\hline & playFrom(s) & play corresponding media starting from \(s\), where \(s\) is the number of seconds from the beginning of the clip \\
\hline & pause & pause corresponding media \\
\hline & resume & resume play of corresponding media \\
\hline & stop & stop play of corresponding media \\
\hline & togglePause & play corresponding media if media is already paused, pause corresponding media if media is already playing. If the corresponding media is not active, this command restarts the media and plays from its beginning. \\
\hline & \multicolumn{2}{|l|}{Reserved Values (when type = "evt"):} \\
\hline & Value & Description \\
\hline & onstopaudio & stop play of all audio \\
\hline & \multicolumn{2}{|l|}{Reserved Values (when type = "verb"):} \\
\hline & Value & Description \\
\hline & 0 & Open the object for editing \\
\hline & 1 & Open the object for viewing \\
\hline
\end{tabular}

The value of the cmd attribute shall be the string representation of an integer that represents the embedded object verb number. This verb number determines the action that the rendering application should take corresponding to this object when this point in the animation is reached.
[Example: Consider the following command
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
```

 <p:cmd type="evt" cmd="onstopaudio">
 <p:cBhvr>
 <p:cTn display="0" masterRel="sameClick">
 <p:stCondLst>
 <p:cond evt="begin" delay="0">
 <p:tn val="5"/>
 </p:cond>
 </p:stCondLst>
 </p:cTn>
 <p:tgtEl>
 <p:sldTgt/>
 </p:tgtEl>
 </p:cBhvr>
 </p:cmd>
 end example]

``` \\
In the above example, the event of onstopaudio stops all audio from playing once this particular animation is reached in the timeline. \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline type (Command Type) & \begin{tabular}{l}
This attribute specifies the kind of command that is issued by the rendering application to the appropriate target application or object. \\
There are three possible values, call, evt, and verb. A call command type is used to specify the class of commands that can then be issued. \\
Call commands (type="call"): This command type is used to call methods on the object specified (play(), pause(), etc.) \\
Event Commands (type="evt"): This command type is used to set an event for the object at this point in the timeline (onstopaudio, etc.) \\
Verb Commands (type="verb"): This command type is used to set verbs for the object to occur at this point in the timeline ( 0,1 , etc.) \\
The possible values for this attribute are defined by the ST_TLCommandType simple type (§19.7.32).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLCommandBehavior) is located in §A.3. end note]

\subsection*{19.5.29 cMediaNode (Common Media Node Properties)}

This element is used to describe behavior of media elements, such as sound or movies, in an animation.
[Example: Consider a shape with a sound effect attached to its animation. The <cMediaNode> element should be used as follows:
```

<p:audio>
<p:cMediaNode mute="1">
<p:cTn display="0" masterRel="sameClick">
<p:stCondLst> ... </p:stCondLst>
<p:endCondLst> ... </p:endCondLst>
</p:cTn>
<p:tgtEl> ... </p:tgtEl>
</p:cMediaNode>
</p:audio>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline mute (Mute) & \begin{tabular}{l} 
This attribute describes whether the media should be mute. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
numSld (Number of \\
Slides)
\end{tabular} & \begin{tabular}{l} 
This attribute describes the numbers of slides across which the media should play. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
showWhenStopped \\
(Show When \\
Stopped)
\end{tabular} & \begin{tabular}{l} 
This attribute describes whether the media should be displayed when it is stopped.
\end{tabular} \\
\hline vol (Volume) & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
This attribute describes the volume of the media element. \\
The possible values for this attribute are defined by the ST_PositiveFixedPercentage
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLCommonMediaNodeData) is located in §A.3. end note]

\subsection*{19.5.30 comb (Comb Slide Transition)}

This element describes the comb slide transition effect, which uses a set of horizontal or vertical bars and wipes them from one end of the slide to the other until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "comb" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

 <p:transition>
 <p:comb dir="horz"/>
 </p:transition>

```

<p:transition>
<p:comb dir="vert"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
dir (Transition \\
Direction)
\end{tabular} & This attribute specifies a horizontal or vertical transition. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OrientationTransition) is located in §A.3. end note]

\subsection*{19.5.31 cond (Condition)}

This element specifies conditions on time nodes in a timeline. It is used within a list of start condition or list of end condition elements.
[Example: For example, suppose we have a shape with a two second delay after the animation is started.
```

<p:cTn>
<p:stCondLst>
<p:cond delay="2000"/>
</p:stCondLst>
<p:childTnLst>
<p:set> ... </p:set>
<p:animEffect transition="in" filter="blinds(horizontal)">
<p:cBhvr>
<p:cTn id="7" dur="1000"/>
<p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>
</p:childTnLst>
</p:cTn>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
delay (Trigger \\
Delay)
\end{tabular} & \begin{tabular}{l} 
This attribute describes the delay after an animation is triggered. \\
The possible values for this attribute are defined by the ST_TLTime simple type \\
(§19.7.38).
\end{tabular} \\
\hline evt (Trigger Event) & \begin{tabular}{l} 
This attribute describes the event that triggers an animation. \\
The possible values for this attribute are defined by the ST_TLTriggerEvent simple type \\
(§19.7.48).
\end{tabular} \\
\hline
\end{tabular}
[ Note: The W3C XML Schema definition of this element's content model (CT TLTimeCondition) is located in §A.3. end note]

\subsection*{19.5.32 cover (Cover Slide Transition)}

This element describes the cover slide transition effect, which moves the new slide in from an off-screen location, continually covering more of the previous slide until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "cover" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>

```
<p:cover dir="d"/>
</p:transition>

<p:transition>
<p:cover dir="l"/>
</p:transition>

<p:transition>
<p:cover dir="r"/>
</p:transition>

<p:transition>
<p:cover dir="u"/>
</p:transition>

<p:transition>
<p:cover dir="ld"/>
</p:transition>

<p:transition>
<p:cover dir="lu"/>
</p:transition>

<p:transition>
<p:cover dir="rd"/>
</p:transition>

<p:transition>
<p:cover dir="ru"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dir (Direction) & \begin{tabular}{l} 
This attribute specifies if the direction of the transition. \\
\\
\\
The possible values for this attribute are defined by the \\
ST_TransitionEightDirectionType simple type (§19.7.51).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EightDirectionTransition) is located in §A.3. end note]

\subsection*{19.5.33 cTn (Common Time Node Properties)}

This element describes the properties that are common for time nodes.
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline accel (Acceleration) & \begin{tabular}{l} 
This attribute describes the percentage of specified duration over which the element's \\
time takes to accelerate from 0 up to the "run rate."
\end{tabular} \\
& The possible values for this attribute are defined by the ST_PositiveFixedPercentage
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & simple type (§20.1.10.44). \\
\hline \begin{tabular}{l} 
afterEffect (After \\
Effect)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies whether there is an after effect applied to the time node. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
autoRev (Auto \\
Reverse)
\end{tabular} & \begin{tabular}{l} 
This attribute describes whether to automatically play the animation in reverse after \\
playing it in the forward direction. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline bldLvl (Build level) & \begin{tabular}{l} 
This attribute describes the build level of the animation. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline decel (Deceleration) & \begin{tabular}{l} 
This attribute describes the percentage of specified duration over which the element's \\
time takes to decelerate from the "run rate" down to 0. \\
The possible values for this attribute are defined by the ST_PositiveFixedPercentage \\
simple type (§20.1.10.44).
\end{tabular} \\
\hline display (Display) & \begin{tabular}{l} 
This attribute describes whether the state of the time node is visible or hidden. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline id (ID) & \begin{tabular}{l} 
This attribute describes the duration of the time node, expressed as unit time. \\
The possible values for this attribute are defined by the ST_TLTime simple type \\
(§19.7.38).
\end{tabular} \\
\hline fill (Fill) & \begin{tabular}{l} 
This attribute describes the event filter for this time node. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{ll} 
evtFilter (Event \\
Filter)
\end{tabular} \\
This attribute describes the fill type for the time node. \\
The possible values for this attribute are defined by the ST_TLTimeNodeFillType simple \\
type (§19.7.41). \\
datatype.
\end{tabular}, \begin{tabular}{l} 
This attribute describes the Group ID of the time node.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & (§19.7.42). \\
\hline masterRel (Master Relation) & \begin{tabular}{l}
This attribute specifies how the time node plays back relative to its master time node. \\
The possible values for this attribute are defined by the ST_TLTimeNodeMasterRelation simple type (§19.7.43).
\end{tabular} \\
\hline nodePh (Node Placeholder) & \begin{tabular}{l}
This attribute describes whether this node is a placeholder. \\
The possible values for this attribute are defined by the W3C XML Schema boolean datatype.
\end{tabular} \\
\hline nodeType (Node Type) & \begin{tabular}{l}
This attribute specifies the type of time node. \\
The possible values for this attribute are defined by the ST_TLTimeNodeType simple type (§19.7.47).
\end{tabular} \\
\hline \begin{tabular}{l}
presetClass (Preset \\
Types)
\end{tabular} & \begin{tabular}{l}
This attribute descries the class of effect in which it belongs. \\
The possible values for this attribute are defined by the ST_TLTimeNodePresetClassType simple type (§19.7.44).
\end{tabular} \\
\hline presetID (Preset ID) & \begin{tabular}{l}
This attribute describes the preset identifier for the time node. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline presetSubtype (Preset SubType) & \begin{tabular}{l}
This attribute is a bitflag that specifies a direction or some other attribute of the effect. For example it can be set to specify a "From Bottom" for the Fly In effect, or "Bold" for the Change Font Style effect. \\
The possible values for this attribute are defined by the W3C XML Schema int datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
repeatCount \\
(Repeat Count)
\end{tabular} & \begin{tabular}{l}
This attribute describes the number of times the element should repeat, in units of thousandths. \\
The possible values for this attribute are defined by the ST_TLTime simple type (§19.7.38).
\end{tabular} \\
\hline repeatDur (Repeat Duration) & \begin{tabular}{l}
This attribute describes the amount of time over which the element should repeat. If absent, the attribute is taken to be the same as the specified duration. \\
The possible values for this attribute are defined by the ST_TLTime simple type (§19.7.38).
\end{tabular} \\
\hline restart (Restart) & \begin{tabular}{l}
This attribute specifies if a node is to restart when it completes its action. \\
The possible values for this attribute are defined by the ST_TLTimeNodeRestartType simple type (§19.7.45).
\end{tabular} \\
\hline spd (Speed) & This attribute specifies the percentage by which to speed up (or slow down) the timing. If negative, the timing is reversed. [Example: if speed is \(200 \%\) and the specified duration is 10 seconds, the actual duration is 5 seconds. end example] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_Percentage simple type \\
\((\S 20.1 .10 .40)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
syncBehavior \\
(Synchronization \\
Behavior)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies how the time node synchronizes to its group. \\
The possible values for this attribute are defined by the ST_TLTimeNodeSyncType \\
simple type (§19.7.46).
\end{tabular} \\
\hline \begin{tabular}{l} 
tmFilter (Time \\
Filter)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies the time filter for the time node. \\
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLCommonTimeNodeData) is located in §A.3. end note]

\subsection*{19.5.34 cut (Cut Slide Transition)}

This element describes the cut slide transition effect, which simply replaces the previous slide with the new slide instantaneously. No animation is used, but an option exists to cut to a black screen before showing the new slide. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "cut" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:cut thruBlk="0"/>
</p:transition>

```

<p:transition>
<p:cut thruBlk="1"/>
</p:transition>


\section*{end example]}
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
thruBlk (Transition \\
Through Black)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies if the transition starts from a black screen (and then transition the \\
new slide over black).
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OptionalBlackTransition) is located in §A.3. end note]

\subsection*{19.5.35 diamond (Diamond Slide Transition)}

This element describes the diamond slide transition effect, which uses a diamond pattern centered on the slide that increases in size until the new slide is fully shown. The rendering of this transition has been shown below.
[Example: Consider the following case in which the "diamond" slide transition is applied to a slide, along with a set of attributes. The proper usage and a sample rendering are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>

```
<p:diamond/>
</p:transition>

[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
[Note: The W3C XML Schema definition of this element’s content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.36 dissolve (Dissolve Slide Transition)}

This element describes the dissolve slide transition effect, which uses a set of randomly placed squares on the slide that continue to be added to until the new slide is fully shown. The rendering of this transition has been shown below.
[Example: Consider the following case in which the "dissolve" slide transition is applied to a slide, along with a set of attributes. The proper usage and a sample rendering are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:dissolve/>
</p:transition>

```

[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
[Note: The W3C XML Schema definition of this element’s content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.37 endCondLst (End Conditions List)}

This element describes a list of the end conditions that shall be met in order to stop the time node.
[Example: Consider a shape a shape with an audio attached to the animation. The <endCondList> element should be used as follows to specifies when the sound is done:
```

<p:audio>
<p:cMediaNode>
<p:cTn display="0" masterRel="sameClick">
<p:stCondLst> ... </p:stCondLst>
<p:endCondLst>
<p:cond evt="onStopAudio" delay="0">
<p:tgtEl>
<p:sldTgt/>
</p:tgtEl>
</p:cond>
</p:endCondLst>
</p:cTn>
<p:tgtEl> ... </p:tgtEl>
</p:cMediaNode>
</p:audio>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeConditionList) is located in §A.3. end note]

\subsection*{19.5.38 endSnd (Stop Sound Action)}

This element stops all previous sounds during a slide transition.
[Example: Consider a slide transition that stops all previous sounds. The<endSnd> element should be used as follows:
```

<p:transition>
<p:sndAc>
<p:endSnd/>
</p:sndAc>
</p:transition>

```

\section*{end example]}
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.39 endSync (EndSync)}

This element is used to synchronizes the stopping of parallel elements in the timing tree. It is used on interactive timeline sequences to specify that the interactive sequence's duration ends when all of the child timenodes have ended. It is also used to make interactive sequences restart-able (so that the entire interactive sequence can be repeated if the trigger object is clicked on repeatedly).
[Example: Consider a shape with a fill change animation. The <endSync> element should be used as follows:
```

<p:seq concurrent="1" nextAc="seek">
<p:cTn>
<p:stCondLst/>
<p:endSync evt="end" delay="0">
<p:rtn val="all"/>
</p:endSync>
<p:childTnLst/>
</p:cTn>
<p:nextCondLst/>
</p:seq>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
delay (Trigger \\
Delay)
\end{tabular} & This attribute describes the delay after an animation is triggered. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_TLTime simple type \\
(§19.7.38).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline evt (Trigger Event) & \begin{tabular}{l} 
This attribute describes the event that triggers an animation. \\
\\
\\
The possible values for this attribute are defined by the ST_TLTriggerEvent simple type \\
(§19.7.48).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeCondition) is located in §A.3. end note]

\subsection*{19.5.40 excl (Exclusive)}

This element describes the Exclusive time node. This time node is used to pause all other timelines when it is activated. Conceptually it can be though of as follows:

[Note: The W3C XML Schema definition of this element's content model (CT TLTimeNodeExclusive) is located in §A.3. end note]

\subsection*{19.5.41 fade (Fade Slide Transition)}

This element describes the fade slide transition effect, which smoothly fades the previous slide either directly to the new slide or first to a black screen and then to the new slide. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "fade" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:fade thruBlk="0"/>

```
</p:transition>

<p:transition>
<p:fade thruBlk="1"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
thruBlk (Transition \\
Through Black)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies if the transition starts from a black screen (and then transition the \\
new slide over black).
\end{tabular} \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OptionalBlackTransition) is located in §A.3. end note]

\subsection*{19.5.42 fltVal (Float Value)}

This element specifies a floating point value to be used for evaluation by a parent element. The exact meaning of the value contained within this element is not defined here but is dependent on the usage of this element in conjunction with one of the listed parent elements.
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & \begin{tabular}{l} 
This attribute specifies the floating point value that this element contains and that should \\
be used in evaluating this element. \\
The possible values for this attribute are defined by the W3C XML Schema float datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariantFloatVal) is located in §A.3. end note]

\subsection*{19.5.43 from (From)}

This element is used to specify the starting color of the target element.
[Example: Consider a shape with an animation fill change from one accent color to another. The <from> element should be used as follows:
```

<p:animClr clrSpc="rgb" dir="cw">
<p:cBhvr>
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl> ... </p:tgtEl>
<p:attrNameLst>
<p:attrName>fillcolor</p:attrName>
</p:attrNameLst>
</p:cBhvr>
<p:from>
<a:schemeClr val="accent3"/>
</p:from>
<p:to>
<a:schemeClr val="accent2"/>
</p:to>
</p:animClr>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT Color) is located in §A.4.1. end note]

\subsection*{19.5.44 from (From)}

This element specifies an \(\mathrm{x} / \mathrm{y}\) co-ordinate to start the animation from.
[Example: Consider a shape with an animation sequence that needs to start at a certain coordinate. The <from> element should be used as follows:
```

<p:animScale>
<p:cBhvr>
<p:cTn> ... </p:cTn>
<p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
</p:cBhvr>
<p:from x="100%" y="100%"/>
<p:to x="80%" y="100%"/>

```
</p:animScale>
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline x (X coordinate) & \begin{tabular}{l} 
This attribute describes the X coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
( \(£ 20.1 .10 .40)\).
\end{tabular} \\
\hline y (Y coordinate) & \begin{tabular}{l} 
This attribute describes the Y coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
(§20.1.10.40).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLPoint) is located in §A.3. end note]

\subsection*{19.5.45 graphicEl (Graphic Element)}

This element specifies a graphical element which to animate.
[Example: Consider a diagram with an animation effect applied to it. The <graphicEl> element should be used as follows:
```

<p:set>
<p:cBhvr>
<p:cTn id="6" dur="1" fill="hold"> ... </p:cTn>
<p:tgtEl>
<p:spTgt spid="4">
<p:graphicEl>
<a:dgm id="{87C2C707-C3F4-4E81-A967-A8B8AE13E575}"/>
</p:graphicEl>
</p:spTgt>
</p:tgtEl>
<p:attrNameLst> ... </p:attrNameLst>
</p:cBhvr>
<p:to> ... </p:to>
</p:set>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT AnimationElementChoice) is located in §A.4.1. end note]

\subsection*{19.5.46 hsl (HSL)}

This element specifies an incremental HSL (Hue, Saturation, Lightness) value to add to a color animation.
[Example: Consider a shape with a lightening emphasis animation. The <hsl> element should be used as follows:
```

 <p:animClr clrSpc="hsl">
 <p:cBhvr>
 <p:cTn id="8" dur="500" fill="hold"/>
 <p:tgtEl>
 <p:spTgt spid="4"/>
 </p:tgtEl>
 <p:attrNameLst>
 <p:attrName>stroke.color</p:attrName>
 </p:attrNameLst>
 </p:cBhvr>
 <p:by>
 <p:hsl h="0" s="0" l="0"/>
 </p:by>
 </p:animClr>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline h (Hue) & \begin{tabular}{l} 
Specifies hue as an angle. The values range from [0, 360] degrees. \\
The possible values for this attribute are defined by the ST_Angle simple type \\
(§20.1.10.3).
\end{tabular} \\
\hline l (Lightness) & \begin{tabular}{l} 
Specifies a lightness as a percentage. The values are in the range [-100\%, 100\%]. \\
The possible values for this attribute are defined by the ST_FixedPercentage simple type \\
(§20.1.10.24).
\end{tabular} \\
\hline s (Saturation) & \begin{tabular}{l} 
Specifies a saturation as a percentage. The values are in the range [-100\%, 100\%]. \\
The possible values for this attribute are defined by the ST_FixedPercentage simple type \\
(§20.1.10.24).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLByHsIColorTransform) is located in §A.3. end note]

\subsection*{19.5.47 inkTgt (Ink Target)}

This element specifies an animation target element that is represented by a sub-shape in a legacy graphical object.
[Example: Consider an ink diagram with an animation blinds transition effect applied to it. The <inkTgt> element should be used as follows:
```

 <p:animEffect transition="in" filter="blinds(horizontal)">
 <p:cBhvr>
 <p:cTn id="7" dur="500"/>
 <p:tgtEl>
 <p:inkTgt spid="_x0000_s2057"/>
 </p:tgtEl>
 </p:cBhvr>
 </p:animEffect>
end example]

```
\begin{tabular}{|r|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline spid (Shape ID) & \begin{tabular}{l} 
This attribute specifies the shape identifier. \\
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLSubShapeld) is located in §A.3. end note]

\subsection*{19.5.48 intVal (Integer)}

This element specifies an integer value to be used for evaluation by a parent element. The exact meaning of the value contained within this element is not defined here but is dependent on the usage of this element in conjunction with one of the listed parent elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & \begin{tabular}{l} 
This attribute specifies the integer value that this element contains and that should be \\
used in evaluating this element.
\end{tabular} \\
The possible values for this attribute are defined by the W3C XML Schema int datatype. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariantIntegerVal) is located in §A.3. end note]

\subsection*{19.5.49 iterate (Iterate)}

This element specifies how the animation should be successively applied to sub elements of the target element for a repeated effect. It can be applied to contained timing and animation structures over the letters, words, or shapes within a target element.
[Example: Consider a text animation where the words appear letter by letter. The <iterate> element should be used as follows:
```

<p:par>
<p:cTn id="1" >
<p:stCondLst> ... </p:stCondLst>
<p:iterate type="lt">
<p:tmPct val="10000"/>
</p:iterate>
<p:childTnLst> ... </p:childTnLst>
</p:cTn>
</p:par>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
backwards \\
(Backwards)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies whether to go backwards in the timeline to the previous node. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline type (Iterate Type) & \begin{tabular}{l} 
This attribute specifies the iteration behavior and applies it to each letter, word or shape \\
within a container element. \\
Values are by word, by letter, or by element. If there is no text or block elements such as \\
shapes within the container or a single word, letter, or shape (depending on iterate type) \\
then no iteration happens and the behavior is applied to the element itself instead.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the ST_IterateType simple type \\
(§19.7.4).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT TLIterateData) is located in §A.3. end note]

\subsection*{19.5.50 newsflash (Newsflash Slide Transition)}

This element describes the newsflash slide transition effect, which grows and spins the new slide counterclockwise into place over the previous slide. The rendering of this transition has been shown below.
[Example: Consider the following case in which the "newsflash" slide transition is applied to a slide, along with a set of attributes. The proper usage and a sample rendering are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>

```
<p:newsflash/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.51 nextCondLst (Next Conditions List)}

This element describes a list of conditions that shall be met to advance to the next animation sequence.
[Example: Consider a shape with a text emphasis changing the size of its font.
```

<p:seq concurrent="1" nextAc="seek">
<p:cTn id="2" dur="indefinite" nodeType="mainSeq"> ... </p:cTn>
<p:prevCondLst> ... </p:prevCondLst>
<p:nextCondLst>
<p:cond evt="onNext" delay="0">
<p:tgtEl>
<p:sldTgt/>
</p:tgtEl>
</p:cond>
</p:nextCondLst>
</p:seq>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeConditionList) is located in §A.3. end note]

\subsection*{19.5.52 oleChartEl (Embedded Chart Element)}

This element specifies the subelement of an embedded chart to animate.
[Example: Consider an embedded Chart with a entrance animation effect applied to each of the graph's categories. The <oldChartEl> element should be used as follows:
```

<p:animEffect transition="in" filter="blinds(horizontal)">
<p:cBhvr>

```
```

 <p:cTn id="12" dur="500"/>
 <p:tgtEl>
 <p:spTgt spid="19460">
 <p:oleChartEl type="category" lvl="1"/>
 </p:spTgt>
 </p:tgtEl>
 </p:cBhvr>
 </p:animEffect>
 end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline lvl (Level) & \begin{tabular}{l} 
This attribute describes the element levels to animate. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline type (Type) & \begin{tabular}{l} 
This attribute specifies how to chart should be built during its animation. \\
The possible values for this attribute are defined by the ST_TLChartSubelementType \\
simple type (§19.7.31).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLOleChartTargetElement) is located in §A.3. end note]

\subsection*{19.5.53 par (Parallel Time Node)}

This element describes the Parallel time node which can be activated along with other parallel time node containers. Conceptually it can be thought of as follows:

[Example: Consider a simple animation with a blind entrance. The <par> element should be used as follows:
```

<p:timing>
<p:tnLst>
<p:par>
<p:cTn id="1" dur="indefinite" restart="never" nodeType="tmRoot">
<p:childTnLst>
<p:seq concurrent="1" nextAc="seek">
...
</p:seq>
</p:childTnLst>
</p:cTn>
</p:par>
</p:tnLst>
</p:timing>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeNodeParallel) is located in §A.3. end note]

\subsection*{19.5.54 plus (Plus Slide Transition)}

This element describes the plus slide transition effect, which uses a plus pattern centered on the slide that increases in size until the new slide is fully shown. The rendering of this transition has been shown below.
[Example: Consider the following case in which the "plus" slide transition is applied to a slide, along with a set of attributes. The proper usage and a sample rendering are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:plus/>
</p:transition>

```

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
[Note: The W3C XML Schema definition of this element’s content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.55 prevCondLst (Previous Conditions List)}

This element describes a list of conditions that shall be met in order to go backwards in an animation sequence.
[Example: Consider trying to emphasize text within a shape by changing the size of its font.
```

<p:seq concurrent="1" nextAc="seek">
<p:cTn id="2" dur="indefinite" nodeType="mainSeq">
</p:cTn>
<p:prevCondLst>
<p:cond evt="onPrev" delay="0">
<p:tgtEl>
<p:sldTgt/>
</p:tgtEl>
</p:cond>
</p:prevCondLst>
<p:nextCondLst>
</p:nextCondLst>
</p:seq>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeConditionList) is located in §A.3. end note]

\subsection*{19.5.56 pRg (Paragraph Text Range)}

This element specifies a text range to animate based on starting and ending paragraph number.
[Example: Consider an animation entrance of the first 3 text paragraphs. The <pRg> element should be used as follows:
```

<p:animEffect transition="in" filter="checkerboard(across)">
<p:cBhvr>
<p:cTn id="12" dur="500"/>
<p:tgtEl>
<p:spTgt spid="3">
<p:txEl>
<p:pRg st="0" end="2"/>
</p:txEl>
</p:spTgt>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline end (End) & \begin{tabular}{l} 
This attribute defines the end of the index range. \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular} \\
\hline st (Start) & \begin{tabular}{l} 
This attribute defines the start of the index range. \\
The possible values for this attribute are defined by the ST_Index simple type (§19.7.3).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT IndexRange) is located in §A.3. end note]

\subsection*{19.5.57 progress (Progress)}

This element defines the progression of an animation. The default for the way animation progress happens through an animEffect is a linear ramp from 0 to 1 , starting at the effect's begin time \& ending at the effect's end time. When you specify a value for the progress attribute, you are overriding this default behaviour. The value between 0 and 1 represents a percentage through the effect, where 0 is \(0 \%\) and 1 is \(100 \%\).

Each animEffect is in fact an object-based transition. These transitions can be specified as "In" (where the object is not visible at \(0 \%\) and becomes completely visible at \(100 \%\) ) or "Out" (where the object is visible at \(0 \%\) and becomes completely invisible at 100\%). You would set the progress attribute if you want to use the animEffect as a "static" effect, where the transition properties do not actually change over time. As an alternative to using the progress attribute, you can use the tmFilter (time filter), which is a base attribute of any effect/timenode, to specify the way that progress through an effect should be performed dynamically.
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariant) is located in §A.3. end note]

\subsection*{19.5.58 pull (Pull Slide Transition)}

This element describes the pull slide transition effect, which moves the previous slide to an off-screen location, continually revealing more of the new slide until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "pull" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:pull dir="d"/>
</p:transition>

```

<p:transition>
<p:pull dir="l"/>
</p:transition>

<p:transition>
<p:pull dir="r"/>
</p:transition>

<p:transition>
<p:pull dir="u"/>
</p:transition>

<p:transition>
<p:pull dir="ld"/>
</p:transition>

<p:transition> <p:pull dir="lu"/> </p:transition>

<p:transition>
<p:pull dir="rd"/>
</p:transition>

<p:transition>
<p:pull dir="ru"/> </p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dir (Direction) & \begin{tabular}{l} 
This attribute specifies if the direction of the transition. \\
\\
\\
The possible values for this attribute are defined by the \\
ST_TransitionEightDirectionType simple type (§19.7.51).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EightDirectionTransition) is located in §A.3. end note]

\subsection*{19.5.59 push (Push Slide Transition)}

This element describes the push slide transition effect, which moves the new slide in from an off-screen location, continually pushing the previous slide to an opposite off-screen location until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "push" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:push dir="d"/>

```
</p:transition>

<p:transition>
<p:push dir="l"/>
</p:transition>

<p:transition>
<p:push dir="r"/> </p:transition>

<p:transition>
<p:push dir="u"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dir (Direction) & This attribute specifies the direction of the slide transition. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the \\
ST_TransitionSideDirectionType simple type (§19.7.53).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SideDirectionTransition) is located in §A.3. end note]

\subsection*{19.5.60 random (Random Slide Transition)}

This element describes the random slide transition effect, which chooses a random transition from the set available in the rendering application. This transition thus can be different each time it is used.
[Example: Consider the following case in which the "random" slide transition is applied to a slide, along with a set of attributes. The proper usage is shown below:
```

<p:transition>
<p:random/>
</p:transition>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.61 randomBar (Random Bar Slide Transition)}

This element describes the randomBar slide transition effect, which uses a set of randomly placed horizontal or vertical bars on the slide that continue to be added to until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "randomBar" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:randomBar dir="horz"/>
</p:transition>

```

<p:transition>
<p:randomBar dir="vert"/>
</p:transition>


\section*{end example]}
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
dir (Transition \\
Direction)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies a horizontal or vertical transition. \\
\\
\\
\\
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT OrientationTransition) is located in §A.3. end note]

\subsection*{19.5.62 rCtr (Rotation Center)}

This element describes the center of the rotation used to rotate a motion path by X angle.
[Example: For example, suppose we have a simple animation with a checkerbox text entrance.
```

<p:animMotion origin="layout" path="M 0 0 L 0.25 0.33333 E"
pathEditMode="relative" rAng="0" ptsTypes="">
<p:cBhvr>
<p:cTn id="6" dur="2000" fill="hold"/>
<p:tgtEl>
<p:spTgt spid="3"/>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>ppt_x</p:attrName>
<p:attrName>ppt_y</p:attrName>
</p:attrNameLst>
</p:cBhvr>
<p:rCtr x="56.7%" y="83.4%"/>
</p:animMotion>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline x (X coordinate) & \begin{tabular}{l} 
This attribute describes the X coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
(§20.1.10.40).
\end{tabular} \\
\hline y (Y coordinate) & This attribute describes the Y coordinate. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_Percentage simple type \\
(§20.1.10.40).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLPoint) is located in §A.3. end note]

\subsection*{19.5.63 rgb (RGB)}

The element specifies an incremental RGB value to add to the color property.
[Example: Consider a shape with a color emphasis animation. The <rgb> element should be used as follows:
```

 <p:animClr clrSpc="rgb">
 <p:cBhvr>
 <p:cTn id="8" dur="500" fill="hold"/>
 <p:tgtEl>
 <p:spTgt spid="4"/>
 </p:tgtEl>
 <p:attrNameLst>
 <p:attrName>stroke.color</p:attrName>
 </p:attrNameLst>
 </p:cBhvr>
 <p:by>
 <p:rgb r="10" g="20" b="30"/>
 </p:by>
 </p:animClr>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline b (Blue) & \begin{tabular}{l} 
This attribute specifies a blue component luminance as a percentage. Values are in the \\
range [-100\%, 100\%]. \\
The possible values for this attribute are defined by the ST_FixedPercentage simple type \\
(§20.1.10.24).
\end{tabular} \\
\hline g (Green) & \begin{tabular}{l} 
This attribute specifies a green component luminance as a percentage. \\
Values are in the range [-100\%, 100\%]. \\
The possible values for this attribute are defined by the ST_FixedPercentage simple type \\
(§20.1.10.24).
\end{tabular} \\
\hline r (Red) & \begin{tabular}{l} 
This attribute specifies a red component luminance as a percentage. Values are in the \\
range [-100\%, 100\%].
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_FixedPercentage simple type \\
\((\S 20.1 .10 .24)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLByRgbColorTransform) is located in §A.3. end note]

\subsection*{19.5.64 rtn (Runtime Node Trigger Choice)}

This element specifies the child time node that triggers a time condition. References a child time node or all child nodes. Order is based on the child's end time.
[Example: Consider an animation which ends the synchronization of all parallel time nodes when all the child nodes have ended their animation. The <rtn> element should be used as follows:
```

<p:cTn>
<p:stCondLst> ... </p:stCondLst>
<p:endSync evt="end" delay="0">
<p:rtn val="all"/>
</p:endSync>
<p:childTnLst> ... </p:childTnLst>
</p:cTn>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & \begin{tabular}{l} 
This attribute describes the value that triggers the runtime node. \\
The possible values for this attribute are defined by the ST_TLTriggerRuntimeNode \\
simple type (§19.7.49).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLTriggerRuntimeNode) is located in §A.3. end note]

\subsection*{19.5.65 seq (Sequence Time Node)}

This element describes the Sequence time node and it can only be activated when the one before it finishes. Conceptually it can be though of as follows:

[Example: For example, suppose we have a simple animation with a blind entrance.
```

<p:timing>
<p:tnLst>
<p:par>
<p:cTn id="1" dur="indefinite" restart="never" nodeType="tmRoot">
<p:childTnLst>
<p:seq concurrent="1" nextAc="seek">
..
</p:seq>
</p:childTnLst>
</p:cTn>
</p:par>
</p:tnLst>
</p:timing>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
concurrent \\
(Concurrent)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies if concurrency is enabled or disabled. By default this attribute has \\
a value of "disabled". When the value is set to "enabled", the previous element is left \\
enabled when advancing to the next element in a sequence instead of being ended. This \\
is only relevant for advancing via the next condition element being triggered. The only \\
other way to advance to the next element would be to have the current element end, \\
which implies it is no longer concurrent. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l} 
nextAc (Next \\
Action)
\end{tabular} & \begin{tabular}{l} 
This attribute specifies what to do when going forward in sequence. By default this \\
attribute has a value of "none". When this is set to seek it seeks the element to a natural \\
end time (not necessarily the actual end time).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The natural end position is defined as the latest non-infinite end time of the children. If a \\
child loops forever, the end of its first loop is used as its "end time" for the purposes of \\
this calculation. \\
Some container elements can have infinite durations due to an infinite-duration child \\
element. The engine needs to recurse down through all infinite duration containers to \\
calculate their natural duration in case a child might have non-infinite duration within it \\
that needs to be taken into account.
\end{tabular} \\
\hline \begin{tabular}{l} 
prevAc (Previous \\
Action)
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_TLNextActionType simple \\
type (§19.7.34).
\end{tabular} \\
\begin{tabular}{l} 
This attribute specifies what to do when going backwards in a sequence. By default it is \\
set to "none" and nothing special is done. When the value is "skipTimed", the sequence \\
continues to go backwards until it reaches a sequence element that was defined to begin \\
only on the next condition element.
\end{tabular} \\
The possible values for this attribute are defined by the ST_TLPreviousActionType \\
simple type (§19.7.37).
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeNodeSequence) is located in §A.3. end note]

\subsection*{19.5.66 set (Set Time Node Behavior)}

This element allows the setting of a particular property value to a fixed value while the behavior is active and restores the value when the behavior is reset or turned off.
[Example: For example, suppose we want to set certain properties during an animation effect. The <set> element should be used as follows:
```

<p:childTnLst>
<p:set>
<p:cBhvr>
<p:cTn id="6" dur="1" fill="hold"> ... </p:cTn>
<p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>style.visibility</p:attrName>
</p:attrNameLst>
</p:cBhvr>
<p:to>
<p:strVal val="visible"/>

```
```

 </p:to>
 </p:set>
 <p:animEffect transition="in" filter="blinds(horizontal)">
 ...
 </p:animEffect>
 </p:childTnLst>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLSetBehavior) is located in §A.3. end note]

\subsection*{19.5.67 sldTgt (Slide Target)}

This element specifies the slide as the target element.
[Example: For example, suppose we have a simple animation with a blind entrance.
```

<p:seq concurrent="1" nextAc="seek">
<p:cTn id="2" dur="indefinite" nodeType="mainSeq"> ... </p:cTn>
<p:prevCondLst> ... </p:prevCondLst>
<p:nextCondLst>
<p:cond evt="onNext" delay="0">
<p:tgtEl>
<p:sldTgt/>
</p:tgtEl>
</p:cond>
</p:nextCondLst>
</p:seq>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.68 snd (Sound)}

This element specifies the audio information to play during a slide transition.
[Example: Consider a slide transition with an audio effect. The <snd> element should be used as follows:
```

<p:transition>
<p:sndAc>
<p:stSnd>
<p:snd r:embed="rId2""/>
</p:stSnd>
</p:sndAc>
</p:transition>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
embed (Embedded \\
Audio File \\
Relationship ID)
\end{tabular} & \begin{tabular}{l} 
Specifies the identification information for an embedded audio file. This attribute is used \\
to specify the location of an object that resides locally within the file. [Note: A list of \\
suggested audio types is provided in §15.2.2. end note]
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l} 
name (Sound \\
Name)
\end{tabular} & \begin{tabular}{l} 
Specifies the original name or given short name for the corresponding sound. This is used \\
to distinguish this sound from others by providing a human readable name for the \\
attached sound should the user need to identify the sound among others within the UI.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedWAVAudioFile) is located in §A.4.1. end note]

\subsection*{19.5.69 sndAc (Sound Action)}

This element describes a sound action for slide transition. This element specifies that the start of the slide transition is accompanied by the playback of an audio file; the actual audio file used is specified by the snd element (§19.5.68).
[Example: Consider a slide transition with a sound effect. The <sndAc> element should be used as follows:
```

<p:transition>
<p:sndAc>
<p:stSnd>
<p:snd r:embed="rId2"/>
</p:stSnd>
</p:sndAc>
</p:transition>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TransitionSoundAction) is located in §A.3. end note]

\subsection*{19.5.70 sndTgt (Sound Target)}

This element describes the sound information for a target object.
[Example: Consider a shape with a sound effect animation. The <sndTgt> element should be used as follows:
```

<p:subTnLst>
<p:audio>
<p:cMediaNode>
<p:cTn display="0" masterRel="sameClick"> ... </p:cTn>
<p:tgtEl>
<p:sndTgt r:embed="rId2" r:link="rId3"/>
</p:tgtEl>
</p:cMediaNode>
</p:audio>
</p:subTnLst>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
embed (Embedded \\
Audio File \\
Relationship ID)
\end{tabular} & \begin{tabular}{l} 
Specifies the identification information for an embedded audio file. This attribute is used \\
to specify the location of an object that resides locally within the file. [Note: A list of \\
suggested audio types is provided in §15.2.2. end note]
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/officeDoc \\
ument/relationshi \\
ps
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the ST_RelationshipId simple type \\
(§22.8.2.1).
\end{tabular} \\
\hline \begin{tabular}{l} 
name (Sound \\
Name)
\end{tabular} & \begin{tabular}{l} 
Specifies the original name or given short name for the corresponding sound. This is used \\
to distinguish this sound from others by providing a human readable name for the \\
attached sound should the user need to identify the sound among others within the UI.
\end{tabular} \\
\begin{tabular}{l} 
Namespace: \\
http://purl.oclc.or \\
g/ooxml/drawing \\
ml/main
\end{tabular} & \begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT EmbeddedWAVAudioFile) is located in §A.4.1. end note]

\subsection*{19.5.71 split (Split Slide Transition)}

This element describes the split slide transition effect, which reveals the new slide directly on top of the previous one by wiping either horizontal or vertical from the outside in, or from the inside out, until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "split" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>

```
    <p:split orient="horz" dir="in"/>
</p:transition>

<p:transition>
<p:split orient="horz" dir="out"/>
</p:transition>

<p:transition>
<p:split orient="vert" dir="in"/>
</p:transition>

<p:transition>
<p:split orient="vert" dir="out"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline Attributes & Description \\
\hline dir (Direction) & This attribute specifies the direction of a "split" slide transition. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l} 
The possible values for this attribute are defined by the \\
ST_TransitionInOutDirectionType simple type (§19.7.52).
\end{tabular} \\
\hline orient (Orientation) & \begin{tabular}{l} 
This attribute specifies the orientation of a "split" slide transition. \\
The possible values for this attribute are defined by the ST_Direction simple type \\
(§19.7.2).
\end{tabular} \\
\hline
\end{tabular}
[ Note: The W3C XML Schema definition of this element's content model (CT SplitTransition) is located in §A.3. end note]

\subsection*{19.5.72 spTgt (Shape Target)}

The element specifies the shape in which to apply a certain animation to.
[Example: Consider a shape whose id is 3 in which we want to apply a fade animation effect. The <spTgt> should be used as follows:
```

<p:animEffect transition="in" filter="fade">
<p:cBhvr>
<p:cTn id="7" dur="2000"/>
<p:tgtEl>
<p:spTgt spid="3"/>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline spid (Shape ID) & \begin{tabular}{l} 
This attribute specifies the shape identifier. \\
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLShapeTargetElement) is located in §A.3. end note]

\subsection*{19.5.73 stCondLst (Start Conditions List)}

This element contains a list conditions that shall be met for a time node to be activated.
[Example: For example, suppose we have a shape with an entrance appearance after 5 seconds. The <stCondLst>element should be used as follows:
```

<p:par>
<p:cTn id="5" nodeType="clickEffect">
<p:stCondLst>
<p:cond delay="5000"/>
</p:stCondLst>
<p:childTnLst> ... </p:childTnLst>
</p:cTn>
</p:par>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeConditionList) is located in §A.3. end note]

\subsection*{19.5.74 strips (Strips Slide Transition)}

This element describes the strips slide transition effect, which uses a set of bars that are arranged in a staggered fashion and wipes them across the screen until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "strips" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:strips dir="ld"/>
</p:transition>

```

<p:transition>
<p:strips dir="lu"/>
</p:transition>

<p:transition>
<p:strips dir="rd"/>
</p:transition>

<p:transition>
<p:strips dir="ru"/>
</p:transition>


\section*{end example]}
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline dir (Direction) & This attribute specifies if the direction of the transition. \\
& \begin{tabular}{l} 
The possible values for this attribute are defined by the \\
ST_TransitionCornerDirectionType simple type (§19.7.50).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT CornerDirectionTransition) is located in §A.3. end note]

\subsection*{19.5.75 strVal (String Value)}

This element specifies a string value to be used for evaluation by a parent element. The exact meaning of the value contained within this element is not defined here but is dependent on the usage of this element in conjunction with one of the listed parent elements.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & \begin{tabular}{l} 
This attribute specifies the string value that this element contains and that should be \\
used in evaluating this element.
\end{tabular} \\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema string \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariantStringVal) is located in §A.3. end note]

\subsection*{19.5.76 stSnd (Start Sound Action)}

This element describes the sound that starts playing during a slide transition.
[Example: Consider a slide transition that starts with a sound effect. The <stSnd> element should be used as follows:
```

<p:transition>
<p:sndAc>
<p:stSnd>
<p:snd r:embed="rId2"/>
</p:stSnd>
</p:sndAc>
</p:transition>

```
end example]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline loop (Loop Sound) & \begin{tabular}{l} 
This attribute specifies if the sound loops until the next sound event occurs in slideshow. \\
\\
\begin{tabular}{l} 
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TransitionStartSoundAction) is located in §A.3. end note]

\subsection*{19.5.77 subSp (Subshape)}

This element specifies the subshape of a legacy graphical object to animate.
[Example: Consider adding animation to a legacy diagram. The <subSp> element should be used as follows:
```

<p:animEffect transition="in" filter="blinds(horizontal)">
<p:cBhvr>
<p:cTn id="7" dur="500"/>
<p:tgtEl>
<p:spTgt spid="2053">
<p:subSp spid="_x0000_s70664"/>
</p:spTgt>
</p:tgtEl>
</p:cBhvr>
</p:animEffect>

```
end example]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline spid (Shape ID) & \begin{tabular}{l} 
This attribute specifies the shape identifier. \\
The possible values for this attribute are defined by the ST_DrawingElementId simple \\
type (§20.1.10.21).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLSubShapeld) is located in §A.3. end note]

\subsection*{19.5.78 subTnLst (Sub-TimeNodes List)}

This element describes time nodes that have a start time which is not based on the containing timenode. It is instead based on their master relationship (masterRel). At runtime, they are inserted dynamically into the timing tree as child timenodes for playback, based on the logic defined by the master relationship. These elements are used for animations such as "dim after" and "play sound effects"
[Example: Consider an animation with a "Fly In" effect on paragraphs so that each paragraph flies in on a separate click. Then the "Dim After" effect for paragraph 1 doe not happen until paragraph 2 flies in. The <subTnLst> element should be used as follows:
```

<p:par>
<p:cTn id="5" grpId="0" nodeType="clickEffect">
<p:stCondLst> ... </p:stCondLst>
<p:childTnLst> ... </p:childTnLst>
<p:subTnLst>
<p:set>
<p:cBhvr override="childStyle">
<p:cTn fill="hold" masterRel="nextClick" afterEffect="1"/>
<p:tgtEl> ... </p:tgtEl>
<p:attrNameLst> ... </p:attrNameLst>
</p:cBhvr>
<p:to> ... </p:to>
</p:set>
</p:subTnLst>
</p:cTn>
</p:par>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TimeNodeList) is located in §A.3. end note]

\subsection*{19.5.79 tav (Time Animate Value)}

This element defines a "keypoint" in animation interpolation.
[Example: Consider a shape with a "fly-in" animation. The <tav> element should be used as follows:
```

<p:anim calcmode="lin" valueType="num">
<p:cBhvr additive="base"> ... </p:cBhvr>
<p:tavLst>
<p:tav tm="0\%">
<p:val>
<p:strVal val="1+\#ppt_h/2"/>
</p:val>
</p:tav>
<p:tav tm="100\%">
<p:val>
<p:strVal val="\#ppt_y"/>
</p:val>
</p:tav>
</p:tavLst>
</p:anim>

```
end example]
\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline \multirow[t]{2}{*}{fmla (Formula)} & \\
\hline & \begin{tabular}{l}
This attribute allows for the specification of a formula to be used for describing a complex motion for an animated object. The formula manipulates the motion of the object by modifying a property of the object over a specified period of time. Each formula has zero or more inputs specified by the (\$) symbol, zero or more variables specified by the (\#) symbol pre-pended to the variable name and a target variable which is specified by the previously specified attrName element. The formula can contain one or more of any of the constants, operators or functions listed below. In addition to this, the formula can also contain floating point numbers and parentheses. \\
Mathematical operations have the following order of precedence, listed from lowest to highest. Operators listed on the same line have equal precedence. \\
- "+", "-" \\
- "*", "/", "\%" \\
- "^" \\
- Unary minus, Unary plus (e.g. -2, meaning \(3^{*}-2\) is the same as \(3^{*}(-2)\) ) \\
- Variables, Constants (including numbers) and Functions (as listed previously) \\
Language Description:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Attributes & \multicolumn{3}{|c|}{Description} \\
\hline & \multicolumn{3}{|l|}{```
number = digit , { digit } ;
exponent = [ '-' ] , ( 'e' | 'E' ) , number ;
value = number , [ '.' number ] , [ exponent ] ;
variable = '$' | 'ppt_x' | 'ppt_y' | 'ppt_w' | 'ppt_h' ;
constant = value | 'pi' | 'e' ;
ident = 'abs' | 'acos' | 'asin' | 'atan' | 'ceil'
    | 'cos' | 'cosh' | 'deg' | 'exp' | 'floor' | 'ln'
    'sqrt' | 'tan' | 'tanh' ;
function = ident , '(' , formula [ ',' , formula ] , ')' ;
formula = term , { [ '+' | '-' ] , term } ;
term = power , { [ '*' | '/' | '%' ] , power } ;
power = unary [ '^' , unary ] ;
unary = [ '+' | '-' ] , factor ;
factor = variable | constant | function | parens ;
parens = '(' , formula , ')' ;
```} \\
\hline & Name & & Description \\
\hline & \$ & Formula input & \\
\hline & ppt_x & Pre-animation x posit & he object on the slide \\
\hline & ppt_y & Pre-animation y posit & he object on the slide \\
\hline & ppt_w & Pre-animation width & bject \\
\hline & ppt_h & Pre-animation height & object \\
\hline & \multicolumn{3}{|l|}{Constants:} \\
\hline & Name & & Description \\
\hline & pi & Mathematical consta & \\
\hline & e & Mathematical consta & \\
\hline & \multicolumn{3}{|l|}{Operators:} \\
\hline & Name & Description & Usage \\
\hline & + & Addition & " \(\mathrm{x}+\mathrm{y}\) ", adds x to the value y \\
\hline & - & Subtraction & " \(x\) - \(y\) ", subtracts y from the value \(x\) \\
\hline & * & Multiplication & " \(x^{*} y^{\prime}\), multiplies \(x\) by the value \(y\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Attributes & Description \\
\hline & \begin{tabular}{l}
```

<p:animcalcmode="lin" valueType="num">
<p:cBhvr>
<p:cTn id="9" dur="664" tmFilter="0.0,0.0; 0.25,0.07;
0.50,0.2; 0.75,0.467; 1.0,1.0">
<p:stCondLst>
<p:cond delay="0"/>
</p:stCondLst>
</p:cTn>
<p:tgtEl>
<p:spTgtspid="4"/>
</p:tgtEl>
<p:attrNameLst>
<p:attrName>ppt_y</p:attrName>
</p:attrNameLst>
</p:cBhvr>
<p:tavLst>
<p:tav tm="0%" fmla="\#ppt_y-sin(pi*\$)/3">
<p:val>
<p:fltValval="0.5"/>
</p:val>
</p:tav>
<p:tav tm="100%">
<p:val>
<p:fltValval="1"/>
</p:val>
</p:tav>
</p:tavLst>
</p:anim>

``` \\
The animation example above modifies the ppt_y variable of the object by subtracting \(\sin \left(\mathrm{pi}^{*} \$\right) / 3\) from the non-animated value of ppt_y. The start value is 0.5 and the end value is 1 specified in each of the val elements. The total time for this animation is specified within the dur attribute and the filtered time graph is specified by the tmFilter attribute. The end result is that the object moves from a point above its non-animated position back to its non-animated position. With the specification of the tmFilter it has a modified time graph such that it also appears to accelerate as it reaches its final position. \\
[Note: For this example, the non-animated value of ppt_y is the value of this variable if the object were to be statically rendered on the slide without animation properties. end note] \\
end example] \\
The possible values for this attribute are defined by the W3C XML Schema string datatype.
\end{tabular} \\
\hline tm (Time) & This attribute specifies the time at which the attribute being animated takes on the value. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Attributes & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
The possible values for this attribute are defined by the ST_TLTimeAnimateValueTime \\
simple type (§19.7.39).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeAnimateValue) is located in §A.3. end note]

\subsection*{19.5.80 tavLst (Time Animated Value List)}

This element specifies a list of time animated value elements.
[Example: Consider a shape with a "fly-in" animation. The <tav> element should be used as follows:
```

<p:anim calcmode="lin" valueType="num">
<p:cBhvr additive="base"> ... </p:cBhvr>
<p:tavLst>
<p:tav tm="0%">
<p:val>
<p:strVal val="1+\#ppt_h/2"/>
</p:val>
</p:tav>
<p:tav tm="100000">
<p:val>
<p:strVal val="\#ppt_y"/>
</p:val>
</p:tav>
</p:tavLst>
</p:anim>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeAnimateValueList) is located in §A.3. end note]

\subsection*{19.5.81 tgtEl (Target Element)}

This element specifies the target children elements which have the animation effects applied to.
[Example: Consider a shape with ID 3 with a fade effect animation applied to it. The <tgtEl> element should be used as follows:
```

<p:animEffect transition="in" filter="fade">
<p:cBhvr>
<p:cTn id="7" dur="2000"/>

```
```

        <p:tgtEl>
            <p:spTgt spid="3"/>
        </p:tgtEl>
        </p:cBhvr>
    </p:animEffect>

```

\section*{end example]}
[Note: The W3C XML Schema definition of this element's content model (CT TLTimeTargetElement) is located in §A.3. end note]

\subsection*{19.5.82 tmAbs (Time Absolute)}

This element describes the duration of the iteration interval in absolute time.
[Example: Consider a text animation where the words appear letter by letter every 10 seconds. The <tmAbs> element should be used as follows:
```

<p:par>
<p:cTn id="5" >
<p:stCondLst> ... </p:stCondLst>
<p:iterate type="lt">
<p:tmAbs val="10000"/>
</p:iterate>
<p:childTnLst> ... </p:childTnLst>
</p:cTn>
</p:par>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Time) & \begin{tabular}{l}
This attribute describes an amount of time, in milliseconds. \\
\\
\\
\\
The possible values for this attribute are defined by the ST_TLTime simple type \\
(§19.7.38).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLIterateIntervalTime) is located in §A.3. end note]

\subsection*{19.5.83 tmPct (Time Percentage)}

This element describes the duration of the iteration interval in a percentage of time.
[Example: Consider a text animation where the words appear letter by letter every 10th of the animation duration. The <tmPct> element should be used as follows:
```

<p:par>
<p:cTn id="5" >
<p:stCondLst> ... </p:stCondLst>
<p:iterate type="lt">
<p:tmPct val="10%"/>
</p:iterate>
<p:childTnLst> ... </p:childTnLst>
</p:cTn>
</p:par>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & \begin{tabular}{l}
This attribute specifies the time expressed as a percentage. \\
The possible values for this attribute are defined by the ST_PositivePercentage simple \\
type (\((20.1 .10 .45)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLIterateIntervalPercentage) is located in §A.3. end note]

\subsection*{19.5.84 tmpl (Template Effects)}

This element specifies the "template" effects that are used by the build element. Template effects are used in text builds on the master slide. They define the rules of what effect should be applied to the 1st level paragraph, 2nd level paragraph, etc.
[Example: Consider a template with a fade in effect applied to it. The <tmpl> element should be used as follows:
```

    <p:timing>
        <p:tnLst> ... </p:tnLst>
    <p:bldLst>
            <p:bldP spid="3" grpId="0" build="p">
                <p:tmplLst>
                    <p:tmpl lvl="1">
            </p:tmpl>
            </p:tmplLst>
        </p:bldP>
    </p:bldLst>
    </p:timing>
end example]

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline lvl (Level) & \begin{tabular}{l}
This attribute describes the paragraph indent level to which this template effect applies. \\
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLTemplate) is located in §A.3. end note]

\subsection*{19.5.85 tmplLst (Template effects)}

This element describes a list of template effects that describe what kind of effects should be applied to a paragraph level properties.
[Example: Consider a template with a fade in effect applied to it. The <tmpl> element should be used as follows:
```

<p:timing>
<p:tnLst> ... </p:tnLst>
<p:bldLst>
<p:bldP spid="3" grpId="0" build="p">
<p:tmplLst>
<p:tmpl lvl="1">
</p:tmpl>
</p:tmplLst>
</p:bldP>
</p:bldLst>
</p:timing>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TLTemplateList) is located in §A.3. end note]

\subsection*{19.5.86 tn (Time Node)}

This element describes the time node trigger choice.
[Example: Consider a time node with an event condition. The <tn> element should be used as follows:
```

<p:par>
<p:cTn id="5">
<p:stCondLst>
<p:cond delay="0"/>
</p:stCondLst>
<p:endCondLst>
<p:cond evt="begin" delay="0">

```
```

            <p:tn val="5"/>
            </p:cond>
        </p:endCondLst>
        <p:childTnLst> ... </p:childTnLst>
        </p:cTn>
    </p:par>
    ```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline val (Value) & This attribute specifies a time node identifier. \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the ST_TLTimeNodeID simple type \\
(§19.7.42).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLTriggerTimeNodeID) is located in §A.3. end note]

\subsection*{19.5.87 tnLst (Time Node List)}

This element specifies a list of time node elements used in an animation sequence.
[Example: Consider a simple animation sequence. The <tnLst> element should be used as follows:
```

<p:timing>
<p:tnLst>
<p:par> ... </p:par>
</p:tnLst>
</p:timing>

```
end example]
[Note: The W3C XML Schema definition of this element’s content model (CT TimeNodeList) is located in §A.3. end note]

\subsection*{19.5.88 \\ to (To)}

This element specifies the target location for an animation motion or animation scale effect
[Example: Consider an animation with a "light speed" entrance effect.
```

<p:animScale>
<p:cBhvr>
<p:cTn id="9" dur="200" decel="10.5%" autoRev="1" fill="hold">
<p:stCondLst>
<p:cond delay="600"/>

```
```

                </p:stCondLst>
            </p:cTn>
            <p:tgtEl>
            <p:spTgt spid="4"/>
        </p:tgtEl>
        </p:cBhvr>
        <p:from x="100%" y="100%"/>
        <p:to x="80%" y="100%"/>
    </p:animScale>

```
end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline x (X coordinate) & \begin{tabular}{l}
This attribute describes the X coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
(\(£ 20.1 .10 .40)\).
\end{tabular} \\
\hline y (Y coordinate) & \begin{tabular}{l}
This attribute describes the Y coordinate. \\
The possible values for this attribute are defined by the ST_Percentage simple type \\
(\(\$ 20.1 .10 .40)\).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLPoint) is located in §A.3. end note]

\subsection*{19.5.89 to (To)}

The element specifies the certain attribute of a time node after an animation effect.
[Example: Consider an animation effect that leaves a string value visible afterwards. The <to> element should be used as follows:
```

<p:childTnLst>
<p:set>
<p:cBhvr> ... </p:cBhvr>
<p:to>
<p:strVal val="visible"/>
</p:to>
</p:set>
<p:anim calcmode="lin" valueType="num"> ... </p:anim>
...</p:childTnLst>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariant) is located in §A.3. end note]

\subsection*{19.5.90 to (To)}

This element specifies the resulting color for the animation color change.
[Example: Consider emphasize a shape by changing its fill color from blue to red. The <to> element should be used as follows:
```

<p:childTnLst>
<p:animClr clrSpc="rgb">
<p:cBhvr> ... </p:cBhvr>
<p:to>
<a:schemeClr val="accent2"/>
</p:to>
</p:animClr>
</p:childTnLst>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT Color) is located in §A.4.1. end note]

\subsection*{19.5.91 txEl (Text Element)}

This element specifies a text element to animate.
[Example: Consider a shape containing text to be animated. The <txEl> should be used as follows:
```

<p:tgtEl>
<p:spTgt spid="5">
<p:txEl>
<p:pRg st="1" end="1"/>
</p:txEl>
</p:spTgt>
</p:tgtEl>
end example]

```
[Note: The W3C XML Schema definition of this element's content model (CT TLTextTargetElement) is located in §A.3. end note]

\subsection*{19.5.92 val (Value)}

The element specifies a value for a time animate.
[Example: Consider a shape with a fade in animation effect. The <val> element should be used as follows:
```

<p:anim calcmode="lin" valueType="num">
<p:cBhvr additive="base"> ... </p:cBhvr>
<p:tavLst>
<p:tav tm="0%">
<p:val>
<p:strVal val="0-\#ppt_w/2"/>
</p:val>
</p:tav>
<p:tav tm="100%">
<p:val>
<p:strVal val="\#ppt_x"/>
</p:val>
</p:tav>
</p:tavLst>
</p:anim>

```
end example]
[Note: The W3C XML Schema definition of this element's content model (CT TLAnimVariant) is located in §A.3. end note]

\subsection*{19.5.93 video (Video)}

This element specifies video information in an animation sequence. This element specifies that this node within the animation tree triggers the playback of a video file; the actual video file used is specified by the videoFile element (§20.1.3.6).
[Example: Consider a slide with an animated video content. The <video> element is used as follows:
```

<p:cSld>
<p:spTree>
<p:pic>
<p:nvPicPr>
<p:cNvPr id="4"/>
..
<p:nvPr>
<a:videoFile r:link="rId1" contentType="video/ogg"/>
</p:nvPr>
</p:nvPicPr>
..
</p:pic>
</p:spTree>
</p:cSld>
..
<p:childTnLst>

```
```

    <p:seq concurrent="1" nextAc="seek">
    ..
    </p:seq>
    <p:video>
        <p:cMediaNode>
            <p:tgtEl>
                    <p:spTgt spid="4"/>
            </p:tgtEl>
        </p:cMediaNode>
    </p:video>
    </p:childTnLst>

```

The video element specifies the location of the video playback within the animation sequence; its child spTgt element specifies that the shape which contains the video to be played has a shape ID of 4. If we look at the shape with that ID value, its child videoFile element references an external video file of content type video/ogg located at the target of the relationship with ID rId1.end example]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
fullScrn (Full \\
Screen)
\end{tabular} & \begin{tabular}{l}
This attribute specifies if the video is displayed in full-screen. \\
The possible values for this attribute are defined by the W3C XML Schema boolean \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT TLMediaNodeVideo) is located in §A.3. end note]

\subsection*{19.5.94 wedge (Wedge Slide Transition)}

This element describes the wedge slide transition effect, which uses two radial edges that wipe from top to bottom in opposite directions until the new slide is fully shown. The rendering of this transition has been shown below.
[Example: Consider the following case in which the "wedge" slide transition is applied to a slide, along with a set of attributes. The proper usage and a sample rendering are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:wedge/>
</p:transition>

```


\section*{end example]}
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
[Note: The W3C XML Schema definition of this element's content model (CT Empty) is located in §A.3. end note]

\subsection*{19.5.95 wheel (Wheel Slide Transition)}

This element describes the wheel slide transition effect, which uses a set of radial edges and wipes them in the clockwise direction until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "wheel" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>

```
 <p:wheel spokes="1"/>
</p:transition>

<p:transition>
<p:wheel spokes="2"/>
</p:transition>

<p:transition>
<p:wheel spokes="3"/>
</p:transition>

<p:transition>
<p:wheel spokes="4"/> </p:transition>

<p:transition>
<p:wheel spokes="8"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline spokes (Spokes) & \begin{tabular}{l}
This attributes specifies the number of spokes ("pie pieces") in the wheel \\
\\
\\
\begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema unsignedInt \\
datatype.
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}
[Note: The W3C XML Schema definition of this element’s content model (CT WheelTransition) is located in §A.3. end note]

\subsection*{19.5.96 wipe (Wipe Slide Transition)}

This element describes the wipe slide transition effect, which wipes the new slide over the previous slide from one edge of the screen to the opposite until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "wipe" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:
```

<p:transition>
<p:wipe dir="d"/>

```
</p:transition>

<p:transition>
<p:wipe dir="l"/>
</p:transition>

<p:transition>
<p:wipe dir="r"/>
</p:transition>

<p:transition>
<p:wipe dir="u"/>
</p:transition>

end example]
[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dir (Direction) & This attribute specifies the direction of the slide transition. \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the \\
ST_TransitionSideDirectionType simple type (§19.7.53).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SideDirectionTransition) is located in §A.3. end note]

\subsection*{19.5.97 zoom (Zoom Slide Transition)}

This element describes the zoom slide transition effect, which uses a box pattern centered on the slide that increases in size until the new slide is fully shown. The rendering of this transition depends upon the attributes specified which have been shown below.
[Example: Consider the following cases in which the "zoom" slide transition is applied to a slide, along with a set of attributes. The proper usage and sample renderings are shown below, with the XML fragments preceding the corresponding rendering:

[Note: Any rendering shown above is for example purposes only. Exact rendering of any transition is determined by the rendering application. As such, the same transition can have many variations depending on the implementation. end note]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline dir (Direction) & \begin{tabular}{l}
This attribute specifies the direction of an "in/out" slide transition. \\
\\
\\
The possible values for this attribute are defined by the \\
ST_TransitionInOutDirectionType simple type (§19.7.52).
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT InOutTransition) is located in §A.3. end note]

\subsection*{19.6 Slide Synchronization Data}

It is often the case that slides are repurposed from existing presentations to be used in other presentations. In such cases, it is often beneficial for there to be an association, or a pairing, between the original slide and all
copied instances of it. In the presence of such a pairing, applications can enable a variety of time-saving features, including the automatic updates of copied slides when the original slide changes. The Slide Synchronization Data part is designed to enable such application-defined functionality.

This information is stored in the Slide Synchronization Data part, which is referenced via an implicit relationship from the associated Slide part.

\subsection*{19.6.1 sldSyncPr (Slide Synchronization Properties)}

This element specifies the information needed to associate the original slide with all copied instances of it.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Attributes } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
clientInsertedTime \\
(Client Slide \\
Insertion date/time)
\end{tabular} & \begin{tabular}{l}
The date and time that the original slide was last updated in the current presentation. \\
The date/time is stored in ISO 8601 format. \\
[Note: This value can be used to inform the user of when the last synchronization was, as \\
well as to determine when to next check for an updated version. end note]
\end{tabular} \\
& \begin{tabular}{l}
The possible values for this attribute are defined by the W3C XML Schema dateTime \\
datatype.
\end{tabular} \\
\hline \begin{tabular}{l}
serverSldId \\
(Server's Slide File \\
ID)
\end{tabular} & \begin{tabular}{l}
A string that, when paired with the target of the Slide Synchronization Data part's \\
external relationship, uniquely identifies the original slide.
\end{tabular} \\
\hline \begin{tabular}{l}
serverSldModified \\
Time (Server's Slide
\end{tabular} \\
File's modification \\
date/time)
\end{tabular}\(\quad\)\begin{tabular}{l}
The date and time that the original slide was last modified in its location as defined by \\
the target of the Slide Synchronization Data part's external relationship.
\end{tabular}
[Note: The W3C XML Schema definition of this element's content model (CT SlideSyncProperties) is located in §A.3. end note]

\subsection*{19.7 Simple Types}

This is the complete list of simple types dedicated to PresentationML.

\subsection*{19.7.1 ST_BookmarkIdSeed (Bookmark ID Seed)}

This simple type specifies constraints for value of the Bookmark ID seed.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
This simple type also specifies the following restrictions:
- This simple type has a minimum value of greater than or equal to 1 .
- This simple type has a maximum value of less than 2147483648.
[Note: The W3C XML Schema definition of this simple type's content model (ST BookmarkldSeed) is located in §A.3. end note]

\subsection*{19.7.2 ST_Direction (Direction)}

This simple type defines a direction of either horizontal or vertical.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline horz (Horizontal) & Defines a horizontal direction. \\
\hline vert (Vertical) & Defines a vertical direction. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST Direction) is located in §A.3. end note]

\subsection*{19.7.3 ST_Index (Index)}

This simple type defines the position of an object in an ordered list.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type’s content model (ST Index) is located in §A.3. end note]

\subsection*{19.7.4 ST_IterateType (Iterate Type)}

This simple type specifies how the animation is applied over subelements of the target element.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline el (Element) & Iterate by element. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline lt (Letter) & Iterate by Letter. \\
\hline wd (Word) & Iterate by Word. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST IterateType) is located in §A.3. end note]

\subsection*{19.7.5 ST_Name (Name string)}

This simple type specifies a name, such as for a comment author or custom show.
This simple type's contents are a restriction of the W3C XML Schema string datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST Name) is located in §A.3. end note]

\subsection*{19.7.6 ST_OleObjectFollowColorScheme (Embedded object to Follow Color Scheme)}

This simple type determines if the Embedded object is re-colored to reflect changes to the color schemes.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline full (Full) & \begin{tabular}{l}
Setting this enumeration causes the Embedded object \\
to respond to all changes in the color scheme in the \\
presentation.
\end{tabular} \\
\hline none (None) & \begin{tabular}{l}
Setting this enumeration causes the Embedded object \\
to not respond to changes in the color scheme in the \\
presentation.
\end{tabular} \\
\hline textAndBackground (Text and Background) & \begin{tabular}{l}
Setting this enumeration causes the Embedded object \\
to respond only to changes in the text and background \\
colors of the color scheme in the presentation.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST OleObjectFollowColorScheme) is located in §A.3. end note]

\subsection*{19.7.7 ST_PhotoAlbumFrameShape (Photo Album Shape for Photo Mask)}

This simple type specifies the values for photo frame types within a photo album presentation.
This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|}
\hline Enumeration Value & Description \\
\hline frameStyle1 (Rectangle Photo Frame) & \\
\hline frameStyle2 (Rounded Rectangle Photo Frame) & \\
\hline frameStyle3 (Simple White Photo Frame) & \\
\hline frameStyle4 (Simple Black Photo Frame) & \\
\hline frameStyle5 (Compound Black Photo Frame) & \\
\hline frameStyle6 (Center Shadow Photo Frame) & \\
\hline frameStyle7 (Soft Edge Photo Frame) & \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PhotoAlbumFrameShape) is located in §A.3. end note]

\subsection*{19.7.8 ST_PhotoAlbumLayout (Photo Album Layout Definition)}

This simple type specifies the values for photo layouts within a photo album presentation.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & & Description \\
\hline 1pic (1 Photo per Slide) & \\
& \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
Specifies that photo album slides should have a single \\
picture, centered horizontally and vertically, on the \\
slide with no title.
\end{tabular} \\
\hline 1picTitle (1 Photo per Slide with Titles) & \begin{tabular}{l}
Specifies that photo album slides should have a single \\
picture and a single title text box, centered \\
horizontally and vertically, on the slide.
\end{tabular} \\
\hline 2pic (2 Photos per Slide) & \begin{tabular}{l}
Specifies that photo album slides should have two \\
pictures of the same size, positioned side-by-side, \\
centered horizontally and vertically, on the slide with \\
no title.
\end{tabular} \\
\hline 2picTitle (2 Photos per Slide with Titles) & \begin{tabular}{l}
Specifies that photo album slides should have two
\end{tabular} \\
\hline 4picTitle (4 Photos per Slide with Titles) & \begin{tabular}{l}
(4 Photos per Slide) \\
pictures of the same size, positioned side-by-side, with \\
a single title text box centered over them, collectively \\
centered horizontally and vertically, on the slide.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline fitToSlide (Fit Photos to Slide) & \multicolumn{1}{c|}{} \\
& \begin{tabular}{l}
Specifies that photo album slides should have a single \\
picture, stretched to fit the entire slide size, with no \\
title.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PhotoAlbumLayout) is located in §A.3. end note]

\subsection*{19.7.9 ST_PlaceholderSize (Placeholder Size)}

This simple type facilitates the storing of the size of the placeholder. This size is described relative to the body placeholder on the master.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline full (Full) & \begin{tabular}{l}
Specifies that the placeholder should take the full size \\
of the body placeholder on the master.
\end{tabular} \\
\hline half (Half) & \begin{tabular}{l}
Specifies that the placeholder should take the half size \\
of the body placeholder on the master. Half size \\
vertically or horizontally? Needs a picture.
\end{tabular} \\
\hline quarter (Quarter) & \begin{tabular}{l}
Specifies that the placeholder should take a quarter of \\
the size of the body placeholder on the master. Picture \\
would be helpful
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PlaceholderSize) is located in §A.3. end note]

\subsection*{19.7.10 ST_PlaceholderType (Placeholder IDs)}

This simple type facilitates the storing of the content type a placeholder should contain.
[Note: Some placeholder types are not allowed for all SlideBase types. end note]
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline body (Body) & Contains body text. Allowed for Slide, Slide Layout, \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline & \begin{tabular}{l}
Slide Master, Notes, Notes Master. Can be horizontal \\
or vertical on Slide and Slide Layout.
\end{tabular} \\
\hline chart (Chart) & \begin{tabular}{l}
Contains a chart or graph. Special type. Allowed for \\
Slide and Slide Layout.
\end{tabular} \\
\hline clipArt (Clip Art) & \begin{tabular}{l}
Contains a single clip art image. Special type. Allowed \\
for Slide and Slide Layout.
\end{tabular} \\
\hline ctrTitle (Centered Title) & \begin{tabular}{l}
Contains a title intended to be centered on the slide. \\
Allowed for Slide and Slide Layout.
\end{tabular} \\
\hline dgm (Diagram) & \begin{tabular}{l}
Contains a diagram. Special type. Allowed for Slide and \\
Slide Layout.
\end{tabular} \\
\hline dt (Date and Time) & \begin{tabular}{l}
Contains the date and time. Allowed for Slide, Slide \\
Layout, Slide Master, Notes, Notes Master, Handout \\
Master
\end{tabular} \\
\hline ftr (Footer) & \begin{tabular}{l}
Contains text to be used as a footer in the document. \\
Allowed for Slide, Slide Layout, Slide Master, Notes, \\
Notes Master, Handout Master
\end{tabular} \\
\hline hdr (Header) & \begin{tabular}{l}
Contains text to be used as a header for the \\
document. Allowed for Notes, Notes Master, Handout \\
Master.
\end{tabular} \\
\hline media (Media) & \begin{tabular}{l}
Contains multimedia content such as audio or a movie \\
clip. Special type. Allowed for Slide and Slide Layout.
\end{tabular} \\
\hline obj (Object) & \begin{tabular}{l}
Contains any content type. Special type. Allowed for \\
Slide and Slide Layout.
\end{tabular} \\
\hline pic (Picture) & \begin{tabular}{l}
Contains a picture. Special type. Allowed for Slide and \\
Slide Layout.
\end{tabular} \\
\hline sldImg (Slide Image) & \begin{tabular}{l}
Contains an image of the slide. Allowed for Notes and \\
Notes Master.
\end{tabular} \\
\hline sldNum (Slide Number) & \begin{tabular}{l}
Contains the number of a slide. Allowed for Slide, Slide \\
Layout, Slide Master, Notes, Notes Master, Handout \\
Master
\end{tabular} \\
\hline tbl (Table) & Contains a subtitle. Allowed for Slide and Slide Layout. \\
\hline & \begin{tabular}{l}
Contains a table. Special type. Allowed for Slide and \\
Slide Layout.
\end{tabular} \\
\hline \begin{tabular}{l}
Contains a slide title. Allowed for Slide, Slide Layout \\
and Slide Master. Can be horizontal or vertical on Slide \\
and Slide Layout.
\end{tabular} \\
\hline Subtite) & (Title \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PlaceholderType) is located in §A.3. end note]

\subsection*{19.7.11 ST_PrintColorMode (Print Color Mode)}

This simple type specifies the color mode that should be used when printing a presentation document.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline bw (Black and White Mode) & Print should be in Black and White only \\
\hline clr (Color Mode) & Print should be in Full Color \\
\hline gray (Grayscale Mode) & Print should be in Grayscale only \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST PrintColorMode) is located in §A.3. end note]

\subsection*{19.7.12 ST_PrintWhat (Default print output)}

This simple type specifies the default print layout that should be used when printing
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline handouts1 (1 Slide / Handout Page) & 1 Slide and Handout Page layout should be used. \\
\hline handouts2 (2 Slides / Handout Page) & 2 Slides and Handout Page layout should be used. \\
\hline handouts3 (3 Slides / Handout Page) & 3 Slides and Handout Page layout should be used. \\
\hline handouts4 (4 Slides / Handout Page) & 4 Slides and Handout Page layout should be used. \\
\hline handouts6 (6 Slides / Handout Page) & 6 Slides and Handout Page layout should be used. \\
\hline handouts9 (9 Slides / Handout Page) & 9 Slides and Handout Page layout should be used. \\
\hline notes (Notes) & Notes layout should be used. \\
\hline outline (Outline) & Outline layout should be used. \\
\hline slides (Slides) & Slides layout should be used. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type’s content model (ST PrintWhat) is located in §A.3. end note]

\subsection*{19.7.13 ST_SlideId (Slide Identifier)}

This simple type specifies the allowed numbering for the slide identifier.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.

This simple type also specifies the following restrictions:
- This simple type has a maximum value of less than 2147483648.
- This simple type has a minimum value of greater than or equal to 256 .
[Note: The W3C XML Schema definition of this simple type's content model (ST Slideld) is located in §A.3. end note]

\subsection*{19.7.14 ST_SlideLayoutId (Slide Layout ID)}

This simple type sets the bounds for the slide layout id value. This layout id is used to identify the different slide layout designs.

This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
This simple type also specifies the following restrictions:
- This simple type has a minimum value of greater than or equal to 2147483648 .
[Note: The W3C XML Schema definition of this simple type’s content model (ST SlideLayoutld) is located in §A.3. end note]

\subsection*{19.7.15 ST_SlideLayoutType (Slide Layout Type)}

This simple type defines an arrangement of content on a slide. Each layout type is not tied to an exact positioning of placeholders, but rather provides a higher-level description of the content type and positioning of placeholders. This information can be used by the application to aid in mapping between different layouts. The application can choose which, if any, of these layouts to make available through its user interface.

Each layout contains zero or more placeholders, each with a specific content type. An "object" placeholder can contain any kind of data. Media placeholders are intended to hold video or audio clips. The enumeration value descriptions include illustrations of sample layouts for each value of the simple type.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|c|c|c|}
\hline Enumeration Value & \multicolumn{2}{|r|}{Description} \\
\hline blank (Slide Layout Type Enumeration (Blank)) & & Blank \\
\hline chart (Chart) & & Title and chart \\
\hline chartAndTx (Slide Layout Type Enumeration (Chart and Text)) & & Title, chart on left and text on right \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Enumeration Value & & Description \\
\hline clipArtAndTx (Clip Art and Text) & & Title, clipart on left, text on right \\
\hline clipArtAndVertTx (Clip Art and Vertical Text) & & Title, clip art on left, vertical text on right \\
\hline cust (Slide Layout Type Enumeration (Custom)) & Custom layo & t defined by user \\
\hline dgm (Slide Layout Type Enumeration (Diagram)) & \begin{tabular}{|c|}
\hline\(\square \square\) \\
\(\square \square \square\) \\
\(\square \square\) \\
\hline\(\square\)
\end{tabular} & Title and diagram \\
\hline fourObj (Four Objects) & | & Title and four objects \\
\hline mediaAndTx (Slide Layout Type Enumeration (Media and Text)) & \% \(2 \times\) \% & Title, media on left, text on right \\
\hline obj (Title and Object) & & Title and object \\
\hline objAndTwoObj (Object and Two Object) & | & Title, one object on left, two objects on right \\
\hline objAndTx (Slide Layout Type Enumeration (Object and Text)) & & Title, object on left, text on right \\
\hline objOnly (Object) & & Object only \\
\hline objOverTx (Slide Layout Type Enumeration (Object over Text)) & | & Title, object on top, text on bottom \\
\hline objTx (Title, Object, and Caption) & |ras & Title, object and caption text \\
\hline picTx (Picture and Caption) & & Title, picture, and caption text \\
\hline secHead (Section Header) & \multicolumn{2}{|l|}{Section header title and subtitle text} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Enumeration Value & & Description \\
\hline & \(\square\) & \\
\hline tbl (Slide Layout Type Enumeration (Table)) & & Title and table \\
\hline title (Slide Layout Type Enumeration (Title)) & & Title layout with centered title and subtitle placeholders \\
\hline titleOnly (Slide Layout Type Enumeration (Title Only)) & & Title only \\
\hline twoColTx (Slide Layout Type Enumeration (Two Column Text)) & & Title, text on left, text on right \\
\hline twoObj (Two Objects) & & Title, object on left, object on right \\
\hline twoObjAndObj (Two Objects and Object) & | & Title, two objects on left, one object on right \\
\hline twoObjAndTx (Two Objects and Text) & & Title, two objects on left, text on right \\
\hline twoObjOverTx (Two Objects over Text) & & Title, two objects on top, text on bottom \\
\hline twoTxTwoObj (Two Text and Two Objects) & & Title, two objects each with text \\
\hline tx (Slide Layout Type Enumeration (Text)) & \% \(\quad\) \% & Title and text \\
\hline txAndChart (Slide Layout Type Enumeration (Text and Chart)) & & Title, text on left and chart on right \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Enumeration Value & & Description \\
\hline txAndClipArt (Text and Clip Art) & \% & Title, text on left, clip art on right \\
\hline txAndMedia (Slide Layout Type Enumeration (Text and Media)) & : \(\because=\ldots\) & Title, text on left, media on right \\
\hline txAndObj (Slide Layout Type Enumeration (Text and Object)) & \% & Title, text on left, object on right \\
\hline txAndTwoObj (Text and Two Objects) & (\%) & Title, text on left, two objects on right \\
\hline txOverObj (Slide Layout Type Enumeration (Text over Object)) & | & Title, text on top, object on bottom \\
\hline vertTitleAndTx (Vertical Title and Text) & & Vertical title on right, vertical text on left \\
\hline vertTitleAndTxOverChart (Vertical Title and Text Over Chart) & & Vertical title on right, vertical text on top, chart on bottom \\
\hline vertTx (Vertical Text) & & Title and vertical text body \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SlideLayoutType) is located in §A.3. end note]

\subsection*{19.7.16 ST_SlideMasterId (Slide Master ID)}

This simple type specifies the allowed numbering for the slide master identifier.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
This simple type also specifies the following restrictions:
- This simple type has a minimum value of greater than or equal to 2147483648 .
[Note: The W3C XML Schema definition of this simple type's content model (ST SlideMasterld) is located in §A.3. end note]

\subsection*{19.7.17 ST_SlideSizeCoordinate (Slide Size Coordinate)}

This simple type specifies the slide size coordinate in EMUs (English Metric Units).
This simple type's contents are a restriction of the ST_PositiveCoordinate32 datatype (§20.1.10.42).
This simple type also specifies the following restrictions:
- This simple type has a maximum value of less than or equal to 51206400 .
- This simple type has a minimum value of greater than or equal to 914400 .
[Note: The W3C XML Schema definition of this simple type's content model (ST SlideSizeCoordinate) is located in §A.3. end note]

\subsection*{19.7.18 ST_SlideSizeType (Slide Size Type)}

This simple type specifies the kind of slide size that the slide should be optimized for.
This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline 35mm (35mm Film) & Slide size should be optimized for 35mm film output \\
\hline A3 (A3) & Slide size should be optimized for A3 output \\
\hline A4 (A4) & Slide size should be optimized for A4 output \\
\hline B4ISO (B4ISO) & Slide size should be optimized for B4ISO output \\
\hline B4JIS (B4JIS) & Slide size should be optimized for B4JIS output \\
\hline B5ISO (B5ISO) & Slide size should be optimized for B5ISO output \\
\hline B5JIS (B5JIS) & Slide size should be optimized for B5JIS output \\
\hline banner (Banner) & Slide size should be optimized for banner output \\
\hline custom (Custom) & Slide size should be optimized for custom output \\
\hline hagakiCard (Hagaki Card) & Slide size should be optimized for hagaki card output \\
\hline ledger (Ledger) & Slide size should be optimized for ledger output \\
\hline letter (Letter) & Slide size should be optimized for letter output \\
\hline overhead (Overhead) & Slide size should be optimized for overhead output \\
\hline screen16x10 (Screen 16x10) & Slide size should be optimized for 16x10 screen output \\
\hline screen16x9 (Screen 16x9) & Slide size should be optimized for 16x9 screen output \\
\hline screen4x3 (Screen 4x3) & Slide size should be optimized for 4x3 screen output \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SlideSizeType) is located in §A.3. end note]

\subsection*{19.7.19 ST_SplitterBarState (Splitter Bar State)}

This simple type specifies the state that the splitter bar should be shown in. The splitter bar separates a primary and secondary region within a viewing area.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline maximized (Max) & \begin{tabular}{l}
The primary region occupies the greatest amount of \\
the viewing area allowed by the application.
\end{tabular} \\
\hline minimized (Min) & \begin{tabular}{l}
The primary region occupies the least amount of the \\
viewing area allowed by the application.
\end{tabular} \\
\hline restored (Restored) & The primary region has a specific intermediate size. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST SplitterBarState) is located in §A.3. end note]

\subsection*{19.7.20 ST_TLAnimateBehaviorCalcMode (Time List Animate Behavior Calculate Mode)}

This simple type specifies how the animation flows from point to point.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline discrete (Calc Mode Enum (Discrete)) & Description \\
\hline fmla (Calc Mode Enum (Formula)) & Formula \\
\hline lin (Calc Mode Enum (Linear)) & Linear \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateBehaviorCalcMode) is located in §A.3. end note]

\subsection*{19.7.21 ST_TLAnimateBehaviorValueType (Time List Animate Behavior Value Types)}

This simple type specifies the type of property value.
This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline clr (Value Type Enum (Color)) & Color \\
\hline num (Value Type Enum (Number)) & Number \\
\hline str (Value Type Enum (String)) & String \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateBehaviorValueType) is located in §A.3. end note]

\subsection*{19.7.22 ST_TLAnimateColorDirection (Time List Animate Color Direction)}

This simple type specifies the direction in which to interpolate the animation (clockwise or counterclockwise).
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline ccw (Counter-Clockwise) & Counter-Clockwise \\
\hline cw (Direction Enum (Clockwise)) & Clockwise \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateColorDirection) is located in §A.3. end note]

\subsection*{19.7.23 ST_TLAnimateColorSpace (Time List Animate Color Space)}

This simple type specifies the color space of the animation.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline hsl (Color Space Enum (HSL)) & Hue, Saturation, Luminance \\
\hline rgb (Color Space Enum (RGB)) & Red, Green, Blue \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateColorSpace) is located in §A.3. end note]

\subsection*{19.7.24 ST_TLAnimateEffectTransition (Time List Animate Effect Transition)}

This simple type specifies whether the effect is a transition in, transition out, or neither.
This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline in (Transition Enum (In)) & In \\
\hline none (Transition Enum (None)) & None \\
\hline out (Transition Enum (Out)) & Out \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateEffectTransition) is located in §A.3. end note]

\subsection*{19.7.25 ST_TLAnimateMotionBehaviorOrigin (Time List Animate Motion Behavior Origin)}

This simple type specifies what the origin of the motion path is relative to.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline layout (Origin Enum (Layout)) & Layout \\
\hline parent (Origin Enum (Parent)) & Parent \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateMotionBehaviorOrigin) is located in §A.3. end note]

\subsection*{19.7.26 ST_TLAnimateMotionPathEditMode (Time List Animate Motion Path Edit Mode)}

This simple type specifies how the motion path moves when the target element is moved.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline fixed (Path Edit Mode Enum (Fixed)) & Fixed \\
\hline relative (Path Edit Mode Enum (Relative)) & Relative \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLAnimateMotionPathEditMode) is located in §A.3. end note]

\subsection*{19.7.27 ST_TLBehaviorAccumulateType (Behavior Accumulate Type)}

This simple type makes a repeating animation build with each iteration when set to "always."

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline always (Accumulate Enum (Always)) & Always \\
\hline none (Accumulate Enum (None)) & None \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLBehaviorAccumulateType) is located in §A.3. end note]

\subsection*{19.7.28 ST_TLBehaviorAdditiveType (Behavior Additive Type)}

This simple type specifies how to apply the animation values to the original value for the property.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline base (Additive Enum (Base)) & Base \\
\hline mult (Additive Enum (Multiply)) & Multiply \\
\hline none (None) & None \\
\hline repl (Additive Enum (Replace)) & Replace \\
\hline sum (Additive Enum (Sum)) & Sum \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLBehaviorAdditiveType) is located in §A.3. end note]

\subsection*{19.7.29 ST_TLBehaviorOverrideType (Behavior Override Type)}

This simple type specifies how a behavior should override values of the attribute being animated on the target element. The "childStyle" clears the attributes on the children contained inside the target element.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline childStyle (Override Enum (Child Style)) & Child Style \\
\hline normal (Override Enum (Normal)) & Normal \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLBehaviorOverrideType) is located in §A.3. end note]

\subsection*{19.7.30 ST_TLBehaviorTransformType (Behavior Transform Type)}

This simple type specifies how the behavior animates the target element.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline img (Image) & Image transform \\
\hline pt (Point) & Point transform \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLBehaviorTransformType) is located in §A.3. end note]

\subsection*{19.7.31 ST_TLChartSubelementType (Chart Subelement Type)}

This simple type defines an animation target element that is represented by a subelement of a chart.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline category (Category Axis) & Category \\
\hline gridLegend (Grid Legend) & Background Element (Grid and Legend) \\
\hline ptInCategory (Single Point in Category) & Category Element \\
\hline ptInSeries (Single Point in Data Series) & Series Element \\
\hline series (Data Series) & Series \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLChartSubelementType) is located in §A.3. end note]

\subsection*{19.7.32 ST_TLCommandType (Command Type)}

This simple type specifies a command type.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline call (Command Type Enum (Call)) & Call \\
\hline evt (Command Type Enum (Event)) & Event \\
\hline verb (Command Type Enum (Verb)) & Verb \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLCommandType) is located in §A.3. end note]

\subsection*{19.7.33 ST_TLDiagramBuildType (Diagram Build Types)}

This simple type specifies the different diagram build types.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline allAtOnce (Diagram Build Type Enum (All At Once)) & All At Once \\
\hline \begin{tabular}{l}
breadthByLvl (Diagram Build Type Enum (Breadth By \\
Level))
\end{tabular} & Breadth By Level \\
\hline \begin{tabular}{l}
breadthByNode (Diagram Build Type Enum (Breadth \\
By Node))
\end{tabular} & Breadth By Node \\
\hline ccw (Diagram Build Type Enum (Counter-Clockwise)) & Counter-Clockwise \\
\hline \begin{tabular}{l}
ccwIn (Diagram Build Type Enum (Counter-Clockwise- \\
In))
\end{tabular} & Counter-Clockwise-In \\
\hline \begin{tabular}{l}
ccwOut (Diagram Build Type Enum (Counter- \\
Clockwise-Out))
\end{tabular} & Counter-Clockwise-Out \\
\hline cust (Diagram Build Type Enum (Custom)) & Custom \\
\hline cw (Diagram Build Type Enum (Clockwise)) & Clockwise \\
\hline cwIn (Diagram Build Type Enum (Clockwise-In)) & Clockwise-In \\
\hline cwOut (Diagram Build Type Enum (Clockwise-Out)) & Clockwise-Out \\
\hline \begin{tabular}{l}
depthByBranch (Diagram Build Type Enum (Depth By \\
Branch))
\end{tabular} & Depth By Branch \\
\hline \begin{tabular}{l}
depthByNode (Diagram Build Type Enum (Depth By \\
Node))
\end{tabular} & Depth By Node \\
\hline down (Diagram Build Type Enum (Down)) & Down \\
\hline inByRing (Diagram Build Type Enum (In-By-Ring)) & In-By-Ring \\
\hline outByRing (Diagram Build Type Enum (Out-By-Ring)) & Out-By-Ring \\
\hline up (Diagram Build Type Enum (Up)) & Up \\
\hline whole (Diagram Build Type Enum (Whole)) & Whole \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLDiagramBuildType) is located in §A.3. end note]

\subsection*{19.7.34 ST_TLNextActionType (Next Action Type)}

This simple type specifies what to do when going forward in a sequence. When the value is "seek," it seeks the current child element to its natural end time before advancing to the next element.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline none (Next Action Type Enum (None)) & Noscription \\
\hline seek (Next Action Type Enum (Seek)) & Seek \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLNextActionType) is located in §A.3. end note]

\subsection*{19.7.35 ST_TLOleChartBuildType (Embedded Chart Build Type)}

This simple type describes how to build an embedded Chart.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline allAtOnce (Chart Build Type Enum (All At Once)) & All At Once \\
\hline category (Chart Build Type Enum (Category)) & By Category \\
\hline \begin{tabular}{l}
categoryEl (Chart Build Type Enum (Category Element \\
))
\end{tabular} & By Category Element \\
\hline series (Chart Build Type Enum (Series)) & By Series \\
\hline seriesEl (Chart Build Type Enum (Series Element)) & By Series Element \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLOleChartBuildType) is located in §A.3. end note]

\subsection*{19.7.36 ST_TLParaBuildType (Paragraph Build Type)}

This simple type describes how to build a paragraph.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline allAtOnce (All At Once) & Specifies to animate all paragraphs at once. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline cust (Custom) & Specifies the build has custom user settings. \\
\hline p (Paragraph) & \begin{tabular}{l}
Specifies to animate paragraphs grouped by bullet \\
level.
\end{tabular} \\
\hline whole (Whole) & \begin{tabular}{l}
Specifies to animate the entire body of text as one \\
block.
\end{tabular} \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLParaBuildType) is located in §A.3. end note]

\subsection*{19.7.37 ST_TLPreviousActionType (Previous Action Type)}

This simple type specifies what to do when going backwards in a sequence. When the value is "skipTimed," the sequence continues to go backwards until it reaches a sequence element that was defined to being only on a "next" event.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline none (Previous Action Type Enum (None)) & None \\
\hline skipTimed (Previous Action Type Enum (Skip Timed)) & Skip Timed \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLPreviousActionType) is located in §A.3. end note]

\subsection*{19.7.38 ST_TLTime (Time)}

This simple type specifies time after which to automatically advance the build to the next step. An amount of time, in milliseconds.

This simple type is a union of the following types:
- The ST_TLTimeIndefinite simple type (§19.7.40).
- The W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type’s content model (ST TLTime) is located in §A.3. end note]

\subsection*{19.7.39 ST_TLTimeAnimateValueTime (Animation Time)}

This simple type specifies a percentage within the time span of the element. A value of indefinite means the attribute should be ignored.

This simple type is a union of the following types:
- The ST_PositiveFixedPercentage simple type (§20.1.10.44).
- The ST_TLTimeIndefinite simple type (§19.7.40).
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeAnimateValueTime) is located in §A.3. end note]

\subsection*{19.7.40 ST_TLTimeIndefinite (Indefinite Time Declaration)}

This simple type specifies a value that designates an "indefinite" amount time -- typically means this property is subordinate to other, defined properties.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline indefinite (Indefinite Type Enum) & Specifies Indefinite Time \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeIndefinite) is located in §A.3. end note]

\subsection*{19.7.41 ST_TLTimeNodeFillType (Time Node Fill Type)}

This simple type specifies what modifications the effect leaves on the target element's properties when the effect ends.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline freeze (Freeze) & Freeze \\
\hline hold (TimeNode Fill Type Enum (Hold)) & Hold \\
\hline remove (Remove) & Remove \\
\hline transition (Transition) & Transition \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodeFillType) is located in §A.3. end note]

\subsection*{19.7.42 ST_TLTimeNodeID (Time Node ID)}

This simple type represents a node or event on the timeline by its identifier.
This simple type's contents are a restriction of the W3C XML Schema unsignedInt datatype.
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodeID) is located in §A.3. end note]

\subsection*{19.7.43 ST_TLTimeNodeMasterRelation (Time Node Master Relation)}

This simple type specifies how the time node plays back relative to its master time node.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
lastClick (TimeNode Master Relation Enum (Last Click \\
I)
\end{tabular} & Last Click \\
\hline \begin{tabular}{l}
nextClick (TimeNode Master Relation Enum (Next \\
Click))
\end{tabular} & Next Click \\
\hline \begin{tabular}{l}
sameClick (TimeNode Master Relation Enum (Same \\
Click))
\end{tabular} & Same Click \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodeMasterRelation) is located in §A.3. end note]

\subsection*{19.7.44 ST_TLTimeNodePresetClassType (Time Node Preset Class Type)}

This simple type specifies the class of effect in which this effect belongs.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline emph (Preset Type Enum (Emphasis)) & Emphasis Preset \\
\hline entr (Preset Type Enum (Entrance)) & Entrance Preset \\
\hline exit (Exit) & Exit Preset \\
\hline mediacall (Preset Type Enum (Media Call)) & Media Call Preset \\
\hline path (Preset Type Enum (Path)) & Path Preset \\
\hline verb (Preset Type Enum (Verb)) & Verb Preset \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodePresetClassType) is located in §A.3. end note]

\subsection*{19.7.45 ST_TLTimeNodeRestartType (Time Node Restart Type)}

This simple type determines whether an effect can play more than once.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline always (Restart Enum (Always)) & Always restart node \\
\hline never (Restart Enum (Never)) & Never restart node \\
\hline whenNotActive (Restart Enum (When Not Active)) & Restart when node is not active \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodeRestartType) is located in §A.3. end note]

\subsection*{19.7.46 ST_TLTimeNodeSyncType (Time Node Sync Type)}

This simple type specifies how the time node synchronizes to its group.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline canSlip (TimeNode Sync Enum (Can Slip)) & Can Slip \\
\hline locked (TimeNode Sync Enum (Locked)) & Locked \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodeSyncType) is located in §A.3. end note]

\subsection*{19.7.47 ST_TLTimeNodeType (Time Node Type)}

This simple type specifies time node types.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline afterEffect (Node Type Enum (After Effect)) & After Effect \\
\hline afterGroup (Node Type Enum (After Group)) & After Group \\
\hline clickEffect (Node Type Enum (Click Effect)) & Click Effect \\
\hline clickPar (Node Type Enum (Click Paragraph)) & Click Paragraph \\
\hline \begin{tabular}{l}
interactiveSeq (Node Type Enum (Interactive \\
Sequence))
\end{tabular} & Interactive Sequence \\
\hline mainSeq (Node Type Enum (Main Sequence)) & Main Sequence \\
\hline tmRoot (Node Type Enum (Timing Root)) & Timing Root \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \\
\hline withEffect (Node Type Enum (With Effect)) & Wescription \\
\hline withGroup (Node Type Enum (With Group)) & With Group \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTimeNodeType) is located in §A.3. end note]

\subsection*{19.7.48 ST_TLTriggerEvent (Trigger Event)}

This simple type specifies a particular event that causes the time condition to be true.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline begin (Trigger Event Enum (Begin)) & Fire trigger at the beginning \\
\hline end (Trigger Event Enum (End)) & Fire trigger at the end \\
\hline onBegin (Trigger Event Enum (On Begin)) & Fire trigger at the beginning \\
\hline onClick (Trigger Event Enum (On Click)) & Fire trigger on a mouse click \\
\hline onDblClick (Trigger Event Enum (On Double Click)) & Fire trigger on double-mouse click \\
\hline onEnd (Trigger Event Enum (On End)) & Fire trigger at the end \\
\hline onMouseOut (Trigger Event Enum (On Mouse Out)) & Fire trigger on mouse out \\
\hline \begin{tabular}{l}
onMouseOver (Trigger Event Enum (On Mouse Over \\
))
\end{tabular} & Fire trigger on mouse over \\
\hline onNext (Trigger Event Enum (On Next)) & Fire trigger on next node \\
\hline onPrev (Trigger Event Enum (On Previous)) & Fire trigger on previous node \\
\hline onStopAudio (Trigger Event Enum (On Stop Audio)) & Fire trigger on stop audio \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTriggerEvent) is located in §A.3. end note]

\subsection*{19.7.49 ST_TLTriggerRuntimeNode (Trigger RunTime Node)}

This simple type specifies the child time node that triggers a time condition. References a child TimeNode or all child nodes. Order is based on the child's end time.

This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline all (Trigger RunTime Node Enum (All)) & All \\
\hline first (Trigger RunTime Node (First)) & First \\
\hline last (Trigger RunTime Node (Last)) & Last \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TLTriggerRuntimeNode) is located in §A.3. end note]

\subsection*{19.7.50 ST_TransitionCornerDirectionType (Transition Corner Direction Type)}

This simple type specifies diagonal directions for slide transitions.
This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline ld (Transition Corner Direction Enum (Left-Down)) & Specifies the slide transition direction of left-down \\
\hline lu (Transition Corner Direction Enum (Left-Up)) & Specifies the slide transition direction of left-up \\
\hline rd (Transition Corner Direction Enum (Right-Down)) & Specifies the slide transition direction of right-down \\
\hline ru (Transition Corner Direction Enum (Right-Up)) & Specifies the slide transition direction of right-up \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TransitionCornerDirectionType) is located in §A.3. end note]

\subsection*{19.7.51 ST_TransitionEightDirectionType (Transition Eight Direction)}

This simple type specifies the direction of an animation.
This simple type is a union of the following types:
- The ST_TransitionCornerDirectionType simple type (§19.7.50).
- The ST_TransitionSideDirectionType simple type (§19.7.53).
[Note: The W3C XML Schema definition of this simple type's content model (ST TransitionEightDirectionType) is located in §A.3. end note]

\subsection*{19.7.52 ST_TransitionInOutDirectionType (Transition In/Out Direction Type)}

This simple type specifies if a slide transition should go in or out.
This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline in (Transition In/Out Direction Enum (In)) & Specifies the slide transition should go in \\
\hline out (Transition In/Out Direction Enum (Out)) & Specifies the slide transition should go out \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TransitionInOutDirectionType) is located in §A.3. end note]

\subsection*{19.7.53 ST_TransitionSideDirectionType (Transition Side Direction Type)}

This simple type defines a set of slide transition directions.
This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline d (Transition Side Direction Enum (Down)) & Specifies that the transition direction is down \\
\hline l (Transition Side Direction Enum (Left)) & Specifies that the transition direction is left \\
\hline r (Transition Side Direction (Right)) & Specifies that the transition direction is right \\
\hline \(\mathrm{u}(\) Transition Side Direction Enum (Up)) & Specifies that the transition direction is up \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TransitionSideDirectionType) is located in §A.3. end note]

\subsection*{19.7.54 ST_TransitionSpeed (Transition Speed)}

This simple type defines the allowed transition speeds for transitioning from the current slide to the next.

This simple type's contents are a restriction of the W3C XML Schema token datatype.

This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline fast (Fast) & Fast slide transition. \\
\hline med (Medium) & Medium slide transition. \\
\hline slow (low) & Slow slide transition. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST TransitionSpeed) is located in §A.3. end note]

\subsection*{19.7.55 ST_ViewType (List of View Types)}

This simple type specifies the kind of view that should be used when displaying the presentation document to the user.

This simple type's contents are a restriction of the W3C XML Schema token datatype.
This simple type is restricted to the values listed in the following table:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Enumeration Value } & \multicolumn{1}{c|}{ Description } \\
\hline handoutView (Handout View) & Handout View mode should be used. \\
\hline notesMasterView (Notes Master View) & Notes Master View mode should be used. \\
\hline notesView (Notes View) & Notes View mode should be used. \\
\hline outlineView (Outline View) & Outline View mode should be used. \\
\hline sldMasterView (Slide Master View) & Slide Master View mode should be used. \\
\hline sldSorterView (Slide Sorter View) & Slide Sorter View mode should be used. \\
\hline sldThumbnailView (Slide Thumbnail View) & Slide Thumbnail View mode should be used. \\
\hline sldView (Normal Slide View) & Normal Slide View mode should be used. \\
\hline
\end{tabular}
[Note: The W3C XML Schema definition of this simple type's content model (ST ViewType) is located in §A.3. end note]```

[^0]: File Structure

