PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0006
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Anonymous

General Comment

Crumb rubber is used in more play items than 12,000 playing fields! My child's preschool has crumb rubber safety mats under all the outdoor play gyms. In the summer heat, it smells. A local museum has the same crumb rubber matting under an indoor play space. It stinks up the building. This affects more than just athletes who bear the brunt of the burden. Just test the materials already! If they are carcinogenic, BAN THIS SUBSTANCE for use in anything involving regular human contact. Especially ban carcinogenic materials when they might be used regularly by children. This is such a no brainer.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0016
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Melissa Pruess
Address: 92117
Email: mpruess2@gmail.com

General Comment

I am a concerned parent and am happy to see our government agencies taking a closer look at crumb rubber infill and its potential effects on children. Small children play on these fields and there needs to be a comprehensive look at their exposure in particular, based on the prevalence of "hand to mouth" behaviors in small children... not just the risks of inhaled exposure or accidental ingestion. Smaller children have a totally different absorption rate that older kids and adults and if there is even a chance that this material can be hazardous in any way, it should be banned completely from the elementary school levels and replaced with one of the several available alternatives to crumb rubber.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0025
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Clover Hackett
Address: 55424
Email: Clovergraham@hotmail.com

General Comment

I am a concerned parent in Edina, MN. We are currently trying to get our school board to pause their plans to install crumb rubber in 5 athletic fields until more conclusive research is completed. This study and its deliverable of initial results by the end of the year has been a crucial part of our argument, that not enough is known about short and long term health effects of this material. As of now they are moving forward, citing the current studies as their reasoning. Thank you for researching this further and trying to make the public understand that the current studies are LIMITED.

We need someone to take a stand for our children! I look forward to following your progress, and sharing the updates with my school board.

I did have a question as to why, when the study was launched, it was not accompanied with a passage of a moratorium on installation of this material? If we do not know enough about this and we have REAL health concerns, why is it not out of the stream of commerce?

That would have helped us in Edina.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0026
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Jerry Kickenson
Address: 20902
Email: Jerry.Kickenson@gmail.com

General Comment

The CPSC already has the authority to apply the Child protection guidelines for lead, cadmium and Phthalates to every consumer use of this product which as you know is marketed to and for children and adolescents primarily (see the filings to the EPA and CPSC from Public Employees for Environmental Responsibility. PLEASE APPLY THESE REGULATIONS! REQUIRE TESTING AND MONITORING of every individual bag of tire crumb to be used on each playground or field and every component of the artificial turf system to which humans are exposed. While you study, please send out warnings and impose a moratorium on the recreational use of tire-derived products including tire crumb given all that is already known about the myriad toxic (and untested) ingredients of tires to which humans and especially children which were never meant to and should not be exposed.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0029
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Clover Hackett
Address: 55424
Email: Clovergraham@hotmail.com

General Comment

I am very concerned about recycled tire crumb rubber being used where our children play. I am a part of a group of parents trying to get our school board in Edina MN to stop moving forward with their plans to replace 4 natural grass fields with artificial turf with crumb rubber, this summer.
I was wondering why, when it was determined that not enough was known about crumb rubbers effect on the health of our children in the short and long term and this study was launched, WHY was no moratorium issued on installation of crumb rubber until the initial results and/or final results were established.
That would have really helped us over here in Edina.
Thank you so much for looking into this further.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0032
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Meghan Tierney-Knight
Address: 98008
Email: gogomegs@hotmail.com

General Comment

Knowing the composition of tires I am very uncomfortable have my kids play amongst such small bits every day. They get in your hair, socks, shoes, stuck to your clothes, in your ears, and even mouth. The degradation of such small pieces are bound to happen allowing a release of chemicals and heavy metals, which cannot be good for the body and or environment. As an advocate for the environment I am supportive of recycling of tires, but not at the expense of our children in their playgrounds and sports fields. I hope the ban of crumb rubber fill becomes the norm for the sake of our children and the environment.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0033
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Kevin McKeon

General Comment

Lacking conclusive scientific evidence regarding crumb rubber, we must accept that the growing discussion is about RISK assessment, RISK mitigation, and RISK level acceptance. These risks include heat stresses and injuries and, according to a recent Yale study, exposure to 99 chemicals variously listed as irritating, harmful, and suspected/known carcinogens. Government Exposure Limits are not health-based, they are risk-based...a compromise of many factors: environmental, scientific, financial, political, and business-friendly issues. All credible studies prove the presence and probable exposure to these chemicals. Turf manufacturers and installers recognize this and require users to release them from health and safety liability claims.

Studies and satellite imagery prove the creation of "heat islands" on and over crumb rubber fields. The surface is monitored and watered when overly hot. Vigorous play in these conditions results in burns, dehydration, heat stress, or heat stroke. Kids bodies, being closer to the heat source, with a higher surface-area/body-mass ratio, producing more body heat per unit mass, and sweating less than adults, are particularly susceptible to heat stresses.

Over time, crumb rubber reacts with light, heat, air, seasonal temperature fluctuations, mechanical agitation from play and maintenance operations, etc., becoming hard, brittle, cracked, discolored, and powdered; this hardening and cracking can be noticed on old sneakers. The CDC's 2008 advisory says that as turf ages and weathers, "lead is released in dust that could then be ingested or inhaled." This rubber erosion happens down to the molecular level, resulting in a persistent atmospheric chemical contamination over the playing fields and their...
immediate areas. (More on this later).

The most dangerous item of this disintegration process could prove to be carbon nanotubes. About 30% of a tire is composed of carbon black; puff out a candle...that black, wispy stuff is carbon black. Engineered carbon nanotubes (and other engineered nanoparticles...zinc, titanium, etc.) are made in specific shapes to give strength and durability to tires. It is the long thin nature of engineered carbon nanotubes that has scientists comparing them with asbestos; studies suggest that inhaling carbon nanotubes could lead to the same cancer and breathing problems that prompted a ban on asbestos, and carbon nanotube exposure tests on mice result in the formation of lesions known as granulomas. From Dr. Kathleen Michels, Neuroscientist, Administrator, National Institute of Health: "...it has the potential to wreck everything in its path. First, it has been declared a possible carcinogen by the US government and by the World Health Organization. Then, carbon black used in tires consists of the purest, smallest (ultra-fine) nanoparticles giving them a unique potential toxicity throughout the body. ...when you pulverize tires for use in children's playing fields, they become more available to interact with the environment and people with weathering and the impact of each child's footfall and body...When children's life-long health is at stake, the precautionary principle should apply." Toxicologist Dr. David Brown, Emeritus, (Public Health Toxicologist and Director of Public Health Toxicology for Environment and Human Health, Inc.) says that tire crumb off-gases 24 harmful materials, and that the amount of off-gassing increases as the tire crumb heats. Carbon black, which makes up 30% of black tires, is carcinogenic and breaks down into very small particles called nano-particles. Those small carbon black particles attach onto the surface of the gases, which then penetrate into the deep lung as the child breathes. These gas/particle mixtures are 10-20 times more toxic than the materials alone. We know from air pollution studies that looked at these mixtures that they cause serious disease." These nanoparticles are known to pass the blood/brain barrier, attacking at the molecular level; some scientists state the need for studying the effects of nanotubes on DNA function.

During heat mitigation operations, water is sprayed over the field causing evaporative cooling. The rising water vapor picks up these nanotubes and atmospheric contamination mentioned earlier, causing an unseen but dangerous "fog of chemicals" within which the kids are playing. The resultant risk to our kids safety and health is intuitively obvious, and as part of their decision process, the decision makers should apply The Precautionary Principle: "When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically." Examples of the essence of the Precautionary Principle are: "an ounce of prevention is worth a pound of cure", "better safe than sorry", "look before you leap", and the well known medical oath "First, Do No Harm".
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0045
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Maya van Rossum
Address: 19007
Email: keepermaya@delawareriverkeeper.org

General Comment

The Delaware Riverkeeper Network submits the attached comment for your consideration.

In addition to the attached comment we would like to request that Maya van Rossum, the Delaware Riverkeeper, on behalf of the Delaware Riverkeeper Network, be identified as a stakeholder for participation in your process. Ms. van Rossum has engaged in a significant amount of research and community education and advocacy around the issue of synthetic turf fields, particularly those with crumb rubber infill, and would bring an important environmental and community perspective to your deliberations. Ms. van Rossum is the primary author on the documents we are submitting today.

Ms. van Rossum can be reached at:

keepermaya@delawareriverkeeper.org

or by phone at 215 369 1188 ext 102

Respectfully submitted and requested.
(p.s. the action alert document submitted previously was submitted in error and need not be entered for the record.)

Attachments

Comment 4.29.16 ATSDR & EPA re Art Turf study
April 29, 2016

Leroy A. Richardson, Information Collection Review Office
Centers for Disease Control and Prevention
1600 Clifton Road NE., MS-D74
Atlanta, Georgia 30329.

Federal eRulemaking Portal: Regulation.gov

Re: Docket No. ATSDR-2016-0002

Dear Mr. Richardson,

Conducting additional research into the health and environmental impacts synthetic turf fields with crumb rubber infill is essential. Crumb Rubber turf fields are proliferating quickly through communities with schools and municipalities constructing crumb rubber fields to accommodate kids playing sports of all ages from elementary level on up. In every instance school district and town officials cite industry funded research as a primary demonstration of safety. Inadequate Government documents are of little help in countering such assertions or information the decisionmaking process as, to the degree they exist, they are very limited in scope, they often rely on industry-provided information, and they often rely on an absence of information as somehow supporting a demonstration of no harm. A thorough and independent investigation is essential if we are to protect children, adults and the environment from the harms of crumb rubber artificial turf.

The Delaware Riverkeeper Network would also like to suggest that research into the impacts of other artificial turf infill materials is important given that they too are the subject of a multitude of claims of safety backed by little but industry marketing materials and industry funded research.

I believe it will be important to include an organization like the Delaware Riverkeeper Network among your stakeholders. We have had to engage in significant research into, and advocacy about, artificial turf, its environmental and health impacts on a number of occasions over the past 8+ years. As a result we have a significant and healthy understanding of the science and the issues that have been and need to be evaluated.

I include with this comment a series of fact sheets and informational materials created by my organization to help inform local debates regarding the construction or expansion of artificial turf

Delaware Riverkeeper Network
925 Canal Street, Suite 3701
Bristol, PA 19007
Office: (215) 369-1188
fax: (215)369-1181
drn@delawareriverkeeper.org
www.delawareriverkeeper.org
fields. In these materials we cite a number of scientific and government materials that assess the environmental and health impacts of crumb rubber artificial turf. We would like to submit them for the record and your consideration.

Synthetic turf is generally made with rubber from waste tires. Recycled rubber varies considerably in its chemical composition, even when from the same manufacturer.\(^1\) Hazardous substances found in tires may persist in the environment including polycyclic aromatic hydrocarbons (PAHs), phthalates and certain metals. These substances may be bioaccumulative, carcinogenic, reprotoxic, mutagenic and/or endocrine disrupting.\(^2\)

- Most PAHs are persistent, bioaccumulative and carcinogenic.\(^3\)
- Phthalates are generally used as solvents and plasticisers in plastics. Phthalates are not chemically bound to the rubber and as a result can leach from the infill material.\(^4\)
- Phenols likewise are not chemically bound to the rubber and so can leach. Phenols too are persistent and bioaccumulative and can have long-term effects on the environment.\(^5\)
- Among the metals found in tires that may be of concern are zinc, lead, copper, chromium and cadmium. While zinc and copper are essential for living organisms, when absorbed at high levels they become harmful. Lead can affect reproduction, development of the nervous system leading to poor cognitive development, and is a particular threat to fetuses and young children. Chromium is carcinogenic and mutagenic. Cadmium is toxic to humans and if taken in can contribute to poor liver and kidney function, as well as osteoporosis.\(^6\)

Playing on Artificial Turf brings threats of exposure to hazardous substances through a variety of pathways.

Direct human exposure to the hazardous substances contained in the rubber in-fill of artificial turf is believed to occur via three pathways: inhalation, skin contact, and/or ingestion including by children who come into contact with the material.\(^7\)

A 2012 study focused on the threat of lead ingestion from artificial turf noted that lead, in the "case of chronic exposure in early childhood, can induce cell necrosis, nerve behavioral abnormalities and developmental disability, and in the case of long-term exposure it can induce cell necrosis, blood pressure, cancer, and kidney tumor."\(^8\) In this study researchers considered the impacts for lead exposure from children who ingest rubber powder resulting from exposure to crumb rubber infill artificial turf. The research showed elementary school children had a hazard index that exceeded 0.1,

a level that is considered a “potential for hazard”. Middle and high school children were also found to have exposure levels.

In 2011, research conducted for the New Jersey Department of Environmental Protection began investigation into the potential for players on artificial turf fields to be exposed to lead, chromium, arsenic and cadmium as a respirable/inhalable aerosol. In air samples collected from the turf during various levels of activity, researchers detected arsenic, cadmium, chromium and lead, all metals with known human toxicity. The findings of this study, although limited in scope, raise some concerns with regard to the potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial turf fields.” The research demonstrated that activity by players on the fields could suspend contaminated particulates into the air that could be inhaled. “The findings show that both inhalable PM [particulate matter], as well as inhalable lead (when present) are resuspended from even minor physical activity on an artificial surface. These data therefore indicates that human exposure from lead-containing artificial turf fields is not just limited to dermal, but also to inhalation route of exposure.” The three potential avenues for lead from artificial turf are the blades of artificial grass, the pigment used for the field markings and lines, and the infill material. Even studies that have not found exposure levels to lead high enough to be of concern in the context of the study conducted are careful to point out: ”some health scientists believe that any Pb [lead] is harmful to children’s neurocognitive development, and that no new Pb should be added to their surroundings” and that “…physicians should be aware of synthetic turf as a potential source of exposure for young children. Health officials investigating elevated blood lead in children should also be aware of synthetic turf as a potential source of lead exposure.”

Furthermore, a 2008 study that looked at a variety of contaminants associated with artificial turf did find that the lead present in the rubber granules, while at low levels, was “highly bioaccessible” to synthetic gastric fluid used in their research. This study also found a “slightly worrisome” level of chromium in an artificial turf fiber sample and “high bioaccessible fractions of lead in both synthetic gastric and intestinal fluids.”

In October 2006 and January 2007, respectively, two sites in New York where synthetic turf has been used (a large, then 3 year old, Parade Ground in Brooklyn; a relatively small then 5 month old Sara D. Roosevelt Park in Manhattan) were analyzed. This testing found PAHs at hazardous levels (as per New York standards) at each of the sites. At both sites dibenzo (a.h)anthracene, a probable human carcinogen, was found at hazardous levels, with two other PAH forms, both possible human carcinogens, found at hazardous levels at the Parade Ground site. A 2008 study also found that the rubber granules found in artificial turf fields had PAH levels above health-based soil standards, that there was “low” but not “no” bioaccessibility, and that while levels appear to decline over time this can be altered by the fact that new rubber can be added periodically to compensate for the loss of infill material. Additional research is needed into the pathways by which these substances may be absorbed into the bodies of children and athletes via skin contact, ingestion or other pathways - but the need for additional research does not displace the concerns raised by these findings.

Analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers University found the crumb rubber from artificial turf to contain high levels of PAHs, as well as zinc and arsenic. PAHs found to be contained in the crumb rubber “were above the concentration levels that the New York State Department of Environmental Conservation (DEC) considers sufficiently hazardous to public health to require their removal from contaminated soil sites. It is highly likely that all six PAHs are carcinogenic to humans.” “The analyses also revealed levels of zinc in both samples that exceed the DEC’s tolerable levels.” The researchers associated with these findings were careful to state “We want to emphasize that the findings are preliminary. PAHs in rubber might not act the same way as in soil, and we do not yet have information on the ease with which the PAHs in these rubber particles might be absorbed by children or adults -- by ingestion, inhalation, or absorption through the skin. However, the findings are worrisome. Until more is known, it wouldn't be prudent to install the synthetic turf in any more parks.”

18 Rachel’s’ Democracy & Health News #992, Hazardous Chemicals in Synthetic Turf, Follow-up Analyses, April 12, 2007. 19 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
20 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
21 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
22 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
A study by the California Office of Environmental Health Hazard Assessment (OEHHA) summarized 46 studies that identified 49 chemicals which are released from tire crumb. Of the 49, “seven of the chemicals leached from tire shreds were carcinogens. OEHHA calculated a cancer risk of 1.2 in 10 million based on a one-time ingestion of the tire crumb rubber over a lifetime.”23 While there are limited studies which assert that recycled tire crumb are stable in the gastrointestinal tract and that therefore this is not a pathway for exposure, there are other studies which contradict these findings.24

Concerns have been raised about the potential implications of recycled tire in-fill for individuals with latex allergies and that inhalation could result in a systemic response, as opposed to a contact response.25

Asserted one analysis, while, “the status of the information about human exposures to recycled tire crumb rubber in-fill ... is not sufficient to determine the safety of the use of the product in situations that involve continuous episodes of human exposure;” 26 “the available information is sufficient and strong enough to raise plausible questions with respect to acute toxicity for susceptible persons, and for cancer risks.”27

Chrysene, a PAH and carcinogen, was found to be ingested as the result of hand-to-surface-to-mouth transfer from playground surfaces made with recycled tires. Assuming playground use for an 11 year period (from age 1 to 12) there was found to be an increased cancer risk of 2.9 in one million (2.9 X 10^-6). This risk is greater than the general cancer risk gauge of one in one million (1X10^-6).28 This research would seem to suggest that repeat exposure over time to the chemicals released from artificial turf increases the associated increase in cancer risk.

The hot temperatures create additional concern for exposing players to dangerous toxins. As well explained by a well cited petition to the Consumer Product Safety Commission for rulemaking: “When tires are shredded and pulverized, their surface area increases exponentially, as does the particulate and gas yield from the tire material. Since tires are made of very harmful materials, including 24 gases found to be harmful to humans, carbon black, (a carcinogen which makes up 30% of tires), latex, benzothiazoles, phthalates, lead, mercury, cadmium, zinc and many other known toxins, when the fields heat up, they become increasingly dynamic. Of primary concern is the interaction of particles and gases, ‘because when particles adsorb onto the surface of gases, they become 10-20 times more toxic than the materials themselves.’ The fields yield continuously, but become more dynamic and more toxic as they heat up.”29

A Case Study conducted by a group of “physicians and public health professionals working with the U.S. Environmental Protection Agency’s Region Pediatric Environmental Health Specialty Unit” found

28 Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Note -- the 1.2 in 10 million cancer risk found in the OEHHA study was considered by the authors to be an acceptable level of risk as it falls below the general cancer risk gauge of one in one million (1X10^-6).
that they could not secure the research and information necessary to establish the safety in use with children of tire crumb used as playground surface. The major unresolved concern is the potential for latex allergy with short-term dermal exposure.”

Excessive heat is a major health threat for those that play on artificial turf.

Extreme heat is a health concern – high surface temperatures found on artificial turf fields can contribute to physiological stress and cause “serious heat-related illnesses”.

Heat stress, heat stroke and burns are all of concern. In fact, the “New York City Department of Health and Mental Hygiene recognizes excessive surface temperatures as the most important health concern associated with infilled synthetic turf.” Studies document that the surface temperature on artificial turf is dramatically increased as compared to surrounding land uses including asphalt – so much so that it is a genuine health threat for players.

Concerns regarding the excessive temperatures range from the implications for players who are already exerting themselves playing in such excessively high temperatures, to the implications for burns when players or pedestrians come into contact with the hot surfaces, to the implications for small children who may come into contact with the extremely hot surfaces during non-sporting events. Research has also concluded that the “heat transfer from the surface to the sole of the individual’s foot” could contribute to physiological stress of players.

In a 2002 study it was found that “the surface temperature of the synthetic turf was 37° F higher than asphalt and 86.5° F hotter than natural turf.” A study published in the Journal of Health and Physical Education and Recreation showed “surface temperatures as much as 95 to 140 degrees Fahrenheit higher on synthetic turf than natural turf grass when exposed to sunlight.” Random sampling at Brigham Young University identified temperatures ranging from 117.38 to 157 degrees on artificial turf while neighboring natural grass areas were in the range of 78.19 to 88.5 degrees Fahrenheit. “Two inches below the synthetic turf surface was 28.5° F hotter than natural turf at the surface.” Another study comparing temperatures on artificial turf temperatures with air temperature found that artificial turf ranged from 58 to 75 degrees hotter than measured air temperature. And yet another study considering found ranges of 155.3 to 173.4 degrees on the turf.

36 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
38 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
fields when air temperatures were in the 76 degree range; and 104.2 to 159.3 degrees when air temperatures were in the 77 degree range.

Research has not found good solutions for the excessive heat levels of turf. Irrigation of excessively hot artificial turf surfaces only provides cooling benefits for about 20 minutes. While irrigation provides cooling for the synthetic turf, in one seminal study lowering the temperature from 174°F to 85°F, after only 5 minutes the temperature quickly rose again to 120°F; after 20 minutes it rose to 164°F. In another important body of work by Penn State, it was found again that irrigation is only successful in reducing temperatures for about 20 minutes, with a rebound to within 10 degrees of the pre-irrigation temperature within 3 hours. The use of white crumb rubber as the infill does not resolve the heat issue. In fact, according to Penn State as part of a study which looked at various color options for infill and temperature, “[w]hile marketing materials may claim lower surface temperatures, no scientific reports exist that substantiate such claims.”

Natural grass, by comparison, provides a natural cooling affect and helps to dissipate heat from neighboring developed areas. “The temperature of natural grass rarely rises above 85 degrees Fahrenheit, regardless of air temperature.”

The heat impacts of artificial turf need to be considered in the context of today’s changing climate. Global climate change is expected to dramatically increase the number of days over 100 degrees in many communities. Depending on how aggressively global warming gasses are reduced in coming years, communities nearby Philadelphia will begin to experience in the range of 10 days (in lower emission scenarios) to 30 days (if higher emission scenarios continue to prevail) over 100 degrees. By later in this century seasonable temperatures are projected to rise 6°F to 14°F in summer (depending again on emission reductions achieved in the future).

Concerns for increased head injuries and bacterial infections as the result of playing on turf are justified.

There is great concern that the increased level of abrasions and burns which result from playing on an artificial turf field as compared to natural grass increases the pathways by which bacterial infections, such as MRSA (methicillin-resistant staphylococcus aureus), can enter the body. As explained in a 2011 Penn State study, “It is important to note that synthetic turf is more abrasive than natural turf grass and, as a result, breaks in the skin are more common, creating a pathway for infection when in

42 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
contact with an infected surface.” There are studies to indicate that turf burns may be facilitating infection by acting as a pathway for infection. Study has found that turf burns increased the risk of infection regardless of the type and timing of care provided the burn.

Older turf fields have been found to have higher microbial populations, as well as higher levels in the higher traffic areas such as the sidelines, thereby suggesting to researchers that microbial populations can accumulate in synthetic turf over time.

Concussions (formally described as Mild Traumatic Brain Injury or MTBI) resulting from sports has, according to the US Centers for Disease Control, reached “epidemic proportions.” “Mild’ head traumas, and especially a series of such minor concussions can have long term, negative effects on cognitive function.” Study has documented that artificial turf increases the risk of MTBI over natural turf, approximately doubling that risk, as well as causing a greater degree of trauma. According to study, artificial turf presents a 5 times greater risk of the more severe head injury than natural turf, although it is still unknown the particular characteristics of the two surfaces that cause the difference in head injury incidence. Only 31% of the playground surfaces made of recycled tires tested in one research study passed the California State mandated Head Impact Criterion (HIC) of ≤1,000. In this same study 100% of the playground surfaces made of wood chips passed the same standard.

Research shows there are adverse environmental impacts resulting from crumb rubber infill artificial turf; it is also clear that additional study for water and other natural resources is needed.

While it seems well recognized that there is a limited level of assessment and investigation into the environmental impacts associated with artificial turf, a growing body of scientific analysis is needed.

52 A High Morbidity Outbreak of Methicillin-Resistant Staphylococcus aureus among Players on a College Football Team, Facilitated by Cosmetic Body Shaving and Turf Burns, study conducted 2004 for Connecticut Dept of Public Health, Student Health Services of Sacred Heart Univ, Centers for Disease Control and Prevention, Minnesota Dept of Public Health, Los Angeles County Dept of Health Svces.
54 Dr. M. Shorten, J.A. Himmelsbach, BioiMechanica, Sports Surfaces and the Risk ofTraumatic Brain Injury citing the US Centers for Disease Control.
58 Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Please note that in this study 32 recycled tire playground surfaces were tested as compared to only 5 wood chip playground surfaces.
documenting a concerning level of environmental threat and harm and is further demonstrating the need for more research regarding artificial turf and its ramifications for the environment.

The Connecticut Agricultural Experiment Station conclusively found four compounds which out-gassed and leached into water from synthetic turf rubber crumb under ambient temperatures:

- Benzothiazole (a skin and eye irritant),
- Butylated hydroxyanisole (a “recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immune toxicant, neurotoxicant, skin and sense-organ toxicant”),
- n-hexadecane (a severe irritant) &
- 4-(t-octyl) phenol (“corrosive and destructive to mucous membranes”).

As rubber degrades it can leach toxic substances which can contaminate soil, plants and aquatic ecosystems. Study has concluded that the use of tires in artificial turf has the potential to pollute our environment with PAHs, phenols and zinc and that runoff from an artificial turf field draining to a local creek can pose “a positive risk of toxic effects on biota in the water phase and in the sediment.” Other metal contaminants found to leach from tire crumb rubber include zinc, selenium, lead and cadmium. Zinc has also been shown to leach from the artificial turf fibers. Extreme temperatures or solvents are not needed to release these metals, volatile organic compounds or semi-volatile organic compounds from the rubber in-fill of artificial turf into the air or water – release takes place in ambient air and water temperatures.

“Runoff with high Zn [zinc] from synthetic turf fields may produce adverse effects to plants and aquatic life. This is of particular concern given that the leaching rate of Zn [zinc] from rubber granules can be up to 20 times greater than the leaching rate of Zn from agricultural applications of manure and pesticides.” Leaching of substances as the result of surface water runoff from precipitation has, by some researchers, been predicted to be the greatest risk for the environment from artificial turf. Study shows there is a risk of local effects for aquatic and sediment dwelling

59 The Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires, August 2007; Environment & Human Health, Inc., Artificial Turf, Exposures to Ground-Up Rubber Tires, 2007.
60 Quoting Dr. Linda Chalker-Scott, Washington State University -- Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass; T. Kallqvist, Norwegian Institute for Water Research (NIVA), Environmental Risk Assessment of Artificial Turf Systems, December 2005, p. 17.; Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires.
organisms in impacted water courses. Recycled rubber, and associated leachate, has been found to contain a variety of metals (including lead, cadmium, copper, mercury and zinc), as well as organic pollutants such as PAHs, phthalates, 4-octylphenol and iso-nonyphenol. The leaching of zinc has been determined to be of major environmental concern. The leaching of zinc increases as the rubber infill weathers over time, it is likely this is the same for other contaminants. While Zinc contributes the most risk, phenols (specifically octylphenol) and PAHs are also of concern. Of the organic compounds at issue, Octylphenol represents the greatest risk, and possibly could occur at levels where hormone disrupting effects are a concern. The varying content of tires makes this threat a moving target.

The Norwegian Institute for Water Research has determined that it is “appropriate to perform a risk assessment which covers water and sediments in watercourses which receive run-off from artificial turf pitches.”

While recycled rubber is a greater source of pollution, newly manufactured rubber also contains levels of hazardous substances; in the case of zinc and chromium the levels of recycled and newly manufactured rubber are comparable.

It is predicted that chemicals leaching from synthetic turf materials occurs slowly, and as a result the environmental harms may take place over many years.

Leaching may not be the only source of water contamination from artificial turf. As the artificial turf is used there is a level of “erosion” that takes place and can result in fine particles that could be carried to local waterways. This source of contamination needs study.

The synthetic grass fibers can also be a significant source of pollution, particularly zinc, albeit significantly lesser amounts leach from the synthetic grass than the rubber infill.

70 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.
71 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.
When talking about the use of ground rubber as a supplement to planting soils the North Carolina Department of Agriculture and Consumer Services sent out a notice identifying the risk that zinc leaching from the rubber causes a decline in plant growth “directly attributable to zinc toxicity.”

One Norwegian assessment/presentation reported that “recycled rubber was the major source of potentially hazardous substances. An exposure scenario where the runoff from a football field is drained to a small creek showed a positive risk of toxic effects on biota in the water phase and in the sediment. The risk was mainly attributed to zinc, but also for octylphenol the predicted environmental concentrations exceeded the no environmental effect concentration.”

The hazardous leaching could result in local environmental effect.

Conclusion

Given all of the science on the record that demonstrates artificial turf is a threat to health and the environment, the precautionary principle dictates that artificial turf with crumb rubber infill be recognized as a threat to public health and safety and the environment and that the ongoing expansion and construction of crumb rubber turf fields should be prohibited and those fields that have already been installed should be removed and properly disposed of.

When a community installs a crumb rubber artificial turf field it is forcing children who want to participate in sports to be forced to expose themselves to its hazards. It is simply neither right nor fair for communities, with the support or false sense of security given by an acquiescing government agency, to be making investments that take from parents and kids the ability to decide for themselves what health hazards they are willing to be exposed to if they want to participate in sports. Advancing in anyway the construction and expansion of crumb rubber artificial turf fields is forcing an unfair choice on kids and parents: play sports or protect your health, but you are not allowed to have both.

Respectfully,

Maya K. van Rossum
the Delaware Riverkeeper

P.S. I note, that as a result of my work on this issue, as a parent I have had to pull my son from the township lacrosse team because they started playing on artificial turf this past year. The health impacts of artificial turf are too significant and concerning for me, as a parent, to allow my 10 year old son to play on crumb rubber artificial turf.

80 Dr. Christine Bjorge, Norwegian Institute of Public Health, Artificial turf Pitches – an assessment of the health risks for football players and the environment, Presentation at the ISSS Technical meeting 2006, Dresden.
81 Dr. Christine Bjorge, Norwegian Institute of Public Health, Artificial turf Pitches – an assessment of the health risks for football players and the environment, Presentation at the ISSS Technical meeting 2006, Dresden.
Attachments:
Submitted as part of this comment are fact sheets and an annotated bibliography that discuss the research detailed above as well as additional research speaking about the environmental and public health threats posed by crumb rubber infill artificial turf.
Summary of Research
Assessing the Impacts of Artificial Turf
Updated 4/29/2016

Heat: Research has documented that the surface temperature on artificial turf is dramatically higher than the surrounding land uses including asphalt. Concerns regarding the excessive temperatures range from the implications for players who are already exerting themselves to the implications for burns when players or pedestrians come into contact with the hot surfaces.

 a. A comparison of surface temperatures of third-generation synthetic turf with a cool climate product that claims to reduce surface temperatures to surface temperatures of natural grass.
 b. Although surface temperatures were lower for the cool climate field compared to other synthetic turf, both types of artificial turf fields were considerably hotter than natural grass with temperatures that were between 12° C (53° F) and 22° C (72° F) hotter.

 a. Surface temperatures of artificial turf were between 31° C (88° F) and 57° C (135° F).
 b. Although irrigation reduced surface temperatures of artificial turf, increases of 74 to 102% of the pre-irrigation temperature were observed within 30 minutes after irrigation.
 c. Surface temperatures returned to pre-irrigation temperature on all of the treatments between 60 and 120 minutes after irrigation. Therefore, the cooling effect of irrigation will not last the entire length of an athletic competition.

 a. Artificial turf surface temperatures ranged from -9.8 to 86.4° C (14 to 188° F) to when ambient air temperatures ranged from -0.4 to 37.1° C (31 to 99° F).
 b. Absorption of solar radiation results in increased temperatures on artificial turf surfaces, and high rates of solar radiation are absorbed with minimal light reflectance. Therefore, air temperature in conjunction with solar radiation explained most of the variation in artificial turf surface temperatures.

a. This study measured surface temperatures of artificial turf fields between 140.2 and 173.4°F when air temperatures were between 73 and 79°F.
b. Looking at various color options for infill and temperature, no product significantly reduced surface temperatures. Small reductions in temperature are insignificant when surface temperatures still exceed 150°F. This study concluded that “[w]hile marketing materials may claim lower surface temperatures, no scientific reports exist that substantiate such claims.”
c. Research has not found a good solution for excessive heat levels of turf.

a. High surface temperatures found on artificial turf fields can contribute to physiological stress and cause “serious heat-related illnesses” including heat stress, heat stroke, and burns.
b. The “New York City Department of Health and Mental Hygiene recognizes excessive surface temperatures as the most important health concern associated with infilled synthetic turf.”
c. Irrigation of excessively hot artificial turf surfaces only provides cooling benefits for about 20 minutes, with a rebound to within 10 degrees of the pre-irrigation temperature within 3 hours.
d. The use of white crumb rubber as the infill does not resolve the heat issue.

a. A study comparing temperatures on artificial turf temperatures with air temperature found that artificial turf ranged from 58 to 75°F hotter than measured air temperature.

a. Artificial turf gets dramatically hotter than surrounding land uses including asphalt with surface temperatures as much as 95 to 140°F hotter than natural grass fields whereas the temperature of natural grass rarely rises above 85°F, regardless of air temperature

a. Temperature measurements were taken at the surface, above the surface, and below the surface of artificial turf, natural turf, bare soil, asphalt, and concrete.
b. Surface temperatures of synthetic turf were 37°F higher than asphalt and 86.5°F hotter than natural turf.
c. Two inches below the surface, synthetic turf was 28.5°F hotter than natural turf.
d. Although irrigation of synthetic turf resulted in a reduction of close to 90°F, temperatures rose 35°F within five minutes and returned to the starting temperature within 20 minutes.
e. “The hottest surface temperature recorded was 200°F on a 98°F day. Even in October the surface temperature reached 112.4°F.”
f. Brigham Young University has set a surface temperature guideline which restricts play on synthetic turf fields when surface temperatures are potentially hazardous to athletes. This reduces the playing season and eliminates any continuous play benefit that is typically mentioned in favor of artificial turf.

a. Synthetic surfaces can be up to 39°C (102°F) hotter than natural turf. Natural turf grass provides a natural cooling affect and helps to dissipate heat from neighboring developed areas.
Health: The impacts of inhalation or ingestion of chemicals continues to be a concern for those playing on artificial turf. Direct human exposure to the hazardous substances contained in the rubber in-fill of artificial turf is believed to occur via inhalation, skin contact, and/or ingestion. Furthermore, there are concerns for increased injuries and bacterial infections when playing on artificial turf.

 a. Researchers considered the risks for lead exposure from children ingesting rubber powder resulting from exposure to crumb rubber infill artificial turf and found that elementary school students had a hazard index that exceeded 0.1, a level that is considered a “potential for hazard”, with middle and high school students also suffering exposure levels.

 a. A systematic review of available literature on the risk of ACL rupture on natural grass versus artificial turf found that there is an increased rate of ACL injury on synthetic playing surfaces for football players.

 a. The presence of a large number of hazardous substances were found in both the runoff and vapor phase of recycled tire playground surfaces.
 b. Nine polycyclic aromatic hydrocarbons (PAHs) were detected in the runoff/cleaning water with total PAH concentrations in the ppm (parts per million) range.
 c. The most toxic PAH, benzo[a]pyrene was detected in extracts from playground surfaces.
 d. “The presence and the high concentration of these chemical compounds in playground should be a matter of concern owing to their high toxicity.”

 a. Since shoe-surface interaction is important for injury prevention, “the optimal surface to prevent injury is outdoors on natural grass.”
 b. Artificial turf has a higher friction coefficient and greater ground reaction force, both conditions that increase the risk for injury.
 c. Furthermore, as temperature increases the shoe-surface friction interaction increases and exposes athletes to greater risk of injury.

 a. Abrasions, even insignificant ones, from artificial turf can create an entry site for pathogens.
 b. The higher abrasion rate for synthetic turf increases the risk of infection, and the microbial populations found within synthetic turf are a source of pathogens when abrasions occur.
 c. Older turf fields have higher microbial populations, as well as higher levels in the higher traffic areas such as the sidelines. These results indicate that artificial turf poses a greater risk for the spread of pathogens and infections among student athletes.

a. An analysis of surfaces containing recycled rubber tires confirmed the presence of hazardous substances including PAHs, phthalates, antioxidants (e.g. BHT, phenols), benzothiazole, derivatives, and other chemicals.

b. The vapor phase above the samples confirmed volatilization of many organic compounds demonstrating that these chemicals can enter the human body through inhalation.

c. The use of recycled rubber tires for play areas, especially facilities for children, should be restricted or prohibited.

 a. Synthetic turf is more abrasive than natural turf grass, therefore, “breaks in the skin are more common, creating a pathway for infection when in contact with an infected surface.”

 a. In air samples collected from artificial turf during various levels of activity, researchers detected arsenic, cadmium, chromium and lead, all metals with known human toxicity.
 b. This research demonstrates that activity by players on the fields could suspend contaminated particulates into the air that could be inhaled and therefore, human exposure from artificial turf fields is not limited to dermal.
 c. These results “raise some concerns with regard to the potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial turf fields.”

 a. Artificial turf can degrade to form lead containing dust at levels that pose a health risk to children.
 b. Due to the lack of research, “…physicians should be aware of synthetic turf as one potential source of exposure for young children…” and “Health officials investigating elevated blood lead in children should also be aware of synthetic turf as a potential source of lead exposure.”

 a. Artificial turf made of nylon or nylon/polyethylene blend fibers contain lead and pose a potential public health concern.
 b. The risk for lead exposure is higher for artificial fields that are old, frequently used, exposed to the weather, or demonstrate signs of abraded, faded, or broken fibers. As turf ages, lead is released in dust that could then be ingested or inhaled.
 c. CDC does not know how much lead the body will absorb. However, lead can cause neurological development symptoms and behavioral problems. Children less than 6 years old are more affected by lead than adults and absorb lead more easily.
 d. CDC does not understand the potential risks associated with lead exposure from artificial turf but recommends precautions including aggressive hand and body washing after playing on fields, washing clothes immediately to avoid tracking contaminated dust to other places, and discouraging eating and drinking while on turf products.

a. Samples from rubber granules and from artificial grass fibers were taken at fields of different ages and analyzed for polycyclic aromatic hydrocarbons (PAHs), zinc, chromium, arsenic, cadmium, and lead. These samples were then analyzed to determine their bioaccessibility in synthetic digestive fluids.

b. The rubber granules found in artificial turf fields had PAH levels above health-based soil standards. Although levels appear to decline over time, this trend can be altered by the fact that new rubber can be added periodically to compensate for the loss of infill material.

c. There was a “slightly worrisome” level of chromium found in artificial turf fiber samples.

d. Lead in artificial fields can come from the blades of artificial grass, the pigment used for the field markings and lines, and the infill material. Although there were relatively low concentrations of lead measured, the researchers were careful to point out: “some health scientists believe that any Pb [lead] is harmful to children’s neurocognitive development, and that no new Pb should be added to their surroundings.” Furthermore, the lead present in the rubber granules, while at low levels, was “highly bioaccessible” to synthetic gastric fluid.

a. Direct human exposure to the hazardous substances contained in artificial turf occurs via three pathways: inhalation as chemicals off gas from the turf, skin contact, or ingestion including by children or infants who come into contact with the material. In the case of allergies (i.e. latex allergies), inhalation could result in a systemic response, as opposed to a contact response.

b. Extreme temperatures or solvents are not needed to release metals (including zinc, selenium, lead and cadmium), volatile organic compounds, or semi-volatile organic compounds from the rubber infill of artificial turf into the air or water – release takes place in ambient air and water temperatures.

c. While, “the status of the information about human exposures to recycled tire crumb rubber in-fill … is not sufficient to determine the safety of the use of the product in situations that involve continuous episodes of human exposure;” “the available information is sufficient and strong enough to raise plausible questions with respect to acute toxicity for susceptible persons, and for cancer risks.”

a. Based on a review of 46 studies, 49 chemicals that are released from tire crumb were identified.

b. Of the 49 chemicals identified, “seven of the chemicals leached from tire shreds were carcinogens.”

c. OEHHA calculated a cancer risk of 1.2 in 10 million based on a one-time ingestion of the tire crumb rubber over a lifetime.

d. Chrysene, a PAH and carcinogen, was found to be ingested as the result of hand-to-surface-to-mouth transfer from playground surfaces made with recycled tires. Assuming playground use for an 11 year period (from age 1 to 12) there was found to be an increased cancer risk of 2.9 in one million from the general cancer risk gauge of one in one million.

e. Only 31% of the playground surfaces made of recycled tires tested passed the California State mandated Head Impact Criterion (HIC) of <1,000. In this same study 100% of the playground surfaces made of wood chips passed the same standard.

a. Testing on two sites in New York where synthetic turf has been used (the large, 3 year old, Parade Ground in Brooklyn; the relatively small 5 month old Sara D. Roosevelt Park in Manhattan) found PAHs at hazardous levels (as per New York standards). Dibenzo(a.h)anthracene, a probable human carcinogen, was also found at hazardous levels, with two other PAH forms, both possible human carcinogens, found at hazardous levels at the Parade Ground site.

b. Research into the pathways by which these substances may be absorbed into the bodies of children and athletes via skin contact, ingestion or other pathways, is very limited with additional research needed.

a. Artificial turf is linked with serious and potentially life threatening staph infections including MRSA (methicillin-resistant staphylococcus aureus). MRSA can exploit minor skin injuries such as turf burn, and therefore, MRSA infection rate among players is 16 times higher than the national average.

a. Tires contain up to 60 different substances which may be bioaccumulative, carcinogenic, reprotoxic, mutagenic and/or endocrine disrupting.

b. Most PAHs are persistent, bioaccumulative and carcinogenic.

c. Among the metals found in tires that may be of concern are zinc, lead, copper, chromium and cadmium. Zinc and copper are harmful when absorbed at high levels. Lead can affect reproduction and development of the nervous system leading to poor cognitive development. Chromium is carcinogenic and mutagenic. Cadmium is toxic to humans and can contribute to poor liver and kidney function, as well as osteoporosis.

a. Multiple compounds out-gas and leached into water from synthetic turf rubber crumb under ambient temperatures including benzothiazole (a skin and eye irritant), butylated hydroxyanisole (a “recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immune toxicant, neurotoxicant, skin and sense-organ toxicant”), n-hexadecane (a severe irritant), and 4-(t-octyl) phenol (“corrosive and destructive to mucous membranes”).

a. A Case Study conducted by a group of physicians and public health professionals working with the U.S. Environmental Protection Agency’s Region Pediatric Environmental Health Specialty Unit found that the research and information necessary is not available to establish “the safety in use with children” of tire crumb used as playground surfaces.

b. “The use of recycled tire crumb products on playgrounds has had little health investigation. The major unresolved concern is the potential for latex allergy with short-term dermal exposure.”

a. Analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers University found the crumb rubber from artificial turf to contain high levels of PAHs, as well as zinc and arsenic.

b. PAHs found to be contained in the crumb rubber “were above the concentration levels that the New York State Department of Environmental Conservation (DEC) considers sufficiently hazardous to public health to require their removal from contaminated soil sites. It is highly likely that all six PAHs are carcinogenic to humans.”

c. “The analyses also revealed levels of zinc in both samples that exceed the DEC’s tolerable levels.”

d. The researchers associated with these findings were careful to state “We want to emphasize that the findings are preliminary. PAHs in rubber might not act the same way as in soil, and we do not yet have information on the ease with which the PAHs in these rubber particles might be absorbed by children or adults -- by ingestion, inhalation, or absorption through the skin. However, the findings are worrisome. Until more is known, it wouldn’t be prudent to install the synthetic turf in any more parks.”

 a. In a study of professional football players from the St. Louis Rams team, all MRSA infections developed at sites of turf burns.
 b. Players reported a higher frequency of abrasions when playing on artificial turf compared to natural grass.

 a. In a study of MRSA outbreaks involving college football players, infection was associated with turf burns from artificial grass. Turf burns increased the risk of infection regardless of the type and timing of care provided the burn. Turf burns may be facilitating infection by acting as a pathway for infection.

 a. There is double the risk of head traumas such as concussions associated with artificial turf compared to natural turf, and artificial turf presents a 5 times greater risk of more severe head injury.
 b. Concussions (formally described as Mild Traumatic Brain Injury or MTBI) resulting from sports has, according to the US Centers for Disease Control, reached “epidemic proportions,” and these ‘mild’ head traumas, especially a series of concussions, can have long term, negative effects on cognitive function.

 a. The impact-attenuating properties of two artificial fields were compared to a grass outdoor practice field. Both artificial surfaces were harder compared to the outdoor grass field. It was concluded that the low impact attenuation of the artificial turf may be contributing to the high incidence of concussion.

In a survey of both high school and collegiate certified athletic trainers representing over 17,000 football players, contact with artificial turf was associated with more serious concussion than contact with natural grass.

Environment: The pollutant substances found in artificial turf contribute to contamination of soil, plants and aquatic ecosystems and pose a risk of toxic effects for aquatic and sediment dwelling organisms. The resulting environmental harm is on-going and long-term, happening over many years. The varying content of tires used for infill of turf systems makes this threat a moving target. A growing body of scientific analysis is documenting a concerning level of environmental threat and harm and is further demonstrating the need for more research regarding artificial turf and its ramifications for the environment.

 a. As well explained by an oft cited petition to the Consumer Product Safety Commission for rulemaking: “When tires are shredded and pulverized, their surface area increases exponentially, as does the particulate and gas yield from the tire material. Since tires are made of very harmful materials, including 24 gases found to be harmful to humans, carbon black, (a carcinogen which makes up 30% of tires), latex, benzothiazoles, phthalates, lead, mercury, cadmium, zinc and many other known toxins, when the fields heat up, they become increasingly dynamic. Of primary concern is the interaction of particles and gases, ‘because when particles adsorb onto the surface of gases, they become 10-20 times more toxic than the materials themselves.’”
 b. Furthermore, artificial turf becomes more toxic as it heats up.

 a. The variability in PAH concentrations between different tires is large.
 b. Due to “leaching of PAHs from recycled tire rubber material, tires are a source of environmental pollution of PAHs through their entire lifecycle.”

 a. Stormwater runoff from artificial turf contained zinc, manganese, and chromium at levels toxic to aquatic organisms.
 b. Therefore, there is a potential risk to surface waters from the installation of artificial turf. Zinc levels could cause exceedance of acute aquatic toxicity criteria. This risk is especially high for smaller watercourses.
 c. Best management practices and treatment (i.e. wetlands, wet ponds, infiltration structures, compost filter, sand filters, or biofiltration structures) should be used for stormwater runoff from artificial turf fields that discharge to surface waters.

 a. An urban temperature model showed an increase in local atmospheric temperatures of up to 4° C (39° F) in areas where natural grass cover had been replaced with artificial turf.

a. Zinc was found to exceed soil limits and the leaching rate from rubber granules was up to 20 times more than the leaching rate from agricultural applications of manure and pesticides. “Runoff with high Zn [zinc] from synthetic turf fields may produce adverse effects to plants and aquatic life.”

 a. Hazardous substances found in tires may persist in the environment including polycyclic aromatic hydrocarbons (PAHs), phthalates, phenols, and certain metals.
 b. Most PAHs are persistent, bioaccumulative and carcinogenic.
 c. Phthalates and phenols are not chemically bound to the rubber and as a result can leach from the infill material. These chemicals are persistent and bioaccumulative and can have long-term effects on the environment.

 a. Artificial turf systems have a carbon footprint due to the greenhouse gases emitted during the life cycle of synthetic turf systems compared to natural grass surfaces.
 b. To achieve a 10-year carbon neutral synthetic turf installation, 1861 trees would need to be planted to offset the field’s carbon footprint.

 a. Recycled rubber varies considerably in its chemical composition, even when from the same manufacturer.
 b. Leaching of contaminants from artificial turf as the result of surface water runoff from precipitation is a great risk for the environment. It is predicted that chemicals leaching from synthetic turf materials occurs slowly, and as a result the environmental harms may take place over many years. There is also a level of “erosion” that takes place and can result in fine particles that could be carried to local waterways. Chemicals have even been shown to leach from the artificial turf fibers.
 c. The leachate from artificial turf can contain a variety of metals (including lead, cadmium, copper, mercury and zinc) and organic pollutants (including PAHs, phthalates, 4-t-octylphenol and isononyphenol).
 d. The runoff from an artificial turf field poses “a positive risk of toxic effects on biota in the water phase and in the sediment.”
 e. Of the organic compounds at issue, octylphenol represents the greatest risk, and possibly could occur at levels where hormone disrupting effects are a concern.
 f. The Norwegian Institute for Water Research has determined that it is “appropriate to perform a risk assessment which covers water and sediments in watercourses which receive run-off from artificial turf pitches.”

 a. While recycled rubber is a greater source of pollution, newly manufactured rubber also contains levels of hazardous substances; in the case of zinc and chromium the levels of recycled and newly manufactured rubber are comparable.
 b. The synthetic grass fibers can also be a significant source of pollution, albeit significantly lesser amounts leach from the synthetic grass than the rubber infill.
 a. When talking about the use of ground rubber as a supplement to planting soils, the North Carolina Department of Agriculture and Consumer Services sent out a notice identifying the risk that zinc leaching from the rubber causes a decline in plant growth “directly attributable to zinc toxicity.”

 a. “There is no question that toxic substances leach from rubber as it degrades, contaminating the soil, flora, and fauna and aquatic systems.”

 a. Part of artificial turf maintenance is the regular replenishment of the infill. Some of the infill is merely settling, but some of it is washing away or literally “walking away” with players after use. The effects of this “runaway” infill are unknown and more research is needed to draw conclusions—where is it going and what impacts is it having?
 b. Maintenance of artificial turf can include application of algaecides or disinfectants to keep the surface clean and application of fabric softener to mask the odor of the artificial turf. What is the final destination of these chemicals and their implications for the environment and those coming into contact with them while playing on the fields?
 c. There is no indication that artificial turf drains more effectively for purposes of a stormwater infiltration system than natural grass. In addition, infiltration systems are designed to work with whatever surface coating they receive from natural grass to porous paving. Although there is no assumed benefit from an infiltration perspective of natural turf or artificial turf, in many cases the complex systems designed for artificial turf fields have experience problems, work incorrectly, or inefficiently.
Fact Sheet
Artificial/Synthetic Turf

While professional sports are turning away from artificial turf, it is gaining ground and use at the local level at schools and community fields. Producers of artificial turf make claims of environment, health and safety benefits associated with artificial turf – when they make these blanket claims they are not giving the full picture.

In terms of environment, health and safety, the jury is still very far out on artificial turf. There continues to be information documenting harm in each of these arenas. Most of all, there is a widespread demonstration and recognition that in terms of environmental, health and safety threats from artificial turf, much more study, analysis and consideration is needed. And whatever the final outcome of the research, manufacturers neglect the reality that as much as they try to mimic natural grass, artificial turf is not grass, and cannot provide the same natural feel, natural look, natural smell and environmental benefits that natural grass provides.

Artificial Turf is generally comprised of plastic fibers (generally made of polyethylene, polypropylene or nylon) attached to a polypropylene or polyester plastic webbing. A combination of sand and rubber, or sometimes rubber alone, fills between the fibers. The source for the rubber infill is generally recycled tires. Sometimes newly manufactured rubber granulate is used but the cost is so much greater than the recycled tire form that it is generally not the substance used. New developments in artificial turf technology seem continually in the works.

Water Quality:
While it seems well recognized that there is a limited level of assessment and investigation into the environmental impacts associated with artificial turf, a growing body of scientific analysis is documenting a concerning level of environmental threat and harm and is further demonstrating the need for more research regarding artificial turf and its ramifications for the environment.

Synthetic turf is generally made with rubber from waste tires. Recycled rubber varies considerably in its chemical composition, even when from the same manufacturer.¹

Hazardous substances found in tires may persist in the environment including polycyclic aromatic hydrocarbons (PAHs), phthalates and certain metals. These substances may be bioaccumulative, carcinogenic, reprotoxic, mutagenic and/or endocrine disrupting.² The chemicals in waste tires are of such concern that a report published by the Swedish Chemicals Inspectorate recommends: “waste tyres should not be used for synthetic turf surfaces.”³

- Most PAHs are persistent, bioaccumulative and carcinogenic.⁴
- Phthalates are generally used as solvents and plasticisers in plastics. Phthalates are not chemically bound to the rubber and as a result can leach from the infill material.⁵
- Phenols likewise are not chemically bound to the rubber and so can leach. Phenols too are persistent and bioaccumulative and can have long-term effects on the environment.⁶
- Among the metals found in tires that may be of concern are zinc, lead, copper, chromium and cadmium. While zinc and copper are essential for living organisms, when absorbed at high levels they become harmful. Lead can affect reproduction, development of the nervous system leading to poor cognitive development, and is a particular threat to fetuses and young children. Chromium is carcinogenic and mutagenic. Cadmium is toxic to humans and if taken in can contribute to poor liver and kidney function, as well as osteoporosis.⁷

The Connecticut Agricultural Experiment Station conclusively found four compounds which out-gassed and leached into water from synthetic turf rubber crumb under ambient temperatures:

- Benzothiazole (a skin and eye irritant),

- Butylated hydroxyanisole (a “recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immune toxicant, neurotoxicant, skin and sense-organ toxicant”),
- n-hexadecane (a severe irritant) &
- 4-(t-octyl) phenol (“corrosive and destructive to mucous membranes”).

As rubber degrades it can leach toxic substances which can contaminate soil, plants and aquatic ecosystems. Study has concluded that the use of tires in artificial turf has the potential to pollute our environment with PAHs, phenols and zinc and that runoff from an artificial turf field draining to a local creek can pose “a positive risk of toxic effects on biota in the water phase and in the sediment.” Other metal contaminants found to leach from tire crumb rubber include zinc, selenium, lead and cadmium. Zinc has also been shown to leach from the artificial turf fibers. Extreme temperatures or solvents are not needed to release these metals, volatile organic compounds or semi-volatile organic compounds from the rubber in-fill of artificial turf into the air or water – release takes place in ambient air and water temperatures.

Leaching of substances as the result of surface water runoff from precipitation has, by some researchers, been predicted to be the greatest risk for the environment from artificial turf. Study shows there is a risk of local effects for aquatic and sediment dwelling organisms in impacted water courses. Recycled rubber, and associated

8 The Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires, August 2007; Environment & Human Health, Inc., Artificial Turf, Exposures to Ground-Up Rubber Tires, 2007.
9 Quoting Dr. Linda Chalker-Scott, Washington State University -- Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass; T. Kallqvist, Norwegian Institute for Water Research (NIVA), Environmental Risk Assessment of Artificial Turf Systems, December 2005, p. 17; Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires.
leachate, has been found to contain a variety of metals (including lead, cadmium, copper, mercury and zinc), as well as organic pollutants such as PAHs, phthalates, 4-t-octylphenol and iso-nonyphenol.17 The leaching of zinc has been determined to be of major environmental concern.18 The leaching of zinc increases as the rubber infill weathers over time,19 it is likely this is the same for other contaminants. While Zinc contributes the most risk, phenols (specifically octylphenol) and PAHs are also of concern.20 Of the organic compounds at issue, Octylphenol represents the greatest risk, and possibly could occur at levels where hormone disrupting effects are a concern.21 The varying content of tires makes this threat a moving target.

The Norwegian Institute for Water Research has determined that it is “appropriate to perform a risk assessment which covers water and sediments in watercourses which receive run-off from artificial turf pitches.”22

While recycled rubber is a greater source of pollution, newly manufactured rubber also contains level of hazardous substances; in the case of zinc and chromium the levels of recycled and newly manufactured rubber are comparable.23

It is predicted that chemicals leaching from synthetic turf materials occurs slowly, and as a result the environmental harms may take place over many years.24

Leaching may not be the only source of water contamination from artificial turf. As the artificial turf is used there is a level of “erosion” that takes place and can result in

17 T. Kallqvist, Norwegian Institute for Water Research (NIVA), Environmental Risk Assessment of Artificial Turf Systems, December 2005, p. 7.

18 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.

19 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.

fine particles that could be carried to local waterways. This source of contamination needs study.\(^{25}\)

The synthetic grass fibers can also be a significant source of pollution, particularly zinc, albeit significantly lesser amounts leach from the synthetic grass than the rubber infill.\(^{26}\)

Concerns about the environmental and health effects of synthetic turf in European countries is so great that standards and/or guidelines have been set or are under consideration. For example: Germany has set standards for the use of synthetic turf including a maximum allowable level of pollution or contamination of water and soil, with a requirement of regular sampling to ensure these standards are not exceeded. Allowable pollution levels include: lead 0.04 mg/l, cadmium 0.005 mg/l; chromium 0.05 mg/l, mercury 0.001 mg/l and zinc 3.0 mg/l or 0.5 mg/l depending on the testing method used.\(^{27}\) Holland has also suggested appropriate language for a standard applicable to use of synthetic turf including a ban on the use of carcinogens, mutagenic, reprotoxic, persistent, bioaccumulative and toxic, or very persistent and very bioaccumulative substances in the surface layer of the turf and a limitation on the level of substances in the rubber infill that may cause cancer, may cause heritable genetic damage, may cause cancer by inhalation, are toxic or harmful to aquatic organisms or may cause long term affects on the aquatic environment, that may impair fertility or cause harm to unborn children. Sweden has set guidelines and limiting values for some of the substances that are present in synthetic turf, specifically as it relates to air pollution, soil contamination and water pollution.\(^{28}\) And because vehicle tires contain levels of several substances of “very high concern”, the recycling and use of tires in synthetic turf is apparently in conflict with the Swedish environmental objective of A Non Toxic Environment.\(^{29}\)

Part of artificial turf maintenance is the regular replenishment of the infill. There is a need for research into the loss of existing infill – where is it going and what impacts is it having?\(^{30}\)

Maintenance of artificial turf can include application of algaecides or disinfectants to keep the surface clean.\(^{31}\) Maintenance could also include application of fabric

\(^{30}\) Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
softener to mask the odor of the artificial turf.32 What is the final destination of these chemicals and their implications for the environment and those coming into contact with them while playing on the fields? More information is needed on this subject as well.

Stormwater:
There is no indication that artificial turf drains more effectively for purposes of a stormwater infiltration system than natural grass. In addition, infiltration systems are designed to work with whatever surface coating they receive from natural grass to porous paving. It should be noted that while generally there can be no assumed benefit from an infiltration perspective of natural turf or artificial turf, there are instances where schools have experienced problems with the drainage of their artificial turf fields.33

Natural grass provides a level of evapotranspiration, pulling water out of the soil and subsurface and releasing it to the air, providing benefits in reducing the volume of runoff that results from a site and/or needs to be addressed by other stormwater management strategies. Artificial turf has no evapotranspiration capabilities.

Grass does provide a level of pollution filtering and therefore water quality protection for nearby waterways. While this filtering may be limited in the case of turf grass; such filtering is nonexistent with artificial turf.

Heat Island Effect – for Human Health and Surrounding communities:
Extreme heat is a health concern. Studies document that the surface temperature on artificial turf is dramatically increased as compared to surrounding land uses including asphalt.

In a 2002 study it was found that “the surface temperature of the synthetic turf was 37°F higher than asphalt and 86.5°F hotter than natural turf.”34 A study published in the Journal of Health and Physical Education and Recreation showed “surface temperatures as much as 95 to 140 degrees Fahrenheit higher on synthetic turf than natural turfgrass when exposed to sunlight.”35 Random sampling at Brigham Young University identified temperatures ranging from 117.38 to 157 degrees on artificial turf while neighboring natural grass areas were in the range of 78.19 to 88.5 degrees Fahrenheit. “Two inches below the synthetic turf surface was 28.5°F hotter than

\begin{itemize}
\item 31 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
\item 32 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
\item 33 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
\item 34 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
\item 35 SportsTurf Managers Association, A Guide to Synthetic and Natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations.
\end{itemize}
natural turf at the surface.” And still another study comparing temperatures on artificial turf temperatures with air temperature found that artificial turf ranged from 58 to 75 degrees hotter than measured air temperature. While irrigation provided significant cooling for the synthetic turf (lowering the temperature from 174°F to 85°F) after only 5 minutes the temperature quickly rose again to 120°F; after 20 minutes it rose to 164°F.

Concerns regarding the excessive temperatures range from the implications for players who are already exerting themselves playing in such excessively high temperatures, to the implications for burns when players or pedestrians come into contact with the hot surfaces, to the implications for small children who may come into contact with the extremely hot surfaces during non-sporting events. Particularly when installed in already built up areas, what affect does the extreme heat associated with artificial turf have on the surrounding community in terms of temperature?

Natural grass, by comparison, provides a natural cooling affect and helps to dissipate heat from neighboring developed areas. “The temperature of natural grass rarely rises above 85 degrees Fahrenheit, regardless of air temperature.”

The heat impacts of artificial turf need to be considered in the context of today’s changing climate. Global climate change is expected to dramatically increase the number of days over 100 degrees communities in our region experience. Depending on how aggressively global warming gasses are reduced in coming years, communities nearby Philadelphia will begin to experience in the range of 10 days (in lower emission scenarios) to 30 days (if higher emission scenarios continue to prevail) over 100°F. By later in this century seasonable temperatures are projected to rise 6°F to 14°F in summer (depending again on emission reductions achieved in the future). Educators and decisionmakers selecting artificial turf based on its long-term viability and community impacts should consider the affect of global climate change to magnify the heat impacts of artificial turf.

36 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
38 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
41 Union of Concerned Scientists, Confronting Climate Change in the U.S. Northeast • New Jersey, 2007.
42 Union of Concerned Scientists, Confronting Climate Change in the U.S. Northeast • New Jersey, 2007.
Health Issues:
Direct human exposure to the hazardous substances contained in the rubber in-fill of artificial turf is believed to occur via three pathways: inhalation, skin contact, or ingestion including by children or infants who come into contact with the material.43

In October 2006 and January 2007, respectively, two sites in New York where synthetic turf has been used (the large, 3 year old, Parade Ground in Brooklyn; the relatively small 5 month old Sara D. Roosevelt Park in Manhattan) were analyzed. This testing found PAHs at hazardous levels (as per New York standards) at each of the sites. At both sites dibenzo (a.h)anthracene, a probable human carcinogen, was found at hazardous levels, with two other PAH forms, both possible human carcinogens, found at hazardous levels at the Parade Ground site. Research into the pathways by which these substances may be absorbed into the bodies of children and athletes via skin contact, ingestion or other pathways, is very limited with additional research needed.44

A study by the California Office of Environmental Health Hazard Assessment (OEHHA) summarized 46 studies that identified 49 chemicals which are released from tire crumb. Of the 49, “seven of the chemicals leached from tire shreds were carcinogens. OEHHA calculated a cancer risk of 1.2 in 10 million based on a one-time ingestion of the tire crumb rubber over a lifetime.”45 While there are limited studies which assert that recycled tire crumb are stable in the gastrointestinal tract and that therefore this is not a pathway for exposure, there are other studies which contradict these findings.46

Concerns have been raised about the potential implications of recycled tire in-fill for individuals with latex allergies and that inhalation could result in a systemic response, as opposed to a contact response.47

While, “the status of the information about human exposures to recycled tire crumb rubber in-fill ... is not sufficient to determine the safety of the use of the product in situations that involve continuous episodes of human exposure;” 48 “the available

information is sufficient and strong enough to raise plausible questions with respect to acute toxicity for susceptible persons, and for cancer risks." \(^{49}\)

There is great debate about whether artificial turf can increase exposure to, and infection from, MRSA (methicillin-resistant staphylococcus aureus). Reports including a December 21, 2007 article in the Bloomberg Press reporting the affliction of an 18 year old football player from MRSA as the result (according to the boy’s doctor) of an abrasion he received from playing on artificial turf, and citing other findings linking MRSA infections with artificial turf,\(^{50}\) are a great concern for parents and sports players alike. Defenders of artificial turf often refer to studies like that of the Penn State Department of Crop and Soil Sciences which finds that *Staphylococcus aureus* is commonplace in the human environment, including on both artificial turf and natural grass fields.\(^{51}\) But even this study acknowledges that there is no conclusive evidence currently available that the source of bacteria causing the infections of sports players is not artificial turf. In addition, the study does not consider the link between burns sustained while playing on artificial turf and available bacteria as a pathway for infection. New studies are emerging that demonstrate that turf burns may be facilitating infection by acting as a pathway for infection.\(^{52}\) Study has found that turf burns increased the risk of infection regardless of the type and timing of care provided the burn.\(^{53}\)

Concussions (formally described as Mild Traumatic Brain Injury or MTBI) resulting from sports has, according to the US Centers for Disease Control, reached “epidemic proportions.”\(^{54}\) “‘Mild’ head traumas, and especially a series of such minor concussions can have long term, negative effects on cognitive function.”\(^{55}\) Study has documented that artificial turf increases the risk of MTBI over natural turf,

\(^{50}\) *Texas Football Succumbs to Virulent Staph Infection from Turf*, December 21, 2007, Bloomberg Press.
\(^{51}\) Penn State Department of Crop and Soil Sciences, *A Survey of Microbial Populations in Infilled Synthetic Turf Fields*.
\(^{53}\) A High Morbidity Outbreak of Methicillin-Resistant *Staphylococcus aureus* among Players on a College Football Team, *Facilitated by Cosmetic Body Shaving and Turf Burns*, study conducted 2004 for Connecticut Dept of Public Health, Student Health Services of Sacred Heart Univ, Centers for Disease Control and Prevention, Minnesota Dept of Public Health, Los Angeles County Dept of Health Svces.

Page 9 of 13

Artificial Turf Fact Sheet, 9/9/07
approximately doubling that risk, as well as causing a greater degree of trauma.56 According to study, artificial turf presents a 5 times greater risk of the more severe head injury than natural turf, although it is still unknown the particular characteristics of the two surfaces that cause the difference in head injury incidence.57

Costs:
It is generally agreed that artificial turf costs more to install than natural grass, while natural grass costs more to maintain. Installation and maintenance costs for each must be assessed on a case by case basis depending on site specific conditions. But generally speaking, when the installation and maintenance costs of artificial turf are assessed for the life span of the turf, particularly when the cost of disposal is added, the cost of installing and maintaining natural grass is far less. The guaranteed life and/or lifespan of artificial turf is 8 to 10 years.58 Some attempt to claim a longer life in order to assert a lower annual cost.59 Comparative cost figures for artificial turf and natural grass include:

<table>
<thead>
<tr>
<th>Source: San Francisco Rec and Parks60</th>
<th>Artificial Turf</th>
<th>Natural Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>$800,000</td>
<td>$260,000</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$6,000</td>
<td>$42,000</td>
</tr>
<tr>
<td>Cost of Disposal</td>
<td>Unknown but significant as a hazardous waste</td>
<td>$0</td>
</tr>
<tr>
<td>Average annual cost for guaranteed life of 8 years</td>
<td>$106,000</td>
<td>$74,500</td>
</tr>
<tr>
<td>Average annual cost for life of 10 years</td>
<td>$86,000</td>
<td>$68,000</td>
</tr>
<tr>
<td>Average annual cost for life of 15 years (maximum life span seen asserted in the)</td>
<td>$59,333</td>
<td>$59,333</td>
</tr>
</tbody>
</table>

56 Dr. M. Shorten, J.A. Himmelsbach, BioiMechanica, Sports Surfaces and the Risk of Traumatic Brain Injury.

58 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.

59 San Francisco Recreation & Parks, Natural and Synthetic Turf: A Comparative Analysis, December 20, 2005.

60 San Francisco Recreation & Parks, Natural and Synthetic Turf: A Comparative Analysis, December 20, 2005.
| Cost of construction and maintenance per sq. ft. | $7.80 – $10.75 | With high quality soil amendments $6.50 – $7.95
With native soils $2.50 – $5.25 |
| Cost of disposal per sq. ft. | $1.75 – $2.25 | $0 |
| Springfield College case study installation and maintenance average annual cost during 8 year guaranteed life of artificial turf – no disposal costs included | $105,000 ($800,000 install & annual maintenance of $5,000)
For a 10 year life the figure is $85,000; for 15 years it is $58,377 | $78,000 ($400,000 install & $28,000 annual maintenance)
For a 10 year life the figure is $68,000; for 15 years it is $54,666 |

| Source: Facts About Artificial Turf and Natural Grass⁶¹ | |
| Cost of installation per square foot | $7.80 to $10.75 | $2.50 to $5.25 if done with native soils
$3.50 to $5.25 if done with combination of native soils and sand.
$6.50 to $7.95 if done with sand and drainage |
| Annual Maintenance | $5,000 to $25,000 | $4,000 to $11,000 as per the case studies provided |
| Disposal per square foot – note this cost does not include the cost of transportation or landfill | $1.75 to $2.25 | $0 |

⁶¹ Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.

⁶² SportsTurf Managers Association, A Guide to Synthetic and Natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations. While the cost figures in this document focus on the southeast, the figures provide a sound comparative for the relative cost figures provided.
Artificial turf made from rubber contains a number of hazardous substances. As a result disposal is neither easy nor cheap. It is important to identify and consider the cost of disposal when considering an investment in artificial turf. The life expectancy of artificial turf generally ranges from 8 to 10 years63 – therefore disposal of artificial turf should be amortized over this time frame.

Miscellaneous:
Artificial Turf is available for use immediately upon installation. Natural Turf generally requires 2 growing seasons before it should be heavily used.64

One of the biggest supporting assertions for artificial turf is the increased level of playing time it provides. While natural grass may not equal artificial turf in playing time, natural soil and grass science has progressed significantly, greatly increasing its durability for sports. Modern natural grass sports fields include sand in their soil profile to resist compaction and a combination of grass varieties. Natural grass is becoming the preferred surface for a number of professional sports teams.

Natural grass fields require regular maintenance including, mowing and watering, and may also result in the use of fertilizers and potentially herbicides. But there are less environmentally harmful alternatives available for maintenance including electric mowing equipment and environmentally sensitive lawn care strategies that do not rely on environmentally harmful chemicals. A number of schools, including Radnor Township, Delaware County, PA, have successful policies that prevent the use of dangerous chemicals on school grounds.

Artificial turf also requires regular maintenance. Artificial turf maintenance includes sweeping, dragging and watering to provide a clean and uniform appearance.65 In addition, as the result of wear, the infill may need periodic replenishment.66 Management of an artificial turf field requires special knowledge inseam repair and snow removal.67 Special solvents and cleansers are needed to remove tough debris.68

\begin{itemize}
 \item 63 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
 \item 64 Communication with Nancy Bosold, Extension Educator, Turfgrass Management, Penn State Cooperative Extension, Berks County, Aug 15, 2007.
 \item 65 SportsTurf Managers Association, A Guide to Synthetic and natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations.
 \item 66 SportsTurf Managers Association, A Guide to Synthetic and natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations.
 \item 67 SportsTurf Managers Association, A Guide to Synthetic and natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations.
 \item 68 SportsTurf Managers Association, A Guide to Synthetic and natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations.
\end{itemize}
Artificial turf is at risk of damage from plastic bottles, cigarettes and/or gum as well as general trash thrown on the field. When damaged special repairs may be needed. Artificial turf also becomes a recipient of a variety of bodily fluids which cannot be cleansed by natural action as is the case with natural grass. Maintenance can include application of algaecides and fabric softener to mask the odor of the artificial turf.

Artificial turf systems that claim chemical treatment is not required do not seem to provide a mechanism for handling the germs associated with the bodily fluids on the turf when there is an absence of rain or when it is captured and reused in newly emerging artificial turf cooling systems.

It is important to note that the environmental, health and safety impacts of artificial turf are in need of further study by independent experts. Until such time as there are conclusive findings regarding the environmental, health and safety impacts of artificial turf the Precautionary Principle would direct decisionmakers away from artificial turf and towards the traditional use of natural grass for sports and public play fields.

Updated: February 25, 2008
Dated: September 9, 2007
Artificial Turf Fact Sheet Temporary Addendum.

Chrysene, a PAH and carcinogen, was found to be ingested as the result of hand-to-surface-to-mouth transfer from playground surfaces made with recycled tires. Assuming playground use for an 11 year period (from age 1 to 12) there was found to be an increased cancer risk of 2.9 in one million (2.9 X 10\(^6\)). This risk is greater than the general cancer risk gauge of one in one million (1X10\(^{-6}\)).\(^1\) This research would seem to suggest that repeat exposure over time to the chemicals released from artificial turf increases the associated increase in cancer risk.

Only 31% of the playground surfaces made of recycled tires tested in one research study passed the California State mandated Head Impact Criterion (HIC) of \(<1,000\). In this same study 100% of the playground surfaces made of wood chips passed the same standard.\(^2\)

When talking about the use of ground rubber as a supplement to planting soils the North Carolina Department of Agriculture and Consumer Services sent out a notice identifying the risk that zinc leaching from the rubber causes a decline in plant growth “directly attributable to zinc toxicity.”\(^3\)

A Case Study conducted by a group of “physicians and public health professionals working with the U.S. Environmental Protection Agency’s Region Pediatric Environmental Health Specialty Unit” found that they could not secure the research and information necessary to establish the safety in use with

\(^1\) Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Note -- the 1.2 in 10 million cancer risk found in the OEHHA study was considered by the authors to be an acceptable level of risk as it falls below the general cancer risk gauge of one in one million (1X10\(^{-6}\)).

\(^2\) Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Please note that in this study 32 recycled tire playground surfaces were tested as compared to only 5 wood chip playground surfaces.

children of tire crumb used as playground surface.4 “The use of recycled tire crumb products on playgrounds has had little health investigation. The major unresolved concern is the potential for latex allergy with short-term dermal exposure.”5 “No published information is available specifically regarding exposure to crumb rubber constituents from use of the product on playgrounds.”6

Analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers University found the crumb rubber from artificial turf to contain high levels of PAHs, as well as zinc and arsenic.7 PAHs found to be contained in the crumb rubber “were above the concentration levels that the New York State Department of Environmental Conservation (DEC) considers sufficiently hazardous to public health to require their removal from contaminated soil sites. It is highly likely that all six PAHs are carcinogenic to humans.”8 “The analyses also revealed levels of zinc in both samples that exceed the DEC’s tolerable levels.”9 The researchers associated with these findings were careful to state “We want to emphasize that the findings are preliminary. PAHs in rubber might not act the same way as in soil, and we do not yet have information on the ease with which the PAHs in these rubber particles might be absorbed by children or adults -- by ingestion, inhalation, or absorption through the skin. However, the findings are worrisome. Until more is known, it wouldn't be prudent to install the synthetic turf in any more parks.”10

\vspace{1cm}
7 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, \textit{Hazardous Chemicals in Synthetic Turf}, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
8 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, \textit{Hazardous Chemicals in Synthetic Turf}, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
9 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, \textit{Hazardous Chemicals in Synthetic Turf}, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
10 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, \textit{Hazardous Chemicals in Synthetic Turf}, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
Connecticut is currently considering legislation to provide $250,000 of funding for a study into the toxicity of artificial turf athletic fields.11

One Norwegian assessment/presentation concluded that while indoor artificial turf fields were not generally an elevated health risk, studies to date could not eliminate the concerns associated with development of airway allergies and made a point of noting “a link between exposure to phthalates and the development of asthma/allergies”.12 Phthalates is one of the contaminants of concern found in artificial turf crumb rubber.13

The Norwegian assessment/presentation also reported that “recycled rubber was the major source of potentially hazardous substances. An exposure scenario where the runoff from a football field is drained to a small creek showed a positive risk of toxic effects on biota in the water phase and in the sediment. The risk was mainly attributed to zinc, but also for octylphenol the predicted environmental concentrations exceeded the no environmental effect concentration.”14 The hazardous leaching could result in local environmental effect.15

\begin{footnotesize}
\begin{itemize}
\end{itemize}
\end{footnotesize}
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0047
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Nicholas Baker
Address: 91411
Email: nicholasbaker@alum.calarts.edu

General Comment

Collections Related to Synthetic Turf Fields with Crumb Rubber Infill
Docket # ATSDR-2016-0002

Thank you. I appreciate the ability to comment. For more than a decade our government has permitted tire waste, a material that is considered to be so toxic that it' not allowed in landfills, to be shredded and placed on athletic fields, kids play areas, gardens, driveways and other recreational areas.

We know from numerous credible studies, that tires contain carbon black, benzene, arsenic, mercury, hydrocarbons, and heavy metals, that have been linked to cancer. We know when people are playing sports on these fields, it's common for these materials to be swallowed, caught in ears, nose, clothing, hair, under skin, and in floor or seats of cars, showers, tubs, etc.

Tire crumb and it's by products are harmful to our environment, water. soil, and our eco-system. Anecdotal evidence of
hundreds of individuals who have played on fields using this material, who have died or become seriously ill should be enough to stop the use of these materials once and for all. If your studies will move this toxic material out of areas where harm can occur, then please let's move forward quickly. In the meantime, stopping any further fields from using this material should be mandated.

Sincerely,

Nicholas Baker
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0048
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Amy Ziff

General Comment

As the mother of three growing children I am concerned about the growing incidence of crumb rubber and synthetic playing surfaces across this country. Increasingly, our children are exposed to synthetic playing surfaces -- from playgrounds to gym class, recreational sports to the sidelines. While we all desire to be more environmentally conscious, why are we using crushed up, milled tires on plastic "grass" and calling it safe without any study? Why are we using plastic surfaces over natural ones that we have evolved with over millennia, again without any study?

My business is to study toxics, as the Founder of MADE SAFE, my organization looks at products that are made without any known toxicants and puts a certification label on them. Where there are questions we exercise the Precautionary Principle and wait for more science to emerge. For the work we do, we rely on the use of available science. What I do know for sure is that there is a tremendous amount of existing science to make those of us "in-the-know" question the use of the synthetic plastic on these fields along with ground up tires.

The synthetic turd is highly likely to contain endocrine disruptors, as most flexible plastics do, and they are prone to leach, especially when they get very hot as these fields do on warm days. Does that matter? We don't know because it hasn't been studied. And those tires. The very same tires that are considered "toxic waste" when you dispose of them through regular means are then ground up for children and teens to play on. We know tires contain PAH's and heavy metals along with other toxins commonly found on roads -- but have those effects on children
been studied? Not in this exact scenario.

So what we have are known toxic substances being used in a new way -- using our growing children as guinea pigs -- and we are allowing this to happen all across America without first conducting a proper study. When are we going to put children first? If anything is worthy of a study by the EPA I can't think of anything more valuable than where our children will play.

I hope the EPA studies crumb rubber and artificial turf materials and once and for all scientifically identifies it as the toxic substance it is and bans crumb rubber on turf fields forever.

Thank you,
Amy Ziff
Founder and Executive Director,
MADE SAFE
www.madesafe.org
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0049
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Tanya Murphy

General Comment

As a concerned parent of two middle schoolers who play on turf day in and day out, please take this away from their environment. Here is a List of Carcinogens and Other Dangerous Chemicals in Tires
http://www.ehhi.org/turf/ findings0815.shtml and here is a Health Based Consumer Guide:
http://media.wix.com/ugd/fd0a19_f5aa0824698341499b4228ebabf90cb5.pdf

Thanks,
Tanya Murphy
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0050
Comment on FR Doc # 2016-03305

Submitter Information

Name: Alexandra Bergstein
Address: 06831
Email: alexbergstein@gmail.com
Organization: Greening Our Children

General Comment

I am an attorney and a mother of three children, living in CT. I have been shocked and dismayed that crumb rubber has become a pervasive material used on fields and children's playgrounds. My children play lacrosse and soccer on the many crumb rubber fields in our area. We should all be concerned about the long-term effects of exposure to the carcinogens and neurotoxins in this material. As parents, our choice is either bar our children from playing organized sports, or let them play... and pray they don't get sick from it in 20 years. That is not a choice parents should have to make.

I urge you to take a cautionary view of this material - which is made from industrial waste - and ask "Why is it presumed to be safe?" Conducting the necessary studies to assess its safety will take years, and in the meantime millions of children are exposed every day. Furthermore, the methodology to quantify and monitor children's exposure from inhalation, ingestion, and absorption doesn't even exist. Without the ability to biomonitor, the most scientists can do is try to simulate exposure levels. Meanwhile, children routinely ingest crumb rubber as it flies onto their faces, collects in mouth guards and remains as residue on their hands long after they've played. The real subjects in this experiment are our children, and their exposure is significant but unknown. During the years it will take for the scientific methodology to be developed and the necessary studies conducted, children are ingesting and absorbing material we already know contains high levels of harmful substances.
The responsible action would be to place a moratorium on the use of crumb rubber until it is affirmatively proven to be safe. Other turf infill options with far lower toxicity profiles now exist. Choosing safer materials and forgoing crumb rubber is the only responsible choice. But until the federal government acknowledges 1) the potential risk from crumb rubber and, 2) that current studies are not measuring all routes of exposure, the public remains under the false impression that crumb rubber is safe. Just because it's ubiquitous does not mean it is safe.

Let's encourage schools and communities to use safer infill options - made without synthetic rubber or styrene - to minimize potential risks. The old adage is still so true: Better Safe than Sorry.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0051
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Rhonda Sherwood
Address: 06820
Email: rscherwood@poolingcap.com

General Comment

As the mother of two college aged boys and a founding board member of the Mount Sinai Children's Environmental Heath Center in New York, I am deeply concerned about the fact that children who play soccer, football, lacrosse, and baseball must, on a daily basis, practice and play on turf fields that contain crumb rubber. Why is it illegal for me to dispose of automobile tires in my local dump (due to the toxic runoff from rain falling on the tires), yet the same tires can be ground up and sprinkled on my children's sports fields? Every day our children are playing on fields that contain carcinogens and I fear these young athletes will grow up and find their cancer incidence to be higher than their non turf playing predecessors.

When my sons were in middle and high school, I saw:
- baseball players slide into home base and create a spray of crumb rubber that covered other players' faces
- football players get crumb rubber on their mouth guards that they subsequently put into their mouths
- kids sitting on the sidelines of a lacrosse field sifting crumb rubber in their hands like it was sand

Through inhalation, dermal exposure and ingestion, our children are being exposed to carcinogens. If this were a work site/OSHA situation, I'm sure the government would ban
crumb rubber immediately. Why don't our children deserve the same safety consideration? I hope the EPA studies crumb rubber and once and for all scientifically identifies it as the toxic substance it is and bans crumb rubber on turf fields forever.

Thanks for listening,
Rhonda Sherwood
Founding Vice Chairman
Mount Sinai Children's Environmental Health Center
New York, New York
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0052
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Steven Gilbert
Address: 98105
Email: sgilbert@innd.org

General Comment

My very young 3-4 year old granddaughters plays soccer or at least kicks the ball around - How do you intend ti keep her from eating the crumb rubber? She is very curious about thus black stuff and naturally wants to taste it.

also a few other questions

Why is the CPSC not already testing and regulating this material as a children's product given the pervasive and targeted use for children's play areas? (See recent reports from Duluth MN on tire crumb playgrounds as examples of what is going on all over).
Will the study be looking at combinations of personal exposures low to the surface directly with tire crumb on under active use?
Why are they not studying child exposure on tire crumb playgrounds? Why are they leaving it to the CPSC to (maybe) do?
How will the study, as planned, help answer the question, "Are synthetic turf fields and playgrounds with crumb rubber infill safe for children of all ages to play on?"
What are the plan and the timeline for gathering all of the data to answer the above safety question to a reasonable degree of certainty?
How do the agencies plan to obtain toxicity data that would be needed for a components based health risk assessment model?
Do they plan on conducting toxicity testing for all the components for which toxicity data is currently missing? Where will they get the data for interaction effects? Do the agencies plan on testing the toxicity of crumb rubber as a whole? Why isn't an epidemiological study the first priority? Are there plans for one? If so, when will it be done? What about the effects of small rubber particles on the eco-system? Are there plans to study the effects of run-off on marine life?

why not use the precautionary principle - test before it is used with kids?
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0054
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Cliff Sanderlin
Address: 98020
Email: clifheat@drizzle.com

General Comment

CLIFF SANDERLIN
Edmonds, WA 98020

I have worked with and for scientists including doctors and cancer researchers in Seattle for over the past 30 years, beginning with the American Lung Association and including the Fred Hutchinson Cancer Research Center. The information assembled thus far suggests that we should err on the side of caution.

While it may or may not be hazardous to rub against solid tires, the grinding of tires into fine particles dramatically increases the means of absorption into the human body. The particles become finer after breakdown into dust due to UV rays. As with asbestos, there is no known safe exposure to many of the ingredients of crumb rubber and its use should be banned nationwide. Otherwise, we will be using our children and grandchildren as cancer research subjects, guinea pigs for short.

From an economic standpoint, the stakes are high. First, the healthcare costs and lost productivity of people felled by diseases. Secondly, the cost to taxpayers to clean up the thousands of facilities across the nation will be staggering.
Please err on the side of common sense and caution. Thank you! -- Cliff
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0056
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Anonymous Anonymous

General Comment

I am happy to hear that more comprehensive studies are under way on crumb rubber and its exposures, however I am deeply troubled with hearing it is going in at my child's elementary school this year and all of his succeeding schools for the rest of his public education at San Diego Unified School District. I substitute taught at an elementary school with a new crumb rubber field and the children were rolling in these fields, eating their snacks and dropping their water bottles on the field, and I even saw some of them making mountains out of the tire pellets. It was in their hair, around their mouth, on their hands, and quite possibly on their water bottles and snacks that were dropped on the artificial turf. It didn't look right at all and it's not right. Our kids aren't possibly going to be ingesting this stuff or getting it in their eyes or an open wound, they are RIGHT NOW! And NOBODY can tell us that it's safe!

I hope these studies will look extensively into ingestion and dermal contact with young children, ages 1-10, with years of exposure to crumb rubber, but I wonder....how can that be done in a 1-2 year study? I know that science can take decades to prove a chemical is unhealthy or even deadly. How many decades did it take to prove cigarettes and asbestos were dangerous? How many decades will it take to prove the same of crumb rubber? All while our children are the canaries in the coal mine. I hope all schools and communities can put a ban on crumb rubber until these studies are complete. Inform parents of those kids that are playing on this kind of turf and that proper cleaning after playing on them and the restriction of food and drinks needs to be posted and made aware to the parents/children/athletes. There are safer, non-toxic alternative infills out there; new and improved products to look at. Crumb rubber is old, outdated and was a bad idea to begin with. Let's stay with natural turf or keep the dirt, it's better for our
environment as well. Our children and our Mother Earth deserve better!
I will look forward to what the studies will find.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0060
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Jennifer Lindsay
Address: M5V1Y1
Email: jенниферщейджилсидей@gmail.com

General Comment

Good afternoon,

My name is Jennifer Lindsay. On behalf of the Toronto based environmental agency No Toxic Turf, and I have compiled a list of 75 letters sent through the NoToxicTurf.ca website to Toronto politicians, school board members, and Toronto Public Health concerning pulverized tire crumb infill on playing fields. Please let the collection of letters attached as well as the link below contribute towards Federal Research on the usage of pulverized tire crumb infill on playing fields. Do not hesitate to contact me should have any questions or require additional information.

http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=c17a9de418b6c410VgnVCM10000071d60f89RCRD&vgnextchannel=d06c23bf6d481410VgnVCM10000071d60f89RCRD

Kind regards,
Jennifer

Attachments

Letters 30 04 2016
1. April 26, 2016

This is a letter written to express my outrage and concern about the lack of concern of potential health risks to students and others

Janice Greene

Answers are wanted concerning the rejection of the TDSB from the community to pay for a natural solution rather than the cancerous tire rubber field at Central Technical School. This is our community and are demanding a natural solution to the point that private funding is offered. We don't want to wait another few years, or decade for it to become common knowledge that these artificial turfs are harming our children. We want to take preventive action now and we are not allowed? Even if we fund it? I am truly disgusted by TDSB's decision and am interested in knowing if there is a corrupt reason why. We demand answers and will get them.

Devra Wigdor

To Whom It May Concern:

I understand the TDSB has rejected an offer for natural cork instead of tire crumb infill at Central Technical School.

I am appalled by this decision and fail to understand why the TDSB would reject a safer, healthier option for its students. Physicians, scientists, and health experts have confirmed that artificial turf with crumb tire infill pose significant health hazards and safety risks for those who use it/ play on it / inhale it. Why is the TDSB putting our children at risk? Any cost concerns the TDSB may have had were eliminated given that safer options were offered to TDSB free of charge. As a public entity, TDSB owes the tax payers a reasonable explanation.

Failure to respond or address this issue will only attract public scrutiny, result in further media attention and cause public outcry.

Sincerely,

Miriam Anbar (concerned neighbour of Central Tech)

CC: Toronto Life, Toronto Star, Globe & Mail, National Post, Now Magazine

Please read this Huffington Post article entitled Take Action Against Toxic Turf: http://m.huffpost.com/ca/entry/9417920. The article contents also included below:

If you aren’t outraged, then you just aren’t paying attention.

It’s true.

The introduction and popularity of artificial, toxic turf in playing fields and playgrounds throughout Toronto (and well beyond), is shocking, terrifying, and absolutely something we should ALL be outraged about -- and taking action on, now.

THE GENERAL ISSUE

Despite the known and documented health and environmental hazards of the artificial turf (including dangerous levels of lead!), many of our local schools have already switched, and are continuing to switch from real fields to toxic turf.

In addition to benzene and lead, the list of toxins that have been discovered on artificial turf fields includes mercury, polycyclic aromatic hydrocarbons, heavy metals, arsenic, and other carcinogenic compounds. -Jared Firestone, The Expert Institute

Grass (remember grass?) acts as a natural filter and requires comparatively less water. It absorbs carbon dioxide and releases oxygen in its place. For every natural green space the turf replaces, we are losing important outdoor spaces that contribute to the physical and emotional health of the communities who use our fields.

I started my journey in the quest for strong laws on toxic chemicals because quite simply I am a mother and I am tired of feeling like I have to have a PhD in toxicology in order to be a competent parent." ~Jennifer Beals

PROS AND CONS OF ARTIFICIAL TURF

What are the benefits of installing petrochemical, artificial turf? Our schools will have year-round playing time.

By contrast, the list of cons is enormous:

- Our kids inhale the toxins, carcinogens, and hormone disruptors released from the turf’s crumb rubber infill (made from old tires).
- The turf is conducive to dangerously high heat levels in warm weather.

- There is an increased risk of injuries, abrasions, and antibiotic-resistant staph infections.

- The petrochemical turf pollutes our water and threatens nearby plants and wildlife.

- Large amounts of water and chemicals are required for cleaning artificial turf.

- The field must be replaced every 7-10 years (which is expensive and difficult). And, where do you think the toxic material goes when disposed of?

- The tiny granules of crumb rubber stick to skin, clothing, and shoes, and get tracked into schools, homes, and cars. By the way, this crumb rubber is frighteningly problematic:

 This crumb rubber is a material that cannot be legally disposed of in landfills or ocean-dumped because of its toxicity. Why on earth should we let our children play on it? ~Patti Wood, Executive Director of Grassroots Environmental Education

 Coach Amy Griffin began cataloging the names of every soccer player diagnosed with cancer that she could find, a list that nearly doubled within a year from 34 to 64 total patients. - David Wolfe

READ + WATCH

The Yale School of Engineering and Applied Science: Study Led By Gaboury Benoit Looks At Chemicals In Synthetic Playing Surfaces

The Globe and Mail: Proposed Sports Field at Toronto School Raises Debate Over Rubber Turf

WHAT TO DO NOW

Visit NoToxicTurf.ca for resources on how to take action, including templates for writing letters to the Toronto District School Board, Toronto Public Health, Politicians, and Reporters.

The Safe Healthy Playing Fields Coalition also has a number of ongoing initiatives empowering people like you to make a difference locally and politically.

It’s urgent that we prevent toxic turf from replacing our healthy, safe, and real fields, wherever possible. Let’s turn our outrage into meaningful action, together.

5. March 14 2016
In August 2014, I wrote to you expressing my concerns about the Toronto Board of Education's installation of artificial turf in their schoolyards. My opinion has not changed. Artificial turf has none of the virtues of natural grass. Grass is eco-friendly, artificial turf is not. It's not too late to stop installing manmade products. Please, decide now to use only nature's materials in our schoolyards. For that matter, all our city's public spaces deserve the same consideration. Rogers Centre has already replaced its infield with natural dirt. The owners are hoping to replace the artificial turf with the real thing by the start of the 2017 season. The players want it and so do the fans!

Thank you,
Judy Trites
Ward 23 constituent

6. March 6, 2016

To whom it may concern,

Biking on my way to work on beautiful Harbord St. in downtown Toronto, i pass by two once beautiful verdant fields that are now, sadly, tragically and pathetically, only memories, having since been replaced by toxic, artificial turf. A strong opposition at the University of Toronto was basically ignored and overrun by financial concerns to the detriment of athletes' health and well-being and the same is being ignorantly repeated at the corner of Harbord and Bathurst. This field outside the Harbord Collegiate appreciated by the students and teachers, but also the community, who used the beautiful running track and field for extra-curricular activities and exercise is now a shambles, dirty construction site where artificial turf will go and an ugly dome will cover it so that people can rent it out in winter.

What a shame that corporate interests are winning and our planet and people are losing. Don't students and teachers deserve to be healthy? Toxic turf is not only an environmental hazard but an environmental pollutant. Humans suffer, the planet suffers and "money", as the old saying goes, "is not edible when we run out of clean air, earth and water". Let's not forget that and strongly oppose the next toxic turf project together.

With thanks,

Maya Goldenberg
A concerned citizen of this fine city

To whom it may concern,

I am very upset by the trend to replace natural, functional grass with artificial turf. We need more nature in the city, not less. The idea of suffocating the limited green space we have breaks my heart and makes for an unhealthy city.

For those of you who don't know, tire infill artificial turf negatively impacts the community and the environment in too many ways. For example:

Loss of public access to green spaces
Leaching carcinogens and toxins into our water systems
Inhalation and ingestion of toxins, carcinogens, and hormone disrupting chemicals released from crumb rubber infill
Higher risk of injury for athletes
Temperatures on artificial turf fields can reach dangerously high levels
Tiny granules of crumb rubber stick to athletes’ skin, clothing and shoes and are tracked into our streets and homes
Increased risk of Staph Infections from cuts, scrapes, and “turf burn”
Children and adolescents are especially vulnerable to the health hazards of artificial turf; even more so in domed spaces
Artificial turf is highly flammable

For the sake of our urban environment and the health of the city's human and non-human residents, please SAY NO TO TOXIC TURF!

Sabrina Malach

Are you aware of the 2015 Yale University Study that found carcinogens in the chemicals released by artificial turf? Is this acceptable for our children to play on and inhale?

Sincerely,

Lanny Shereck

No toxic turf please... keep it away from children's playgrounds in Toronto.

Melissa Leithwood
Dear Parents, Family and Friends of the Toronto District School Board,

Happy Spring! As we welcome the warmer weather, our physically activity on the up. Especially within the lush green spaces Toronto offers.

Are your children, family and friends engaging in curricular or extra-curricular activities on Artificial Turf? Is your children's school on the wait-list for Artificial Turf installation? If so, please note the important health and safety tips published by Toronto Public Health this year.

Health Impact Assessment of the Use of Artificial Turf in Toronto, April 2015 (page 12):

a) Consider the installation of artificial turf only in situations where the conditions on the site and the high use of the space would prevent the maintenance of a healthy natural turf.

b) Future proposals to install artificial turf include mitigation strategies that specifically address health concerns relating to:
 i. lack of availability of accessible green space, opportunities to increase vegetation in the surrounding neighbourhood and factors related to biodiversity and ecosystem health;
 ii. Creation of urban heat islands;
 iii. Water capture, drainage, maintenance and sanitation.

c) Prevent heat-related health impacts by providing shade and drinking water, and prohibit the use of the field when artificial turf surfaces become very hot such as during heat alert and extreme heat alert days.

d) Ensure proper ventilation in indoor artificial turf facilities.

e) Post messages on outdoor artificial fields to remind users of the potential for heat-related injuries on hot days and of the use of good hygienic practices, including:
 i. Washing hands after playing on artificial turf;
 ii. Supervision of small children to ensure they do not eat the infill material;
 iii. Avoiding eating on the artificial turf;
 iv. Avoiding tracking infill material into the school or home (shake visible rubber pellets off, or providing shoe/equipment cleaning areas before exiting the field;
 v. Protecting exposed skin from direct contact with the turf during hot weather events;
 vi. Cleaning and disinfecting affected areas and covering abrasions as soon as possible.
f) Use alternative infill materials that have fewer contaminants and/or less solar absorption on new installations, rather than crumb rubber infill made from recycled tires, whenever possible.

g) Adopt protocols for selecting and purchasing artificial turf systems that address concerns regarding chemical content, heat absorption, and other environmental and health and safety factors;

h) Ensure that maintenance protocols are followed and procedure in place to inspect, test, and replace any existing synthetic turf as it ages or deteriorates.

If you are looking for more information on the expense, health hazards and safe playing practices on Artificial Turf, please respond directly to this email, visit www.notoxicturf.ca or follow us on twitter @NoToxicTurf

Have a great Spring and Summer!
The No Toxic Turf Team

11. April 9, 2015

I am a physician and I live in the neighbourhood of the proposes artificial turf and track. In the press covering the "resolution" of this project I was surprised to see that the potential health risks of artificial turf was not mentioned or addressed.
I have learned from my good friend Rochelle Rubinstein that there are considerable health risks and this should be carefully evaluated before initiating this project.
And these health concerns need to be addressed BEFORE proceeding.

Dr. Tony Cohn MBChB, MSc, FRCPC

12. March 30, 2015

To whom this may concern:

The issue of privatization with the potential to generate money for non-school based uses often trumps community use and health concerns.

So given that you will have plastic fields now- tire crumb is the most hazardous infill from a health perspective ESPECIALLY in a domed / indoor field. It is a waste product not meant for human use and just about every individual ingredient we know of in tires is hazardous to humans and the environment.. The recent cancer clusters in soccer players with a high
preponderance of soccer goalies, who are the most constantly and intimately in contact with the tire crumb, is troubling and should at least raise red flags. Precaution with use of an alternative infill is definitely recommended. And since the exact recipes for tire production is proprietary there are unknown ingredients that could be toxic as well. Since no one knows what is present it is impossible to test for them. Carbon nanotubes used by some tire companies are an example with the potential for high toxicity at extremely small amounts.

The preferable alternative would probably be a plant based infill such as the cork-coconut husk infills. Expanded polypropylene would also be better than tire crumb since it has a simpler recipe that is knowable. One f the problems is it typically gets into the ecosystem and is ingested by animals (the pellets look just like fish eggs) contributing to the burden of plastic waste in the food chain. So care should be taken to ensure none of it leaves in field care or with the athletes.

For the plastic carpet itself: There are a couple of other suggestions- Demand INDEPENDENT testing to ensure the plastic carpet and plastic blades are lead and Cadmium free. Be sure to ask for and send samples of ALL COLORS of the plastic blades off for analysis. A huge variability has been found in lead content even in supposedly lead free carpets. It is important to emphasize that the public health consensus is THERE IS NO SAFE LEVEL OF LEAD especially for children. The field components should contain no lead. Period.

The dust from abrasion and breakdown of the plastic and infill will be breathed in and ingested over time. The key is to ensure the content of the original field is as low toxin as possible.

Finally find out how do they propose to "clean" the fields inside? since sweat, blood, vomit etc are almost impossible to clean up on these carpets and could contribute to high bacterial levels. Antimicrobial treatments have their own health hazards unfortunately.

Best regards
Kathy Michels

I am writing to protest the privatization of the Central Tech playing field and the use of artificial turf at Central Tech and public schools alike. Tire waste synthetic turf is dangerous and should be banned in Toronto schools in order to protect the health of our students, communities and environment. Not only will the privatization of Central Tech's playing field deny access to green space for the public, it will infect our environment with toxins and carcinogens that young players will breathe in on a daily basis. Why, if banned in most of US and Europe, is there no
.media coverage on artificial turf’s health hazards in Toronto? Being in the position that you are in, do you not have a responsibility to address this concern? Please speak up on behalf of the PUBLIC and help to preserve our public access to green space and keep the PUBLIC healthy and safe.

Miriam Anbar

Dear Friends,
As a downtown resident and a former public school teacher I am concerned about the environmental issues involved in the artificial turf plans of the TDSB. I urge you to consider the health of our students.

Charles Heller

15. March 15, 2015

To whom it may concern,

You are responsible for the health of the next generation and you are turning your backs on them. Our children deserve to play on real grass just like we did and I am appalled at how careless the government is being with the health of our children. The money you are saving will end up costing the next generation when they have lawsuits from sick children.

Robert Daoud

To whom it may concern:

I’m very disturbed to hear the news about Central Tech schools moving forward with the artificial turf field. Our students will suffer health consequences of playing on a toxic surface and this should be unacceptable to all of you.

Samara Wigdor Daoud

17. March 9, 2015
Toronto prides itself in being the greenest city on earth. That is laughable when the city is allowing poisonous materials to replace grass in our playgrounds. Stop the poison!

Devora Tenenbaum

18. March 8, 2015

I am very saddened to hear the news about central tech moving forward with the artificial turf field. It is inconceivable that the school board wont even consider the health consequences of their students and others using the field. It is irresponsible and a huge mistake. I certainly wont be sending my kids to play there.

Jesse Kaplan

19. March 8, 2015

This decision is highly short-sighted and clearly places greater importance on saving a few dollars than saving our community from unnecessary chemicals and health risks. I urge you to use a natural solution for the field; grass is beautiful soft and helps foster an incredibly important ecosystems for an array of insects, birds, rodents etc.

An old saying goes "If there's grass on the field, play ball!"

TURF THE TURF!

Save central tech field!

shimon berman

20. March 8, 2015

I’m writing this email to plead with you to reconsider the decision to allow the use of artificial turf in our schools and to expose our communities to a material proven to be toxic and detrimental to both the environment and our health. In a region of the world blessed with magnificent and abundant nature and a delicate ecosystem that continues to be threatened and reconstructed to adapt to our wants, it is unconscionable that we would resort to the use of such a toxic material so that yet another corporation can turn a profit at the expense of our environment and our health. As we continue to wake up to face the consequences of decades of neglect and harm to our ecosystem and at a time when we have collectively come together to attempt to reverse this damage, this decision is a step in the wrong direction and one that will burden the future generations of this great city.

I again strongly plead with you all to reconsider this decision and to continue to preserve this city's great tradition of respect for the environment and world renowned progressive policies.
Omar Sabbagh

21. March 8, 2015

I am extremely concerned about my children playing on a toxic turf field throughout their school years. This should not be allowed. I want my children to play on real grass under a real sky not on fake, hazardous turf beneath a oppressive dome. This is dangerous for everyone involved and a serious neglectful and harmful decision to force upon our children.

Leaka

Leaka@yahoo.com

22. March 8, 2015

To all those responsible for public health

We are devastated by the news that astro- turf will be laid in the central tech field
This comes the day the same news of compensation given to the Thalidomide victims
Perhaps in 20 yrs the same will happen because of astro- turf - its proven risk to cause cancer will only be known in years to come and for what purpose? How backwards to replace beautiful natural grass with fake

You will be mocks in history and soon this kind of action will be outlawed- what side of history do you want to be on

Can you imagine Central park in NYC of Jardin des Tuilleries replacing grass with Astro-turf? Why are you doing this to our park?

My son will not get to run on a beautiful field of grass by his grandmothers home thanks to you
I know you will be on the wrong side of history- I know you will have a class action law suit in the future

Please reconsider your actions and take a natural approach and save our grass
I cant believe we have come to a day and age where one has to stand up to protect the grass on the ground - I cant believe plastic is now a replacement for beautiful grass

Don’t you remember the smell of freshly cut grass ? Why are you taking that away from our kids?

Please reconsider and replace the astro- turf with natural grass !
Thank you
Very sad and disappointed mother
Devra Kaplan

23. March 3, 2015

I strongly oppose the use of artificial turf. Natural fields and grounds should be preserved. A report from the school board’s consultant has stipulated that applying 6-8 inches of topsoil and a layer of new sod would remedy the current contamination problem and make Central Tech’s field usable again. A new type of natural hybrid grass, used in many high-use sports fields, could create a safe and resilient surface for players.

Sharon Samet

24. March 2, 2015

I’m writing to express my concerns about the TDSB’s plans for the Central Tech field and others. The Toronto District School Board and Razor Management are rushing into the commercial development of public land without adequate public consultation or consideration of the negative health impacts on students and the environment. From a health and safety perspective, this is a terrible deal for our community, exposing us to unnecessary toxins and carcinogens. From an economic perspective, it is a bad deal that gives far too much revenue for the use of community green space to a private company. In terms of planning, what this means in terms of traffic and other issues needs to be fully explored. The TDSB should not be pushing these kinds of projects, which have far-reaching consequences for the city and particularly for the residents who live nearby, without full consultation, open data and a thorough discussion of the health risks.

Dominique Russell

25. March 2, 2015

I am shocked by the lack of responsibility shown by the Toronto School Board in its planned decision to install crumb rubber in areas of play for children and young adults. Anyone who looks seriously into the research available would see what a potentially dangerous decision this is, with long term costs and effect. Since crumb rubber is a material that cannot be legally disposed of in landfills or ocean-dumped because of its toxicity why have it in areas where children will be forced to play?

The long term costs will prove too expensive for us all.
Pauline Cummins

26. March 2, 2015

To Whom It May Concern:

I am very concerned with TDSB's intention to install synthetic turf at Central Technical High School. There are significant health and environmental concerns associated with artificial turf and crumb rubber infill. I believe it is irresponsible to forge ahead with this proposal. There are alternatives that would not compromise our health and the aesthetic integrity of the area. Surely we can do better for our young people, our community and our city. Thank you for your attention.

Marilyn Bercovich

27. February 23, 2015

How can you justify not telling Torontotians -especially parents, about the gra health hazards of artificial turf? Central tech 693 bathurst street is of great to many of us.

Francine Zuckernan

28. February 16, 2015

I support the efforts to save our natural fields. The transformation of the green lawn will be harmful to residents, to small businesses, to students, and to users. I encourage our leaders to consider the effect this will have on the community of residents around the field as well.

Orit Sarfaty

29. February 14, 2015

Hello TDSB and everyone involved in decisions,

I have just learned of the plans to astro-turf the playing field at Central Tech. As a retired educator, this causes me concern on many levels. I think my primary concern revolves around the related health factors. I have had first hand experience with the "crumb rubber" due to high school football games. It seems to get into everything no matter how vigilant I have been. I was horrified to learn that this material is made from old tires that cannot be legally disposed of in landfills or ocean-dumped because of its toxicity. I see no reason to have growing kids breathing in this toxic cocktail or rubbing it on their skin. Some of the chemicals in question are proven to be toxins and hormone disrupters.
For this same reason, I worry that as moisture passes through the crumb rubber it will bring with it these toxins, eventually soaking into the groundwater as well as flowing into our creeks, rivers, lakes. If there is an alternative to poisoning our children and our environment, let's choose it!!!

Just one more thought....... It makes me sad to think that because of the public/private partnership, the general public will not be able to head over to the local high school to use the track or have a friendly, impromptu game of ball. I remember when my Dad would take us over the to the high school to fly a kite or remote control plane. Let's guard these dwindle number of public recreational spaces for the good of the many, not just those that can afford to use them.

I will be following this issue with great interest.

Karen Rathwell
Wellington Water Watchers
Guelph, ON

30. February 13, 2015

Stop privatizing the commons!

Judy Lewis

31. February 10, 2015

I send this letter regarding the plan of the Toronto District School Board (TDSB) and others to convert a number of playgrounds and sports fields across the city from natural to artificial turf.

I am concerned about the environmental and health hazards of artificial turf. I am most alarmed to learn that children and adolescents are especially vulnerable to the toxins and carcinogens that artificial turf releases. All players are at risk for joint injuries and burns when falling. As well, fields of artificial turf create heat islands in the summer, do not allow for the natural drainage of water, and negatively affect the life of city birds.

No wonder, FIFA, the body that governs international football/soccer tournaments, banned the use of artificial turf, years ago.

The City of Toronto has led the way in North America on other health/environmental issues. I urge Toronto Public Health to ban the use of artificial turf in our city.

Laurie Kwasnik
Hi there,

I am concerned about the environmental health impacts of introducing turf over real grass to our school lawns.

this is a list of toxins that could be released from artificial turf including:

- acetone
- aniline
- arsenic
- barium
- benzene
- benzothiazole
- cadmium
- chloroethane
- chromium
- cobalt
- copper
- halogenated flame retardants
- isoprene
- latex
- lead
- manganese
- mercury
- methyl ethyl KETONE
- methyl isobutyl ketone
- naphthalene
- nickel
- phenol
- pigments
- polycyclic aromatic hydrocarbons
- styrene – butadiene
- toluene
- trichloroethylene

“This crumb rubber is a material that cannot be legally disposed of in landfills or ocean-dumped because of its toxicity. Why on earth should we let our children play on it?”

Dana Newman

I send this letter regarding the plan of the Toronto District School Board (TDSB) and others to convert a number of playgrounds and sports fields across the city from natural to artificial turf.

I am concerned about the environmental and health hazards of artificial turf. I am most alarmed to learn that children and adolescents are especially vulnerable to the toxins and carcinogens that artificial turf releases. All players are at risk for joint injuries and burns when falling. As well, fields of artificial turf create heat islands in the summer, do not allow for the natural drainage of water, and negatively affect the life of city birds. FIFA, the body that governs international football/soccer tournaments, banned the use of artificial turf, years ago.

The City of Toronto has led the way in North America on other health/environmental issues. I urge Toronto Public Health to ban the use of artificial turf in our city.

Sara Promislow

Dear TDSB, Toronto Public Health, Politicians, and Journalists,

Please protect Toronto children from cancer causing chemicals in artificial turf playing fields.

Sincerely,
Steven McCabe
Toronto resident

35. February 9, 2015

I send this letter regarding the plan of the Toronto District School Board (TDSB) and others to convert a number of playgrounds and sports fields across the city from natural to artificial turf. I am concerned about the environmental and health hazards of artificial turf. I am most alarmed to learn that children and adolescents are especially vulnerable to the toxins and carcinogens that artificial turf releases. All players are at risk for joint injuries and burns when falling. As well, fields of artificial turf create heat islands in the summer, do not allow for the natural drainage of water, and negatively affect the life of city birds.

No wonder, FIFA, the body that governs international football/soccer tournaments, banned the use of artificial turf, years ago.

The City of Toronto has led the way in North America on other health/environmental issues. I urge Toronto Public Health to ban the use of artificial turf in our city.

Hilary Cook

As long as there continue to be concerns about the toxicity and safety of artificial turf we should put a hold on any further installations in our schools. At the same time we know without a doubt that that soil and real sod are good for the environment and cause fewer injuries. It seems evident that the equation is weighted in favour of preserving and where necessary restoring natural fields for the good of the students, the neighbourhood and the city.

Miriam Ticoll

37. January 28, 2015

I am dismayed to learn that artificial turf will be used on the playing field at Central Tech instead of the natural field that is there presently.

Green space in downtown Toronto is absolutely vital to the well-being of the city and must be protected at all costs. Artificial turf introduces unwanted toxins and turns what is essentially a natural field into a no-go zone for the community. The field is used by and members of the community alike.
Open green space helps to reduce the temperature of the city.

There are laws in downtown Toronto that specify that green space must exist within a 5 mile radius.

This site is the only green space for miles and could be contested for that alone. This issue is of vital importance.
I hope that due diligence will be done here.
Best,
Candida Girling

38. January 28, 2015

I am writing this letter in support of NoToxicTurf. As a retired high school teacher, I believe it is essential that we preserve all school grounds, parks, playgrounds and public spaces free of artificial turf, for both health and environmental reasons. I hope you will consider this request.
Sincerely,
Nick Hagiepetros

We need grass fields in this city. They give off oxygen, sequester carbon dioxide, yield pleasant smells, and they also give when you make a sharp turn on the field. Turf is not proven to be safe to our kids. A moratorium should be declared, and this field should not be ripped up against the wishes of the community, who after all are paying the taxes.

aaron davis

40. January 22, 2015

Please do not replace grass on the field of Central Tech with artificial turf. Artificial turf should not replace grass on any field. The reports of toxicity and injury to people, are too compelling and frightening.

Yael Brotman

41. January 22, 2015
Hello, and thank you for reading my letter,

Please consider the importance of saving Central Tech High School’s playing field from privatization and this new development proposal. I speak for many when I say that public outdoor spaces are extremely important to the vitality and well being of a city and its population. This is a step in the wrong direction, and sends a message that crucial public outdoor spaces can be sold off.

Please invest in restoring the field, for the use of public citizens. Not enough research has been done into the tire waste being used for the field, and the environemental risk is avoidable if you work to counter this bid.

Thank you,

Sebastien Heins

Concerned Citizen

42. January 22, 2015

WE NEED TO SAY NO TO SYNTHETIC TURF

When an institution or a jurisdiction has available grass fields, as most communities in Canada do, it is a terrible mistake to install synthetic turf fields, especially those made from materials containing recycled rubber tires. There are two fundamental reasons to avoid these products. The first involves the health of our children. And the second, related objection centers on the negative environmental impact of synthetic turf fields.

HEALTH:

Unfortunately, few people are aware of the actual level of scientific research into these playing surfaces, and virtually everyone continues to consume them despite the future likelihood of litigation unimagined at this time, but altogether possible in the future.

I am someone who has invested several thousand dollars of my own funds for an investigation of synthetic turf carried out at Rutgers University in the United States. That research found the usual troubling factors associated with rubber pellet fields, but the science remained incomplete. And there was a very good reason for this fragmentary result.
To my knowledge, no one has done a full and thorough scientific study of even one set of these fields. Why? Because even in one field of recycled tire material you can have product coming from more than one hundred different sources; not surprising, since an average field can have the contents of 20,000 to 40,000 recycled rubber tires. To do a proper investigation, one needs to take many samples from all over the surface, and simultaneously attempt to trace the origin of the material. Secondly, to truly examine the effect of the material on young players, one really needs a longitudinal study over a period of approximately 15 years, with at least one control group of youngsters who have always played on natural grass, and another group of people who have played a great deal on the same artificial field.

Obviously, a thorough study of this kind would require the long-term co-operation of many people and the expenditure of something like – this is my estimate -- $10 million dollars.

That kind of work has simply not been done. And what one has instead– almost always – are “studies” that are simple summaries of supposedly already completed research whose paucity is truly depressing.

The precautionary principle dictates that the agent of possibly harmful change bears the burden of proof to establish that the change he or she is initiating does not cause harm.

In the case of these synthetic fields, we as a society, I believe, have thrown the precautionary principle out the window. We expose our children to risk, I think, and we allow them to bear the burden of testing the product, in the same way that we allowed ourselves to smoke ourselves to death before litigation eventually established the responsibility of tobacco companies for harm done to individuals.

Here is an excerpt from an NBC News investigation examining the disquiet felt in the United States by Washington state athletic coach Amy Griffin when she noticed high levels of cancer among soccer goalies who played on synthetic turf fields.

The NBC report remarks:

“Artificial turf fields are now everywhere in the United States, from high schools to multi-million-dollar athletic complexes. As any parent or player who has been on them can testify, the tiny black rubber crumbs of which the fields are made -- chunks of old tires -- get everywhere. In players' uniforms, in their hair, in their cleats.
But for goalkeepers, whose bodies are in constant contact with the turf, it can be far worse. In practices and games, they make hundreds of dives, and each plunge sends a black cloud of tire pellets into the air. The granules get into their cuts and scrapes, and into their mouths. Griffin wondered if those crumbs - which have been known to contain carcinogens and chemicals - were making players sick. "I've coached for 26, 27 years," she said. "My first 15 years, I never heard anything about this. All of a sudden it seems to be a stream of kids."

Since then, Griffin has compiled a list of 38 American soccer players -- 34 of them goalies - who have been diagnosed with cancer. At least a dozen played in Washington, but the geographic spread is nationwide. Blood cancers like lymphoma and leukemia dominate the list.

No research has linked cancer to artificial turf. Griffin collected names through personal experience with sick players, and acknowledges that her list is not a scientific data set. But it's enough to make her ask whether crumb rubber artificial turf, a product that has been rolled out in tens of thousands of parks, playgrounds, schools and stadiums in the U.S., is safe for the athletes and kids who play on it. Others across the country are raising similar questions, arguing that the now-ubiquitous material, made out of synthetic fibers and scrap tire -- which can contain benzene, carbon black and lead, among other substances -- has not been adequately tested. Few studies have measured the risk of ingesting crumb rubber orally, for example."

Let us make two arguments regarding this report.

First, let us assume that there is categorically no link of “cancer to artificial turf.” Then, presumably, the disproportionate number of sick people who also played on synthetic turf, as observed by coach Griffin, is simply a chance coincidence and nothing can be concluded from the coach’s observations.

But, secondly, let us say that there is a connection of “cancer to artificial turf” and that in the future such a causal connection is proven scientifically. What then will be the legal position of officials and responsible people who can be proven to have deliberately received health warnings made to them prior to the installation of the surface in a place or jurisdiction where these officials have authority?
It is difficult to answer the question, but I know that in North America there are already people ready and waiting to initiate class action suits in case such an evolution of the testing research should take place.

THE ENVIRONMENT

There is one element of damage to health that is incontestable. Sustaining the health of others is a question of trying not to remove an obvious good for both children and adults.

For example, if families live near an unpolluted canal where people can swim and then that body of water becomes damaged by pollution, to the point that swimming becomes impossible and certain people even become ill, then the polluter becomes liable for degrading the environment and harming individuals. A previously benign environment has been degraded and a previous good has been removed.

The removal of a previous environmental good is what results, I think, from the substitution of a natural grass field with a synthetic turf field.

Synthetic turf fields produce a very obvious heat island effect. Interestingly, even the most humble and ill-maintained field of grass carries out work of photosynthesis that has marked benefits for people playing on that grass. A natural grass field absorbs CO2 and generates oxygen. That makes the ambient air markedly cooler. Also, the soil on grass fields is capable of absorbing and breaking down infectious material, such as mucous. A synthetic field is hot in high temperatures, and athletes who scrape themselves on the inorganic surface must have their skin surfaces treated immediately.

Attached to this letter is the heat-island study carried out in Montreal by Camilo Pérez Arrau in 2007. You will note that the natural grass fields of Westmount Park are used as a control for the comparative study, and that these fields show up as blue on the color-coded temperature gradient that Arrau uses.

I happen to live right in front of these fields – and I, along with other members of Save The Park! (a group that belongs to The National Association of Olmsted Parks, in Washington D.C.) fought successfully to maintain these grass fields and to not have them replaced by synthetic turf.

I know these fields well. They are not wonderfully maintained and there is not anything that special about them. But they provide incontestable goods to the people who live nearby.
They create an air temperature that is noticeably cooler in summer time and relatively oxygen-rich compared to the surrounding, urban streets such as Ste. Catherine.

Arrau’s study is based on Landsat 5 photos and he matches natural fields with well-known synthetic surfaces in Montreal. The temperature difference in every case is from 5 degrees Celsius to close to 10 degrees Celsius difference. When New York City first looked into the state of its own synthetic fields, it began to post heat warnings in the summer precisely because of the heat island effect.

Natural grass fields are healthier but they are also multi-purpose areas. People can play freely on them, lounge, picnic, and stand closely if they want to watch young children play.

Both animals and human beings fare much better on natural grass. To take away a natural field from someone, I believe, is to do them environmental harm.

If I had young children at this time – I would not permit them to play on synthetic surfaces, and I would take that decision as part of my job as a parent, exercising a precautionary principle on behalf of my own kith and kin.

We have rushed obsessively to install these artificial surfaces, to the point that we believe, somehow, that it is impossible to play field games on natural surfaces.

Quite frankly this attitude resembles a kind of obsessive addiction that has harmful effects both for the consumer and the supplier.

I – and a number of people such as myself – are in earnest about this issue. We have already spent thousands of dollars seeking answers to our questions, and we will probably end up – collectively – spending millions until we are really know the truth about the questions raised by such people as Amy Griffin.

As is often said in another context, we believe we all need to learn to say NO and to say NONOW.

Patrick Barnard
Westmount Quebec

43. January 22, 2015
Are you people seriously going to put this fake, toxic stuff in the centre of our city? Really going put neighborhood health and well-being behind greed? Are you really going to hold public sporting events there when school is out? A residential neighbourhood that could not possibly bear the traffic and congestion.

Disgraceful.

You could do the right thing and use the green alternative available to you. You could set an example. You could be a beacon. You will get much better press if you do the right by the neighbourhood, the community, the environment and the City.

Yours very truly,

Batsheva Capek

The No Toxic Turf movement affects our health and our community.

44. January 19, 2015

Greetings,

I am writing to ask that you do whatever you can to save the playing field at Central Tech High School from privatization and development. Public outdoor spaces are a precious urban resource, and the field at Central Tech has been a vital part of the community for years. The field has been neglected in recent years, and its contamination is worrying, but this is merely a call to action to restore the field. Please consider the proposals to restore the field that keep it a public outdoor space. Should the misguided decision to build an indoor dome be pursued, I would call on our leaders to give the scientific community time to examine the reports of increased cancer incidence in soccer goalies playing primarily on this material.

Sincerely,
Ishai Buchbinder

45. January 19, 2015
To Whom it May Concern,

I am writing this letter because I am extremely concerned with the current proposal to install artificial turf on the field of Central Tech. My concern stems from the hastiness of this decision, and from the plethora of potential health and environmental concerns which are created by artificial turf. A school field, and greenery in general, is supposed to be a site of healthy physical activity, and rejuvenating connection to the outdoors. This new proposed artificial field, however, will introduce very dangerous toxins, carcinogens and hormones into the environment, as well as dangerously high heat levels in the summer months. Couple that with the increased risk of staph infection and the pollution this field will introduce into our already oh-so-fragile water table, and you start to get the picture of the immeasurable harm this plan will cause.

I know this is an issue that many, in addition to myself, are taking very seriously. Please, I urge you to take our concerns seriously, and investigate the proposed top soil proposal instead.

Thank you for taking the time to hear my voice on this issue.

Sincerely,

Mitchell Cushman

A report from the school board’s consultant has stipulated that applying 6-8 inches of topsoil and a layer of new sod would remedy the current contamination problem and make Central Tech’s field usable again. A new type of natural hybrid grass, used in many high-use sports fields, could create a safe and resilient surface for players.

46. January 13, 2015

Dr. David McKeown,

I'm writing to state my objection to the current plan to transform the four acre field at Central Tech into a artificial turf / 80 foot high dome, as well as the plans for several other playgrounds to be converted to artificial turf.

Specifically, I'm very concerned about the possible health issues associated with the use of artificial turf - at the very least there should be a moratorium on the instillation of tire waste artificial turf until it's proven that it is safe.
Sincerely,

Simon Bloom
co-Artistic Director
Outside the March Theatre Company

47. January 9, 2015

I am against removing natural grass for any alternative. The grass is healthy, beautiful and has withstood the test of time.

Michael Gerry

Stop the TDSB plan for artificial turf in Central Tech field at 725 Bathurst Street; for so many reasons this is wrong:

- Health hazard, - The turf is full of toxic materials.
- The decision was made without taking into account the community view and without due process.
- With the cooperation of the TDSB; the CTS students have been bribed with promises based on misguided information

Nomi Drory
128 Markham Street
Toronto
M 6J2G5

49. January 1, 2015

Stop the astro turf because it is toxic, and is a proven carcinogen.
My address is 28 Markham St, and would be very disappointed to have this happen in my neighbourhood.

Phillip Woolf

50. December 16, 2014
Please do not replace our healthy natural grass field with toxic tire waste artificial turf! Thank you for listening to your community.

Jennifer Capraru

51. December 1, 2014

Please protect our children from exposure to the toxins and carcinogens that are released from crumb rubber artificial turf. When these fields are being de-installed and banned all over the world, the TDSB is being short-sighted and irresponsible in promoting them. There are new natural grasses that are low maintenance and do not require pesticides. And please read this important recent article, below.

A concerned parent,
Devra Kaplan

http://www.infowars.com/dads-petition-seeks-to-ban-artificial-turf-sports-fields-over-reported-link-to-cancer/

52. November 24, 2014

Dear City Officials,

I understand field space is incredibly important for students.

However, I have been shocked to learn about the health impacts that the proposed FIFA-grade artificial turf that would be installed in Central Tech's currently contaminated field. According to recent research findings and evidence, it could in fact have a far more grave impact on the health of students than the turf would itself.

Central Tech students and their families are possibly not aware of the controversy surrounding this topic. NBC currently did a news piece examining the possible link between artificial turf and cancer, citing an alarming number of children who have played on artificial turf and soon gotten cancer - this seems to affect goalies especially. Blood cancers like lymphoma and leukemia dominate the shocking list.

“During the past two decades, there have been more than 60 technical studies and reports that review the health effects of crumb rubber as it pertains to toxicities from inhalation, ingestion and dermal contact, as well as cancer,” the Synthetic Turf Council, an industry group, said Thursday in a statement responding to the initial NBC News report. An official study on what
effects exposure to the chemicals in crumb rubber turf fields might have on athletes has been requested by the US Federal government's Agency for Toxic Substances and Disease Registry.

A former soccer player interviewed for the piece who now has cancer is quoted saying that after playing on the artificial turf she would “have little black dots (from the crumb rubber) in her ears and nose.”

With such intensely serious health impacts of artificial turf now going under federal investigation, it is your responsibility as city officials - and perhaps parents yourselves - to shut down the proposal now going to the OMB to install artificial turf.

Seeing as how the field is contaminated, what an opportunity for students to participate in the planning and safe installation of a new natural field that they can be proud of - and safe on.

Thank you for reviewing my request.

Lenni Jabol

53. November 11, 2014

Ms. Lachapelle,

I strongly encourage Toronto Public Health to undertake a thoroughgoing study of SBR (waste tire) infill on athletic fields in Toronto. The fact that environmental toxins (Class 2A carcinogens and endocrine disruptive chemicals) are present in this type of material should be reason enough to warrant further study of the public health threat they represent. The additional facts that in scientific studies it has been shown that the amount of these chemicals in a given sample may vary widely due to differences in source material, and that many ingredients in tires are unknown (held as trade secrets), should underscore the necessity of an investigation by TPH.

Expressed concerns of parents and public health advocates in Toronto and elsewhere should not be ignored.

Mike Murphy

54. November 11, 2014
I believe that playing on artificial turf & ground-up tire waste infill poses a serious risk to the health of our children. This industrial waste material containing multiple carcinogens has not been tested in animals. So this means its first real testing has been on our children. NBC Network News has recently reported a cancer cluster in young soccer goalies playing on this toxic waste material. We need to replace all the artificial turf now before more children are taken ill. Thank you for your attention regarding my concern.

Lillian Blunden

55. November 11, 2014

I am totally against the use of artificial turf at Central Tech. It is hazard to our health.

Ruth Krakowski

56. October 23, 2014

No Toxic Turf!

Rosie Aiken

57. October 23, 2014

I have two school age children. We live in Toronto. I moved from New York City to raise my children in a healthier, greener city. The mix of toxins and carcinogens that young players will inhale upon the installation of tire waste synthetic turf on Central Tech's field is a detriment not only to the children using the field, the neighbouring community exposed to the toxins, but to the city as a whole. When a city chooses to embrace toxins and contamination it affects all of the inhabitants. What kind of investment are you making for the future and health of our city? This is a huge mistake, PLEASE DONT DO IT!

Amy Lengyel

58. October 22, 2014

Can you speak to the mix of toxins and carcinogens that young players will inhale upon the installation of tire waste synthetic turf on Central Tech's field?

Janice Greene

59. October 22, 2014
Environmentally dreadful. No o2 producing co2 eating from fake grass. What are you trying ti teach these kids anyway? Total lack of respect for living things other than themselves? Very creepy.

M. Catherine Newcomb

60. October 22, 2014

I support the moratorium on further installation of tire waste artificial turf in Toronto schools in order to protect the health of our students, communities and environment. I wish to preserve public access to green space.

Of immediate concern: Central Tech's playing field. My concerns include:

The mix of toxins and carcinogens that young players will inhale upon the installation of tire waste synthetic turf on Central Tech's field.

The risk of heat rash, exhaustion, and potentially heat stroke from the extreme temperatures of tire waste synthetic turf during the summer.

The lack of access to green space if CTS's field is replaced with artificial turf and privatized.

I hope that you will speak out against the TDSB's artificial turf proposal that they are now taking before the OMB. It's just a bad idea, on so many levels. In addition to the health concerns, a dome would be a blight on the historic neighbourhood. Please advocate against this idea. To mind, it is so clearly the agenda of a very few TDSB officials against the will of a broad community.

Sincerely,
Aaron Willis

61. October 21, 2014

That open vista in front of Central Tech is like a breath of fresh air to city dwellers. As a fourth-generation Torontonian, I care about our city and don't wish to see our quality of life diminished through such efforts at privatization and commercialization of vital components of our urban landscape. My father taught night school at Central Tech for decades, and I know he would have been opposed to the astro turf proposal. No Toxic Turf, please!

BILL GLADSTONE, Toronto

62. October 21, 2014
Dear Sir/Madam,
the whole idea of fake and toxic turf in children's playgrounds and public spaces totally appals me. The scientific community has put out so much damning evidence to support a total ban of toxic turf. We know too much to let this fake-grass dwell in our environment. For the sake of our environment and our health and our children's health....please NO TOXIC TURF...your sincerely Miriam Erlichman.

63. October 21, 2014

Can you speak to the mix of toxins and carcinogens that young players will inhale upon the installation of tire waste synthetic turf on Central Tech's field?
Can you speak to the risk of heat rash, exhaustion, and potentially heat stroke from the extreme temperatures of tire waste synthetic turf during the summer?
Can you answer to the lack of access to green space if CTS's field is replaced with artificial turf and privatized?

Hannah Mengistu

64. October 21, 2014

This is wasteful and unhealthy practice favouring special interests

Ronni Rosenberg

65. October 20, 2014

I and my wife own property at 113 Major St. and a second house in Shelley Laskin's ward. We are appalled by the tenacity of TDSB in fighting the City over this. It should drop this toxic, ugly plan. For the amount of money both sides have spent one could run Central Tech for the next 10 years!! Is Razor funding TDSB's legal costs in this matter and paying any costs awarded against it? Please advise.

Murray Teitel

66. October 20, 2014
Where to begin?

I know the TDSB is cash strapped but giving Razor Management control over the playing fields of 7 local schools seems to me like a deal with the devil.

There has been so much research and so many articles and media reports on the toxicity of particles from shredded tires, that it seems absurd to expose young people and whole neighbourhoods to a potential carcinogen.

Patti Wood, Exec. Director of Grassroots Environmental Education expressed the sentiments of the community when she wrote, "The crumb residue is a material that can't be legally landfilled or ocean dumped. Why on Earth would we let our children play on it?"

As someone who loves the historic Harbord Bathurst neighbourhood, I worry that the plan will exacerbate the areas serious parking problems and will destroy the beautiful Bathurst St. view of historic Central Tech. And it will prevent community access to a vital piece of green space.

Sincerely
David Teitel

67. October 20, 2014

I and my wife own property at 113 Major St. and a second house in Shelley Laskin’s ward. We are appalled by the tenacity of TDSB in fighting the City over this.

It should drop this toxic, ugly plan.

For the amount of money both sides have spent one could run Central Tech for the next 10 years!!
Is Razor funding TDSB’s legal costs in this matter and paying any costs awarded against it? Please advise.

Murray Teitel

68. October 20, 2014

Where to begin?

I know the TDSB is cash strapped but giving Razor Management control over the playing fields of 7 local schools seems to me like a deal with the devil.
There has been so much research and so many articles and media reports on the toxicity of particles from shredded tires, that it seems absurd to expose young people and whole neighbourhoods to a potential carcinogen.

Patti Wood, Exec. Director of Grassroots Environmental Education expressed the sentiments of the community when she wrote, "The crumb residue is a material that can't be legally landfilled or ocean dumped. Why on Earth would we let our children play on it?"

As someone who loves the historic Harbord Bathurst neighbourhood, I worry that the plan will exacerbate the areas serious parking problems and will destroy the beautiful Bathurst St. view of historic Central Tech. And it will prevent community access to a vital piece of green space.

Sincerely
David Teitel

69. October 19, 2014

I truly hope that the TDSB will hold off on signing a 21 year agreement with Razor Management to develop a domed facility at Central Tech before the new Trustees are in place and are able to take a sober second look at this project. Artificial turf and its environmental and safety concerns and the commercialization of a publicly accessible track in a neighbourhood with little green space - just two of many reasons that this project is problematic.

Trustees, PLEASE do the right thing and leave the option open to consider alternatives in conjunction with the city of Toronto and resident associations, DO NOT VOTE to sign an agreement with Razor Management at the October 29th TDSB meeting. Rushing this through at the last minute is terribly disrespectful of the democratic process.

Miriam Ticoll

70. October 19, 2014

I am a mother of four who lives in the area and am concerned about the TDSB proposal to turn the central tec playing field into astro turf and build a huge dome. Astro turf does not allow water to naturally seep back into the ground but adds toxins into the mix due to the make-up of the turf materials. I am worried about the extra heat build up that it causes, the lack of access to the field and the huge visual impact that the dome would have on the streetscape.

I do not understand why the TDSB is not listening to their neighbours complaints and are so
forcefully going ahead with this project so quickly....especially since there is going to be a new board taking office December 1st.

Sincerely
Chari cohen

71. October 17, 2014

What is wrong with real grass? Why continue this push for astroturf against the wishes and common sense of so many people. When we have torrential rains, where does the water spillover go when it falls on astroturf as opposed to natural grass? Who profits from overselling astroturf to the city? Is there an irresistible astroturf lobby in Toronto?

Libby Hague

72. October 17, 2014

We are alarmed by the artificial turf and its ramifications at Central Tech. Can you PLEASE answer to the lack of access to green space if CTS's field is replaced with artificial turf and privatized!

Deb Filler

73. October 17, 2014

Hi,

I want to lend my support against the proposes leasing out of public lands to a private company. Schools are the centre of local communities, and the grass playing field at central tech playing field has and is currently used by the community. We do not want to lose this valuable community asset. In addition to change the field to an artificial turf instead of natural grass sets a bad precedent. Artificial turf is toxic, why then would we want children playing on it when they can be playing on natural grass like they have done for many decades.. I'm completely against turning over a great neighbourhoods public resource to a private company and changing a natural playing field into plastic turf. Please, don't not proceed with this proposal.

Dean Goodman
74. October 14, 2014

Please read these two recent articles about artificial turf and cancer - NBC is doing a series about it.

Sincerely, Rochelle

75. October 13, 2014

Dear Sir/Madam,

As a health care provider and a resident of Toronto I feel extremely troubled by the fashion of laying down this Toxic Turf in our children's playgrounds, sports complexes and public spaces. The science is there to support a total and complete ban of this artificial and toxic material. With the environment and public health so prominently in our collective awareness it surprises and shocks me that the risks of pursuing laying fake and toxic grass was not halted in it's initial offering. The consciousness is there and the means are there to find safe and natural ways of safely carpeting our spaces. We need to come to our senses.....our senses say....let's smell GRASS and put a stop to toxic and dangerous substitutes....many thanks

Miriam Erlichman
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0061
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Cindy Million
Address: 22302
Email: lohmann99@yahoo.com

General Comment

My son's school has a crumb rubber play ground surface. The other day, I saw a neighbor's 9-month-old baby crawling on the surface. She fell and ended up with crumb rubber over her face and hands. A piece of crumb rubber made it into her mouth before her mom could stop it. How many other times has that happened? How many other babies have been ingesting the crumb rubber? My son plays on the surface every day before lunch. I asked the school if his class could wash their hands before lunch. I was told that there isn't enough time. So only my son is allowed to wash his hands. The city soccer league has 4-year-olds playing on crumb rubber athletic fields, and they eat half-time snacks on the field, without any hand washing.

We know what's in crumb rubber. We know what our kids are getting exposed to--whether it's breathing in the VOCs, getting particles in their cuts when they fall, or ingesting the particles or dust that results from the particle break-down. Kids should NOT be playing on carcinogens. And yet they are. How can you let kids play on carcinogens when there's absolutely no long-term safety data? I've read through existing research articles. They have small sample sizes, they are short-term, they are based on models not people. Please use common sense -- carcinogens, endocrine disruptors, and heavy metals are not a good playing surface for children. Please start considering our children's overall chemical burden and not the turf industry.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0063
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Joan Bloom
Address: 98020
Email: JoanBloom@vigeo.us

General Comment

I will begin my comment with the following quote:

"While we are glad that chemical exposure to crumb rubber surfaces is finally drawing national attention, this 'federal action plan' does not appear designed to lead to actual action," stated PEER Executive Director Jeff Ruch whose organization led the drive to induce both EPA and CPSC to withdraw their previous safety endorsements for crumb rubber surfaces. "The Consumer Product Safety Commission does not need a survey to know that children come into intimate contact with playground surfaces - it should instead use its clear existing authority to protect children from harmful chemical exposures."

And:

THE PRECAUTIONARY PRINICIPLE: "When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically. In this context the proponent of an activity, rather than the public, should bear the burden of proof. The process of applying the precautionary principle must be open, informed and democratic and must include potentially affected parties. It must also involve an examination of the full range of alternatives, including no action."
I served a four year term as a council member in Edmonds, WA ending December of 2015. In the last year of my term the Edmonds School District planned and installed a turf field, using crumb rubber infill. Approval of the plans for this field came to City Council. I voted against approval, for environmental reasons, but was outvoted 5-2. The building of the field went forward with strong objections from parents whose children went to school directly next to the field. The major concern was the use of crumb rubber infill, rather than an organic alternative.

I learned more than anyone would ever want to know about crumb rubber, and its use in sports fields and playgrounds, and of the dangers to the children playing on those fields. With strong support from a group of concerned citizens, mostly parents, we advocated for an alternative infill. The Edmonds School District, the lead on the project, said no. Ultimately, the Edmonds City Council voted to ban crumb rubber in the city of Edmonds on all athletic and play fields for an 18 month period, beginning in December of 2015, while further studies are completed.

Throughout the process, more and more citizens changed from thinking crumb rubber was just fine, thank you very much, to being strongly opposed to its use, anywhere. Concerns focused on the harm to children, but extended to the harm to anyone coming into contact with the dangerous heavy metals, and carbon black, that are contained in tires. By the time the Edmonds City Council banned crumb rubber in a vote of 7-0, there were only a few citizens who still thought crumb rubber did not pose any problems. This included the majority of the Edmonds School Board (five members) and the superintendent of the Edmonds School District, who kept referring back to an industry backed "study" that they commissioned, acting as if it was authoritative, when it was clearly biased in support of the crumb rubber industry.

I appreciate that the original intention of the support to the crumb rubber industry was to find a use for the thousands of tires piling up in landfills. But I like things to make sense, and it MAKES NO SENSE to expose children and the environment to dangerous chemicals just to recycle old tires. In my opinion, the EPA should IMMEDIATELY ban crumb rubber in athletic fields and playgrounds. You have more than enough data about the dangerous contents of the ground up tires (heavy metals, carbon black, and God knows what else) to make this call.

The EPA should then support research on other ways to recycle the old tires, uses that don't require grinding the tires up and throwing the ground up stuff into the air we breathe and the water we drink. I recently read an article suggesting that the use of whole tires as building material for home made green houses is safe, as no chemicals are released into the environment. Perhaps tires could safely be broken down and used to make new tires.

Assist the crumb rubber industry in finding other ways to make a profit on these free for the taking dangerous waste products and spend not another minute of your time collecting data while innocent children, their families and the environment, thus EVERYONE, continue to be exposed to these dangerous chemicals.

The EPA got us into this mess. The EPA and the CPSC should get us out of it.

Thank you for your careful attention to my comments.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0067
Comment on FR Doc # 2016-03305

Submitter Information

Name: Anonymous Anonymous

General Comment

Children have unique developmental vulnerabilities to the synergistic affects of unregulated toxins in their environment. When exposed at a critical point in development the results can be life altering

Our kids are not a science experiment. This has to stop. A recycling need cannot come before the health of our children.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0068
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Sheldon Fishman
Address: 20902
Email: sheldon.fishman@gmail.com

General Comment

Given all of the science on the record that demonstrates artificial turf is a threat to health and the environment,
the precautionary principle dictates that artificial turf with crumb rubber infill be recognized as a threat to public health and safety and the environment and that the ongoing expansion and construction of crumb rubber turf fields should be prohibited.

Attached is a detailed description with references to documented health, safety, and environmental risks of artificial turf fields.

The Parents Coalition of Montgomery County Maryland recommends that the research agenda for ATSDR should be supplemented with human epidemiology studies of artificial turf fields as soon as possible. Human epidemiology will reinforce the precautionary principle, will add to the urgency of action, and will serve to identify victims harmed by sale of these materials, the purchase of these materials, the authorization for children to play on these materials and the lag by regulatory agencies in recommending and enacting a moratorium on artificial turf play fields.
Sheldon Fishman
Parents Coalition of Montgomery County Maryland
http://parentscoalitionmc.blogspot.com/

Attachments

Comment_4_29_16_ATSDR_EPA_re_Art_Turf_study
April 29, 2016

Leroy A. Richardson, Information Collection Review Office
Centers for Disease Control and Prevention
1600 Clifton Road NE., MS-D74
Atlanta, Georgia 30329.

Federal eRulemaking Portal: Regulation.gov

Re: Docket No. ATSDR-2016-0002

Dear Mr. Richardson,

Conducting additional research into the health and environmental impacts synthetic turf fields with crumb rubber infill is essential. Crumb Rubber turf fields are proliferating quickly through communities with schools and municipalities constructing crumb rubber fields to accommodate kids playing sports of all ages from elementary level on up. In every instance school district and town officials cite industry funded research as a primary demonstration of safety. Inadequate Government documents are of little help in countering such assertions or information the decisionmaking process as, to the degree they exist, they are very limited in scope, they often rely on industry-provided information, and they often rely on an absence of information as somehow supporting a demonstration of no harm. A thorough and independent investigation is essential if we are to protect children, adults and the environment from the harms of crumb rubber artificial turf.

The Delaware Riverkeeper Network would also like to suggest that research into the impacts of other artificial turf infill materials is important given that they too are the subject of a multitude of claims of safety backed by little but industry marketing materials and industry funded research.

I believe it will be important to include an organization like the Delaware Riverkeeper Network among your stakeholders. We have had to engage in significant research into, and advocacy about, artificial turf, its environmental and health impacts on a number of occasions over the past 8+ years. As a result we have a significant and healthy understanding of the science and the issues that have been and need to be evaluated.

I include with this comment a series of fact sheets and informational materials created by my organization to help inform local debates regarding the construction or expansion of artificial turf.
fields. In these materials we cite a number of scientific and government materials that assess the environmental and health impacts of crumb rubber artificial turf. We would like to submit them for the record and your consideration.

Synthetic turf is generally made with rubber from waste tires. Recycled rubber varies considerably in its chemical composition, even when from the same manufacturer.1 Hazardous substances found in tires may persist in the environment including polycyclic aromatic hydrocarbons (PAHs), phthalates and certain metals. These substances may be bioaccumulative, carcinogenic, reprotoxic, mutagenic and/or endocrine disrupting.2

- Most PAHs are persistent, bioaccumulative and carcinogenic.3
- Phthalates are generally used as solvents and plasticisers in plastics. Phthalates are not chemically bound to the rubber and as a result can leach from the infill material.4
- Phenols likewise are not chemically bound to the rubber and so can leach. Phenols too are persistent and bioaccumulative and can have long-term effects on the environment.5
- Among the metals found in tires that may be of concern are zinc, lead, copper, chromium and cadmium. While zinc and copper are essential for living organisms, when absorbed at high levels they become harmful. Lead can affect reproduction, development of the nervous system leading to poor cognitive development, and is a particular threat to fetuses and young children. Chromium is carcinogenic and mutagenic. Cadmium is toxic to humans and if taken in can contribute to poor liver and kidney function, as well as osteoporosis.6

Playing on Artificial Turf brings threats of exposure to hazardous substances through a variety of pathways.

Direct human exposure to the hazardous substances contained in the rubber in-fill of artificial turf is believed to occur via three pathways: inhalation, skin contact, and/or ingestion including by children who come into contact with the material.7

A 2012 study focused on the threat of lead ingestion from artificial turf noted that lead, in the “case of chronic exposure in early childhood, can induce cell necrosis, nerve behavioral abnormalities and developmental disability, and in the case of long-term exposure it can induce cell necrosis, blood pressure, cancer, and kidney tumor.”8 In this study researchers considered the impacts for lead exposure from children who ingest rubber powder resulting from exposure to crumb rubber infill artificial turf. The research showed elementary school children had a hazard index that exceeded 0.1,

a level that is considered a “potential for hazard”. Middle and high school children were also found to have exposure levels.

In 2011, research conducted for the New Jersey Department of Environmental Protection began investigation into the potential for players on artificial turf fields to be exposed to lead, chromium, arsenic and cadmium as a respirable/inhalable aerosol. In air samples collected from the turf during various levels of activity, researchers detected arsenic, cadmium, chromium and lead, all metals with known human toxicity. “The findings of this study, although limited in scope, raise some concerns with regard to the potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial turf fields.” The research demonstrated that activity by players on the fields could suspend contaminated particulates into the air that could be inhaled. “The findings show that both inhalable PM [particulate matter], as well as inhalable lead (when present) are resuspended from even minor physical activity on an artificial surface. These data therefore indicates that human exposure from lead-containing artificial turf fields is not just limited to dermal, but also to inhalation route of exposure.” The three potential avenues for lead from artificial turf are the blades of artificial grass, the pigment used for the field markings and lines, and the infill material. Even studies that have not found exposure levels to lead high enough to be of concern in the context of the study conducted are careful to point out: “some health scientists believe that any Pb [lead] is harmful to children’s neurocognitive development, and that no new Pb should be added to their surroundings” and that “…physicians should be aware of synthetic turf as a potential source of exposure for young children. Health officials investigating elevated blood lead in children should also be aware of synthetic turf as a potential source of lead exposure.”

Furthermore, a 2008 study that looked at a variety of contaminants associated with artificial turf did find that the lead present in the rubber granules, while at low levels, was “highly bioaccessible” to synthetic gastric fluid used in their research. This study also found a “slightly worrisome” level of chromium in an artificial turf fiber sample and “high bioaccessible fractions of lead in both synthetic gastric and intestinal fluids.”

In October 2006 and January 2007, respectively, two sites in New York where synthetic turf has been used (a large, then 3 year old, Parade Ground in Brooklyn; a relatively small then 5 month old Sara D. Roosevelt Park in Manhattan) were analyzed. This testing found PAHs at hazardous levels (as per New York standards) at each of the sites. At both sites dibenzo (a.h)anthracene, a probable human carcinogen, was found at hazardous levels, with two other PAH forms, both possible human carcinogens, found at hazardous levels at the Parade Ground site. A 2008 study also found that the rubber granules found in artificial turf fields had PAH levels above health-based soil standards, that there was “low” but not “no” bioaccessibility, and that while levels appear to decline over time this can be altered by the fact that new rubber can be added periodically to compensate for the loss of infill material. Additional research is needed into the pathways by which these substances may be absorbed into the bodies of children and athletes via skin contact, ingestion or other pathways - but the need for additional research does not displace the concerns raised by these findings.

Analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers University found the crumb rubber from artificial turf to contain high levels of PAHs, as well as zinc and arsenic. PAHs found to be contained in the crumb rubber “were above the concentration levels that the New York State Department of Environmental Conservation (DEC) considers sufficiently hazardous to public health to require their removal from contaminated soil sites. It is highly likely that all six PAHs are carcinogenic to humans.” “The analyses also revealed levels of zinc in both samples that exceed the DEC’s tolerable levels.” The researchers associated with these findings were careful to state “We want to emphasize that the findings are preliminary. PAHs in rubber might not act the same way as in soil, and we do not yet have information on the ease with which the PAHs in these rubber particles might be absorbed by children or adults -- by ingestion, inhalation, or absorption through the skin. However, the findings are worrisome. Until more is known, it wouldn’t be prudent to install the synthetic turf in any more parks.”

19 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
20 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
21 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
22 Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
A study by the California Office of Environmental Health Hazard Assessment (OEHHA) summarized 46 studies that identified 49 chemicals which are released from tire crumb. Of the 49, “seven of the chemicals leached from tire shreds were carcinogens. OEHHA calculated a cancer risk of 1.2 in 10 million based on a one-time ingestion of the tire crumb rubber over a lifetime.” While there are limited studies which assert that recycled tire crumb are stable in the gastrointestinal tract and that therefore this is not a pathway for exposure, there are other studies which contradict these findings.

Concerns have been raised about the potential implications of recycled tire in-fill for individuals with latex allergies and that inhalation could result in a systemic response, as opposed to a contact response.

Asserted one analysis, while, “the status of the information about human exposures to recycled tire crumb rubber in-fill ... is not sufficient to determine the safety of the use of the product in situations that involve continuous episodes of human exposure;” the available information is sufficient and strong enough to raise plausible questions with respect to acute toxicity for susceptible persons, and for cancer risks.

Chrysene, a PAH and carcinogen, was found to be ingested as the result of hand-to-surface-to-mouth transfer from playground surfaces made with recycled tires. Assuming playground use for an 11 year period (from age 1 to 12) there was found to be an increased cancer risk of 2.9 in one million (2.9 X 10^-6). This risk is greater than the general cancer risk gauge of one in one million (1X10^-6). This research would seem to suggest that repeat exposure over time to the chemicals released from artificial turf increases the associated increase in cancer risk.

The hot temperatures create additional concern for exposing players to dangerous toxins. As well explained by a well cited petition to the Consumer Product Safety Commission for rulemaking: “When tires are shredded and pulverized, their surface area increases exponentially, as does the particulate and gas yield from the tire material. Since tires are made of very harmful materials, including 24 gases found to be harmful to humans, carbon black, (a carcinogen which makes up 30% of tires), latex, benzothiazoles, phthalates, lead, mercury, cadmium, zinc and many other known toxins, when the fields heat up, they become increasingly dynamic. Of primary concern is the interaction of particles and gases, ‘because when particles adsorb onto the surface of gases, they become 10-20 times more toxic than the materials themselves.’ The fields yield continuously, but become more dynamic and more toxic as they heat up.”

A Case Study conducted by a group of “physicians and public health professionals working with the U.S. Environmental Protection Agency’s Region Pediatric Environmental Health Specialty Unit” found

28 Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Note -- the 1.2 in 10 million cancer risk found in the OEHHA study was considered by the authors to be an acceptable level of risk as it falls below the general cancer risk gauge of one in one million (1X10^-6).

that they could not secure the research and information necessary to establish the safety in use with children of tire crumb used as playground surface.30 “The use of recycled tire crumb products on playgrounds has had little health investigation. The major unresolved concern is the potential for latex allergy with short-term dermal exposure.” 31 “No published information is available specifically regarding exposure to crumb rubber constituents from use of the product on playgrounds.” 32

Excessive heat is a major health threat for those that play on artificial turf.

Extreme heat is a health concern – high surface temperatures found on artificial turf fields can contribute to physiological stress and cause "serious heat-related illnesses".33 Heat stress, heat stroke and burns are all of concern. In fact, the "New York City Department of Health and Mental Hygiene recognizes excessive surface temperatures as the most important health concern associated with infilled synthetic turf" 34 Studies document that the surface temperature on artificial turf is dramatically increased as compared to surrounding land uses including asphalt – so much so that it is a genuine health threat for players.

Concerns regarding the excessive temperatures range from the implications for players who are already exerting themselves playing in such excessively high temperatures, to the implications for burns when players or pedestrians come into contact with the hot surfaces, to the implications for small children who may come into contact with the extremely hot surfaces during non-sporting events. Research has also concluded that the "heat transfer from the surface to the sole of the individual’s foot” could contribute to physiological stress of players.35

In a 2002 study it was found that “the surface temperature of the synthetic turf was 37° F higher than asphalt and 86.5° F hotter than natural turf.” 36 A study published in the Journal of Health and Physical Education and Recreation showed “surface temperatures as much as 95 to 140 degrees Fahrenheit higher on synthetic turf than natural turf grass when exposed to sunlight.” 37 Random sampling at Brigham Young University identified temperatures ranging from 117.38 to 157 degrees on artificial turf while neighboring natural grass areas were in the range of 78.19 to 88.5 degrees Fahrenheit. “Two inches below the synthetic turf surface was 28.5° F hotter than natural turf at the surface.” 38 Another study comparing temperatures on artificial turf temperatures with air temperature found that artificial turf ranged from 58 to 75 degrees hotter than measured air temperature.39 And yet another study considering found ranges of 155.3 to 173.4 degrees on the turf

36 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.

38 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.

fields when air temperatures were in the 76 degree range; and 104.2 to 159.3 degrees when air temperatures were in the 77 degree range.

Research has not found good solutions for the excessive heat levels of turf. Irrigation of excessively hot artificial turf surfaces only provides cooling benefits for about 20 minutes. While irrigation provides cooling for the synthetic turf, in one seminal study lowering the temperature from 174°F to 85°F, after only 5 minutes the temperature quickly rose again to 120°F; after 20 minutes it rose to 164°F. In another important body of work by Penn State, it was found again that irrigation is only successful in reducing temperatures for about 20 minutes, with a rebound to within 10 degrees of the pre-irrigation temperature within 3 hours. The use of white crumb rubber as the infill does not resolve the heat issue. In fact, according to Penn State as part of a study which looked at various color options for infill and temperature, “[w]hile marketing materials may claim lower surface temperatures, no scientific reports exist that substantiate such claims.”

Natural grass, by comparison, provides a natural cooling affect and helps to dissipate heat from neighboring developed areas. “The temperature of natural grass rarely rises above 85 degrees Fahrenheit, regardless of air temperature.”

The heat impacts of artificial turf need to be considered in the context of today’s changing climate. Global climate change is expected to dramatically increase the number of days over 100 degrees in many communities. Depending on how aggressively global warming gasses are reduced in coming years, communities nearby Philadelphia will begin to experience in the range of 10 days (in lower emission scenarios) to 30 days (if higher emission scenarios continue to prevail) over 100 degrees. By later in this century seasonable temperatures are projected to rise 6°F to 14°F in summer (depending again on emission reductions achieved in the future).

Concerns for increased head injuries and bacterial infections as the result of playing on turf are justified.

There is great concern that the increased level of abrasions and burns which result from playing on an artificial turf field as compared to natural grass increases the pathways by which bacterial infections, such as MRSA (methicillin-resistant staphylococcus aureus), can enter the body. As explained in a 2011 Penn State study, “It is important to note that synthetic turf is more abrasive than natural turf grass and, as a result, breaks in the skin are more common, creating a pathway for infection when in

42 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, Synthetic Surface Heat Studies, Brigham Young University.
contact with an infected surface.” 50 There are studies to indicate that turf burns may be facilitating infection by acting as a pathway for infection.51 Study has found that turf burns increased the risk of infection regardless of the type and timing of care provided the burn.52

Older turf fields have been found to have higher microbial populations, as well as higher levels in the higher traffic areas such as the sidelines, thereby suggesting to researchers that microbial populations can accumulate in synthetic turf over time.53

Concussions (formally described as Mild Traumatic Brain Injury or MTBI) resulting from sports has, according to the US Centers for Disease Control, reached “epidemic proportions.”54 “Mild’ head traumas, and especially a series of such minor concussions can have long term, negative effects on cognitive function.”55 Study has documented that artificial turf increases the risk of MTBI over natural turf, approximately doubling that risk, as well as causing a greater degree of trauma.56 According to study, artificial turf presents a 5 times greater risk of the more severe head injury than natural turf, although it is still unknown the particular characteristics of the two surfaces that cause the difference in head injury incidence.57 Only 31% of the playground surfaces made of recycled tires tested in one research study passed the California State mandated Head Impact Criterion (HIC) of ≤1,000. In this same study 100% of the playground surfaces made of wood chips passed the same standard.58

Research shows there are adverse environmental impacts resulting from crumb rubber infill artificial turf; it is also clear that additional study for water and other natural resources is needed.

While it seems well recognized that there is a limited level of assessment and investigation into the environmental impacts associated with artificial turf, a growing body of scientific analysis is

52 A High Morbidity Outbreak of Methicillin-Resistant *Staphylococcus aureus* among Players on a College Football Team, Facilitated by Cosmetic Body Shaving and Turf Burns, study conducted 2004 for Connecticut Dept of Public Health, Student Health Services of Sacred Heart Univ, Centers for Disease Control and Prevention, Minnesota Dept of Public Health, Los Angeles County Dept of Health Svces.

54 Dr. M. Shorten, J.A. Himmelsbach, BioiMechanica, Sports Surfaces and the Risk of Traumatic Brain Injury citing the US Centers for Disease Control.

58 Office of Environmental Health Hazard Assessment, *Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products*, January 2007. Please note that in this study 32 recycled tire playground surfaces were tested as compared to only 5 wood chip playground surfaces.
documenting a concerning level of environmental threat and harm and is further demonstrating the need for more research regarding artificial turf and its ramifications for the environment.

The Connecticut Agricultural Experiment Station conclusively found four compounds which out-gassed and leached into water from synthetic turf rubber crumb under ambient temperatures:
- Benzothiazole (a skin and eye irritant),
- Butylated hydroxyanisole (a “recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immune toxicant, neurotoxicant, skin and sense-organ toxicant”),
- n-hexadecane (a severe irritant) &
- 4-(t-octyl) phenol (“corrosive and destructive to mucous membranes”).

As rubber degrades it can leach toxic substances which can contaminate soil, plants and aquatic ecosystems. Study has concluded that the use of tires in artificial turf has the potential to pollute our environment with PAHs, phenols and zinc and that runoff from an artificial turf field draining to a local creek can pose “a positive risk of toxic effects on biota in the water phase and in the sediment.” Other metal contaminants found to leach from tire crumb rubber include zinc, selenium, lead and cadmium. Zinc has also been shown to leach from the artificial turf fibers. Extreme temperatures or solvents are not needed to release these metals, volatile organic compounds or semi-volatile organic compounds from the rubber in-fill of artificial turf into the air or water – release takes place in ambient air and water temperatures.

“Runoff with high Zn [zinc] from synthetic turf fields may produce adverse effects to plants and aquatic life. This is of particular concern given that the leaching rate of Zn [zinc] from rubber granules can be up to 20 times greater than the leaching rate of Zn from agricultural applications of manure and pesticides.” Leaching of substances as the result of surface water runoff from precipitation has, by some researchers, been predicted to be the greatest risk for the environment from artificial turf. Study shows there is a risk of local effects for aquatic and sediment dwelling

59 The Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires, August 2007; Environment & Human Health, Inc., Artificial Turf, Exposures to Ground-Up Rubber Tires, 2007.
60 Quoting Dr. Linda Chalker-Scott, Washington State University -- Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass; T. Kallqvist, Norwegian Institute for Water Research (NIVA), Environmental Risk Assessment of Artificial Turf Systems, December 2005, p. 17.; Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires.
organisms in impacted water courses. Recycled rubber, and associated leachate, has been found to contain a variety of metals (including lead, cadmium, copper, mercury and zinc), as well as organic pollutants such as PAHs, phthalates, 4-t-octylphenol and iso-nonyphenol. The leaching of zinc has been determined to be of major environmental concern. The leaching of zinc increases as the rubber infill weathers over time, it is likely this is the same for other contaminants. While Zinc contributes the most risk, phenols (specifically octylphenol) and PAHs are also of concern. Of the organic compounds at issue, Octylphenol represents the greatest risk, and possibly could occur at levels where hormone disrupting effects are a concern. The varying content of tires makes this threat a moving target.

The Norwegian Institute for Water Research has determined that it is “appropriate to perform a risk assessment which covers water and sediments in watercourses which receive run-off from artificial turf pitches.”

While recycled rubber is a greater source of pollution, newly manufactured rubber also contains levels of hazardous substances; in the case of zinc and chromium the levels of recycled and newly manufactured rubber are comparable.

It is predicted that chemicals leaching from synthetic turf materials occurs slowly, and as a result the environmental harms may take place over many years.

Leaching may not be the only source of water contamination from artificial turf. As the artificial turf is used there is a level of “erosion” that takes place and can result in fine particles that could be carried to local waterways. This source of contamination needs study.

The synthetic grass fibers can also be a significant source of pollution, particularly zinc, albeit significantly lesser amounts leach from the synthetic grass than the rubber infill.

70 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.
71 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.
When talking about the use of ground rubber as a supplement to planting soils the North Carolina Department of Agriculture and Consumer Services sent out a notice identifying the risk that zinc leaching from the rubber causes a decline in plant growth “directly attributable to zinc toxicity.”

One Norwegian assessment/presentation reported that “recycled rubber was the major source of potentially hazardous substances. An exposure scenario where the runoff from a football field is drained to a small creek showed a positive risk of toxic effects on biota in the water phase and in the sediment. The risk was mainly attributed to zinc, but also for octylphenol the predicted environmental concentrations exceeded the no environmental effect concentration.” The hazardous leaching could result in local environmental effect.

Conclusion
Given all of the science on the record that demonstrates artificial turf is a threat to health and the environment, the precautionary principle dictates that artificial turf with crumb rubber infill be recognized as a threat to public health and safety and the environment and that the ongoing expansion and construction of crumb rubber turf fields should be prohibited and those fields that have already been installed should be removed and properly disposed of.

When a community installs a crumb rubber artificial turf field it is forcing children who want to participate in sports to be forced to expose themselves to its hazards. It is simply neither right nor fair for communities, with the support or false sense of security given by an acquiescing government agency, to be making investments that take from parents and kids the ability to decide for themselves what health hazards they are willing to be exposed to if they want to participate in sports. Advancing in anyway the construction and expansion of crumb rubber artificial turf fields is forcing an unfair choice on kids and parents: play sports or protect your health, but you are not allowed to have both.

Respectfully,

Maya K. van Rossum
the Delaware Riverkeeper

P.S. I note, that as a result of my work on this issue, as a parent I have had to pull my son from the township lacrosse team because they started playing on artificial turf this past year. The health impacts of artificial turf are too significant and concerning for me, as a parent, to allow my 10 year old son to play on crumb rubber artificial turf.

Attachments:
Submitted as part of this comment are fact sheets and an annotated bibliography that discuss the research detailed above as well as additional research speaking about the environmental and public health threats posed by crumb rubber infill artificial turf.
Summary of Research
Assessing the Impacts of Artificial Turf
Updated 4/29/2016

Heat: Research has documented that the surface temperature on artificial turf is dramatically higher than the surrounding land uses including asphalt. Concerns regarding the excessive temperatures range from the implications for players who are already exerting themselves to the implications for burns when players or pedestrians come into contact with the hot surfaces.

 a. A comparison of surface temperatures of third-generation synthetic turf with a cool climate product that claims to reduce surface temperatures to surface temperatures of natural grass.
 b. Although surface temperatures were lower for the cool climate field compared to other synthetic turf, both types of artificial turf fields were considerably hotter than natural grass with temperatures that were between 12° C (53° F) and 22° C (72° F) hotter.

 a. Surface temperatures of artificial turf were between 31° C (88° F) and 57° C (135° F).
 b. Although irrigation reduced surface temperatures of artificial turf, increases of 74 to 102% of the pre-irrigation temperature were observed within 30 minutes after irrigation.
 c. Surface temperatures returned to pre-irrigation temperature on all of the treatments between 60 and 120 minutes after irrigation. Therefore, the cooling effect of irrigation will not last the entire length of an athletic competition.

 a. Artificial turf surface temperatures ranged from -9.8 to 86.4° C (14 to 188° F) to when ambient air temperatures ranged from -0.4 to 37.1° C (31 to 99° F).
 b. Absorption of solar radiation results in increased temperatures on artificial turf surfaces, and high rates of solar radiation are absorbed with minimal light reflectance. Therefore, air temperature in conjunction with solar radiation explained most of the variation in artificial turf surface temperatures.

a. This study measured surface temperatures of artificial turf fields between 140.2 and 173.4°F when air temperatures were between 73 and 79°F.

b. Looking at various color options for infill and temperature, no product significantly reduced surface temperatures. Small reductions in temperature are insignificant when surface temperatures still exceed 150°F. This study concluded that “[w]hile marketing materials may claim lower surface temperatures, no scientific reports exist that substantiate such claims.”

c. Research has not found a good solution for excessive heat levels of turf.

 a. High surface temperatures found on artificial turf fields can contribute to physiological stress and cause “serious heat-related illnesses” including heat stress, heat stroke, and burns.
 b. The “New York City Department of Health and Mental Hygiene recognizes excessive surface temperatures as the most important health concern associated with infilled synthetic turf.”
 c. Irrigation of excessively hot artificial turf surfaces only provides cooling benefits for about 20 minutes, with a rebound to within 10 degrees of the pre-irrigation temperature within 3 hours.
 d. The use of white crumb rubber as the infill does not resolve the heat issue.

 a. A study comparing temperatures on artificial turf temperatures with air temperature found that artificial turf ranged from 58 to 75°F hotter than measured air temperature.

 a. Artificial turf gets dramatically hotter than surrounding land uses including asphalt with surface temperatures as much as 95 to 140°F hotter than natural grass fields whereas the temperature of natural grass rarely rises above 85°F, regardless of air temperature

 a. Temperature measurements were taken at the surface, above the surface, and below the surface of artificial turf, natural turf, bare soil, asphalt, and concrete.
 b. Surface temperatures of synthetic turf were 37°F higher than asphalt and 86.5°F hotter than natural turf.
 c. Two inches below the surface, synthetic turf was 28.5°F hotter than natural turf.
 d. Although irrigation of synthetic turf resulted in a reduction of close to 90°F, temperatures rose 35°F within five minutes and returned to the starting temperature within 20 minutes.
 e. “The hottest surface temperature recorded was 200°F on a 98°F day. Even in October the surface temperature reached 112.4°F.”
 f. Brigham Young University has set a surface temperature guideline which restricts play on synthetic turf fields when surface temperatures are potentially hazardous to athletes. This reduces the playing season and eliminates any continuous play benefit that is typically mentioned in favor of artificial turf.

 a. Synthetic surfaces can be up to 39°C (102°F) hotter than natural turf. Natural turf grass provides a natural cooling affect and helps to dissipate heat from neighboring developed areas.
Health: The impacts of inhalation or ingestion of chemicals continues to be a concern for those playing on artificial turf. Direct human exposure to the hazardous substances contained in the rubber in-fill of artificial turf is believed to occur via inhalation, skin contact, and/or ingestion. Furthermore, there are concerns for increased injuries and bacterial infections when playing on artificial turf.

 a. Researchers considered the risks for lead exposure from children ingesting rubber powder resulting from exposure to crumb rubber infill artificial turf and found that elementary school students had a hazard index that exceeded 0.1, a level that is considered a “potential for hazard”, with middle and high school students also suffering exposure levels.

 a. A systematic review of available literature on the risk of ACL rupture on natural grass versus artificial turf found that there is an increased rate of ACL injury on synthetic playing surfaces for football players.

 a. The presence of a large number of hazardous substances were found in both the runoff and vapor phase of recycled tire playground surfaces.
 b. Nine polycyclic aromatic hydrocarbons (PAHs) were detected in the runoff/ cleaning water with total PAH concentrations in the ppm (parts per million) range.
 c. The most toxic PAH, benzo[a]pyrene was detected in extracts from playground surfaces.
 d. “The presence and the high concentration of these chemical compounds in playground should be a matter of concern owing to their high toxicity.”

 a. Since shoe-surface interaction is important for injury prevention, “the optimal surface to prevent injury is outdoors on natural grass.”
 b. Artificial turf has a higher friction coefficient and greater ground reaction force, both conditions that increase the risk for injury.
 c. Furthermore, as temperature increases the shoe-surface friction interaction increases and exposes athletes to greater risk of injury.

 a. Abrasions, even insignificant ones, from artificial turf can create an entry site for pathogens.
 b. The higher abrasion rate for synthetic turf increases the risk of infection, and the microbial populations found within synthetic turf are a source of pathogens when abrasions occur.
 c. Older turf fields have higher microbial populations, as well as higher levels in the higher traffic areas such as the sidelines. These results indicate that artificial turf poses a greater risk for the spread of pathogens and infections among student athletes.

a. An analysis of surfaces containing recycled rubber tires confirmed the presence of hazardous substances including PAHs, phthalates, antioxidants (e.g. BHT, phenols), benzothiazole, derivatives, and other chemicals.

b. The vapor phase above the samples confirmed volatilization of many organic compounds demonstrating that these chemicals can enter the human body through inhalation.

c. The use of recycled rubber tires for play areas, especially facilities for children, should be restricted or prohibited.

 a. Synthetic turf is more abrasive than natural turf grass, therefore, “breaks in the skin are more common, creating a pathway for infection when in contact with an infected surface.”

 a. In air samples collected from artificial turf during various levels of activity, researchers detected arsenic, cadmium, chromium and lead, all metals with known human toxicity.

 b. This research demonstrates that activity by players on the fields could suspend contaminated particulates into the air that could be inhaled and therefore, human exposure from artificial turf fields is not limited to dermal.

 c. These results “raise some concerns with regard to the potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial turf fields.”

 a. Artificial turf can degrade to form lead containing dust at levels that pose a health risk to children.

 b. Due to the lack of research, “…physicians should be aware of synthetic turf as one potential source of exposure for young children…” and “Health officials investigating elevated blood lead in children should also be aware of synthetic turf as a potential source of lead exposure.”

 a. Artificial turf made of nylon or nylon/ polyethylene blend fibers contain lead and pose a potential public health concern.

 b. The risk for lead exposure is higher for artificial fields that are old, frequently used, exposed to the weather, or demonstrate signs of abraded, faded, or broken fibers. As turf ages, lead is released in dust that could then be ingested or inhaled.

 c. CDC does not know how much lead the body will absorb. However, lead can cause neurological development symptoms and behavioral problems. Children less than 6 years old are more affected by lead than adults and absorb lead more easily.

 d. CDC does not understand the potential risks associated with lead exposure from artificial turf but recommends precautions including aggressive hand and body washing after playing on fields, washing clothes immediately to avoid tracking contaminated dust to other places, and discouraging eating and drinking while on turf products.

a. Samples from rubber granules and from artificial grass fibers were taken at fields of different ages and analyzed for polycyclic aromatic hydrocarbons (PAHs), zinc, chromium, arsenic, cadmium, and lead. These samples were then analyzed to determine their bioaccessibility in synthetic digestive fluids.

b. The rubber granules found in artificial turf fields had PAH levels above health-based soil standards. Although levels appear to decline over time, this trend can be altered by the fact that new rubber can be added periodically to compensate for the loss of infill material.

c. There was a “slightly worrisome” level of chromium found in artificial turf fiber samples.

d. Lead in artificial fields can come from the blades of artificial grass, the pigment used for the field markings and lines, and the infill material. Although there were relatively low concentrations of lead measured, the researchers were careful to point out: “some health scientists believe that any Pb [lead] is harmful to children’s neurocognitive development, and that no new Pb should be added to their surroundings.” Furthermore, the lead present in the rubber granules, while at low levels, was “highly bioaccessible” to synthetic gastric fluid.

a. Direct human exposure to the hazardous substances contained in artificial turf occurs via three pathways: inhalation as chemicals off gas from the turf, skin contact, or ingestion including by children or infants who come into contact with the material. In the case of allergies (i.e. latex allergies), inhalation could result in a systemic response, as opposed to a contact response.

b. Extreme temperatures or solvents are not needed to release metals (including zinc, selenium, lead and cadmium), volatile organic compounds, or semi-volatile organic compounds from the rubber infill of artificial turf into the air or water – release takes place in ambient air and water temperatures.

c. While, “the status of the information about human exposures to recycled tire crumb rubber in-fill ... is not sufficient to determine the safety of the use of the product in situations that involve continuous episodes of human exposure,” “the available information is sufficient and strong enough to raise plausible questions with respect to acute toxicity for susceptible persons, and for cancer risks.”

a. Based on a review of 46 studies, 49 chemicals that are released from tire crumb were identified.

b. Of the 49 chemicals identified, “seven of the chemicals leached from tire shreds were carcinogens.”

c. OEHHA calculated a cancer risk of 1.2 in 10 million based on a one-time ingestion of the tire crumb rubber over a lifetime.

d. Chrysene, a PAH and carcinogen, was found to be ingested as the result of hand-to-surface-to-mouth transfer from playground surfaces made with recycled tires. Assuming playground use for an 11 year period (from age 1 to 12) there was found to be an increased cancer risk of 2.9 in one million from the general cancer risk due of one in one million

e. Only 31% of the playground surfaces made of recycled tires tested passed the California State mandated Head Impact Criterion (HIC) of <1,000. In this same study 100% of the playground surfaces made of wood chips passed the same standard.

a. Testing on two sites in New York where synthetic turf has been used (the large, 3 year old, Parade Ground in Brooklyn; the relatively small 5 month old Sara D. Roosevelt Park in Manhattan) found PAHs at hazardous levels (as per New York standards). Dibenzo (a.h)anthracene, a probable human carcinogen, was also found at hazardous levels, with two other PAH forms, both possible human carcinogens, found at hazardous levels at the Parade Ground site.

b. Research into the pathways by which these substances may be absorbed into the bodies of children and athletes via skin contact, ingestion or other pathways, is very limited with additional research needed.

 a. Artificial turf is linked with serious and potentially life threatening staph infections including MRSA (methicillin-resistant staphylococcus aureus). MRSA can exploit minor skin injuries such as turf burn, and therefore, MRSA infection rate among players is 16 times higher than the national average.

 a. Tires contain up to 60 different substances which may be bioaccumulative, carcinogenic, reprotoxic, mutagenic and/or endocrine disrupting.

 b. Most PAHs are persistent, bioaccumulative and carcinogenic.

 c. Among the metals found in tires that may be of concern are zinc, lead, copper, chromium and cadmium. Zinc and copper are harmful when absorbed at high levels. Lead can affect reproduction and development of the nervous system leading to poor cognitive development. Chromium is carcinogenic and mutagenic. Cadmium is toxic to humans and can contribute to poor liver and kidney function, as well as osteoporosis.

 a. Multiple compounds out-gas and leached into water from synthetic turf rubber crumb under ambient temperatures including benzothiazole (a skin and eye irritant), butylated hydroxyanisole (a “recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immune toxicant, neurotoxicant, skin and sense-organ toxicant”), n-hexadecane (a severe irritant), and 4-(t-octyl) phenol (“corrosive and destructive to mucous membranes”).

 a. A Case Study conducted by a group of physicians and public health professionals working with the U.S. Environmental Protection Agency’s Region Pediatric Environmental Health Specialty Unit found that the research and information necessary is not available to establish “the safety in use with children” of tire crumb used as playground surfaces.

 b. “The use of recycled tire crumb products on playgrounds has had little health investigation. The major unresolved concern is the potential for latex allergy with short-term dermal exposure.”

a. Analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers University found the crumb rubber from artificial turf to contain high levels of PAHs, as well as zinc and arsenic.

b. PAHs found to be contained in the crumb rubber “were above the concentration levels that the New York State Department of Environmental Conservation (DEC) considers sufficiently hazardous to public health to require their removal from contaminated soil sites. It is highly likely that all six PAHs are carcinogenic to humans.”

c. “The analyses also revealed levels of zinc in both samples that exceed the DEC’s tolerable levels.”

d. The researchers associated with these findings were careful to state “We want to emphasize that the findings are preliminary. PAHs in rubber might not act the same way as in soil, and we do not yet have information on the ease with which the PAHs in these rubber particles might be absorbed by children or adults -- by ingestion, inhalation, or absorption through the skin. However, the findings are worrisome. Until more is known, it wouldn’t be prudent to install the synthetic turf in any more parks.”

 a. In a study of professional football players from the St. Louis Rams team, all MRSA infections developed at sites of turf burns.

 b. Players reported a higher frequency of abrasions when playing on artificial turf compared to natural grass.

 a. In a study of MRSA outbreaks involving college football players, infection was associated with turf burns from artificial grass. Turf burns increased the risk of infection regardless of the type and timing of care provided the burn. Turf burns may be facilitating infection by acting as a pathway for infection.

 a. There is double the risk of head traumas such as concussions associated with artificial turf compared to natural turf, and artificial turf presents a 5 times greater risk of more severe head injury.

 b. Concussions (formally described as Mild Traumatic Brain Injury or MTBI) resulting from sports has, according to the US Centers for Disease Control, reached “epidemic proportions,” and these ‘mild’ head traumas, especially a series of concussions, can have long term, negative effects on cognitive function.

 a. The impact-attenuating properties of two artificial fields were compared to a grass outdoor practice field. Both artificial surfaces were harder compared to the outdoor grass field. It was concluded that the low impact attenuation of the artificial turf may be contributing to the high incidence of concussion.

a. In a survey of both high school and collegiate certified athletic trainers representing over 17,000 football players, contact with artificial turf was associated with more serious concussion than contact with natural grass.

Environment: The pollutant substances found in artificial turf contribute to contamination of soil, plants and aquatic ecosystems and pose a risk of toxic effects for aquatic and sediment dwelling organisms. The resulting environmental harm is on-going and long-term, happening over many years. The varying content of tires used for infill of turf systems makes this threat a moving target. A growing body of scientific analysis is documenting a concerning level of environmental threat and harm and is further demonstrating the need for more research regarding artificial turf and its ramifications for the environment.

 a. As well explained by an oft cited petition to the Consumer Product Safety Commission for rulemaking: “When tires are shredded and pulverized, their surface area increases exponentially, as does the particulate and gas yield from the tire material. Since tires are made of very harmful materials, including 24 gases found to be harmful to humans, carbon black, (a carcinogen which makes up 30% of tires), latex, benzothiazoles, phthalates, lead, mercury, cadmium, zinc and many other known toxins, when the fields heat up, they become increasingly dynamic. Of primary concern is the interaction of particles and gases, ‘because when particles adsorb onto the surface of gases, they become 10-20 times more toxic than the materials themselves.’”
 b. Furthermore, artificial turf becomes more toxic as it heats up.

 a. The variability in PAH concentrations between different tires is large.
 b. Due to “leaching of PAHs from recycled tire rubber material, tires are a source of environmental pollution of PAHs through their entire lifecycle.”

 a. Stormwater runoff from artificial turf contained zinc, manganese, and chromium at levels toxic to aquatic organisms.
 b. Therefore, there is a potential risk to surface waters from the installation of artificial turf. Zinc levels could cause exceedance of acute aquatic toxicity criteria. This risk is especially high for smaller watercourses.
 c. Best management practices and treatment (i.e. wetlands, wet ponds, infiltration structures, compost filter, sand filters, or biofiltration structures) should be used for stormwater runoff from artificial turf fields that discharge to surface waters.

 a. An urban temperature model showed an increase in local atmospheric temperatures of up to 4° C (39° F) in areas where natural grass cover had been replaced with artificial turf.

a. Zinc was found to exceed soil limits and the leaching rate from rubber granules was up to 20 times more than the leaching rate from agricultural applications of manure and pesticides. “Runoff with high Zn [zinc] from synthetic turf fields may produce adverse effects to plants and aquatic life.”

 a. Hazardous substances found in tires may persist in the environment including polycyclic aromatic hydrocarbons (PAHs), phthalates, phenols, and certain metals.
 b. Most PAHs are persistent, bioaccumulative and carcinogenic.
 c. Phthalates and phenols are not chemically bound to the rubber and as a result can leach from the infill material. These chemicals are persistent and bioaccumulative and can have long-term effects on the environment.

 a. Artificial turf systems have a carbon footprint due to the greenhouse gases emitted during the life cycle of synthetic turf systems compared to natural grass surfaces.
 b. To achieve a 10-year carbon neutral synthetic turf installation, 1861 trees would need to be planted to offset the field’s carbon footprint.

 a. Recycled rubber varies considerably in its chemical composition, even when from the same manufacturer.
 b. Leaching of contaminants from artificial turf as the result of surface water runoff from precipitation is a great risk for the environment. It is predicted that chemicals leaching from synthetic turf materials occurs slowly, and as a result the environmental harms may take place over many years. There is also a level of “erosion” that takes place and can result in fine particles that could be carried to local waterways. Chemicals have even been shown to leach from the artificial turf fibers.
 c. The leachate from artificial turf can contain a variety of metals (including lead, cadmium, copper, mercury and zinc) and organic pollutants (including PAHs, phthalates, 4-t-octylphenol and isonyphenol).
 d. The runoff from an artificial turf field poses “a positive risk of toxic effects on biota in the water phase and in the sediment.”
 e. Of the organic compounds at issue, octylphenol represents the greatest risk, and possibly could occur at levels where hormone disrupting effects are a concern.
 f. The Norwegian Institute for Water Research has determined that it is “appropriate to perform a risk assessment which covers water and sediments in watercourses which receive run-off from artificial turf pitches.”

 a. While recycled rubber is a greater source of pollution, newly manufactured rubber also contains levels of hazardous substances; in the case of zinc and chromium the levels of recycled and newly manufactured rubber are comparable.
 b. The synthetic grass fibers can also be a significant source of pollution, albeit significantly lesser amounts leach from the synthetic grass than the rubber infill.
 a. When talking about the use of ground rubber as a supplement to planting soils, the North Carolina Department of Agriculture and Consumer Services sent out a notice identifying the risk that zinc leaching from the rubber causes a decline in plant growth “directly attributable to zinc toxicity.”

 a. “There is no question that toxic substances leach from rubber as it degrades, contaminating the soil, flora, and fauna and aquatic systems.”

 a. Part of artificial turf maintenance is the regular replenishment of the infill. Some of the infill is merely settling, but some of it is washing away or literally “walking away” with players after use. The effects of this “runaway” infill are unknown and more research is needed to draw conclusions—where is it going and what impacts is it having?
 b. Maintenance of artificial turf can include application of algaecides or disinfectants to keep the surface clean and application of fabric softener to mask the odor of the artificial turf. What is the final destination of these chemicals and their implications for the environment and those coming into contact with them while playing on the fields?
 c. There is no indication that artificial turf drains more effectively for purposes of a stormwater infiltration system than natural grass. In addition, infiltration systems are designed to work with whatever surface coating they receive from natural grass to porous paving. Although there is no assumed benefit from an infiltration perspective of natural turf or artificial turf, in many cases the complex systems designed for artificial turf fields have experience problems, work incorrectly, or inefficiently.
Fact Sheet
Artificial/Synthetic Turf

While professional sports are turning away from artificial turf, it is gaining ground and use at the local level at schools and community fields. Producers of artificial turf make claims of environment, health and safety benefits associated with artificial turf – when they make these blanket claims they are not giving the full picture.

In terms of environment, health and safety, the jury is still very far out on artificial turf. There continues to be information documenting harm in each of these arenas. Most of all, there is a widespread demonstration and recognition that in terms of environmental, health and safety threats from artificial turf, much more study, analysis and consideration is needed. And whatever the final outcome of the research, manufacturers neglect the reality that as much as they try to mimic natural grass, artificial turf is not grass, and cannot provide the same natural feel, natural look, natural smell and environmental benefits that natural grass provides.

Artificial Turf is generally comprised of plastic fibers (generally made of polyethylene, polypropylene or nylon) attached to a polypropylene or polyester plastic webbing. A combination of sand and rubber, or sometimes rubber alone, fills between the fibers. The source for the rubber infill is generally recycled tires. Sometimes newly manufactured rubber granulate is used but the cost is so much greater than the recycled tire form that it is generally not the substance used. New developments in artificial turf technology seem continually in the works.

Water Quality:
While it seems well recognized that there is a limited level of assessment and investigation into the environmental impacts associated with artificial turf, a growing body of scientific analysis is documenting a concerning level of environmental threat and harm and is further demonstrating the need for more research regarding artificial turf and its ramifications for the environment.

Synthetic turf is generally made with rubber from waste tires. Recycled rubber varies considerably in its chemical composition, even when from the same manufacturer.¹

Hazardous substances found in tires may persist in the environment including polycyclic aromatic hydrocarbons (PAHs), phthalates and certain metals. These substances may be bioaccumulative, carcinogenic, reprotoxic, mutagenic and/or endocrine disrupting.² The chemicals in waste tires are of such concern that a report published by the Swedish Chemicals Inspectorate recommends: “waste tyres should not be used for synthetic turf surfaces.”³

- Most PAHs are persistent, bioaccumulative and carcinogenic.⁴
- Phthalates are generally used as solvents and plasticisers in plastics. Phthalates are not chemically bound to the rubber and as a result can leach from the infill material.⁵
- Phenols likewise are not chemically bound to the rubber and so can leach. Phenols too are persistent and bioaccumulative and can have long-term effects on the environment.⁶
- Among the metals found in tires that may be of concern are zinc, lead, copper, chromium and cadmium. While zinc and copper are essential for living organisms, when absorbed at high levels they become harmful. Lead can affect reproduction, development of the nervous system leading to poor cognitive development, and is a particular threat to fetuses and young children. Chromium is carcinogenic and mutagenic. Cadmium is toxic to humans and if taken in can contribute to poor liver and kidney function, as well as osteoporosis.⁷

The Connecticut Agricultural Experiment Station conclusively found four compounds which out-gassed and leached into water from synthetic turf rubber crumb under ambient temperatures:

- Benzothiazole (a skin and eye irritant),

As rubber degrades it can leach toxic substances which can contaminate soil, plants and aquatic ecosystems. Study has concluded that the use of tires in artificial turf has the potential to pollute our environment with PAHs, phenols and zinc and that runoff from an artificial turf field draining to a local creek can pose “a positive risk of toxic effects on biota in the water phase and in the sediment.” Other metal contaminants found to leach from tire crumb rubber include zinc, selenium, lead and cadmium. Zinc has also been shown to leach from the artificial turf fibers. Extreme temperatures or solvents are not needed to release these metals, volatile organic compounds or semi-volatile organic compounds from the rubber in-fill of artificial turf into the air or water – release takes place in ambient air and water temperatures.

Leaching of substances as the result of surface water runoff from precipitation has, by some researchers, been predicted to be the greatest risk for the environment from artificial turf. Study shows there is a risk of local effects for aquatic and sediment dwelling organisms in impacted water courses. Recycled rubber, and associated

8 The Connecticut Agricultural Experiment Station, Examination of Crumb Rubber Produced from Recycled Tires, August 2007; Environment & Human Health, Inc., Artificial Turf, Exposures to Ground-Up Rubber Tires, 2007.
leachate, has been found to contain a variety of metals (including lead, cadmium, copper, mercury and zinc), as well as organic pollutants such as PAHs, phthalates, 4-t-octylphenol and iso-nonyphenol. The leaching of zinc has been determined to be of major environmental concern. The leaching of zinc increases as the rubber infill weathers over time, it is likely this is the same for other contaminants. While Zinc contributes the most risk, phenols (specifically octylphenol) and PAHs are also of concern. Of the organic compounds at issue, Octylphenol represents the greatest risk, and possibly could occur at levels where hormone disrupting effects are a concern. The varying content of tires makes this threat a moving target.

The Norwegian Institute for Water Research has determined that it is “appropriate to perform a risk assessment which covers water and sediments in watercourses which receive run-off from artificial turf pitches.”

While recycled rubber is a greater source of pollution, newly manufactured rubber also contains level of hazardous substances; in the case of zinc and chromium the levels of recycled and newly manufactured rubber are comparable.

It is predicted that chemicals leaching from synthetic turf materials occurs slowly, and as a result the environmental harms may take place over many years.

Leaching may not be the only source of water contamination from artificial turf. As the artificial turf is used there is a level of “erosion” that takes place and can result in

18 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.
19 INTRON, Environmental and Health Risks of Rubber Infill, rubber crumb from car tyres as infill on artificial turf, February 9, 2007.
fine particles that could be carried to local waterways. This source of contamination needs study.25

The synthetic grass fibers can also be a significant source of pollution, particularly zinc, albeit significantly lesser amounts leach from the synthetic grass than the rubber infill.26

Concerns about the environmental and health effects of synthetic turf in European countries is so great that standards and/or guidelines have been set or are under consideration. For example: Germany has set standards for the use of synthetic turf including a maximum allowable level of pollution or contamination of water and soil, with a requirement of regular sampling to ensure these standards are not exceeded. Allowable pollution levels include: lead 0.04 mg/l, cadmium 0.005 mg/l; chromium 0.05 mg/l, mercury 0.001 mg/l and zinc 3.0 mg/l or 0.5 mg/l depending on the testing method used.27 Holland has also suggested appropriate language for a standard applicable to use of synthetic turf including a ban on the use of carcinogens, mutagenic, reprotoxic, persistent, bioaccumulative and toxic, or very persistent and very bioaccumulative substances in the surface layer of the turf and a limitation on the level of substances in the rubber infill that may cause cancer, may cause heritable genetic damage, may cause cancer by inhalation, are toxic or harmful to aquatic organisms or may cause long term affects on the aquatic environment, that may impair fertility or cause harm to unborn children. Sweden has set guidelines and limiting values for some of the substances that are present in synthetic turf, specifically as it relates to air pollution, soil contamination and water pollution.28 And because vehicle tires contain levels of several substances of “very high concern”, the recycling and use of tires in synthetic turf is apparently in conflict with the Swedish environmental objective of A Non Toxic Environment.29

Part of artificial turf maintenance is the regular replenishment of the infill. There is a need for research into the loss of existing infill – where is it going and what impacts is it having?30

Maintenance of artificial turf can include application of algaecides or disinfectants to keep the surface clean.31 Maintenance could also include application of fabric

30 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
softener to mask the odor of the artificial turf.32 What is the final destination of these chemicals and their implications for the environment and those coming into contact with them while playing on the fields? More information is needed on this subject as well.

Stormwater:
There is no indication that artificial turf drains more effectively for purposes of a stormwater infiltration system than natural grass. In addition, infiltration systems are designed to work with whatever surface coating they receive from natural grass to porous paving. It should be noted that while generally there can be no assumed benefit from an infiltration perspective of natural turf or artificial turf, there are instances where schools have experienced problems with the drainage of their artificial turf fields.33

Natural grass provides a level of evapotranspiration, pulling water out of the soil and subsurface and releasing it to the air, providing benefits in reducing the volume of runoff that results from a site and/or needs to be addressed by other stormwater management strategies. Artificial turf has no evapotranspiration capabilities.

Grass does provide a level of pollution filtering and therefore water quality protection for nearby waterways. While this filtering may be limited in the case of turf grass; such filtering is nonexistent with artificial turf.

Heat Island Effect – for Human Health and Surrounding communities:
Extreme heat is a health concern. Studies document that the surface temperature on artificial turf is dramatically increased as compared to surrounding land uses including asphalt.

In a 2002 study it was found that “the surface temperature of the synthetic turf was 37° F higher than asphalt and 86.5° F hotter than natural turf.”34 A study published in the Journal of Health and Physical Education and Recreation showed “surface temperatures as much as 95 to 140 degrees Fahrenheit higher on synthetic turf than natural turfgrass when exposed to sunlight.”35 Random sampling at Brigham Young University identified temperatures ranging from 117.38 to 157 degrees on artificial turf while neighboring natural grass areas were in the range of 78.19 to 88.5 degrees Fahrenheit. “Two inches below the synthetic turf surface was 28.5° F hotter than

31 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
32 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
33 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
34 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, *Synthetic Surface Heat Studies*, Brigham Young University.
natural turf at the surface.”36 And still another study comparing temperatures on artificial turf temperatures with air temperature found that artificial turf ranged from 58 to 75 degrees hotter than measured air temperature.37 While irrigation provided significant cooling for the synthetic turf (lowering the temperature from 174\(^\circ\) F to 85\(^\circ\) F) after only 5 minutes the temperature quickly rose again to 120\(^\circ\)F; after 20 minutes it rose to 164\(^\circ\)F.38

Concerns regarding the excessive temperatures range from the implications for players who are already exerting themselves playing in such excessively high temperatures, to the implications for burns when players or pedestrians come into contact with the hot surfaces, to the implications for small children who may come into contact with the extremely hot surfaces during non-sporting events. Particularly when installed in already built up areas, what affect does the extreme heat associated with artificial turf have on the surrounding community in terms of temperature?

Natural grass, by comparison, provides a natural cooling affect and helps to dissipate heat from neighboring developed areas.39 “The temperature of natural grass rarely rises above 85 degrees Fahrenheit, regardless of air temperature.”40

The heat impacts of artificial turf need to be considered in the context of today’s changing climate. Global climate change is expected to dramatically increase the number of days over 100 degrees communities in our region experience. Depending on how aggressively global warming gasses are reduced in coming years, communities nearby Philadelphia will begin to experience in the range of 10 days (in lower emission scenarios) to 30 days (if higher emission scenarios continue to prevail) over 100\(^\circ\).41 By later in this century seasonable temperatures are projected to rise 6\(^\circ\)F to 14\(^\circ\)F in summer (depending again on emission reductions achieved in the future).42

Educators and decisionmakers selecting artificial turf based on its long-term viability and community impacts should consider the affect of global climate change to magnify the heat impacts of artificial turf.

36 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, \textit{Synthetic Surface Heat Studies}, Brigham Young University.
38 Dr. C. Frank Williams and Dr. Gilbert E. Pulley, \textit{Synthetic Surface Heat Studies}, Brigham Young University.
39 James B. Beard & Robert L. Green, \textit{The Role of Turfgrasses in Environmental Protection and Their Benefits to Humans}, J. Environ Qual. 23:452-460 (1994).
40 SportsTurf Managers Association, \textit{A Guide to Synthetic and natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations}.
41 Union of Concerned Scientists, \textit{Confronting Climate Change in the U.S. Northeast ● New Jersey}, 2007.
42 Union of Concerned Scientists, \textit{Confronting Climate Change in the U.S. Northeast ● New Jersey}, 2007.
Health Issues:
Direct human exposure to the hazardous substances contained in the rubber in-fill of artificial turf is believed to occur via three pathways: inhalation, skin contact, or ingestion including by children or infants who come into contact with the material.43

In October 2006 and January 2007, respectively, two sites in New York where synthetic turf has been used (the large, 3 year old, Parade Ground in Brooklyn; the relatively small 5 month old Sara D. Roosevelt Park in Manhattan) were analyzed. This testing found PAHs at hazardous levels (as per New York standards) at each of the sites. At both sites dibenzo (a.h)anthracene, a probable human carcinogen, was found at hazardous levels, with two other PAH forms, both possible human carcinogens, found at hazardous levels at the Parade Ground site. Research into the pathways by which these substances may be absorbed into the bodies of children and athletes via skin contact, ingestion or other pathways, is very limited with additional research needed.44

A study by the California Office of Environmental Health Hazard Assessment (OEHHA) summarized 46 studies that identified 49 chemicals which are released from tire crumb. Of the 49, “seven of the chemicals leached from tire shreds were carcinogens. OEHHA calculated a cancer risk of 1.2 in 10 million based on a one-time ingestion of the tire crumb rubber over a lifetime.”45 While there are limited studies which assert that recycled tire crumb are stable in the gastrointestinal tract and that therefore this is not a pathway for exposure, there are other studies which contradict these findings.46

Concerns have been raised about the potential implications of recycled tire in-fill for individuals with latex allergies and that inhalation could result in a systemic response, as opposed to a contact response.47

While, “the status of the information about human exposures to recycled tire crumb rubber in-fill ... is not sufficient to determine the safety of the use of the product in situations that involve continuous episodes of human exposure;” 48 “the available

information is sufficient and strong enough to raise plausible questions with respect to acute toxicity for susceptible persons, and for cancer risks.”

There is great debate about whether artificial turf can increase exposure to, and infection from, MRSA (methicillin-resistant staphylococcus aureus). Reports including a December 21, 2007 article in the Bloomberg Press reporting the affliction of an 18 year old football player from MRSA as the result (according to the boy’s doctor) of an abrasion he received from playing on artificial turf, and citing other findings linking MRSA infections with artificial turf, are a great concern for parents and sports players alike. Defenders of artificial turf often refer to studies like that of the Penn State Department of Crop and Soil Sciences which finds that Staphylococcus aureus is commonplace in the human environment, including on both artificial turf and natural grass fields. But even this study acknowledges that there is no conclusive evidence currently available that the source of bacteria causing the infections of sports players is not artificial turf. In addition, the study does not consider the link between burns sustained while playing on artificial turf and available bacteria as a pathway for infection. New studies are emerging that demonstrate that turf burns may be facilitating infection by acting as a pathway for infection. Study has found that turf burns increased the risk of infection regardless of the type and timing of care provided the burn.

Concussions (formally described as Mild Traumatic Brain Injury or MTBI) resulting from sports has, according to the US Centers for Disease Control, reached “epidemic proportions.” “‘Mild’ head traumas, and especially a series of such minor concussions can have long term, negative effects on cognitive function.” Study has documented that artificial turf increases the risk of MTBI over natural turf,

50 Texas Football Succumbs to Virulent Staph Infection from Turf, December 21, 2007, Bloomberg Press.
51 Penn State Department of Crop and Soil Sciences, A Survey of Microbial Populations in Infilled Synthetic Turf Fields.
53 A High Morbidity Outbreak of Methicillin-Resistant Staphylococcus aureus among Players on a College Football Team, Facilitated by Cosmetic Body Shaving and Turf Burns, study conducted 2004 for Connecticut Dept of Public Health, Student Health Services of Sacred Heart Univ, Centers for Disease Control and Prevention, Minnesota Dept of Public Health, Los Angeles County Dept of Health Svces.
54 Dr. M. Shorten, J.A. Himmelsbach, BioiMechanica, Sports Surfaces and the Risk of Traumatic Brain Injury citing the US Centers for Disease Control.
approximately doubling that risk, as well as causing a greater degree of trauma. According to study, artificial turf presents a 5 times greater risk of the more severe head injury than natural turf, although it is still unknown the particular characteristics of the two surfaces that cause the difference in head injury incidence.

Costs:
It is generally agreed that artificial turf costs more to install than natural grass, while natural grass costs more to maintain. Installation and maintenance costs for each must be assessed on a case by case basis depending on site specific conditions. But generally speaking, when the installation and maintenance costs of artificial turf are assessed for the life span of the turf, particularly when the cost of disposal is added, the cost of installing and maintaining natural grass is far less. The guaranteed life and/or lifespan of artificial turf is 8 to 10 years. Some attempt to claim a longer life in order to assert a lower annual cost. Comparative cost figures for artificial turf and natural grass include:

<table>
<thead>
<tr>
<th></th>
<th>Artificial Turf</th>
<th>Natural Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: San Francisco Rec and Parks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>$800,000</td>
<td>$260,000</td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$6,000</td>
<td>$42,000</td>
</tr>
<tr>
<td>Cost of Disposal</td>
<td>Unknown but significant as a hazardous waste</td>
<td>$0</td>
</tr>
<tr>
<td>Average annual cost for guaranteed life of 8 years.</td>
<td>$106,000</td>
<td>$74,500</td>
</tr>
<tr>
<td>Average annual cost for life of 10 years</td>
<td>$86,000</td>
<td>$68,000</td>
</tr>
<tr>
<td>Average annual cost for life of 15 years (maximum life span seen asserted in the)</td>
<td>$59,333</td>
<td>$59,333</td>
</tr>
</tbody>
</table>

58 Turfgrass Resource Center, *Facts About Artificial Turf and Natural Grass*.

<table>
<thead>
<tr>
<th>Source: Facts About Artificial Turf and Natural Grass<sup>61</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of construction and maintenance per sq. ft.</td>
<td>$7.80 – $10.75</td>
</tr>
<tr>
<td>With high quality soil amendments</td>
<td>$6.50 – $7.95</td>
</tr>
<tr>
<td>With native soils</td>
<td>$2.50 – $5.25</td>
</tr>
<tr>
<td>Cost of disposal per sq. ft.</td>
<td>$1.75 - $2.25</td>
</tr>
<tr>
<td>Springfield College case study installation and maintenance average annual cost during 8 year guaranteed life of artificial turf – no disposal costs included</td>
<td>$105,000</td>
</tr>
<tr>
<td>($800,000 install & annual maintenance of $5,000)</td>
<td>$78,000</td>
</tr>
<tr>
<td>For a 10 year life the figure is $85,000; for 15 years it is $58,377</td>
<td>For a 10 year life the figure is $68,000; for 15 years it is $54,666</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source: A Guide to Synthetic and Natural Turfgrass for Sports Fields.<sup>62</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of installation per square foot</td>
<td>$7.80 to $10.75</td>
</tr>
<tr>
<td>$2.50 to $5.25 if done with native soils</td>
<td></td>
</tr>
<tr>
<td>$3.50 to $5.25 if done with combination of native soils and sand.</td>
<td></td>
</tr>
<tr>
<td>$6.50 to $7.95 if done with sand and drainage</td>
<td></td>
</tr>
<tr>
<td>Annual Maintenance</td>
<td>$5,000 to $25,000</td>
</tr>
<tr>
<td>$4,000 to $11,000 as per the case studies provided</td>
<td></td>
</tr>
<tr>
<td>Disposal per square foot – note this cost does not include the cost of transportation or landfill</td>
<td>$1.75 to $2.25</td>
</tr>
<tr>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>

⁶¹ Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
⁶² SportsTurf Managers Association, A Guide to Synthetic and natural Turfgrass for Sports Fields, Selection, Construction and Maintenance Considerations. While the cost figures in this document focus on the southeast, the figures provide a sound comparative for the relative cost figures provided.
Artificial turf made from rubber contains a number of hazardous substances. As a result disposal is neither easy nor cheap. It is important to identify and consider the cost of disposal when considering an investment in artificial turf. The life expectancy of artificial turf generally ranges from 8 to 10 years63 – therefore disposal of artificial turf should be amortized over this time frame.

Miscellaneous:
Artificial Turf is available for use immediately upon installation. Natural Turf generally requires 2 growing seasons before it should be heavily used.64

One of the biggest supporting assertions for artificial turf is the increased level of playing time it provides. While natural grass may not equal artificial turf in playing time, natural soil and grass science has progressed significantly, greatly increasing its durability for sports. Modern natural grass sports fields include sand in their soil profile to resist compaction and a combination of grass varieties. Natural grass is becoming the preferred surface for a number of professional sports teams.

Natural grass fields require regular maintenance including, mowing and watering, and may also result in the use of fertilizers and potentially herbicides. But there are less environmentally harmful alternatives available for maintenance including electric mowing equipment and environmentally sensitive lawn care strategies that do not rely on environmentally harmful chemicals. A number of schools, including Radnor Township, Delaware County, PA, have successful policies that prevent the use of dangerous chemicals on school grounds.

Artificial turf also requires regular maintenance. Artificial turf maintenance includes sweeping, dragging and watering to provide a clean and uniform appearance.65 In addition, as the result of wear, the infill may need periodic replenishment.66 Management of an artificial turf field requires special knowledge in seam repair and snow removal.67 Special solvents and cleansers are needed to remove tough debris.68

63 Turfgrass Resource Center, Facts About Artificial Turf and Natural Grass.
64 Communication with Nancy Bosold, Extension Educator, Turfgrass Management, Penn Stat Cooperative Extension, Berks County, Aug 15, 2007.
Artificial turf is at risk of damage from plastic bottles, cigarettes and/or gum as well as general trash thrown on the field. When damaged special repairs may be needed. Artificial turf also becomes a recipient of a variety of bodily fluids which cannot be cleansed by natural action as is the case with natural grass. Maintenance can include application of algaecides and fabric softener to mask the odor of the artificial turf.

Artificial turf systems that claim chemical treatment is not required do not seem to provide a mechanism for handling the germs associated with the bodily fluids on the turf when there is an absence of rain or when it is captured and reused in newly emerging artificial turf cooling systems.

It is important to note that the environmental, health and safety impacts of artificial turf are in need of further study by independent experts. Until such time as there are conclusive findings regarding the environmental, health and safety impacts of artificial turf the Precautionary Principle would direct decisionmakers away from artificial turf and towards the traditional use of natural grass for sports and public play fields.

Updated: February 25, 2008
Dated: September 9, 2007
Artificial Turf Fact Sheet Temporary Addendum.

Chrysene, a PAH and carcinogen, was found to be ingested as the result of hand-to-surface-to-mouth transfer from playground surfaces made with recycled tires. Assuming playground use for an 11 year period (from age 1 to 12) there was found to be an increased cancer risk of 2.9 in one million (2.9 X 10\(^{-6}\)). This risk is greater than the general cancer risk gauge of one in one million (1X10\(^{-6}\)).\(^1\) This research would seem to suggest that repeat exposure over time to the chemicals released from artificial turf increases the associated increase in cancer risk.

Only 31% of the playground surfaces made of recycled tires tested in one research study passed the California State mandated Head Impact Criterion (HIC) of <1,000. In this same study 100% of the playground surfaces made of wood chips passed the same standard.\(^2\)

When talking about the use of ground rubber as a supplement to planting soils the North Carolina Department of Agriculture and Consumer Services sent out a notice identifying the risk that zinc leaching from the rubber causes a decline in plant growth “directly attributable to zinc toxicity.”\(^3\)

A Case Study conducted by a group of “physicians and public health professionals working with the U.S. Environmental Protection Agency’s Region Pediatric Environmental Health Specialty Unit” found that they could not secure the research and information necessary to establish the safety in use with

\(^1\) Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Note -- the 1.2 in 10 million cancer risk found in the OEHHA study was considered by the authors to be an acceptable level of risk as it falls below the general cancer risk gauge of one in one million (1X10\(^{-6}\)).

\(^2\) Office of Environmental Health Hazard Assessment, Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products, January 2007. Please note that in this study 32 recycled tire playground surfaces were tested as compared to only 5 wood chip playground surfaces.

children of tire crumb used as playground surface.⁴ “The use of recycled tire crumb products on playgrounds has had little health investigation. The major unresolved concern is the potential for latex allergy with short-term dermal exposure.”⁵ “No published information is available specifically regarding exposure to crumb rubber constituents from use of the product on playgrounds.”⁶

Analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers University found the crumb rubber from artificial turf to contain high levels of PAHs, as well as zinc and arsenic.⁷ PAHs found to be contained in the crumb rubber “were above the concentration levels that the New York State Department of Environmental Conservation (DEC) considers sufficiently hazardous to public health to require their removal from contaminated soil sites. It is highly likely that all six PAHs are carcinogenic to humans.”⁸ “The analyses also revealed levels of zinc in both samples that exceed the DEC’s tolerable levels.”⁹ The researchers associated with these findings were careful to state “We want to emphasize that the findings are preliminary. PAHs in rubber might not act the same way as in soil, and we do not yet have information on the ease with which the PAHs in these rubber particles might be absorbed by children or adults -- by ingestion, inhalation, or absorption through the skin. However, the findings are worrisome. Until more is known, it wouldn't be prudent to install the synthetic turf in any more parks.”¹⁰

⁷ Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
⁸ Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
⁹ Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
¹⁰ Junfeng Zhang, professor and acting chair, Department of Environmental and Occupational Health, the School of Public Health, the University of Medicine and Dentistry of New Jersey and Rutgers University & William Crain, professor of psychology at The City College of New York, president of Citizens for a Green Riverside Park, Hazardous Chemicals in Synthetic Turf, 2006, analyses conducted at the Environmental and Occupational Health Sciences Institute of Rutgers.
Connecticut is currently considering legislation to provide $250,000 of funding for a study into the toxicity of artificial turf athletic fields.¹¹

One Norwegian assessment/presentation concluded that while indoor artificial turf fields were not generally an elevated health risk, studies to date could not eliminate the concerns associated with development of airway allergies and made a point of noting “a link between exposure to phthalates and the development of asthma/allergies”.¹² Phthalates is one of the contaminants of concern found in artificial turf crumb rubber.¹³

The Norwegian assessment/presentation also reported that “recycled rubber was the major source of potentially hazardous substances. An exposure scenario where the runoff from a football field is drained to a small creek showed a positive risk of toxic effects on biota in the water phase and in the sediment. The risk was mainly attributed to zinc, but also for octylphenol the predicted environmental concentrations exceeded the no environmental effect concentration.”¹⁴ The hazardous leaching could result in local environmental effect.¹⁵

PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0069
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Marc Elrich
Address: 20850
Email: councilmember.elrich@montgomerycountymd.gov

General Comment

See attached file(s)

Attachments

ME comment re federal review of AT
Comment on “Collections Related to Synthetic Turf Fields with Crumb Rubber Infill”

From: Montgomery County, Maryland Councilmember Marc Elrich (At-large)

Date: May 2, 2016

As an elected official, I have been confronted with the issue of whether artificial turf playing fields are safe and whether public funds should be used to construct and maintain these fields. I represent the almost one million residents of Montgomery County, Maryland; our county is one of the wealthiest and best-educated counties in the country. My staff and I have grappled with questions surrounding artificial turf for years, and the more we have examined the issue, the more we realize how little is known and how few questions can be adequately answered.

I appreciate the attempt by the federal agencies to tackle this issue, and on behalf of many of my constituents and based on years of reviewing research and conversations with scientists, parks managers, school administrators, elected officials, residents and other concerned individuals, I make the following comments, observations and requests. I have five major points and then follow them with additional information to support those points.

1. Clarify that the questions and goals outlined in this study will not answer the question of the true safety/toxicity of AT with tire crumb infill. Characterizing chemical composition and “exposure potential” are insufficient tools. This study will not satisfactorily answer the question: are artificial turf fields safe for children to use over the long-term? An epidemiological study is necessary. Only a long-term controlled epidemiological study could provide meaningful answers about human safety. University of Washington soccer coach Amy Griffin continues to collect names of soccer players, other athletes and other frequent users of artificial turf fields (like marching band participants). This information raises serious concern, and the federal agencies need to consider how they can collect information that could analyze actual uses and outcomes.

2. Any and all toxicity studies must address and examine cumulative and combined effects of toxic chemicals. Artificial turf contains a variety of chemicals that interact with each other and in the body. Without studying their synergistic effects, the study will exclude some important considerations. (See below for scientific comment on this issue.)

3. All potential health impacts should be viewed specifically and separately for children. Studies should examine exposure for children. “Environmental exposure for children is quite different. They take in much more of everything than adults. Their brains and nervous systems are developing quite rapidly – referred to as “unique windows of vulnerability.”” (Joel Forman, MD, Mt. Sinai Medical School, Program Director of the Pediatric Residency
Program, Children's Environmental Health Center) Towards that end, I urge you to consult extensively with Dr. Forman, Dr. Phillip Landrigan and other researchers associated with the Childrens Environmental Health Center at Mt. Sinai Medical School.

4. For a federal study to be useful to local jurisdictions and residents, it must acknowledge and address the myriad of issues and concerns that are inextricably intertwined. The chemical composition of crumb rubber infill is an important issue, but it is not the only issue. The blades, carpet, carpet backing and the color of the blades are all integral to any meaningful assessment. Other issues should be examined and acknowledged: the heat impact for the field users as well as serious environmental concerns, including the “heat island” effect and impacts on waterways, aquatic life and wildlife.

5. Every step of the way, the involved federal agencies must be mindful of their possible biases. I would refer you to the EPA website announcing this study: “Limited studies have not shown an elevated health risk from playing on fields with tire crumb, but the existing studies do not comprehensively evaluate the concerns about health risks from exposure to tire crumb.” (https://www.epa.gov/chemical-research/federal-research-action-plan-recycled-tire-crumb-used-playing-fields) Such a statement is misleading and should be deleted. Results from “limited studies” have been mixed. If “limited studies” refers to EPA’s prior studies, it should be noted that they were not simply limited but also quite possibly flawed, and therefore, not an appropriate basis for any general statements. (http://www.peer.org/news/news-releases/epa-retracts-synthetic-turf-safety-assurances.html)

Additional information and commentary:

Regarding points 1 and 2 above:

How we think about levels of concern of chemicals is changing and evolving.

A recently published scientific paper, “What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health?” explains:

“Although there is growing concern that exposure to chemical mixtures during critical periods of human development could increase the risk of adverse health effects including allergic diseases, cancer, neurodevelopmental disorders, reproductive disorders, and respiratory diseases, researchers primarily study chemicals as if exposure occurs individually. This one-chemical-at-a-time approach has left us with insufficient knowledge about the human health effects of exposure to chemical mixtures.” [Emphasis added.] http://ehp.niehs.nih.gov/15-10569/

Another study from 2015 suggests that the **combination** of “safe” chemicals may increase cancer risk:

“Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies.” [Emphasis added.] http://carcin.oxfordjournals.org/content/36/Suppl_1/S254.full?sid=db47f5ec-47a2-4879-bf30-6da9c076003d#ref-8
In commenting on the above study, the director of the National Institute of Environmental Health Sciences, Linda Birnbaum (who was not involved in the study), said

“...We live in a chemical soup,...Considering the safety of individual chemicals is a lot like looking at the trees, but missing the forest, Birnbaum said. When doing research to determine chemical safety, “we’ve got to start thinking more about what reality is,” she said. This could mean sweeping changes in rules about the levels of chemicals considered safe in drinking water, food, and air. **I’d like to see regulators and policy makers start looking at the totality of the exposure instead of one chemical at a time,**” she said. [Emphasis added.] (“Combinations of 'safe' chemicals may increase cancer risk, study suggests,” *Los Angeles Times*, by Sasha Harris-Lovett, 7/1/15 http://www.latimes.com/science/sciencenow/la-sci-sn-chemical-combinations-safety-cancer-20150626-story.html)

While the 2015 report is important and significant, this general idea and information is not new. As the President’s Cancer Panel pointed out in its 2008-2009 annual report, **federal environmental laws not only leave many known carcinogens completely unregulated, they also “fail to address the potential hazards of being exposed to combinations of chemicals”.** [Emphasis added] (Environmental Working Group, http://www.ewg.org/research/rethinking-carcinogens/executive-summary)

The true impact of chemical exposure could take decades to be measured.

A telling example is a study of 9,300 daughters born to mothers who had been exposed to the pesticide DDT, which was banned in 1972 because of its effects on the environment, especially the eggs of the bald eagle. EPA labeled DDT as a probable carcinogen, and multiple studies linked DDT exposure to breast cancer, but then a 2014 meta-analysis found no significant association. But then this mother-daughter study showed that the prior studies were looking at the wrong generation – the daughters of women exposed to DDT - were associated with almost a fourfold increase in breast cancer, independent of the mother's history of breast cancer. The study, which covered a span of 54 years, also determined that those with higher levels of exposure were diagnosed with more advanced breast cancer. The study results are dramatic, but they took **54 years.** (“Startling link between pregnant mother’s exposure to DDT and daughter’s risk of breast cancer,” by Ariana Eunjung Cha, *The Washington Post*, 6/17/15 https://www.washingtonpost.com/news/to-your-health/wp/2015/06/16/ddts-breast-cancer-legacy-pregnant-mothers-exposure-linked-to-four-fold-increase-in-daughters-risk/ and http://press.endocrine.org/doi/10.1210/jc.2015-1841)

You will not have “safety” answers in 2016 or one or two years later. Please acknowledge this fact and address epidemiological questions.

Further points to consider:

Federal agencies should not reference “prior studies” without including and acknowledging the following studies, which raise serious concern about artificial turf. One study raises the possibility of inhalable lead.

The study states “...if the lead is present to any appreciable extent in the wipes it will likely be present in the breathing zone of players who are active on these fields, and that furthermore, these levels potentially exceed ambient EPA standards. (“An Evaluation of

Other studies have raised serious concerns about tire crumb and lead exposure. A 2014 study found lead and other toxins in the both the plastic rug and tire crumb infill. Lead was also was found in simulated body fluids meaning there is little or no protection of any kind against the lead getting out of the material into the body. "Since it is possible that children may be exposed to potentially high concentrations of lead while using artificial turf fields we recommend, at a minimum, all infill and fibers should be certified for low or no lead content prior to purchase and installation."

No two fields are alike because each field contains 30,000 to 40,000 ground up tires, which come from a multitude of manufacturers.

“Every turf field has to be analyzed in detail to be sure it doesn’t have a problem,” said Paul Lioy, a professor of environmental and occupational medicine at the Robert Wood Johnson Medical School in New Jersey.” [Emphasis added.] (“Feds promote artificial turf as safe despite health concerns,” by Thomas Frank USA Today, 3/16/2015 http://www.usatoday.com/story/news/2015/03/15/artificial-turf-health-safety-studies/24727111/)

"Not surprisingly, the shredded tires contain a veritable witch’s brew of toxic substances,” Gaboury Benoit, Ph.D., Yale Professor of Environmental Chemistry and Engineering. (“Study: Artificial turf contains carcinogens,” by Tony Spinelli, 7/3/15 http://www.theridgefieldpress.com/48210/study-artificial-turf-contains-carcinogens/#ixzz47WNF1FSf)

Additionally, the information required from field managers around the country is time-intensive as outlined in the Federal Register, and the attempt to reach a maximum of 40 fields nationally is insufficient. So the time required from the individuals is large and the amount of information collected will not be much more than anecdotal.

The fields heat is a health hazard. It is hotter than asphalt and much hotter than grass. At the Women’s World Cup in Edmonton, Canada, in June 2015, the air temperature was 75 degrees, and “the heat from the carpet approaching 120 degrees at kickoff…Research, partly funded by the city of Las Vegas, found artificial turf above 122 degrees is considered unsafe for sustained athletic use and that, depending on the air temperature, turf can get as hot as 180 degrees…This was a temperature where if you put your hand down on it, you could only hold it for five seconds or so before it would burn,” Dale Devitt, director of the Center for Urban Water Conservation at the University of Nevada Las Vegas told the Vegas Sun. [Emphasis added.]
Environmental impacts of artificial turf should also be noted.

Artificial turf fields create “heat islands” – an environmental hazard.

The extreme heat “is not only a hazard for users, but also can contribute to the ‘heat island effect,’ in which cities become hotter than surrounding areas because of heat absorbed by dark man-made surfaces such as roofs and asphalt.” (“Synthetic Turf: Health Debate Takes Root” by Luz Claudio, Environmental Health Perspectives 2008 March; 116(3): A116–A122. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265067/)

“Columbia University climate researcher Stuart Gaffin analyzed thermal images generated from NASA satellite maps of New York City. He wanted to figure out how urban trees may help cool down neighborhoods. When Gaffin noticed a bunch of hot spots on the maps, he assumed they were rooftops…two turned out to be turf fields” says Gaffin. In retrospect, he says he should have realized that, because they’re a perfect sunlight-absorbing system.” (“High Temps On Turf Fields Spark Safety Concerns,” by Allison Aubrey, National Public Radio, 8/7/2008 http://www.npr.org/templates/story/story.php?storyId=93364750)

Artificial turf appears to contribute to elevated levels of zinc in the water.

“There is a potential risk to surface waters and aquatic organisms associated with whole effluent and zinc toxicity of stormwater runoff from AT fields.” (“Artificial Turf Study, Leachate and Stormwater Characteristics,” July 2010 Conn. Department of Environmental Protection

“Crumb rubber derived entirely from truck tires may have an impact on aquatic life due to the release of zinc. For the other three types of crumb rubber, aquatic toxicity was found to be unlikely.” Pg. 2

“Zinc concentrations are higher than the surface water standards.” Pg. 29

(“An Assessment of Chemical Leaching, Releases to Air and Temperature at Crumb-rubber Infilled Synthetic Turf Fields” May 2009 from staff at NY State Department of Environmental Conservation)

Plastic artificial turf blades will likely disintegrate and degrade with some ending up in bodies of water and in the food of wildlife either directly or via landfills; plastics of various sizes are already threatening aquatic life. The impacts of larger sized plastics is more widely known, but now more is being discovered about the serious effects of microplastics. (“Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L).” by Browne MA1, Dissanayake A, Galloway TS, Lowe DM, Thompson RC, Environmental Science & Technology, 7/1/2008 http://www.ncbi.nlm.nih.gov/pubmed/18678044) “As plastic breaks into smaller pieces, it is more likely to infiltrate food webs. In laboratory and field studies, fish, invertebrates and microorganisms ingest micrometer-sized particles…” (“Classify plastic waste

Confusion over focus of the undertaking:
While the official federal register announcement does not mention playgrounds, the EPA’s website explaining this study refers to “this coordinated Federal Research Action Plan on Recycled Tire Crumb Used on Playing Fields and Playgrounds…” (https://www.epa.gov/chemical-research/federal-research-recycled-tire-crumbs-used-playing-fields) It would be better to included playgrounds, especially since children are particularly vulnerable to toxic chemicals, but at a minimum the information disseminated should be consistent between postings.

Conclusion:
As should be apparent from the above information and comments, my staff, constituents and I have spent numerous hours reviewing these issues. I am deeply concerned that the study as designed will offer the false hope of absolute answers. We may not know for many years the true and complete impacts of artificial turf fields. I have concluded that we should adhere to the precautionary principle and minimize use of artificial turf fields. Instead, we need to focus our research and energy on improving natural grass fields, which already can be designed to withstand heavy rains and avoid rain-outs. Increasing knowledge and experience is helping expand the usage of these fields. The public focus should be on the best practices that give the greatest use of natural grass fields with the least amount of fertilizers, pesticides and water.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0073
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Sarah Evans
Address: 10029
Email: sarah.evans@mssm.edu
Organization: Children's Environmental Health Center, Icahn School of Medicine at Mount Sinai

General Comment

See attached file(s)

Attachments

Mount Sinai CEHC Comment on ATSDR-2016-0002

As of: 5/3/16 6:38 PM
Received: May 02, 2016
Status: Posted
Posted: May 03, 2016
Tracking No. 1k0-8pen-xk2y
Comments Due: May 02, 2016
Submission Type: Web
May 2, 2016

Leroy A. Richardson, Information Collection Review Office
Centers for Disease Control and Prevention
1600 Clifton Road NE., MS-D74 Atlanta, Georgia 30329.

Federal eRulemaking Portal: Regulation.gov

Re: Docket No. ATSDR-2016-0002

To Whom It May Concern:

We, the Children’s Environmental Health Center (CEHC) of the Icahn School of Medicine at Mount Sinai, strongly support the Federal Research Action Plan on Recycled Tire Crumb Used on Playing Fields and Playgrounds. It is our hope that this study will exhaustively address data gaps, characterize crumb rubber constituents, assess exposure pathways under realistic play conditions, and consider health effects to vulnerable populations. Based upon the presence of known toxic substances in tire rubber, the CEHC has issued a call for a moratorium on the use artificial turf generated from recycled rubber tires pending comprehensive safety studies.

As pediatricians, epidemiologists, and laboratory scientists at the Children’s Environmental Health Center of the Icahn School of Medicine at Mount Sinai, which hosts one of 10 nationally funded Pediatric Environmental Health Specialty Units, we have received numerous phone calls from concerned parents and physicians regarding the wide scale use of recycled rubber surfaces on school grounds and in park properties. This led us to conduct a review of the risks and benefits of artificial playing surfaces, during which we found significant gaps in the evidence supporting the safety of recycled rubber turf products. The hazards associated with recycled tire rubber, coupled with the unique vulnerability of children have led us to recommend that these products never be used as surfaces where children play.

The major chemical components of recycled rubber are styrene and butadiene, the principal ingredients of the synthetic rubber used for tires in the United States\(^1\). Styrene is neurotoxic and reasonably anticipated to be a human carcinogen\(^2\). Butadiene is a proven human carcinogen that has

been shown to cause leukemia and lymphoma\(^3\). Shredded and crumb rubber also contain lead, cadmium, and other metals known to damage the developing nervous system\(^4,5\). Potentially harmful chemicals have been detected in the air above rubber turf such as benzathiazole and polycyclic aromatic hydrocarbons (PAHs), both of which are linked to cancer\(^6\).

Recommendations: To be informative, comprehensive studies should consider, at a minimum:

- **Exposure assessment under realistic playing conditions.**
 Studies should consider weather conditions such as extreme heat, potential for increased exposures as turf degrades over time, as well as extended exposure times that may occur when rubber pellets are transported home on the bodies and clothing of players.

- **All possible routes of exposure: inhalation, ingestion and dermal absorption.**
 Individuals are exposed to harmful substances when crumb rubber pellets touch their skin or are swallowed, and possibly from breathing chemicals released into the air from the surface. While manufacturers claim that a number of scientific studies indicate low risk of harm from recycled tiring playing surfaces, these studies were not conducted in a rigorous manner comprehensive enough to prove safety.

- **Potential health effects not only of individual chemicals, but also of mixtures of chemicals to determine their additive and synergistic effects.**
 It is important to note that risk of harm due to exposures from recycled rubber turf has been assessed only for single chemicals, yet children are exposed to numerous harmful chemicals in aggregate during play on these surfaces. It is widely recognized that carcinogens and other environmental toxins act in an additive or multiplicative fashion, making risk assessment of the chemical mixtures present in recycled rubber critical for a comprehensive safety assessment\(^7\).

• The unique vulnerability of very small children as well as individuals in certain “Windows of Susceptibility” such as pregnancy and the pubertal period. Children and fetuses are particularly sensitive to exposure to toxic chemicals due to their developing organ systems and immature enzymatic, hepatic, and renal function. In addition, children’s developmentally appropriate hand to mouth behaviors, high respiratory rates compared to adults, and close proximity to the ground lead to increased potential for toxins to be inhaled, absorbed through the skin and even swallowed by children who play on recycled rubber surfaces.

Thank you for the opportunity to provide you with our professional opinion. We would be more than happy to answer any questions that you might have.

Kind Regards,

Robert Wright, MD, MPH
Director, Mount Sinai Children’s Environmental Health Center

Sarah Evans, PhD, MPH
Research Scientist
Children’s Environmental Health Center

Homero Harari ScD, MSc
Research Scientist
Children’s Environmental Health Center
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0074
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Jean Barish
Address: 10028
Email: jeanbbarish@hotmail.com

General Comment

Attached are my comments regarding Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ
FR Doc # 2016-03305

Thank you for your consideration.

Jean B Barish, Esq., MS

Attachments

FR Doc # 2016-03305
May 2, 2016

Leroy A. Richardson
Information Collection Review Office
Centers for Disease Control and Prevention
1600 Clifton Road NE, MSD-74
Atlanta, GA 30329

Re: Docket No. 2016-03305

Dear Mr. Richardson:

Thank you for this opportunity to comment on the proposed Federal research on the toxicity of synthetic turf athletic fields with rubber tire crumb infill. I have worked as a research scientist, a consumer advocate, and an attorney specializing in health care law. I am also affiliated with several environmental organizations that have been concerned about this issue. One of these organizations, Action for Nature, recognized Claire Dworsky as an AFN Eco-Hero for her study on the toxicity impact of synthetic turf with rubber tire crumb. (http://actionfornature.org/2011_winners.aspx; http://www.scgh.com/featured/success-stories/4th-graders-research-reveals-dangers-of-artificial-turf/nggallery/image/image-463)

Rubber tires are a complex blend of materials and chemicals, many of which are carcinogenic, neurotoxic, eye and throat irritants, and toxic to many organ systems. These chemicals include but are not limited to polynuclear aromatic hydrocarbons (PAHs); phthalates; volatile organic compounds (VOCs); heavy metals including lead, zinc, iron, manganese, and mercury; nanoparticles such as carbon black; and dioxin. Additionally, a great deal of dust and particulate matter, including nanoparticles, are created during play on an artificial turf field. All of this harmful material can enter the body by inhalation, ingestion, dermal contact and eye contact. Other health and safety concerns include sports injuries; infections from methicillin-resistant Staphylococcus aureus (MRSA); overheating of the fields; and; disposal problems. Finally, the use of artificial turf with rubber tire crumb also raises environmental concerns.

Many cities and school districts have chosen not to install turf with rubber tire crumb after considering the health and environmental risks. For example, the City of New York Parks and Recreation and Department has not used rubber tire crumb infill since 2008. And in 2009 the Los Angeles Unified School District served manufacturers of artificial turf with Proposition 65 Notices claiming that artificial turf with SBR infill contains unacceptable levels of lead and carbon black. LAUSD no longer uses turf with rubber tire crumb. Several school districts in Sonoma County in Norther California have also decided not to use rubber tire crumb infill, and the San Francisco Recreation and Parks Department is planning to replace worn out fields with safer, organic infill. These are just a few examples of schools and municipalities throughout the country that no longer use synthetic turf with rubber tire crumb.
In view of the growing concern about the health and environmental hazards of these fields, your research should be done rigorously and thoroughly. To assure the studies will provide meaningful information, please consider the following recommendations:

Study Recommendations

It is important that samples of rubber tire crumb are taken from an adequate number of fields throughout the country. There are many variables that must be considered to assure adequate sampling, including but not limited to the following: age of the fields; weather conditions to which the fields are exposed such as temperature, humidity, precipitation; use of the fields; age of the fields; source of the tire crumb; location on the field from which the samples are taken. Rubber tire crumb comes from a huge variety of tires that have been manufactured all over the world. This lack of homogeneity of the rubber tire crumb must be accounted for in your research.

Numerous studies have identified several categories of chemicals found in rubber tire crumb, including but not limited to: polyaromatic hydrocarbons; phthalates; dioxins; semivolatile compounds; nitrosamines, and; heavy metals. These should all be measured.

Rubber tires contain nanotubules. These should be measured.

There is also off-gassing of volatile compounds on synthetic turf fields, as well as the dispersal of particulates into the air. These volatiles and particulates should also be measured on indoor and outdoor fields under various ambient and play conditions when the fields are in use.

In addition to surveying field representatives to determine facility use and characteristics, please survey players, coaches, and spectators. This will provide more reliable information regarding field uses and conditions.

In addition to air monitoring, dermal sampling, and urinalysis, mucous membranes such as the oral cavity, nasal passages, and conjunctiva of players should also be sampled. Dermal sampling should include all exposed areas of the body, including the face and scalp.

Exposure characterization should also include contact with clothing and shoes, and the impact that has on the spread of material off-site. This is especially important since many people report that rubber tire crumb is tracked into cars and homes, and that players’ clothing is covered with black dust after a game.

The risk of increased skin, muscular and joint injury caused by synthetic turf versus natural turf should be studied.

All impact studies should account for demographic variations in users of the fields, including age, gender, and race.

One of the adverse health impacts of artificial turf fields is related to the fact that the fields get much hotter than natural grass fields. Synthetic surface undesirably absorbs, retains and emanates heat at temperatures and rates that can be dangerous. (https://www.pitchcare.com/magazine/concerns-over-heat-stress-on-3g-surfaces.html) The health hazards of playing on these hot fields should be studied.

Analysis of the health hazards of rubber tire crumb must also analyze the cumulative risk of exposure to the synthetic turf with rubber tire crumb, defined in the US EPA document “Framework for Cumulative Risk Assessment” as “the combined risks from aggregate exposure (i.e., including all relevant routes) to multiple agents or stressors.” (U.S. EPA 2003. Framework for Cumulative Risk Assessment. PA/630/P-02/001A. Washington, DC)

Please review the Material Safety Data Sheets (MSDS) for the manufacturer of rubber tire crumb and evaluate these for information about health and safety hazards.

In addition to an analysis of the constituents of rubber tire crumb and exposure levels, the synthetic turf fibers also contain chemicals of concern, including but not limited to phthalates, quaternary ammonium bocides, BPA, acetone, elastomers, and heavy metals. A chemical analysis of a representative sample of turf fibers should be done.
Other Considerations

The following comments are also submitted for your consideration:

Epidemiological Studies

There is a growing data base of soccer players exposed to fields with rubber tire crumb that have developed cancer. Notably, there is a disproportionate number of young people lymphomas in this population. (http://www.ehhi.org/turf/cancer_patterns_1114.shtml) Epidemiological research is necessary to more accurately assess the health impacts of playing on artificial fields with rubber tire crumb. This research should study the incidence of cancer, as well as allergies, asthma and other respiratory disorders, gastrointestinal disorders, autoimmune diseases, neurological conditions, skin conditions, and the like. There is already a great deal of information about the components of rubber tire crumb. Epidemiological research is the next step that should be taken to determine whether exposure to these toxins on the playing field increases the risk of cancer and other health problems.

The testing your agency proposes will never capture what is really going in the real life exposures of a generation of young people. A national agency such as NCI or CDC has the resources to do the necessary epidemiological research. It should begin as soon as possible in order to protect a the young people who are now playing on these fields.

Animal Studies

Several experts I have spoken to have recommended that your research includes animal studies in order to better assess exposure risks. Please include animal studies in this project or explain why you do not plan to include it.

Environmental Impacts

Rubber tire crumb can also impact the environment, especially if the field is built above an aquifer. Chemicals from rubber tire crumb can leach into this underlying aquifer, as well as spill into waste water, poisoning drinking water and impacting aquatic life. Additionally, synthetic turf fields with rubber tire crumb can impact the ecosystems where they are installed. Accordingly, please address the following issues in your research:

Include consideration of the impact of these fields on rainwater and other waters that flow through the turf that will pick up particulates that could then enter the public water system or adjoining waterways.

Include consideration of the impact of these fields on all animal species in the surrounding ecosystems.
Disposal

The environmental impact of disposal of the fields and the rubber tire crumb infill should also be studied. It is important to understand the regulatory control of the disposal of these fields. Do they end up in landfills? Can they be recycled? What is the impact of the particulates on the environment when they must be removed at the end of their lifespan or the repurposing of the fields?

Precautionary Principle

The Precautionary Principle stands for the proposition that when an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically. (http://unesdoc.unesco.org/images/0013/001395/139578e.pdf) Much has been written about the Precautionary Principle, but in its simplest terms it means that there is a social responsibility to protect the public from exposure to harm when scientific investigation has found a plausible risk. These protections can be relaxed only if further scientific findings emerge that provide sound evidence that no harm will result.

You are encouraged to apply the Precautionary Principle in analyzing the data from your studies.

Thank you for your consideration of these comments.

Sincerely,

Jean B Barish, Esq., MS
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0076
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Glen Sjoblom
Address: 22066
Email: gsjoblom@cox.net

General Comment

See attached file(s)

Attachments

CDC letter
I am writing to you as a former Director of the EPA Office of Radiation Programs and with considerable career expertise in the area of environmental and occupational risk assessment.

An issue before CDC, EPA and the Consumer Product Safety Commission at this time is whether to continue the use of crumb rubber in artificial turf fields. There are now some 12 thousand of these playing fields all over America, and a typical field uses crumb rubber particles made by pulverizing perhaps 30,000 used tires, approximately 1 million pounds per field. This use of used tires began in a small way about 30 years ago, when there had been public outcry to EPA over fires involving used tires in landfills and in piles of used tires.

The early studies of this use of crumb rubber were mainly aimed at developing another method of disposal of used tires, well before the development of more modern methods of hazardous waste management. These early studies were superficial and did not make a critically objective examination of the exposure pathways by which volatile chemicals and tiny particulates would be released and exactly how they would expose our young athletes, and what the effects would likely be.

Your agency must now make the determination of whether to continue to allow this use of tire crumb. I believe that the EPA has been and is conflicted, by virtue of the historical proponents of this use within the EPA Office of Solid Waste. CDC has the necessary expertise in all the areas of toxicology, epidemiology, cancer registry, exposure measurements and risk analysis, and does and must not be burdened by the mistakes of the past.

In the United States, there is a growing public concern that allowing this use of crumb rubber was a huge mistake by EPA. There are perhaps a dozen carcinogens which have been reported in the rubber particles, as well as the main constituents of rubber polymer, 1,3 butadiene and
carbon black. The fields can reach over 150 degrees, and disturbing the crumb rubber including thermal deterioration of the material, can release large amounts of very small particulates, and volatile chemicals, which can reach deeply into lungs of young athletes, while they are under physical exertion.

The studies of the past have not even determined or examined the high exposure scenarios involving athletes diving into the field surface, resulting in repeated high ingestion and inhalation. This is not a chronic low-dose situation, but an intermittent high dose situation. The previous studies have mainly involved sampling above the undisturbed fields, and a few have tried using breathing zone monitors. A much better understanding of the actual exposure scenario is needed, through inquisitive observation of conditions of play and investigation, followed by careful design of the quantitative measurements that will truly determine actual intakes.

Many of the chemicals in tire crumb are suspected to be human carcinogens, and the best toxicologists should be asked to estimate risk factors, particularly for the diseases that have been reported. There have been a substantial and growing number of actual health effects and deaths, which have been reported among soccer players, particularly young goalies in Washington State. A few useful documents are shown below:

http://boston.cbslocal.com/2015/03/18/i-team-health-concerns-raised-over-artificial-turf-fields/

https://www.youtube.com/watch?v=91svfuF7iY

It is important to use conservative assumptions, because the critical population group is younger and therefore more sensitive to the chemicals and particulates.

The health effects experience in the tire making industry should be useful as background, since many of the same substances are involved, albeit in a much better controlled industrial environment, in which
some occupational exposures are acknowledged as a condition of employment.

CDC should determine if there are additional cancer clusters in other parts of the country, in addition to the reports from Washington State.

It is not acceptable to only test the crumb rubber in the laboratory as has been done in the past. The ongoing studies should be specifically directed to measuring the airborne volatile organic chemicals and fine particulates being released from several existing fields that have been in place for many years. One such field is located at Mira Costa High School in Manhattan Beach, California, where my 12 year old grandson plays flag football. When I observed a game there in December, there was a very noticeable odor of rubber, as well as large amounts of surface particulate material, and a cloud of fine black dust resulting from the athlete’s feet. Even in December, the surface was hot from the solar radiation on the black surface, and this undoubtedly degrades and volatizes the complex moist rubber polymer and produces a mixture of organic materials, both volatile and very small particulates. I have read reports stating surface temperatures of 150-200 degrees F. I became very concerned when I observed the current situation.

The protocol for the new studies should include use of traditional fine air particulate samplers and volatile samplers on several fields with degraded surfaces, during athletic games, as well as in breathing zone monitoring of athletes playing. Standard methods should be used for this monitoring, and I suggest the application of the PM-10 and PM-2.5 analysis methods for particulates. The only truly acceptable exposure level determined by these methods is NO actual exposure to our young athletes, but the level of 50 micrograms per cubic meter air standard may be a useable starting point.

In Fairfax County, Virginia, where I live, there are many of these fields, but the Great Falls Citizens Association refused to go along with the use of crumb rubber, and the Local Lacrosse Association found another fill material. I am also aware that Montgomery County, Maryland has passed an ordinance allowing only natural fill materials on playing fields, and have shown that there are acceptable substitute materials which have the same playability features, without the adverse health
implications. This year, the Virginia Legislature considered a three-year moratorium on the use of crumb rubber, and while it was tabled pending the ongoing risk analysis, the close vote in committee indicates a growing recognition continuing use of this material is not acceptable.

I strongly recommend that you will pay close attention to the design of ongoing studies, and subsequently make the correct the risk management decision, and require the phase out the use of this material in playing fields.

Sincerely,

Glen L. Sjoblom
815 Seneca Rd.
Great Falls, Virginia 22066
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0079
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Jonathan Damm
Address: 20191
Email: jondamm@yahoo.com

General Comment

Dear Federal Agencies:

I am a concerned parent with a background in environmental law and a lacrosse player and coach. Because of my education, I understand and appreciate the dangers inherent with repeated exposure to toxins. Since I am a coach and player, I have also spent many hours on tire crumb fields. I have witnessed how children are exposed to the fine particulate. After reading all the available literature, my wife and I concluded the risks far outweigh any benefits of using fields with tire crumb. Regardless of your final conclusions, it is clear that tire crumb is beyond our capacity to thoroughly investigate - as I will discuss below. So we will never let our three young children play on tire crumb. A generation of young Americans relies on you for similar protection.

Later this year, when the federal government issue its preliminary statement regarding the safety of tire crumb on synthetic turf fields, the most important messages to communicate to concerned parents are: 1) Tire Crumb is a "Moving Target" - tire manufacturers frequently change tire ingredients. So any formal study conclusion only speaks to existing fields. Any field installed after a study, or any field not studies, may contain chemicals that were not examined in past studies - including any federal study. So for all the millions of dollars of resources the federal government is about to spend on this study, any conclusions can only speak to actual
fields that were studied. A study can only be backwards looking by its very nature since there can be zero confidence that manufacturers will not change tire ingredients. This must be clearly communicated. 2) Compound based risk assessment can only be done on chemicals and compounds that have regulatory risk frameworks. Tire crumb contains numerous chemicals and compounds with no regulatory risk frameworks. Therefore, any formal study will necessarily contain significant data gaps. 3) Given that tire crumb contains multiple chemicals and compounds with no risk frameworks, epidemiological studies and animal studies are the only available methods of study to overcome this intrinsic problem. If there are no significant epidemiological studies undertaken or planned, this must be communicated. If there are no animal studies planned, this must be communicated.

If the three points of focus above were communicated clearly and prominently, it would help educated field users to truly understand that sometimes, a problem is beyond our ability and present capacity to accurately make predictions or draw conclusions regarding safely. If the federal government was realistic in this endeavor, it would recognize this from the very start. And given what we know about the multiple carcinogens, mutagens and reprotoxins in this material, the government should conclude from the start that tire crumb is simply too risky to use in such close proximity to children.

Sweden Concluded that Tires should Not be Used

Such a position would not be novel or unprecedented. The Swedish agency tasked with reviewing tire crumb on synthetic fields recommended that tires should not be used as material on synthetic turf fields for exactly these reasons. Sweden wisely concluded that given the complexity and the inherent unknowns regarding tire crumb use on turf fields, they simply should not be used.

"Tyres contain substances of very high concern

Tyres contain several substances that are substances of very high concern. These substances may persist in the environment, they may be bioaccumulative, carcinogenic, reprotoxic, or mutagenic. This is true of, for example, polycyclic aromatic hydrocarbons (PAHs), phthalates and certain metals. These substances should not be released into the environment and thus waste tyres should not be used for synthetic turf surfaces.

Kemi's Recommendations:

Do not select synthetic turf that contains substances of very high concern when laying new surfaces

Material that contains substances of very high concern should not be used, as specified by the environmental objectives of the Swedish parliament. This means that granulate formed from recycled rubber should not be used when laying new surfaces of synthetic turf. The Norwegian authorities have issued a similar recommendation."

In addition to Sweden and Norway, whole countries that have recommended that tires not be used on turf fields, municipalities like as New York City have has banned tire crumb since 2009 for their schools and parks.
Similarly in 2009, the L.A. Unified School district has banned tire crumb. The list grows larger by the week. In early 2015, Montgomery County, Maryland's most populous, banned tire crumb by a unanimous vote of the council.

Please honor the precautionary principal and recommend a complete ban on the use of tire crumb on turf fields and playgrounds. See attached for full comments.

Regards,

Jonathan Damm

Attachments

Comments on ASTDR 2016-0002 by Jonathan Damm
Comments on ASTDR 2016-0002-0003

Federal Research Action Plan on
Recycled Tire Crumbs Used on Playing Fields and Playgrounds

Submitted to Federal Register May 2, 2016

By Jonathan R. Damm

Dear Federal Agencies:

I am a concerned parent with a background in environmental law and a lacrosse player and coach. Because of my education, I understand and appreciate the dangers inherent with repeated exposure to toxins. Since I am a coach and player, I have also spent many hours on tire crumb fields. I have witnessed how children are exposed to the fine particulate. After reading all the available literature, my wife and I concluded the risks far outweigh any benefits of using fields with tire crumb. Regardless of your final conclusions, it is clear that tire crumb is beyond our capacity to thoroughly investigate – as I will discuss below. So we will never let our three young children play on tire crumb. A generation of young Americans relies on you for similar protection.

Later this year, when the federal government issue its preliminary statement regarding the safety of tire crumb on synthetic turf fields, the most important messages to communicate to concerned parents are: 1) Tire Crumb is a “Moving Target” – tire manufacturers frequently change tire ingredients. So any formal study conclusion only speaks to existing fields. Any field installed after a study, or any field not studies, may contain chemicals that were not examined in past studies – including any federal study. So for all the millions of dollars of resources the federal government is about to spend on this study, any conclusions can only speak to actual fields that were studied. A study can only be backwards looking by its very nature since there can be zero confidence that manufacturers will not change tire ingredients. This must be clearly communicated.

2) Compound based risk assessment can only be done on chemicals and compounds with no regulatory risk frameworks. Tire crumb contains numerous chemicals and compounds with no regulatory risk frameworks. Therefore, any formal study will necessarily contain significant data gaps. 3) Given that tire crumb contains multiple chemicals and compounds with no risk frameworks, epidemiological studies and animal studies are the only available methods of study to overcome this intrinsic problem. If there are no significant epidemiological studies undertaken or planned, this must be communicated. If there are no animal studies planned, this must be communicated.

If the three points of focus above were communicated clearly and prominently, it would help educated field users to truly understand that sometimes, a problem is beyond our ability and present capacity to accurately make predictions or draw conclusions regarding safely. If the federal government was realistic in this endeavor, it would recognize this from the very start. And given what we know about the multiple carcinogens, mutagens and reprotoxins in this material, the government should
conclude from the start that tire crumb is simply too risky to use in such close proximity to children. The following links provide examples of chemicals of concern in tire crumb.
http://www.albany.edu/ihe/Synthetic_Turf_Chemicals.php
http://www.ncbi.nlm.nih.gov/m/pubmed/22352997/

Sweden Concluded that Tires should Not be Used

Such a position would not be novel or unprecedented. The Swedish agency tasked with reviewing tire crumb on synthetic fields recommended that tires should not be used as material on synthetic turf fields for exactly these reasons. Sweden wisely concluded that given the complexity and the inherent unknowns regarding tire crumb use on turf fields, they simply should not be used.

Tyres contain substances of very high concern

Tyres contain several substances that are substances of very high concern. These substances may persist in the environment, they may be bioaccumulative, carcinogenic, reprotoxic, or mutagenic. This is true of, for example, polycyclic aromatic hydrocarbons (PAHs), phthalates and certain metals. These substances should not be released into the environment and thus waste tyres should not be used for synthetic turf surfaces.

KemI’s Recommendations:

Do not select synthetic turf that contains substances of very high concern when laying new surfaces

Material that contains substances of very high concern should not be used, as specified by the environmental objectives of the Swedish parliament. This means that granulate formed from recycled rubber should not be used when laying new surfaces of synthetic turf. The Norwegian authorities have issued a similar recommendation.

In addition to Sweden and Norway, whole countries that have recommended that tires not be used on turf fields, municipalities like as New York City have has banned tire crumb since 2009 for their schools and parks. http://www.nydailynews.com/new-york/city-yields-ground-crumb-rubber-turf-wars-article-1.389543

Similarly in 2009, the L.A. Unified School district has banned tire crumb.

The list grows larger by the week. In early 2015, Montgomery County, Maryland’s most populous, banned tire crumb by a unanimous vote of the council.
http://www.mymcmmedia.org/councilmember-berliner-applauds-council-turning-the-page-
Recently, the city of Hartford, CT banned Tire Crumb as well. http://ctmirror.org/2016/02/12/a-shifting-ground-for-artificial-turf-in-connecticut/

There are many other communities taking similar action. A Google search will provide you with plenty of evidence. Industry lobbyists and representatives will likely tell you that these are just reactionary measures because of sensational headlines of anecdotal news about goalies with cancer. I will discuss the goalies with cancer below. First, Sweden and Norway took their precautionary measures in 2006, well before the news about goalies with cancer in 2014. It was enough for them to understand what is in tire crumb. They didn’t need to conduct a generation long experiment to decide if it is safe. They erred on the side of caution, which is a reasonable measure given the multiple chemicals of concern, carcinogens, PAHs, VOCs, phthalates, heavy metals and endocrine disruptors. All these things are in tire crumb. There is no debate about that.

Over the last ten to twenty years, parents have been increasingly aware that they should take reasonable steps to protect their kids from having toxins bioaccumulate in their kids’ bodies. So countries and municipalities that are avoiding tire crumb are not simply acting because they are scared, they are taking prudent and reasonable measures to minimize exposure to dangerous toxins. BPA and phthalates are good examples. These chemicals are not banned by EPA and really not heavily regulated as far as I understand.

Exposure

But the science is pretty clear at this point that we should protect children from unnecessary exposure to endocrine disruptors. When developing kids are on a tire crumb field, they often ingest tire crumb. They either ingest actual particles or they ingest micro particles that get mixed into their sweat as it runs over their skin and into their mouth. The attached document from the safe healthy playing fields coalition illustrates how small particles actually are. The picture below is from the attachment. But look at how small the dust is. The larger black spot is a highly magnified piece of tire crumb. The specs are microscopic dust. The picture of the woman illustrates how easily the dust can be transferred from a field to a sweaty person and into their mouth.
They inhale fine tire crumb dust. They inhale VOCs. They absorb chemicals and oils from tire plasticizers either directly through their skin or in open wounds. It gets in their noses. It gets in their eyes. There are multiple exposure routes.

Bioavailability

Based on limited study, industry representatives like to assert that the chemicals in tire crumb are somehow not bioavailable. But there are studies that contradict that. For example, there is a study from South Korea that concludes that lead in EPDM rubber particulate is indeed bioavailable. It should not be any different for metals in particulate and dust like tire crumb. “Conclusions - Results of this study confirm that the exposure of lead ingestion and risk level increases as the particle size of crumb rubber gets smaller.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278598/

So it is reasonable for parents to take precautions in their daily lives to protect their children from toxins. People wash fruit, they off-gas products, they avoid flame retardants, and they avoid endocrine disruptors and PAHs in their children's products. The list goes on. So when municipalities ban tire crumb, they are simply acting in the same reasonable and cautious way that their populations act every day. Why would parents want to take reasonable steps to protect their children from harmful toxins in their daily lives, then turn around and expose their kids to all the same chemicals of concern and even worse? It does not make sense to take one step forward and two steps back.

Avoiding tire crumb is not a reactionary measure to sensational news; it is wisdom and common sense. Using tire crumb where kids play is reckless and out of step with a growing population of educated American’s approach to toxins around children. It is truly mind boggling that there are individuals in the federal government that consider this even remotely as a good idea.

Every day, we learn how toxins bioacumulate in the body. Folks take careful steps to protect their families. By even pretending that somehow a field full of all the same chemicals of concern could be tolerable under any circumstance is just plainly behind the times. The only reason there has not already been a mass revolt is that there has not been an opportunity to educate the millions of people that need the education. But if the same people who avoid BPA and phthalates in their children's products actually learned in detail just how full of toxins their kids' fields are, they would put it all together.

So please don’t pretend that somehow different rules apply just because kids are running around an exercising. It is illogical to think that exercising somehow mitigates the harms and risks. If anything, it makes it worse.
Goalies with Cancer – Only 5000 blood Cancers a Year

What about those soccer goalies with cancer? Anything short of a serious statistical analysis would be too bad. It appears that there are only around 5000 blood cancers a year under the age of 24. There are now over 100 goalies on Amy Griffin’s list. Most have blood cancers. Given so few kids with blood cancers in a given year, it seems very unlikely that one person would be able to put together a list of so many people with two things in common 1) plays one particular position (goalie), and 2) plays mostly on one particular kind of field (tire crumb). And there are still not that many tire crumb fields nationally – around 12,000. So Amy Griffins list should be taken very seriously.

http://www.cancer.gov/research/progress/snapshots/adolescent-young-adult

Carbon Black

Any investigation must also look closely at carbon black. Carbon black makes up about 1/3 of a tire. That means about 1/3 of a tire crumb field is also carbon black. Carbon black is a known animal carcinogen and a possible human carcinogen. Nanoparticles in carbon black have been theorized to present asbestos like concerns.

http://www.turfandrec.com/index.php?option=com_content&task=view&id=2986 If this is not looked at very closely, it would be a monumental oversight. Will the study look closely at carbon black exposure?

Carbon Nanotubes

“Inhaling carbon nanotubes could be as harmful as breathing in asbestos,” and its use should be regulated lest it lead to the same cancer and breathing problems that prompted a ban on the use of asbestos as insulation in buildings, according a new study...
"T[i]res enhanced with CNT (carbon nanotubes) appear to have improved mechanical properties, such as tensile strength, tear strength and hardness of the composites, by almost 600%, 250% and 70% respectively, comparing with those of the pure SBR composites (styrene-butadiene rubber)."

This concern with carbon nanotubes goes back to the “Moving Target” concern I discussed in the first page of this document. Tires are waste products that are not designed for use, ingestion, inhalation and absorption by children. Any slew of potentially carcinogenic material could make their way into the next generation of tires, and probably will. This should be unacceptable from the start.

Past studies have been negligent in how they collect data. They underestimate exposure. The 2008 EPA study set up a particle collector and had kids run by periodically. The particle collector was surrounded by a small 3 foot fence. That is not realistic exposure replication. In order to replicate a goalie’s exposure, you would literally have to kick the tire crumb fly-out into the collector again and again for hours and hours.

Past studies also use simulated body fluids that do not accurately extract all the chemicals in tire crumb. The Yale study found 12 carcinogens.
http://www.ehhi.org/turf/findings0815.shtml Industry critics claim that Yale used to harsh an extraction method. But there is no debate that the carcinogens were present. One can make an argument that prior extraction methods based on simulated body fluids were not stringent enough.

I am attaching the written testimony of Dr. Wright from the Mount Sinai Children’s Environmental Health Center.
https://dl.dropboxusercontent.com/u/101177270/CEHC%20RB%205139%20Testimony%20Feb%202016%20202016.pdf

It says it all. In short:

1. "Given the hazards associated with recycled tire rubber, it is our recommendation that these products never be used as surfaces where children play."
2. "[W]e found significant gaps in the evidence supporting the safety of recycled rubber turf products."
3. "Children are uniquely vulnerable to harmful exposures from recycled rubber surfaces."
4. "In the absence of convincing evidence of safety, we recommend that children not play on recycled rubber surfaces that contain known carcinogens and neurotoxins and support a ban on the use of these products."
I hope the federal government takes the same reasonable position. Even if you do not, a large portion of the population will continue to act prudently and will avoid using fields with tire crumb. You might as well act responsibly and protect those that do not have the fortune to be as educated on the dangers of bioaccumulated toxic exposure.

Heat - 120 degrees

A few comments on heat - I read that the fields would be tested at two temperatures. One would be at room temperature or average outdoor temp. The other would be at a higher temperature to mimic a hot day. I hope you paid attention to the temperatures at the women’s soccer world cup. The temperatures of the turf were not just hot, they were astonishingly hot. It was measured at 120 degrees! So please measure it at that temperature. Anything else would be a sham.

Industry MSDS

The Synthetic Turf Council has a MSDS that makes clear there are certain precautions that their installer should take. They include washing frequently, wearing a respirator, and wearing eye protection to name a few (see next page). But importantly, this is the industries own material. How can they be asserting on the one hand that children are safe to play on tire crumb and then at the same time, warning their installers to take very deliberate and thorough measures to protect themselves from tire crumb as they install it?

It is very puzzling to try to understand how this material is safe for players who get the same if not more exposure than installers. Kids who roll in tire crumb, eat tire crumb, drink tire crumb in sweat, inhale tire crumb, absorb tire crumb, and grow up on tire crumb are getting absolutely no warnings like the installers. It is a terrible injustice and wildly hypocritical.
Standard Format MSDS (continued)

<table>
<thead>
<tr>
<th>PRECAUTIONS FOR SAFE HANDLING AND USE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED</td>
<td>Sweep up or vacuum into disposal containers</td>
</tr>
<tr>
<td>WASTE DISPOSAL METHOD</td>
<td>Product not defined as hazardous waste. Dispose of in accordance with federal, state, and local regulation.</td>
</tr>
<tr>
<td>PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE</td>
<td>Do not store near flame or ignition source. Do not store hot material in tubs or containers where spontaneous ignition could occur.</td>
</tr>
<tr>
<td>OTHER PRECAUTIONS</td>
<td>If material burns, an oily residue will result. This residue must be disposed of in accordance with federal, state, and local regulations.</td>
</tr>
<tr>
<td>RESPIRATORY PROTECTION (Specify Type)</td>
<td>Use any dust and mist respirator noted for up to 10 mg/m³.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROL MEASURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VENTILATION: Yes</td>
<td>LOCAL EXHAUST: Yes, if dusty conditions occur.</td>
</tr>
<tr>
<td>SPECIAL: None</td>
<td>MECHANICAL (General): Dust collector and</td>
</tr>
<tr>
<td>PROTECTIVE GLOVES: Recommended</td>
<td>EYE PROTECTION: Use safety goggles to prevent dust entry.</td>
</tr>
<tr>
<td>OTHER PROTECTIVE CLOTHING OR EQUIPMENT</td>
<td>Enough fresh air should flow past the user to prevent exposure to airborne fibers and particles.</td>
</tr>
<tr>
<td>WORK/HYGIENE PRACTICES</td>
<td>Good personal hygiene; frequent washing with soap and water of exposed areas; remove and clean solid clothing.</td>
</tr>
</tbody>
</table>

The information contained in this MSDS is consistent with the U.S. Department of Labor OSHA Form DH01 1211-0072. Contact OSHA Hazard Communication Standard 29 CFR 1910.1200 for additional information. To fully understand the use of any material, the user should avail themselves of reference material and expert consultation in the fields of fire prevention, ventilation and toxicology.

STC© October 2010, rev. 10/23/2014

https://www.dropbox.com/s/yvszy6bqtsis39a/STC%20MSDS.pdf?dl=0
Why should kids not receive the same warnings when they get even more exposure than installers? When parents are educated on this seeming hypocrisy, they see right through industry assertions that the material is safe. If you conclude that tire crumb is safe as well, you will have to explain why installers receive special warnings about wearing respirators and washing.
There should be signs on every field that provide the same warnings to parents and players.

SAFE PRACTICES WHEN PLAYING ON SYNTHETIC TURF FIELDS

- Watch for signs of heat-related illness and dehydration—fields can get excessively hot on warm, sunny days
- Wash crumb rubber dust off your hands and face before eating or drinking
- Wash hands, hair, and exposed skin parts thoroughly after playing on fields
- Turn clothes inside out as soon as possible to avoid transferring dust and fibers to other locations
- Keep water bottle nozzles, food containers, and other beverages closed and in bags/coolers when not drinking to minimize contamination from field dust and fibers

Chemical contaminants in crumb rubber are known to be harmful to health

These are just some thoughts that hopefully provide some insight as to why you should categorically conclude that tire crumb is too risky to use where children play. Please do the right thing and recommend that there be a moratorium on the use of tire crumb on synthetic turf fields and playgrounds.

Please consider attachments 1 and 2 as a fully incorporated part of this document and part of my formal comments as well.

Regards,

Jonathan R. Damm
Reston, VA 20191
jondamm@yahoo.com
Vermont Law School, JD, MSEL ‘99
Written Testimony before the Connecticut General Assembly Committee on Children
February 16, 2016

Testimony in Support of:
Raised Bill 5139, An Act Concerning the Use of Recycled Tire Rubber at Municipal and Public School Playgrounds.

To Senator Bartolomeo, Representative Urban, and honorable members of the Committee on Children:

We, the Children’s Environmental Health Center of the Icahn School of Medicine at Mount Sinai, strongly support Raised Bill 5139, An Act Concerning the Use of Recycled Tire Rubber at Municipal and Public School Playgrounds. Given the hazards associated with recycled tire rubber, it is our recommendation that these products never be used as surfaces where children play.

As pediatricians, epidemiologists, and laboratory scientists at the Children’s Environmental Health Center of the Icahn School of Medicine at Mount Sinai, which hosts one of 10 nationally funded Pediatric Environmental Health Specialty Units, we have received numerous phone calls from concerned parents and physicians regarding the widespread use of recycled rubber surfaces on school grounds and in park properties. This led us to conduct a review of the risks and benefits of artificial playing surfaces, during which we found significant gaps in the evidence supporting the safety of recycled rubber turf products. Our findings are summarized below and discussed in detail in the attached documents: “Artificial Turf: A Health-Based Consumer Guide” and “Position Statement on the use of Recycled Tires in Artificial Turf Surfaces”.

Children are uniquely vulnerable to harmful exposures from recycled rubber surfaces. Public playgrounds are typically utilized by children age 6 months to 12 years, a population exquisitely vulnerable to the health effects of toxic environmental exposures. This vulnerability is due to a number of factors including, but not limited to, their unique physiology and behaviors, rapidly developing organ systems, and immature detoxification mechanisms\(^1\). Additionally, because of their young age, children have more future years of life and therefore more time to develop chronic diseases.

We have identified several potential dangers that playing on recycled rubber playing surfaces pose to children. These include:

1. **Extreme heat.** On hot summer days, temperatures of over 160 degrees Fahrenheit have been recorded on recycled rubber play surfaces\(^2\). Vigorous play in these conditions conveys a very real risk of burns, dehydration, heat stress, or heat stroke. Children are less able to regulate their body temperature than adults, making them particularly susceptible to conditions of extreme heat\(^1\). In addition, children have a higher surface area to body mass ratio, produce more body heat per unit mass, and sweat less than adults, all factors that increase susceptibility to heat injury\(^3\).

2. **Inhalation and ingestion of toxic and carcinogenic chemicals.** Children are particularly vulnerable to chemical exposures from playground surfaces due to their developmentally appropriate hand to mouth behaviors. In addition, their close proximity to the ground and higher respiratory rates compared with adults increase the likelihood of inhalational exposures. Thus, there is a potential for toxins to be inhaled, absorbed through the skin and even swallowed by children who play on recycled rubber surfaces.

The major chemical components of recycled rubber are styrene and butadiene, the principal ingredients of the synthetic rubber used for tires in the United States\(^4\). Styrene is neurotoxic and reasonably anticipated to be a human carcinogen\(^5\). Butadiene is a proven human carcinogen that has been shown to

cause leukemia and lymphoma. Shredded and crumb rubber also contain lead, cadmium, and other metals known to damage the developing nervous system. Some of these metals are included in tires during manufacture, and others picked up by tires as they roll down the nation’s streets and highways. Children may also inhale potentially harmful chemicals that have been detected in the air above rubber turf such as benzanthiazole and polycyclic aromatic hydrocarbons (PAHs), both of which are linked to cancer.

It is important to note that risk of harm due to exposures from recycled rubber turf has been assessed only for single chemicals, yet children are exposed to numerous harmful chemicals in aggregate during play on these surfaces. It is widely recognized that carcinogens and other environmental toxins act in an additive or multiplicative fashion, making risk assessment of the chemical mixtures present in recycled rubber critical for a comprehensive safety assessment. Because tire rubber composition varies by manufacturer, it is impossible to know the full contents of chemicals contained within a recycled rubber playing surface. For a more comprehensive description of the harmful chemicals contained within recycled rubber products, please see the attached Consumer Guide.

4. **Transportation home of rubber pellets.** Recycled rubber materials used in play surfaces break down into smaller pieces over time that may be picked up on children’s shoes, clothing and skin. The rubber is then tracked into children’s homes and cars, and carried into the places where children live, play, eat and sleep. Thus exposure can continue for many hours beyond the time that a child spends in the play area.

8 Timothy Ciesielski et al. Cadmium Exposure and Neurodevelopmental Outcomes in U.S. Children. Environ Health Perspect. 2012 May; 120(5): 758–763. 27. doi: 10.1289/ehp.1104152
5. Escape of chemical hazards from rubber surfaces to the environment. A number of the toxic and chemical components of the recycled rubber that is installed on playgrounds are soluble in water. When rain and snow fall on synthetic fields, these materials can leach from the surface to contaminate ground water and soil. In addition, chemicals in turf can be released into the air and inhaled, particularly on hot days.

Disposal of recycled rubber surfaces. A further unresolved issue is what to do with the toxic components of recycled rubber play surfaces 10 years from now when they reach the end of their usable life span and need to be dismantled. The costly process of separating, reclaiming, reusing, recycling, or disposing of the various components of a turf field are often overlooked at the time of installation. What will disposal cost? Who will pay? Often, these questions have not been factored into the overall cost.

Safe alternatives to recycled rubber playground surfaces exist. Daily outdoor play and physical activity are essential components of a healthy childhood. Thus safe play areas are critical to any school environment. While it is important to minimize playground injuries, the Consumer Product Safety Commission Public Playground Safety Handbook contains several additional safe and affordable alternatives such as wood mulch, which does not carry the same risks of chemical and heat exposure outlined above.

The potential long-term consequences of exposures to synthetic rubber play surfaces have not been carefully assessed by independent third parties prior to their installation throughout the country. For this reason, Senator Richard Blumenthal called upon the federal government to conduct comprehensive studies to verify the safety of recycled rubber for use in areas where children play— including playgrounds. Subsequently, on February 12, 2016, the United States Environmental Protection Agency announced the launch of an investigation into the safety of crumb rubber in partnership with the Centers for Disease Control and Prevention and the Consumer Product Safety Commission.

Commission, stating “existing studies do not comprehensively evaluate the concerns about health risks from exposure to tire crumb”[^15]. In the absence of convincing evidence of safety, we recommend that children not play on recycled rubber surfaces that contain known carcinogens and neurotoxins and support a ban on the use of these products.

We urge your support of HB 5139 in order to protect the health of the children of Connecticut. Thank you for the opportunity to provide you with our professional opinion. We would be more than happy to answer any questions that you might have.

Kind Regards,

Robert Wright, MD, MPH
Director, Mount Sinai Children’s Environmental Health Center

Sarah Evans, PhD, MPH
Children’s Environmental Health Center
Icahn School of Medicine at Mount Sinai

INTRODUCTION

On behalf of the millions of children, parents and athletes who play field sports in the US at schools, parks, athletic facilities and playgrounds, thank you for agreeing to study the potential harm caused by playing on or being near athletic fields with surfaces made waste tires. There are more than 12,000 of these playfields in place (15,000 according to the website of a large company that installs them), and they are being installed at a rate we estimate to be about 3000 a year. By our calculations, 12,000 fields currently present 2,380,000 tons or 4,760,000,000 pounds of loose, unencapsulated tire crumb on their field surface. (See our Table of Runoff and Material Volumes attached.) Tens of thousands of students and young athletes play on those fields, many more thousands have direct or indirect contact with the material. It is a public health issue of substantial importance.

The following lists our comments on the proposed study. We argue that the fields present known carcinogenic, pathogenic, and mutagenic material in a high surface area, pulverized form that is more toxic than whole tires, and should never have been allowed near children, or adults, because of risk of ingestion and inhalation exposure to all the ingredients in tires. On warm, sunny days the surface temperature routinely reaches over 150F, which presents direct, well-known heat injury risks to children. The heat increases off-gassing of the tire components, increasing the likelihood of pulmonary
exposures, and creates a complex dynamic in the children’s exposure zone immediately above a field that has not been correctly modeled or studied yet. The material lacks uniformity, or any regulatory or exposure controls. We assert that it is impossible to assure even a single tire crumb field is free of inhalation and ingestion risk of dangerous particulate and gases inherent in tires, tire crumb, and add-in composites; and that dangerous and unwanted exposures from lead, benzothiazoles, 12 carcinogens, phthalates, carbon black and other materials, can happen with every use. The data gaps are enormous, and we hope CDC/CPSC/EPA will recognize there is no way the tire crumb industry can protect any player, on any field, from the potential for dangerous exposures with normal use. We argue that not enough scrutiny was placed on this material.

NOTE: The Safe and Healthy Playing Fields Coalition is a grass roots group of scientists, public health professionals, toxicologists, neurobiologist, educators, plastics engineers, medical doctors, waste management and remediation professionals, coaches, researchers, and parents who donate their own time and skills towards helping communities and individuals assess risks to their communities from tire crumb field use. We do not have a lobbying firm, law firm, hired laboratory, consultant, or revenue-generating source (such as tire crumb), and rely solely on the skill of researchers who donate time to compile our comments. That said, we have found compelling data that refutes almost all claims of safety, and when we asked for additional time to compile the information, we were given two weeks, but denied additional time. Hence, we are working at a disadvantage, and hope that during this study year, we will have time and opportunity to substantiate our concerns, and share our research with the study officials. One of our comments below explains our requests for a conference or virtual meeting that allows more disclosure and discussion.

Our comments are listed in numerically and organized into: 1. General Comments, 2. Characterization and methodology comments; 3.Summary List of requests, and a number of supporting documents are also submitted as part of our comments.

PART I: GENERAL COMMENTS:
1. CPSC/CDC/EPA should use their existing authority to immediately reclassify tire crumb athletic fields as a children’s product, since thousands of fields have been installed in schools that serve hundreds of thousands of children.

2. We have grave concerns about their safety to human health and the environment, since known carcinogenic and pathogenic components in the field material yield into both air and water pathways, and provide ample opportunity for both chronic low dose exposures with every use of the field to lead, chromium, mercury, zinc, PAH, VOC, carbon black, styrenes, benzothiazoles, and plastics; and more intermittent, but dangerous high dose exposures from “HOTSPOTS” of component material. (See comments on Characterization). Each of the fields has material that is known to cause cancer, illnesses, and injury in humans; and leachate from runoff causes several negative impacts on the aquatic ecosystems. We believe that the potential for human illness (including several cancers) from both low dose and high dose exposures to the ingredients in tires is staggering. Basic logic favors our position. Based on the known potential for exposures to children, and the finding of a group of 200 soccer players with cancer (the group represents the reach of a single charismatic soccer coach), an immediate moratorium on new construction of the fields should be put in place with the existing authority of CDC/CPSC/EPA, until the tire crumb fields can be shown to be safe to inhale and ingest.

3. The tire crumb recycling industry, which appears “green” in its efforts to sell millions of used tires in “repurposed” shredded form, in fact enables a direct transfer of the contamination burden of waste tires from landfills/collection sites (in the US and abroad) to the play surfaces of 12,000 schools and sports centers, where tens of thousands of children and adults have direct contact with the toxins in tire crumb materials on the field surface, and these exposures could happen with every single contact.

4. For the most part, the schools and sports centers do not have resources to conduct toxicity due diligence; meaning, they do not have access to a toxicologist who reads the industry studies with their health as the only priority. Purchasers rely on the tire crumb recycling industry statements, industry studies, and industry funded websites that claim toxicology assessment and public health guidance. The sales material can be striking, and the studies appear convincing on the surface, but our study groups have found significantly misleading information about the safety and actual risk of harm from the tire
crumb fields to all users, particularly children. They are likely unaware that claims that the fields are “SAFE TO INSTALL; SAFE TO PLAY” have been repealed.

5. **PEER Filings.** Public Employees for Environmental Responsibility have filed a number of complaints and documents that argue for a repeal of endorsements of tire crumb safety from EPA/CPSC, and those statements were in fact repealed; but most schools and potential purchasers are unaware of the removal of endorsements and claims of safety. The PEER filings are an excellent source for telling the toxicity story and regulatory story of this product. We respectfully request that the entire file of complaints and responses to the complaints, and other supporting material be entered into the record for ASTDR 2016-0002-0003.

The full list of documents for the ASTDR 2016-002-0003 collection and record can be found here: http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html. Please include all in that list, and all supporting materials.

6. Formal legal requests have been made to classify the tire crumb fields as a children’s product since children use them, and sales and marketing material are very clear about tire crumb fields are for children. **CDC/CPSC/EPA should use their existing authority to explicitly label the fields as children’s products.** (Please refer to PEER filings for details and supporting arguments: http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html)

7. **CLASSIC CANCER CLUSTER APPEARANCE: SOCCER PLAYERS**

Parents and schools may have trusted the “Safe to Play” statements, but the parents of the 200 young women and men, who played intense soccer and were stricken with cancer do not trust those claims anymore.

The case of over 200 young soccer players who used tire crumb fields and contracted cancer, strongly indicates a classic cancer cluster, though the cases have not undergone the formal validation process, not yet. That is because a process for the collection of this information, does not exist yet for either cancer victims, or for other illnesses, head injuries, and heat injuries/illness from the fields.
8. We respectfully request that an official study of the soccer player cancer cluster be initiated by CDC immediately.

Through our activist network, we learned about these cases, which were reported to the NBC news link, or directly to a single, trusted concerned soccer coach. EHHI reported as follows:

“New Cancer Numbers Among Soccer Players on Synthetic Turf,

April 2016

It is important to remember that the only people counted in the numbers below are those who have known to call Amy Griffin. There is still no government agency tracking the cancers among the athletes who have played on synthetic turf. We know the actual numbers of athletes who have played on synthetic turf and contracted cancer have to be much greater than those who have known to report their illness to Amy Griffin.

In January of 2016, there were 159 cancers reported among soccer players; now (April 2016) there are 166. Ninety-seven of those in January were goalkeepers; now there are 102. Sixty-one percent of the soccer players with cancer are goalkeepers. As of this writing, 220 athletes of various sports who have played on synthetic turf have cancer; 166 soccer players who have played on synthetic turf also have cancer.

166 Soccer Players who have played on synthetic turf and have cancer

- 102 are goalkeepers (61% are goalkeepers)
- 64 soccer players with lymphomas, 39 are goalkeepers (61%—over half are goalkeepers)
- 10 soccer players with Non-Hodgkin lymphoma, 7 are goalkeepers (70%—over half)
• 54 soccer players with Hodgkin lymphoma, 32 are goalkeepers (60%—over half)
• 41 total leukemias, 24 are goalkeepers (59%—over half)
• 16 total sarcomas, 7 are goalkeepers (44%)
• 12 thyroid, 9 are goalkeepers (75%—over half)
• 11 brain—5 are goalkeepers (45%)
• 9 testicular—6 are goalkeepers (67%—over half)
• 4 lung—3 are goalkeepers (almost all are goalkeepers)

Remaining are OTHER rare cancers.”
Source: Various; Victim parent volunteers, EHHI primary collection; 4/2016 (ongoing)

All the victims were frequent users of turf fields, spending multiple hours a week in close contact with the material in the fields. All were in their mid-twenties or younger.

9. The self-reporting to a trusted coach, is also an indication that the actual illness rates are not yet being properly assessed or managed by any hospital, medical system, or group; there is no “home” for this information, yet. The 200+ cancer victim count is likely the reach of a single coach with the help of a link in broadcast media, and a fraction of the actual count of victims of cancer or other serious illnesses. Better investigation and creating a “safe” place to report serious and intermittent illness will uncover many more victims, and provide needed perspective on the accuracy of risk assessment for this product.

10. The CDC and appropriate agencies should issue a directive asking for adequate screening for injury and disease. That US hospital and medical systems are not yet set up to collect this data is a contributing factor; and concurrently, screening for synthetic field use should be part of a responsible screening protocol. To our utter dismay, we learned from pediatric oncologists in our group that at least some oncologist are prohibited from screening victims/patients for tire crumb field use; the screening must be part of the approved protocol, and tire crumb product is not yet included..
11. In fact, the number of all injuries from tire crumb fields should be collected and analyzed to include, but not be limited to: head injury and concussion; joint injuries (multiple); heat injury; blood cancer; lymphomas; testicular cancer; pulmonary illness; neurological impairment; kidney disease; diabetes; brain disease and cancers. These findings need to be documented, and the children who suffer from them should be screened for tire crumb field use and proximity. No doctor or oncologist should be prevented from asking questions, screening for, or questioning the safety of this product or contact with this product. We believe there are many more heat related illnesses, head injuries, and endocrine system disruptions directly resulting from exposure to the fields than what is being reported.

12. REQUEST MORE INVESTIGATION INTO EXISTING AND POTENTIAL CANCER CLUSTER: We ask that the multiagency group takes steps to expedite the process of collecting epidemiological data and verification of the current soccer player cluster, and other potential clusters, to include field maintenance workers who rake the fields, field installers who pour the millions of pounds of material onto field surfaces, school custodians, high contact users of any kind, and school children in buildings adjacent to the fields. Residences near the fields should be considered in the scope of the study or subsequent studies. In our own informal assessment, and using SEER database and known levels of cancer victims, we found the potential for 7-11 cancer clusters. We respectfully ask the CDC experts to look into this possibility and take the necessary steps to prevent additional injury and cancers.

13. NEED FOR EXPLICIT PROTECTION FROM RETRIBUTION: Sadly, the families, coaches, and school leaders who have reported illnesses do so with concern for retribution from the tire crumb industry, school boards, university administrations, and even sports league administrators, and may need explicit protection and remedy against retribution. Researchers who study the potential for harm tell us that they do not have protection from retribution from tire crumb field industry proponents. Even in our own group, public health and medical professionals must make statements of concern anonymously to protect themselves from retribution—professionally and personally from industry proponents. Adequate protections need to be established to protect the professionals and parents who speak out.

14. PROTECTION FOR CHILDREN IS NOT A COST-BENEFIT ANALYSIS. Children have a unique vulnerability to toxic exposures—both intermittent high exposures—and to low dose exposures, and if we are aware of a carcinogenic presence, then we are responsible for using a precautionary principle, and removing that exposure risk. With due respect, this is not a cost-benefit analysis that will show a
percentage of children will get sick (cost) vs. tournaments played or jobs created (benefit). It is a decision made by a civil society that upholds protection for children’s health above all other industry priorities, and a recognition that tens of thousands of children, if not hundreds of thousands, are already being exposed to material with known carcinogenic, and harmful materials on school turf fields.

15. The CDC/CPSC/EPA should recognize that the fields serve children, acknowledge that there are zero safety controls on the material and the potential exposures, and immediately acknowledge tire crumb fields as children’s products, and use your existing authority to regulate them as children’s products. **Therefore, we emphatically REQUEST THAT THE CPSC/EPA/CDC USE EXISTING AUTHORITY TO IMMEDIATELY CLASSIFY ARTIFICIAL TURF AS A CHILDREN’S PRODUCT, SINCE THOUSANDS OF CHILDREN ALREADY USE THE FIELDS, IN THOUSANDS OF SCHOOLS.**

Since children and adults are already being exposed on tire crumb fields to the materials in tires, we ask for an **immediate moratorium on further construction of tire crumb based or recycled rubber based artificial turf fields** until adequate assurances that tire crumb particulate, off-gassing, and combinations are safe for children to inhale and safe for children to ingest.

Your three agencies do not need to conduct a study to know with absolute certainty that tires were not designed to be inhaled by children, and we should protect children, at any length, from chronic or lose dose carcinogenic exposures.

Even if we cannot model or know (or will we ever know) the exposures to each child, each day (and we will never know), we do know with certainty that:

1. Carcinogens are in tires.
2. Shredded, pulverized tire crumb contains everything in tires, and more ingredients, including: carbon black, phthalates, VOCs, PAHs, benzothiazoles, lead, chromium, zinc, nanoparticle additives, proprietary additives, 12 known carcinogens, 90 materials known to be harmful to human and environmental health, (EHHI)
3. The material can be inhaled when playing and ingested with contact, or intermittent adjacent contact.
4. Every single direct or indirect use has the potential for exposure to hotspots and low dose chronic exposures to multiple scenarios of these materials.

5. The exposures could impact children, school buildings, and surrounding areas; contamination travels to cars, homes, and even children’s bedrooms.

6. It is both within the authority and the responsibility of your three agencies to take immediate action to protect the public, especially children, from known carcinogenic, pathogenic exposures.

Only a complete moratorium on their use will protect the millions of children, athletes and bystanders from inhalation and ingestion of the materials that yield from tire crumb synthetic turf fields.

16. It is also evident that tire crumb will never be safe unless ALL tire ingredients, all “recipes”, the manufacturing of tires, and then preparation of materials for fields are controlled from a toxicity perspective. This level of voluntary cooperation from the tire manufacturing industry will, of course, never happen.

17. ONLY UNIFORM MATERIAL SAFE TO INHALE AND INGEST IS APPROPRIATE FOR SCHOOL FIELDS; UNTIL THEN, A MORATORIUM. When the play surface material is uniform, consistent, and controlled, when it is tested by an adequate study with pediatric toxicology assessments to be safe for ingestion and inhalation, and results are peer reviewed following IRB standards, then we may consider a synthetic turf field might be safe. Until then, tire crumb should be rejected from any casual or unnecessary contact with children or adults.

18. RECONSIDERATION: A reconsideration of the moratorium could occur when the industry can demonstrate a uniform, non-carcinogenic, non-inhalable, non-ingestible alternative that does not present PAH, VOCs, phthalates, lead, chromium, mercury, 1,3-benzothiazoles, butadiene, styrenes, carbon black (in particulate, gaseous form, or any form to children); and the product undergoes strict, peer-reviewed study by independent qualified toxicologists who have a mandate to protect children’s health and the health of the environment above the interests of industry. The hypothetical product should be subject to regular reviews and quality control determinations to ensure safety over the life of the synthetic field. Safety Data Sheets should be provided and accessible for every user. If waste tires
are used, the controls requested above will never be possible, since the tire material, by definition, is a composite of many toxins in unknown quantities and with unknown impacts.

PART TWO: CHARACTERIZATION OF TIRE CRUMB COMMENTS

1. SCALE AND SCOPE: Tire crumb potential to individuals, buildings, surrounding areas and stormwater for contamination is enormous.

2. PUBLIC HEALTH ISSUE: SCALE AND SCOPE CONCEPTS
The potential for contamination from tire crumb is a growing public health issue, in terms of the relative size of the product and its mass; the total number of potential fields; and their basic contact with students, athletes, school personnel, buildings, communities, and streams/storm water.

To give an idea of the existing volumes of material, the field runoff and children affected or who may be affected, we have developed reference tables, and the summary is attached to this filing. These tables indicate the scope and scale, and demonstrate that these are not isolated fields, nor tiny exposure potentials. The quantities of material are enormous. The source and reasoning is explained, but the tables are designed for your model development and quick reference.

3. ENORMOUS QUANTITIES ON EACH FIELD SURFACE.
To give an idea of the scale, a modest soccer field uses 30,000 waste tires. According to a randomly selected company selling packaged tire crumb infill for original or replacement treatments, 30,000 tires makes about 396,667 pounds of lbs of material. According to our calculations, the volume for 2” thick field is about 525 cubic yards. However, a large football field, three times the size of a small soccer field, could use 1,000,000 pounds of tire crumb material.

4. The tires are shredded, pulverized into crumb of various sizes, and the shredded material is poured on top of a plastic “grass” carpet. Importantly, the material is loose, unencapsulated and can loft into the air when struck by a ball or foot, or body. We estimate that, depending on the school, each field has
regular, daily contact with at least 1000 athletes and students. At sports events, busy tournaments, or with active use, a field can have contact with many, many more.

5. No fields we found have mandated capture of the leachate or particulate at the field.

6. TOTAL FIELD VOLUMES POTENTIAL:. The universe of potential tire crumb playfields is approximately 200,000 - 220,000 schools and athletic facilities in the US, based on number of schools. The potential reach of exposure from use of these fields is in the millions of children, millions of adults, hundreds of thousands of exposed buildings and adjacent soils, and hundreds of thousands of public easements and storm water access points (we estimate 1:1 ratio for field to point source drainage).

7. TABLE RUNOFF AND VOLUMES: SUMMARY OF KEY METRICS

For reference, we analysed fields by sport type, by Metropolitan Service Area, and calculated the volumes for rainfall (by city), and for amount of tire crumb material on a field surface.

Key metrics are the following:

- Estimated tire crumb per 85,000 sq feet field and 2” deep tire crumb infill is 525 cubic yards, 396,667 pounds, or 198 tons per field.

- The total amount of tire crumb material on surface of 12,000 fields is estimated to be 6,296,296 cubic yards, or 4,760,000,000 pounds or 2,380,000 tons that are currently in sports centers and schools in April 2016.

- Runoff is calculated by city and field size, but the total runoff for fields in the top 50 MSAs is 15,006,99,787 gallons.
• **Total Runoff for** 12,000 fields based on number of fields per MSA, accounting for rainfall in that MSA, and added together for 2016 is: **23,370,639,827 gallons**... for a single year.

The calculations were made to illustrate the scale and scope of this product, and to characterize the reach of exposures from the field surface into the airway, and into the water pathway.

8. **INGREDIENTS IN TIRE CRUMB: Lack Of Uniformity, High Variation, Multiple Toxins**

Tire crumb appears to be a composite material, heterogeneous with multiple known carcinogens, pathogens, and mutagens. The material is not uniform, comes from multiple sources and lots, and can be mixed with plastics and materials of unknown origin. The material can have anticlumping agents, flame retardant additives, paint, and strengthening or characteristic enhancing additives. Shredding of tires can cause small pieces of steel or metals to be included in the material from steel belted tires. Some tire crumb is from newer depositories from recalled tires, some from landfills, and some have been subjected to a variety of weather and conditions. Leachate and off gassing could be variable, with the expectation that newly installed/poured material off-gassing is higher than from an older field, but we expect those rates would vary with the age of the tires from which the tire crumb was made.

9. **HETEROGENEOUS, MULTIPLE TOXINS, UNKNOWN ORIGIN:** To say that tire crumb infill comes from multiple sources, is an understatement: dispensaries, landfills in the US, landfills abroad, collection centers, factory waste from China, factory waste from the US and abroad. Some of the newer marketed blends included multi colored sport shoe waste, shoe factory waste, and many unidentified synthetic materials. Just as tire companies may add anything to their “recipe” for a tire, an infill provider may offer materials that could have anything added into the blend. Tire plugs, tire polishes, tire coatings, and materials picked up on the roads should be considered. And even if it is known that there are only tires in the blend, there is a broad variation in the ingredients based on the use of the tire, and the manufacturer. Those tires may look the same, but from a toxicity standpoint their variation and the unknowns in the “recipe” create a margin of uncertainty that makes any claim of known safety for inhalation or ingestion impossible. If a vendor says he or she knows what is in a lot of tire crumb, and that is known to be safe, then they ignored the materials in the product. Since we never know what is
in any field for sure, and if we know that they have tire crumb, they cannot be demonstrated safe for children to inhale, ingest, nor play upon.

10. What Is In Tires? SOME GROUPS WENT LOOKING

Since it was difficult from MSDS or any other source to identify the components in tires or tire crumb, some groups studied them directly.

11. Environment and Human Health Inc, and Yale University Study

EHHI, Inc. in cooperation with Yale University studied samples of rubber mulch, and new tire crumb with the intent of characterizing their ingredients.

The summary text of their characterization study is found here:

http://www.ehhi.org/turf/findings0815.shtml

The EHHI/Yale Study list of components found is explained this way:

The shredded rubber tire playground mulch samples tested were provided by the manufacturer and were purchased in new bags of rubber mulch for use in gardens and playgrounds. The rubber tire infill for synthetic turf fields was obtained as new infill material from installers of synthetic turf fields. There were 5 samples of infill from 5 different installers of fields and 9 different samples of rubber mulch taken from 9 different unopened bags of playground mulch.

RESULTS There were 96 chemicals found in 14 samples analyzed. Half of those chemicals had no government testing on them - so we have no idea whether they are safe or harmful to health. Of
those chemicals found that have had some government testing done on them these are the findings with their health effects.

TWELVE (12) KNOWN CARCINOGENS

2-Mercaptobenzothiazole/ Carcinogen, toxic to aquatic life

9,10-Dimethylantracene/ Carcinogen, respiratory irritant and can cause asthma

Bis(2-ethylhexyl) phthalate/ Carcinogen, may cause damage to fetuses

Fluoranthene / Carcinogen, Fluoranthene is one of the US EPA's 16 priority pollutant, A PAH.

Heptadecane/ Carcinogen

2-mercaptobenzothiazole / Carcinogen

Phenol, 4-(1,1,3,3-tetramethylbutyl)/Carcinogen

Phenanthrene/ Carcinogen - A PAH

Phthalimide/ Carcinogen, skin, eye and lung irritant. A Fungicide

Pyrene, 1-methyl- /Carcinogen

Tetratriacontane /Carcinogen, eye and skin irritant. Can cause systemic damage to central nervous system.

Pyrene/ Carcinogen, toxic to liver and Kidneys, a PAH

Carbon Black/ Carcinogen

Carbon Black makes up to 20% to 30 % of every tire. It is used as a reinforcing filler. Carbon Black is listed as a carcinogen by the International Agency for Research on Cancer (IARC).

Carbon Black, as such, was not analyzed by the Yale Study because Carbon Black is made up of
number of chemicals – some of which were found in the Yale study.

Carbon Black is not one chemical -- it is made up of many chemicals - often of petroleum products. Furthermore, carbon black has no fixed composition, even of the many compounds it contains. Carbon black from different sources will have differing compositions. In our method, carbon black will register as a series of substances extracted from it. There is no carbon black molecule, it is a mixture.

TWENTY (20) KNOWN IRRITANTS

1,4-Benzenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-

Irritant - causes skin and eye irritation, toxic to aquatic life

1,4-Benzenediamine, N-(1-methylethyl)-N'-phenyl-

Irritant - causes skin and eye irritation, toxic to aquatic life

2(3H)-Benzothiazolone

Irritant - causes skin and lung irritantation

2-Dodecen-1-yl(-)succinic anhydride

Irritant - causes eyes, skin and lungs irritation

3,5-di-tert-Butyl-4-hydroxybenzaldehyde

Irritant - causes irritation to eyes, skin and lungs.

Anthracene

Irritant - causes skin, eye and respiratory irritation. Breathing it can irritate the nose, throat and lungs causing coughing and wheezing.
Benzenamine, 4-octyl-N-(4-octylphenyl)-

Irritant causes eye and skin irritation

Benzenesulfonanilide

Considered hazardous, very little testing has been done on it.

Benzothiazole, 2-(methylthio)-

Irritant causes skin and eye irritation.

Dehydroabietic acid

Toxic to aquatic organisms

Docosane

Irritant causes skin irritation

Hexadecanoic acid, butyl ester

Irritant causes eye, skin and lung irritant. Can cause reproductive effects.

Methyl stearate

Irritant causes eye, skin and lung irritation.

Octadecane

Irritant causes skin, eye and respiratory irritation

Octadecanoic acid also known as Stearic acid

Irritant causes skin, eye and respiratory irritation

Oleic Acid

Irritant causes skin and eye irritation

Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-ethyl-]

Irritant causes skin, eye and respiratory irritation
Tetradecanoic acid

Toxic to aquatic organisms. Skin and eye irritant.

Anthracene, 2-methyl-

Acute aquatic toxicity, Not much data available - what there is shows it to be an eye, skin and lung irritant

Anthracene, 9-methyl-

Acute aquatic toxicity, serious eye irritant

13. Carbon Black

Carbon black plays an extraordinary role in tires, and in their toxicity and potential for harm from exposures. Well known from decades of air pollution studies, urban epidemiological studies, carbon black causes lung cancer, brain cancer, kidney cancer, heart disease, neurological disorders, and cognitive degenerative disease.

A known carcinogen (WHO), we have found variations in percentages of the amount of carbon black in a tire, from 30%-68%. (EHHI/Yale Study; NY STUDY, .pdf, pp19-20.) Carbon black breaks down into many sized particles, including PM10/PM2.5. That size particle was shown to cause several types of cancer, including brain cancer, kidney cancer, kidney disease, bladder cancer, and neurological disease and cognitive impairment disorders. (CITE; Harvard Mexico Studies and Urban Cohort Studies) We know for sure that carbon black is in tires, in part from simple observation of color.
14. THE NY STUDY CHARACTERIZES TIRE CRUMB THIS WAY:

“The components of Firestone’s and Dow Chemical Company’s rubber are summarized in technical specification documents. Although they are only two of many different rubber manufacturers, a similarity between the two vendors is readily apparent, even between three different types of rubber, solution-SBR, cold polymerized emulsion SBR, and high cis2-4 polybutadiene rubber. In general, the following similarities were observed between the two manufacturers for the compounds used to produce the rubber:

- The polymer used to produce solution-SBR contained approximately 18-40% bound styrene.

- The oil content in the polymer ranged from 27.3-32.5% in solution-SBR and cold polymerized emulsion SBR. Oils used include aromatic oil, high viscosity naphthenic oil, and treated distillate aromatic extract oil.

- Besides the polymer used, the other components of the rubber were similar between manufacturers and the relative proportions (parts by weight) of these other components ranged as follows:

 - Carbon black: 50.00 – 68.75
 - Zinc oxide: 3.00
 - Stearic acid: 1.00 – 2.00
 - Sulfur: 1.5 – 1.75
 - N-tert-butyl benzothiazole sulfonamide (TBBS): 0.9 – 1.50
 - Naphthenic or aromatic oil: 5.00 – 15.0
The components summarized above are the principal components of the major type of rubber (SBR) used for the manufacturing of crumb rubber and therefore have the potential to have a significant presence in crumb rubber. As discussed in subsequent sections of this report, some of these components have been found to be prevalent in crumb rubber, including zinc (from the zinc oxide), benzothiazole compounds (from TBBS), and PAHs (possibly from the oils used). These compounds may be attributed to the SBR used in the manufacturing of crumb rubber.”

16. ZINC

Coastal Marine Resource Center Study, found fatal levels of zinc in leachate from tire crumb fields. This amount would cause fatal impacts to aquatic ecosystem within 48 hours. This is a notable amount, and though was assessed in terms of environmental health, indicates presence.

Menichini and Abate Study: “Zn concentrations (1 to 19 g/kg) and BaP concentrations (0.02 to 11 mg/kg) in granulates largely exceeded the pertinent standards, up to two orders of magnitude”. “Zinc and BaP concentrations are high in rubber largely exceeding the Italian soil standards”.

17. METALS: MERCURY, CHROMIUM, ARSENIC

The highest median values were found for Zn (10,229 mg/kg), Al (755 mg/kg), Mg (456 mg/kg), Fe (305 mg/kg), followed by Pb, Ba, Co, Cu and Sr. The other elements were present at few units of mg/kg. The highest leaching was observed for Zn (2300 μg/l) and Mg (2500 μg/l), followed by Fe, Sr, Al, Mn and
Ba. Little As, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Sb and V leached, and Be, Hg, Se, Sn, Tl and W were below quantification limits. Data obtained were compared with the maximum tolerable amounts reported for similar materials, and only the concentration of Zn (total and leached) exceeded the expected values.

18. LEAD, POLITICS and CHILDREN

The problem is synthetic turf is NOT REGULATED as a children's product by the CPSC thwarting the ability to apply lead regulations that CPSC could enforce.

Lead was identified in synthetic turf fields as early as 2008 but was not addressed in any systemic way due to lack of standards or required testing (although the CPSC could have required the testing mandated for children's products since 2008). The CPSC has chosen not to mandate this children's product testing for synturf and in fact advised the industry about not having it designated as a children's product <http://parentscoalitionmc.blogspot.com/2009/03/artificial-turf-tale-of-lead-levels.html>.

This has led to a "buyer beware" situation especially after the CPSC tested synthetic turf carpets, found lead at varying levels depending on sample age, and astoundingly concluded the whole synthetic turf system was, always and everywhere, safe not just for adults but for children. The assumptions were based on inappropriate modelling for blood lead levels from a meager sampling and the troubling finding presupposes that there is, a safe level of blood lead, which most pediatricians and lead experts agree there is not safe level.

To this day the synthetic turf industry cites the still CPSC-posted "OK to Install, OK to Play on" press release which should never have been posted to begin with, has been disavowed, in front of US Congress, by CPSC commissioner Kaye and is an embarrassment to government science, policy and public health <http://www.cpsc.gov/en/Newsroom/News-Releases/2008/CPSC-Staff-Finds-Synthetic-Turf-Fields-OK-to-Install-OK-to-Play-On/>.
19. By contrast, The Centers for Disease Control (CDC) in contrast warned and continues to warn the "there is no safe level of lead" to expose children.

http://www.cdc.gov/nceh/lead/>

"No safe blood lead level in children has been identified. Lead exposure can affect nearly every system in the body. Because lead exposure often occurs with no obvious symptoms, it frequently goes unrecognized"

20. Evaluating and regulating lead in synthetic turf.

Division of Health Assessment and Consultation, Agency for Toxic Substances and Disease Registry gulirsch@cdc.gov) concluded that: "Synthetic turf can deteriorate to form dust containing lead at levels that may pose a risk to children. Given elevated lead levels in turf and dust on recreational fields and in child care settings, it is *imperative that a consistent, nationwide approach for sampling, assessment, and action be developed*. In the absence of a standardized approach, we offer an interim approach to assess potential lead hazards when evaluating synthetic turf."

21. *But no such approach has ever been instituted.* Indeed as reported in USA today this year: "The CDC in 2008 said communities should test recreational areas with turf fibers made from nylon, and they should bar children younger than 6 from the areas if the lead level exceeded the federal limit for lead in soil in children's play areas. But some communities have refused to test their fields, fearing that a high
lead level would generate lawsuits or force them to replace and remove a field, which costs about $1 million, according to a 2011 New Jersey state report. Forty-five of 50 New Jersey schools and towns contacted in 2009 by epidemiologist Stuart Shalat would not let him test their turf-and-rubber fields, Shalat's report states. The EPA also found, in 2009, that "it was difficult to obtain access and permission to sample at playgrounds and synthetic turf fields."<http://www.usatoday.com/story/news/2015/03/15/artificial-turf-health-safety-studies/24727111/>

22. And for the past 2 years the company FieldTurf has, with impunity, noted its synturf fields contain lead during testimony on various bills in the Maryland State House.

"...asked point-blank by one delegate, “Is there lead in your products? The executive answered, “There’s lead in a lot of things in this world.”.... “Yes, there’s lead in our products." In spite of this admission and the fact that the legislation in question was meant to post the CDC prescribed warnings about minimizing lead and other toxin exposures from the synturf and tire waste products, and in spite of the fact that the legislation had strong and broad input and support, the legislation was not even allowed to come up for a vote in committee by the committee chair.

23. Public Employees for Environmental Responsibility compiled the literature as of early 2012 on lead

see: <http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html> and specifically: 2012-07-12_lead-limits-needed-on-tire-crumble-playgrounds (NOTE if you go to PEER.ORG news releases: click on public health and "artificial turf" to find the actual filings with many links)
Unfortunately for the children, fields with high lead remain. But those responsible for protecting children are kept in the dark. NO ONE IS MONITORING OR REGULATING ARTIFICIAL TURF FOR LEAD OR OTHER TOXINS in either old or new fields, including the Consumer Product Safety Commission (CPSC) (see <http://www.peer.org/news/news-releases/cpsc-drops-artificial-turf-playground-safety-review.html> Even though the Chairman of the CPSC, recently admitted to congress that its soothing conclusions of safety after finding lead in synthetic turf were NOT correct.

Tested fields keep showing up with lead in them both old AND NEW. Some tested fields have little or no lead, some high levels and some have both within the same field. There is no way of knowing if any of the components of a field contain lead, and how much without stringent and thorough testing of each field.

This problem highlights the need for application of the designation as a children's product for testing and regulation: 1) stringent testing of all the colors and of the backing of the carpet for total lead content (chromium and cadmium should also be tested for) AND 2) Testing many samples of the infill which is an ever-changing "witches brew" of chemicals- so undetectable, low and very high levels can all be found in the same field. In addition to having testimony both last year and this year in the MD state chambers from Field Turf that their product DOES indeed contain lead (as you heard in the recent committee testimony on MD house Bill 883, and in addition to those referenced in the PEER review, other studies on lead also exist.

24. For a comprehensive media article on Lead in artificial turf which cites scientists and studies that the synturf industry avoids please go to: <http://www.usatoday.com/story/news/2015/03/15/artificial-turf-health-safety-studies/24727111/>

> For example as reported in that article:

Dr. Shalat's New Jersey State Study (2012) on artificial turf found lead in the field dust in the respirable
air space of a robot and real player - highly variable but sometimes very high (note most facilities would NOT LET THEM TEST).

25. PEER writes: The concerns about lead exposure have taken on a new urgency following the release in June of 2012 of a study done for the New Jersey Department of Environmental Protection which found artificial fields made of tire crumb can contain highly elevated levels of lead much greater than the allowed levels for children:

a) It reports "concerns with regard to potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial fields"; and

b) "Inhalable lead present in artificial turf fields can be resuspended by even minimal activity on the playing surface."*

26. Dr. Lioy of Rutgers who is quoted in the USA Today article recently participated as the senior author in a study which found lead and other toxins in the BOTH the plastic rug (supplied to them by the industry) and tire crumb infill. LEAD was also was found in simulated body fluids meaning there is little or no protection of any kind against the lead getting out of the material into the body.

27. Pavilonis Study found lead.

"Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers", Brian T. Pavilonis1, Clifford P. Weisel1, Brian Buckley1, and Paul J. Lioy1

QUOTE from Pavilonis et al.: "Since it is possible that children may be exposed to potentially high concentrations of lead while using artificial turf fields we recommend, at a minimum, all infill and
fibers should be certified for low or no lead content prior to purchase and installation."

*The main out-comes of concern from Pavilonis et al:

a) the finding of lead, and chromium in both the tire crumb and the plastic rug and simulated body fluids at sometimes extremely high levels *EVEN IN NEW FIELD CARPETS.*

b) Benzothiazole derivatives and 4-(tert-octyl) phenol were also found in in the simulated body fluids. Both are probable carcinogens (the subject of another fact sheet).

QUOTE: "Lead was detected in almost all field samples for digestive, sweat, and total extraction fluids with digestive fluid extract of one field sample as high as 260 mg/kg. Metal concentrations were not markedly different across the three different sample types (new infill, new turf fiber, tire crumb field sample). However, one of the *new* turf fiber samples contained relatively large concentrations of chromium (820 mg/kg) and lead (4400 mg/kg) compared to the other samples tested...the variability of lead contained in the infill material is large and can span more than two orders of magnitude*. One field [tire crumb] sample did contain a high lead level (260 mg/kg) which was on the same order of magnitude as the NJ DEP cleanup value (400 mg/kg).”

In summary: Lead-free is the only acceptable level for child products (and indeed for people in general). There is NO safe level of lead for children. And yet many of our children are playing often, if not daily, on fields that may contain lead and certainly do contain many other toxic substances. Finding ANY lead in any play area for children of any age is unacceptable. As the CDC notes: Every effort should be made to eliminate ALL unnecessary sources of lead in the environment, especially a child’s environment. *Lead in artificial turf is not only totally unnecessary but dangerous to health AT ANY LEVEL.*
28. Other sources of information on Lead in tire crumb fields:

www.safehealthyplayingfields.org<http://www.safehealthyplayingfields.org>
www.synturf.org<http://www.synturf.org>

[FOOTNOTE SYN TURF]Where on the Synturf page on lead you can find:

No. 34] Beware of lead content in exotic color artificial turf fields! September 2012.

No. 33] Odessa, Texas: Eager fans will not be given pieces of the artificial turf field. September 2012.

No. 31] UNLV researcher spreads word about the need to test artificial turf fields. December 2010.

No. 29] Concord, Mass.: Town replaces fake grass fields, officials insist nothing is wrong with the lead levels! July 2012

28. TWELVE (12) CARCINOGENS found and HOW DO THEY INTERACT:

The Yale Study identified the presence of so many carcinogenic materials in a single material that it raises many more questions about interaction of PAHs with metals, and combination impacts. The
interaction of the PAHs and benzothiazoles with other materials in the fields needs to be characterized and addressed

29. **Strengthening Additives: Nanoparticles**

We would also ask for information and clarity about tire strengthening additives of any kind that were built into the material anytime in the past 30 years, these would have been added to tires. [http://nice.asu.edu/nano/carbon-black-and-amorphous-silica-tires]

Similarly, we request that the tire manufacturing industry explain their use of nanoparticle products, of any kind, including the type and size, source company and source country, and ask for an explanation about how:

a. they can be quantified in the product, and
b. how can they be cleaned up if they are released when the tire crumb and or plastic “grass” carpet degrades?
c. We would also like to understand what material characterization of their behavior in tires performance,
d. And or their behavior once they are released into the environment.
e. We ask for any epidemiological due diligence that was conducted by any tire company on nanoparticle use prior to using them in a commercial product.
f. Plans for continued use and safety precautions tire companies will impose upon themselves
g. Epidemiological studies conducted on these particles in tires

30. **Plastics, Microplastic Fibers, Microbeads, and Small Particulate Plastics**

Assessment of microfiber particulate and small particulate plastics needs to be assessed in characterization studies.
31. Flame Retardants

Flame retardants can be added to a tire in production, or applied post production in a shipping setting or possibly as tire crumb. Since flame retardants are known carcinogens with health issues of concern, and will be on the surface of the waste tire crumb, tire infill providers need to know if they are present, and purchasers need to know that the material contains flame retardants prior to purchase.

32. Tires and Tire Crumb Additives

Myriad products exist to clean, protect, condition, and color tires. We wonder if they are components of tire crumb?

33. Road Waste Picked Up By Tires

Tires spend their lives on roadways, of course, and can pick up many materials in their travels. Debris, hydrocarbons,

34. CARINOGENIC, PATHOGENIC, and MUTAGENIC ingredients in tires cannot be removed by shredding tires into tire crumb and must be assumed to be accessible.

35. Tire crumb and repurposed rubber appear to be the same thing, with interchangeable use... but are they the same? We would like clarification.

We would like clarification about the distinction between the tire crumb, repurposed crumb rubber, and crumb rubber. Specifically if using the term “repurposed rubber crumb” implies uniformity of ingredients? Does that term imply tires are not used? If so, what are the ingredients in repurposed rubber crumb and how do they differ from tire crumb?
36. **We would also like access to all MSDS/SDS of tire crumb manufacturers and tire companies,** and the ability to ask questions about how and where they were made, variations on lots, source and composite addendums. It is difficult to locate them.

37. **EXEMPTION ON LISTING HAZARDOUS MATERIALS:** We would like to understand why tire companies have an exemption on their need to list ingredients under Section 2: Hazardous Materials of an MSDS/SDS. We were unable to find the source of that exemption, if it has a deadline, and whether your study group thinks it is an obstacle to understanding and characterizing risk of exposure from tires and tire crumb.

38. Of those MSDS that we located, several, like this Michelin North America Material Safety Data Sheet for Michelin, Uniroyal, BF Goodrich, says in “**Section 2 HAZARDOUS INGREDIENTS: Note: Tires meet the definition of article as defined by the OSHA Hazard Communication Standard (29 CFR 1910.1200) and are exempt from MSDS requirements.**”

There was clearly no mention of 1,3 butadiene, carbon black, POHs, VOCs, benzothiazoles, or any plasticizers, nor metals, styrene, sulphur, known irritants, or well... anything. Since that section also outlines corrosive, combustible and waste treatment, it is important for more than this issue. We explicitly ask CDC/CPSC/EPA if they can use their existing authority to require tire crumb companies and tire companies to provide ingredient information.

39. **SOURCE MATERIAL UNKNOWN: MSDS/SDS CANNOT REPRESENT WHOLE FIELD.** Tire crumb comes from many tires, and many sources. Since not a single tire crumb field can accurately list or track which tires were source materials, or what other mixed in components, and there is no accountability from tire crumb recycling industry for the shredded product, then MSDS/SDS cannot be accurate for a whole field due to variability. Therefore, the burden of “proof” of risk lays squarely on the ability of the purchaser (schools, sports directors, booster clubs) to assess risk... of a very very complex product. So,
if the exemption stays in place, we will know for sure that we cannot know what is in a tire crumb based field.

40. TREATMENT TO SHOW NO PARTICULATE OR BREAKDOWN: SHOW US.

As for studies that claim that their product has been treated (such as cryogenic treatment) to not break down into dangerous particulate, we are deeply skeptical, and would ask for proof. We also ask for assay testing over a period of at least several summer weeks. We ask for the researchers to simulate the pounding over 10 years and assess the particulate characteristics and particle size. That testing in fact is being done right now... in thousands of children across the country. Simple observation on a player body, on the sideline benches, or under a microscope shows consistent breakdown into particulate.

41. SHREDDED, PULVERIZED, HIGH SURFACE AREA FORM OF TIRES and ADD INS is LIKELY MORE TOXIC THAN WHOLE TIRES.

Unfortunately, because it is shredded, pulverized, and in loose and unencapsulated form, tire crumb has exponentially more surface area than whole tires (Thomas, Gupta study;) and we are concerned the material is very likely more toxic—possibly many times more toxic—in the school field form than whole tire form, since the increased surface area provides more opportunity for molecules to escape. We know for sure that the increased amount of surface area in tire crumb makes the material in tire crumb more available to the breathing and exposure zones, and to runoff.

42. CRUMB IS SURROUNDED BY DUST PARTICULATE:

Accurate characterization technique must include a study of the particulate that surrounds tire crumbs, and steps must be taken to make sure that the sampling process does not inadvertently remove that dust and particles. We found several examples of the samples being washed, some in unbuffered water, prior to their analyses being done. Of course, that removes the particulate that concerns us the most. Distribution of the particulate size and type is important. Those particulate can become aerosolized by numerous gases and we ask that attempts are made to properly model this dynamic under high heat conditions, primarily.
43. VERY COMPLEX PICTURE From TOXICOLOGY PERSPECTIVE: Tire crumb material is complex from a toxicology perspective, largely due to the chemical complexity presented by multiple known toxic components and variation. It has been described as a “toxic soup” of ingredients for which we have no consistent data on proportions or levels. Characterization of ingredients’ margin of error is unknown. Testing must be done at the field levels using accepted sampling plans that have been statistically shown to be valid. Not fields have been tested in sufficient detail to determine or rule out any exposures or risks. A look at testing protocols for lead in urban soil sites illustrate the level of attention required and show the degree that current testing has fallen short of that needed for decision making for children’s health.

44. CONTACT PATTERNS, FIELD USE and ADJACENT BUILDING CONTAMINATION

Exposure is likely determined by ingredients in surface, activity, and number of children or users on field. Each school or community field has high use and high contact patterns, such as hosting contact sports, like football, lacrosse, soccer, and baseball, athletic camps, workshops and practices. In those sports, children dive into the field materials. As a child runs or skids or slide tackles, a column of material rises up, as does the dust and particulate that surround the tire crumbs themselves.

Testing for exposure need to list weather conditions including humidity, wind speed, and precipitation, temperature on field surface and ambient air temperature. Number of children on field, and activity level of that play needs to be recorded, video would be most interesting.

Children of all ages use the fields for multiple sports, recreation and school events. Artificial turf tire crumb fields abound in elementary schools and at indoor and outdoor sports centers where children of all ages and all stages of development play soccer, lacrosse, football, track, cheerleading, band, and use the field for general recreational school activities. In the fields with which we are familiar, families with members of all ages use the fields; and the community holds events, picnics, special fairs, and activities. Some fields are immediately adjacent to a school building.). That there are many uses, and probably many levels of contact and exposure is an important part of characterizing exposures, but both low dose exposures AND high contact exposure scenarios and use need to be examined, with appropriate epidemiological process.
45. **SCHOOL BUILDINGS AND SURROUNDING AREAS ARE CONTAMINATED with a great deal of tire crumbs.** The fields appear to lose from 1-30 tons of material over their 8-10 year life, and some of it goes directly into buildings, cars, and then homes. This impact needs to be studied as an inadvertent consequence.

46. **CANNOT ARGUE NO INHALATION OR INGESTION RISK or SAFETY FOR EVEN A SINGLE FIELD.** We argue that given the unique characteristic of nonuniformity, known carcinogenic materials, breakdown into particulate/dust, no known source of origin, and no accurate studies on complex interactivity of those components in the children’s exposure zone, in the tire crumb as it is installed today in 12,000 fields, not a single field installer, nor material provider can demonstrate that the material is safe from inhalation and ingestion during normal use, active use, and on hot days.

47. **EVERY USE COULD POSE A TOXIC EXPOSURE** and it would be irrational to argue otherwise. We argue that due to the high variability of toxins in the tire crumb substrate (from tires, unknown additives, and factory waste add-ins), and lack of any control of the material, well-known sampling techniques will NOT accurately predict risks to human health.

48. **CHILDREN CANNOT AVOID THE EXPOSURES:** Since school children cannot self-advocate and take responsibility for staying off a field if directed to be there by coaches or school officials or parents, we must assume that children cannot avoid the exposures when they play on those fields.

49. **CANNOT CLAIM THAT EXPOSURES WILL NOT OCCUR.** Absolutely no way to responsibly claim that ingestion and inhalation of particulate from the material will NOT occur to those children.

50. **HOTSPOTS of intermittent dangerous exposures are possible, and should be expected and searched for in every field.**

We must assume that tires have different “recipes” based on their type of use. Therefore, knowing the type of tire used in tire crumb, and each tire “recipe” would be helpful in assessing characterization of
ingredients. However, there is no way to ever know what tires, or what material is in any field, and therefore, an MSDS/SDS cannot be representative of any field, or even any meaningful part of a field. Alarmingly, the high variability in the ingredients presents worrisome “hotspots” potential, where the hotspots might be missed in sampling but even a single exposure could have very serious impacts for a child who has the unfortunate luck to dive into that hotspot. PAH’s may be more prevalent, and present dangerous levels for installation period of the field, and for some unknown period of time afterwards, and considered a “hotspot”, then the consistent release of PAHs in the subsequent years could mean low dose, chronic exposures. Both need to be examined.

51. Lead, chromium, mercury and arsenic could be hotspot sources, based on which tires were used, and how they were treated prior to being placed in the field.

52. For example, when we asked about the source of lead in tire crumb fields, an infill vendor explained to us that a) lead could be in any field as an ingredient of the tires, of the treatment of tires, and b) once, they were aware of a shipment of tires that was treated with an anticlumping material that contained lead and the whole lot had lead, and c) that some lots had flame retardants added as well. They would never really know, but “most purchasers never ask”, according to the infill material vendor. If an MSDS was required, an additional charge was to be imposed, since MSDS were not available from the materials they acquired from China or other countries. We have collected many more examples of the worrisome unknown ingredients in our fields and can share with the study teams, if requested. While this information is anecdotal, that is the point: we have no idea what is in any field, for sure.

53. Another example, but this is not anecdotal: in a primary study field exposures in CT, a researcher found that the children’s monitors showed benzene. Since there is no safe level of exposure for benzene, and in fact, tires are not expected to have benzene, the field was sampled more closely, until that “hotspot” was located. The original source of that benzene was not determined, but it was next to a busy parking lot where cars’ exhaust may have been a source as they turned the corner, or possibly the tire crumb material had been previously stored in an area with benzene in surrounding environment, or perhaps it was picked up from contact on roads. We will never know. That finding suggests that the carbon black in the tires can adsorb additional toxins present near tires or tire crumb, and could release that material as the fields are pounded with running feet, or possibly on a hot day.
The proper characterization of this material needs to account for adsorption characteristics of carbon black, and other interactions.

54. The point is, that it is impossible to locate hotspots for all toxins in every field, and incorrect to extrapolate the risk for a whole field from a single sample or even multiple samples, since every sample is unique. So, while hotspots can easily be missed in a field, the unfortunate child that dives into that particular part of a field has an exposure that can actually be life threatening, but missed in its entirety in the sampling based risk assessment.

55. In fact, since the tire crumb creates multi sized “dust” particles, and off gases, it is impossible to prove that even a single field is safe from inhalation or ingestion exposures from tire dust particulate, off-gassing components, multiple toxins and combinations of toxins, and heat.

56. Importance of the Heat Factor: Source of direct injury and chemical catalyst

HOT HOT HOT HOT EXTREMELY HOT FIELDS

Grass playfields remain close to the temperature of ambient air, and are often much cooler. Asphalt playgrounds used to have a use limit of 141°F and many schools remove children from playgrounds when temperatures get hot. With tire crumb based turf fields, surface temperatures can soar on even mild sunny days.

Tire crumb fields “superheat” to levels that are routinely over 150°F on a sunny spring day, and in a recent study conducted on a sunny day Utah, found to be close to boiling point, 190°F, according to the Penn State Field Turf Heat Study. The study found that tire crumb field surfaces are hotter than ambient air, and increase in heat in a non-linear function with each additional degree Kelvin of heat, hence the designation “superheating”. To draw an example, on a Labor Day Weekend in DC area, with ambient temps of 82°F, the field surface temperature hit 164°F by noon on several fields used in a busy, tournament for about 1000 children, both boys and girls, ages 8-15. Those levels are known to melt plastic cleats, require tubs of water on the sidelines to cool down shoes, and create heat-related injury.
including heat stroke, nausea, heat exhaustion, and dehydration in children and all users. It is not unusual for children players to vomit, faint, and suffer dehydration from hot conditions on the fields.

57. Marketing and sales for these fields tout their usability in all conditions as a benefit (more practice and play hours), but in fact, the heat build up on fields makes them very uncomfortable during many days and conditions. In DC, there are over 100 days of sunshine each year, and most are during the spring, summer and fall, making the fields uncomfortably hot and possibly dangerously hot for a third of a year. A calculus should be made on the percentage of safe days to play based on field yield risk, and heat.

58. Tire crumb fields do not have any protection from heat, and so they are irrigated to be cooled down, but the effect is temporary.

59. To our knowledge, there has been no well known place for doctors nor parents to report heat injury, though they are commonplace. (This author specifically remembers a hot, poor air quality day in August in 2014 in Washington DC when during a single practice, 4 soccer players vomited, another child was taken to the hospital after passing out, and another sidelined himself against the coach’s wishes, due to extreme dizziness and nausea.)

60. **Reluctance to Report?** Yet, it is curiously uncommon for school teachers, coaches and parents to remove the children from the fields, due to temperature. We cannot explain that in rational terms.

We have also noted another curious effect: as football, soccer and lacrosse increase in popularity and competition in the US, competition for spots on high performance teams is fierce. There is a perception from strong sales and marketing of the fields, that the turf fields present a competitive edge for a school, a club or even a teenager trying to get into college, and are worth the high price paid. As psychologist Dr. Wendy Miller, explains, “it is a culture where high performance parents, players and schools might be willing to overlook these injuries, thinking that to complain would jeopardize their child’s access to a competitive team. This thinking could easily lead to the silencing of reporting of injuries.”
Heat injury reporting needs to be included in the survey questionnaires, and victims of heat injury and illnesses need to have a place to report, with impunity.

61. **HEAT MAKES THE CHEMICAL DYNAMICS ABOVE A FIELD VERY COMPLEX**

In addition to the serious issue of direct injury from hot playfields to young children, or anyone, the super hot fields present a very challenging chemical situation.

Dr. David Brown, ShD, toxicologist, professor and former Deputy Director of Public Health Practice Group at ATSDR/ CDC explains that, “the unintended, and largely unstudied chemical consequences of what comes off such an enormous quantity of high surface area material, in amounts and sequence that is scientifically accurate is very difficult to predict and model. Since the chemicals in the area above the field could change instantaneously, the conditions are critically important (number of players, temperature, time from last rainfall, etc.), as is the sampling methodology. But no one has been able to come close to modeling the actual yield, we only know the materials by characterization with samples, and that variation in samples is so broad as to almost be meaningless, since it could be easy to miss harmful exposures.”

62. Analyzing the field yield on a hot day is very complex, and challenging to even trained toxicologists. The superheating of the fields makes gases yield at faster rates as temperatures on the tire crumb surface increases. So, as a day heats up, it is very likely that the yield increases directly with temperature increase; a hot day creates more gases. Based on well understood scientific laws, we presume that the gas yield from the field at surface temperature of 50F (a cloudy day in January in DC) would be considerably less than a field surface temperature of 158F measured last week. If more gases are escaping the surface, then there are more “opportunities” for particulate to adsorb onto the surface of the gases, creating very dynamic series of compounds, none of which would be recommended to inhale. The changes in the chemical composition over the fields as their temperatures rise is very difficult to test and model. These changes happen in an instant... as a threshold is reached... and the exposures can increase sharply. It is a very sophisticated and difficult challenge to model. But what is the most important is not only that the 24 gases that escape tire crumb (Norway Study) create dangerous mixtures but those gas/particulate mixtures, (and air) create a vector for deep lung exposures of all the
materials in the tire crumb field. So, on poor air quality days, when there are many children on the field and a lot of stirring up of the material, the fields could present enormous risk.

63. We are concerned about the range of yield levels, but, we are most concerned about the intermittent risk to children during those hot periods (a hot, poor air quality summer day during children’s soccer camp week in Washington DC, for example) when the fields are likely yielding more gas, and therefore particulate has more “carriage” into lungs, respiration rates are higher, skin is exposed, and perspiration is highest. All these are likely factors in exposure. It is during those days when exposures are probably highest, and high enough overwhelm a developing immune system.

64. Exposure Study Needs To Focus On Worst Case Conditions

We acknowledge that the level of yield from the fields might vary widely with material variation, and will also vary with outdoor weather (temperature, wind, humidity and sun) conditions. Taking averages from fields across the country will be meaningless, and will only help the industry to expand its message of “found no harm”. An analogy might be to determine the health of a forest taking 4 samples from 40 locations, evenly spaced, but the sampling might easily miss a blazing forest fire. That one day might destroy living material exponentially, but it could easily be missed. Dangerous exposures can be unpredictable in this material due to the scope and scale, the toxic character, and the superheating characteristic.

65. A better approach is to carefully detect high yield days, and look THAT DAY for exposures in a child’s body during those periods. Since the exposures might attenuate, the work would have to be done expeditiously. The harmful exposures may or may not be detectable a day or a month later in a child. Monitor both genders, for patterns that might lead to that awful air quality soccer camp in the city on a tire crumb field, on days when vomiting and melting shoes are commonplace. A focus on the impacts from the high end of those yields we believe will present exposures that are clearly, and unequivocally harmful from both heat injury perspective and toxicity exposure potential. We do not know for sure if the carcinogenic exposures from low dose regular exposures or from high dose “events” are more dangerous, but both need to be studied as separate situations, not as an average.
66. We urge your team to focus the study resources on primary measurements made in high use scenarios on hot days, and refrain from the approach used in earlier studies that look at chemical compositions during winter or rain conditions on limited number of fields.

67. The only reliable way to assess the risk to children from a particular field, or groups of fields, is to look at their direct exposures, and importantly look at blood levels of the known substances. Cooperation from both high use athletes and those exposed to chronic levels of materials will be important.

68. The Study Needs To Focus Also On Low Dose Exposure Risks

Trained immunotoxicologists look at the impacts of chronic low dose exposures to metals, PAHs, VOCs and many other materials in tire crumb. Their input is crucial to understanding risk of exposure in a developing child.

69. Characterization Mistakes

Studies look convincing, but miss the forest for the trees. Tire recycling and tire crumb industry reports are quick to point out that when they find harmful materials in their samples, they are under the known safety limits. There are two interesting fallacies in that reasoning.

First, since the samples in several studies are few and not uniform, they fail to acknowledge the statistical significance of finding known regulated toxic material in 2 million pounds of powdered tires... if one finds the needle, is it luck, or is it because needles are more prevalent than expected?

Proof of presence is meaningful! For example, in the NY Study, PAHs were found, as were metals, benzothiazoles, and many substances. Their presence indicates a risk.

In a child’s product, since many materials are not known how they affect children, just knowing they are there is enough to use a precautionary principle and prevent the exposure. Arguing that the materials
appear under a limit (especially if that quantity is an average of multiple samples), or there is no established limit (because it has not been studied), are not as meaningful as the proof of their presence.

Second, though the conclusions of the industry reports may be of no harm found/safety, a close look at the data itself on PAHs, lead, cobalt, chromium, etc. is useful, since a) it proves presence, and b) at levels that suggest risk for chronic exposure. Chronic exposure risk is the subject of a great deal of new cancer research, and we care about all the materials, including those which are potentially toxic.

70. ARGUMENT FOR MORATORIUM BASED ON KNOWN CHARACTERIZATION FOR TIRE CRUMB

Because of the:

a. known loss of 1-30 tons of material from the fields during the 8-10 year “life of the field” into air and water

b. ingredients list: over 50% of its components are known carcinogens and pathogens, [cite Yale Study]

c. massive scope and scale of this product, (the amount of material and surface area of these fields is enormous; scale/millions of pounds in each installation),

d. inability to control the levels of toxic exposure to children, or even properly characterize them due to immense variation and chemical complexity of what happens on a hot day over a field, and around children. We cannot suggest mitigation strategies for the danger, because the material is inconsistent,

e. Even if we did know for sure what was in each field, and suggest mitigation techniques and protections…. All the tire company has to do is change their recipe, or many recipes, as they do continually, and the study is worthless. Children are still being exposed to whatever is in the tire, the lot or that particular field..

71. Moving Target Analogy
Even if the study were completely successful, and the tire crumb material categorized properly, the trouble is, tire manufacturers could change the “recipe” for tires... and in fact they do this regularly... and the study results will be useless, or at best, diminish in usefulness.

Any attempt to study tire crumb safety on turf fields is analogous to trying to hit a moving target. Tire crumb is a waste product. Tires are not designed or intended to be used as infill for turf fields.

Ingestion, inhalation and absorption of fine particulate by children is not a consideration of tire manufacturers as they choose chemicals and compounds for their tires. Nor are they bound to maintain any safety considerations for such use by children.

So any study of present day tire crumb is a futile endeavor, because such study tells us nothing about a field that gets installed immediately after the study. Tire manufacturers often change the chemical composition of tires and will likely do so again.

Even if a field passed safely concerns in a present day study, a new field could easily fail a hypothetical study conducted the day after the present study. So unless every field was tested using the exact same methodology after every installation, there is absolutely no way to assure the user that their new field is safe. Those new fields could easily have an entirely different chemical composition simply because tire manufacturers changed their tire ingredients.

So the present Federal Study is only a backwards looking study, not forward looking. Any conclusion must be transparent and clear on that issue - upfront and center. Otherwise the public is being misled into a false sense of security.
72. **Sampling: Not Appropriate For Tire Crumb**

The core pediatric toxicology problem in industry based safety studies, is that there appears to be an assumption that tire crumb is a uniform material, and behaves uniformly. It does not. There also appears to be an assumption that sampling will be an accurate method for studying tire crumb risk to children, and it is not. **Sampling will not be accurate to assess a nonuniform, heterogeneous material with multiple known toxic ingredients, high direct contact (dermal, hand to mouth, breathing zone) for pediatric use.** Sampling cannot produce a single sample that is representative of the whole field, or even a part of the field, other than the sample itself.

73. **Methodology needs to study PERFECT STORM exposure conditions, and be able to calculate exposures during those relatively dangerous days.**

Nor can sampling in the way it is proposed (samples from 40 fields across the US), illustrate impacts from a perfect storm of exposure conditions on a particular field, say, during an intense soccer camp in summer in Washington, DC with high ambient and field surface temperatures (ie 160F), bad air quality, no wind, when working athletes are breathing in particulate with high VOC, PAH, benzothiazoles, and carbon black... and many more compounds, on a particularly high yield day. Averages cannot be relied upon in sampling for this type of product, since they will further obscure the risk from exposures to hot spots of high risk material that are on fields. Averaging the results from a national distribution in various weather conditions simply obscures the acute risks further; it is useless for risk analysis. In layman’s terms, it is like studying a forest using “x” number samples, but missing the forest fire that is blazing away at a nearby area of the park. For a child, it means that she plays on a field that was called “SAFE TO PLAY”, after sampling, but in fact she might easily have been covered with multiple materials known to cause cancer, and in fact, that might be a regular event. The uncertainty of exposure frequency makes the risk higher, not less.

74. **The core of the methodology used in the 50 studies asserted by the tire recycling industry were based on simple characterization of a single sample, but not on realistic, combined, nor worst case (the most important) use scenarios.**
75. Multiple carcinogen and multiple pathogen combined effects need to be measured. Single material measurements could be only a fraction of the exposures, since the material exposures are likely to be from combinations of materials.

76. BIOMONITORING FRONT AND CENTER

Because sampling presents inconclusive results, a methodology that relies on biomonitoring will be more meaningful. We suggest that more sophisticated approach be considered. Personal sampling monitors attached to children, dermal, urine, breathing analyses, and particularly, blood and tissue samples from frequent users, players on “Perfect Storm Days” and those expected to have chronic low dose exposures. We understand that biomonitoring raises more issues, but absent a good model, empirical data is the most reliable way to accumulate actual evidence of exposures and to be able to establish a reliable causal link to the cancers and diseases we predict from exposures.

77. IMMUNOTOXICOLOGY SUPPORT: RECRUIT THE BEST PEDIATRIC IMMUNOTOXICOLOGISTS AND RESEARCHERS. Some researchers and epidemiological professionals are already on the trail of better ways to identify actual exposures, and can create biomarker groups as indicators of presence of illness or exposures. These researchers have background in immunological toxicology, and can track subtle changes in an immune system that might be precursors to serious disease, like cancer, kidney disease, brain changes, and lung disease. It is possible to create biomarker group to prove tire crumb exposures in users and we believe that the preliminary proof of concept step could be accomplished in less than 6 months with cooperative athletes, and study volunteers, and modest budget. While we will not list them here, for protection of their privacy and frankly, for fear of industry retribution, we will nonetheless let you know that we have found multiple professionals who are capable and willing to work on this task, provided a protective forum and IRB standards are in place.

78. Immunotoxicology support: look carefully at the ages those immune system markers in all children who are using these fields, understanding that some metabolic types, and ages may be more
vulnerable than others. In fact, there are early indications that certain age groups, such as prepubescent females (age 8-11), may be more vulnerable to exposures to benzothiazoles, plastics, phthalates, and endocrine disruptors in general, and therefore might be at higher risk to contract cancer or disease from low dose particulate exposures from tirecrumb, and the plastic “grass” carpet particulate. We need to establish the datum from players to study this. We still do not know, but some indications exist. For that reason, we respectfully request that the study team include toxicologists and epidemiologists that are trained to keep these concepts front and center.

79. LOW DOSE EXPOSURE CONCEPTS and CONCERNS

Based on what we know now about low dose exposures to VOCs, PAHs, benzothiazoles, styrenes, carbon black, plastics, plasticizers, and metals, even at low, sub acute exposures, the fields could be very dangerous. That possibility was not considered in the CPSC study, EPA study, nor in multiple industry studies. These need to be assessed:

- Chronic exposure to metals, plastics and plasticizers
- Chronic exposure to carbon black mimics air pollution exposures
- Immune system reactions
- Endocrine disruption exposures from plasticizers and phthalates,
- Exposures from multiple low doses and chronic exposures

80. The study should calculate yield of material that leaves the fields, and how it leaves the fields. How much in the air, water pathways, and with users (in shoes, cars, etc.) Interviews with schools and vendors need to establish the replacement quantities of these fields, and how often new material is put into place, since it would affect exposures, and give an indication of gross yields. We estimate that the fields lose from 1-30 tons (estimated) of material, so exposures and impacts need to be measured in adjacent buildings, soils, and stormwater systems. With 12,000 existing facilities, this may need to be the subject of additional studies conducted to also assess if the fields shall be regulated as point source contamination under Clean Water Act and Clean Air Act. It is a very important metric, and a perfect opportunity to include it, with little incremental cost, in your study.
81. INTEGRITY STANDARDS. To track the history of the emergence of this product is to track effective lobbying for regulation changes that favored the tire industry, and the tire recycling industry. This industry took advantage of an enormous quantity of recalled and used tire stockpiles, and heavily sold and marketed the materials to schools, and sports centers where millions of children play. Central to the steps that catapulted this industry forward was the removal of the designation of artificial turf fields as children’s products, based on the rationale that adults played on them, too. Yet the fields continue to be sold to elementary schools and to sports centers brimming with elementary, middle and high school players. The sales oriented industry was willing to submit children, schools and communities to the materials in tires in enormous amounts, and call them safe. As this claim is deeply questioned now, we also urge you to NOT allow the sampling or data collection to be conducted by an interested party, including schools, sports centers, athletic group personnel or administrators, field installers or laboratories or consultants hired by those groups, and establish peer reviewed standards for testing.

82. Any group or individual who does participate in the study, including regulatory staff, needs to sign an affidavit certifying that she or he, and her/his group has not received compensation or benefits in any form, including but not limited to sales commissions, direct payment, compensation, bonuses, grass to artificial turf grant, field financing, water savings rebates (State of California and possibly others), or physical benefits including but not limited to uniforms, facility enhancements (restrooms, concession stands, parking lots, storage facilities, etc.), stadium components, or field equipment of any sort, from the field installers or tire crumb field industry and its assigns, and has no financial conflict of interest. The document should be filed with an appropriate agency and made public.

83. We ask for full transparency on all parts of the study process for parents, interested parties, and schools.

<table>
<thead>
<tr>
<th>OUR REQUESTS TO ASTDR/CDC/CPSC/EPA</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request</td>
<td></td>
</tr>
<tr>
<td>1. Regulate tire crumb and rubber mulch as children’s product</td>
<td>PEER filed formal request; 12,000 fields x 30,000 tires is the amount of existing material in children’s use; see table A for details on volumes and surface area sizes, children/schools. Known carcinogenic material and known</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.</td>
<td>Remove “safe to play, safe to install” or any other references that imply safety from all EPA, CPSC and CDC websites and public information sources</td>
</tr>
<tr>
<td>4.</td>
<td>Issue a directive to public health agencies to disseminate warnings regarding unknown risks from lead exposure from AT fields, as well as exposures to carbon black, known carcinogens, PAH, VOCs into air and water pathways; direct hospital systems and medical systems to screen for tire crumb field use, and report results</td>
</tr>
<tr>
<td>5.</td>
<td>Use only independent lab or consultants unassociated with tirecrumb industry, adhering to high ethics guidelines; transparent process for review; affidavit of no conflict of interest</td>
</tr>
<tr>
<td>6.</td>
<td>Commission a primary study, conducted by independent, peer reviewed group such as CDC to examine existing cancers AND illness in tire crumb field users and maintenance workers of tire crumb fields</td>
</tr>
<tr>
<td>7.</td>
<td>Mandate Cal Recycle Study corrections to methodology; mandate methodology peer review; and mandate to impose Prop 65 rule based on OEHHA’s own findings on carcinogenic exposure</td>
</tr>
<tr>
<td>8.</td>
<td>Convene a conference for presentation of risks and concerns from parent groups, cancer survivors to Federal Research Team</td>
</tr>
<tr>
<td>9.</td>
<td>Convene series of webinars and open comment opportunities</td>
</tr>
<tr>
<td>10.</td>
<td>Allow public health and environmental advocacy groups in Federal Research Team with complete transparency</td>
</tr>
<tr>
<td>11.</td>
<td>Establish a collection point for recording experience of victims and those who may have suffered injury from use of the fields, including heat injury, concussion or head trauma, cognitive disorder, illness, and cancer for study and documentation; victim hotline; for both child and adult contact with fields</td>
</tr>
<tr>
<td>12.</td>
<td>Funding to identify potential biomarkers of exposure; conclusive marker study in users</td>
</tr>
<tr>
<td>13.</td>
<td>Conduct blood monitoring and studies on existing cancer survivors.</td>
</tr>
<tr>
<td>14.</td>
<td>Conduct cancer cluster study on soccer player cluster, and identify additional clusters such as maintenance workers and installers</td>
</tr>
<tr>
<td>15.</td>
<td>Provide full transparency with all interested parties</td>
</tr>
<tr>
<td>16.</td>
<td>Conduct full epidemiological study of tire crumb on playfields existing and predictive</td>
</tr>
<tr>
<td>17.</td>
<td>Study forms and questionnaires should include data collection on what is released from fields into air, adjacent areas, water pathways, and quantified. Replacement quantities for tire crumb fields should be quantified and examined as a metric that indicates yield.</td>
</tr>
<tr>
<td>18.</td>
<td>Based on release/yield figures, and other inputs, tire crumb fields should be evaluated for compliance with Clean Water Act and Clean Air Act, and regulated accordingly.</td>
</tr>
<tr>
<td>19.</td>
<td>We request that OEHHA study methodology be peer reviewed by your agencies before it begins, taking into account the comments received in this proceeding.</td>
</tr>
<tr>
<td>20.</td>
<td>OEHHA Study Process and Methodology Concerns: How will those be considered?</td>
</tr>
<tr>
<td>21.</td>
<td>Consider explicit protection from retribution steps be put in place to protect researchers, players, and concerned parents from retribution</td>
</tr>
</tbody>
</table>
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0080
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Amy Stephan
Organization: Safe and Healthy Playing Fields Coalition

General Comment

Thank you for the opportunity to comment on this important proceeding on behalf of the Safe and Healthy Playing Fields Coalition we respectfully submit our comment and supporting material in the attached document. We hope to have the opportunity to provide additional comments and participate directly in this important study.

Attachments

SHPFC FINAL ASTDR 2016-0002-0003Comments
SAFE AND HEALTHY PLAYING FIELDS COALITION
www.safehealthyplayingfields.org
A grass roots coalition working for healthier alternatives for children and communities

INTRODUCTION
On behalf of the millions of children, parents and athletes who play field sports in the US at schools, parks, athletic facilities and playgrounds, thank you for agreeing to study the potential harm caused by playing on or being near athletic fields with surfaces made waste tires. There are more than 12,000 of these playfields in place (15,000 according to the website of a large company that installs them), and they are being installed at a rate we estimate to be about 3000 a year. By our calculations, 12,000 fields currently present 2,380,000 tons or 4,760,000,000 pounds of loose, unencapsulated tire crumb on their field surface. (See our Table of Runoff and Material Volumes attached.) Tens of thousands of students and young athletes play on those fields, many more thousands have direct or indirect contact with the material. It is a public health issue of substantial importance.

The following lists our comments on the proposed study. We argue that the fields present known carcinogenic, neurotoxic, and endocrine disrupting material in a high surface area, pulverized form that is more toxic than whole tires, and should never have been allowed near children, or adults,
because of risk of ingestion and inhalation exposure to all the ingredients in tires. On warm, sunny days the surface temperature routinely reaches over 150°F, which presents direct, well-known heat injury risks to children. The heat increases off-gassing of the tire components, increasing the likelihood of pulmonary exposures, and creates a complex dynamic in the children's exposure zone immediately above a field that has not been correctly modeled or studied yet. The material lacks uniformity, or any regulatory or exposure controls. We assert that it is impossible to assure even a single tire crumb field is free of inhalation and ingestion risk of dangerous particulate and gases inherent in tires, tire crumb, and add-in composites; and that dangerous and unwanted exposures from lead, benzothiazoles, carcinogens, phthalates, carbon black and other harmful substances, can happen with every use. The data gaps are enormous, and we hope CDC/CPSC/EPA will recognize there is no way the tire crumb industry can protect any player, on any field, from the potential for dangerous exposures with normal use. We argue that not enough scrutiny was placed on this material.

NOTE: The Safe and Healthy Playing Fields Coalition is a grass roots group of parents, coaches, scientists, public health professionals, toxicologists, neurobiologists, educators, researchers, plastics engineers, medical doctors, waste management and remediation professionals who donate their own time and skills towards helping communities and individuals assess risks to their communities from tire crumb field use. We do not have a lobbying firm, law firm, hired laboratory, consultant, or revenue-generating source (such as tire crumb), and rely solely on the skill of researchers who donate time to compile our comments. That said, we have found compelling data that refutes almost all claims of safety, and when we asked for additional time to compile the information, we were given two weeks, but denied additional time. Hence, we are working at a
disadvantage, and hope that during this study year, we will have time and opportunity to substantiate our concerns, and share our research with the study officials. One of our comments below explains our requests for a conference or virtual meeting that allows more disclosure and discussion.

Our comments are listed numerically and organized into: 1. General Comments, 2. Characterization and methodology comments; 3. Summary List of requests. A number of supporting documents are also submitted as part of our comments.

PART I: GENERAL COMMENTS:

1. CPSC/CDC/EPA should use their existing authority to immediately enforce regulations on tire crumb playgrounds and athletic fields as a children’s product, since thousands of fields have been installed in child-care facilities and schools that serve hundreds of thousands of children.

2. We have grave concerns about their safety to human health and the environment, since known harmful components in the field material are released into both air and water pathways, and provide ample opportunity for both acute and chronic low to high dose exposures with every use of the field to known toxics such as lead, chromium, mercury, zinc, PAH, VOC, carbon black, styrene, benzothiazoles, and plasticizers. Intermittent ‘Hotspots’ of high levels of toxins such as lead are of particular concern for exposure. (See comments on Characterization). Every tire crumb playground and synthetic turf field has material that is known to cause cancer, illnesses, and injury in humans; and leachate from runoff causes several negative impacts on the aquatic ecosystems. We believe that the potential for human illness (including
several cancers) from both low dose and high dose exposures to the ingredients in tires is staggering. Based on the known potential for exposures to children, and the finding of a group of now over 200 soccer players with cancer (the group represents the reach of a single soccer coach, implying that this group may be the ‘tip of an iceberg’ of affected individuals), an immediate moratorium on new construction of the fields should be put in place with the existing authority of CDC/CPSC/EPA, until the tire crumb fields can be shown to be safe to inhale and ingest.

3. The tire crumb recycling industry, which appears “green” in its efforts to sell millions of used tires in “repurposed” shredded form, in fact enables a direct transfer of the contamination burden of waste tires from landfills/collection sites (in the US and abroad) to the play surfaces of 12,000 schools and sports centers, where tens of thousands of children and adults have direct contact with the toxins in tire crumb materials on the field surface, and these exposures could happen with every single contact.

4. For the most part, the schools and sports centers do not have resources to conduct toxicity due diligence; meaning, they do not have access to a toxicologist who reads the industry studies with their health as the only priority. Purchasers rely on the tire crumb recycling industry statements, industry studies, and industry funded websites that claim toxicology assessment and public health guidance. The sales material can be striking, and the studies appear convincing on the surface, but our study groups have found significantly misleading information about the safety and actual risk of harm from the tire crumb fields to all users, particularly children. They are likely unaware that the previous CPSC claims that the fields are “SAFE TO INSTALL; SAFE TO PLAY ON” have been repealed.
5. **PEER Filings.** Public Employees for Environmental Responsibility have filed a number of complaints and documents that argue for a repeal of endorsements of tire crumb safety from EPA/CPSC, and those statements were in fact repealed; but most schools and potential purchasers are unaware of the removal of endorsements and claims of safety. The PEER filings are an excellent source for telling the toxicity story and regulatory story of this product. We respectfully request that the entire file of complaints and responses to the complaints, and other supporting material be entered into the record for ASTDR 2016-0002-0003.

6. Formal legal requests have been made to classify the tire crumb fields as a children’s product since children use them, and sales and marketing material are very clear about tire crumb fields are for children. **CDC/CPSC/EPA should use their existing authority to explicitly label the fields as children's products.** (Please refer to PEER filings for details and supporting arguments: http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html)

7. **CLASSIC CANCER CLUSTER APPEARANCE: SOCCER PLAYERS**

Parents and schools may have trusted the “Safe to Play” statements, but the parents of the 200 young women and men, who played intense soccer and were stricken with cancer do not trust those claims anymore.
The case of over 200 young soccer players who used tire crumb fields and contracted cancer, strongly indicates a classic cancer cluster, though the cases have not undergone the formal validation process yet. That is because a process for the collection of this information, does not exist yet for either cancer victims, or for other illnesses, head injuries, and heat injuries/illness from the fields.

8. We respectfully request that an official study of the soccer player cancer cluster be initiated by CDC immediately.

Through our activist network, we learned about these cases, which were reported to the NBC news link, or directly to a single, trusted concerned soccer coach. EHHI reported as follows:

“New Cancer Numbers Among Soccer Players on Synthetic Turf, April 2016

It is important to remember that the only people counted in the numbers below are those who have known to call Amy Griffin. There is still no government agency tracking the cancers among the athletes who have played on synthetic turf. We know the actual numbers of athletes who have played on synthetic turf and contracted cancer have to be much greater than those who have known to report their illness to Amy Griffin.

In January of 2016, there were 159 cancers reported among soccer players; now (April 2016) there are 166. Ninety-seven of those in January were goalkeepers; now there are 102. Sixty-one percent of the soccer players with cancer are goalkeepers. As of this writing, 220 athletes of various sports who have played on synthetic turf have cancer; 166 soccer
166 Soccer Players who have played on synthetic turf and have cancer

- 102 are goalkeepers (61% are goalkeepers)
- 64 soccer players with lymphomas, 39 are goalkeepers (61%—over half are goalkeepers)
- 10 soccer players with Non-Hodgkin lymphoma, 7 are goalkeepers (70%—over half)
- 54 soccer players with Hodgkin lymphoma, 32 are goalkeepers (60%—over half)
- 41 total leukemias, 24 are goalkeepers (59%—over half)
- 16 total sarcomas, 7 are goalkeepers (44%)
- 12 thyroid, 9 are goalkeepers (75%—over half)
- 11 brain—5 are goalkeepers (45%)
- 9 testicular—6 are goalkeepers (67%—over half)
- 4 lung—3 are goalkeepers (almost all are goalkeepers)

Remaining are OTHER rare cancers.”

Source: Various; Victim parent volunteers, EHII primary collection; 4/2016 (ongoing)

All the victims were frequent users of turf fields, spending multiple hours a week in close contact with the material in the fields. All were in their mid-twenties or younger.

9. The self-reporting to a trusted coach, is also an indication that the actual illness rates are not yet being properly assessed or managed by any hospital, medical system, or group; there is no “home” for this information, yet. The 200+ cancer victim count is likely the reach of a single coach with the help of a link in broadcast media, and a fraction of the
actual count of victims of cancer or other serious illnesses. Better investigation and creating a “safe” place to report serious and intermittent illness will uncover many more victims, and provide needed perspective on the accuracy of risk assessment for this product.

10. The CDC and appropriate agencies should issue a directive asking for adequate screening for injury and disease. That US hospital and medical systems are not yet set up to collect this data is a contributing factor; and concurrently, screening for synthetic field use should be part of a responsible screening protocol. To our utter dismay, we learned from pediatric oncologists in our group that at least some oncologist are prohibited from screening victims/patients for tire crumb field use; the screening must be part of the approved protocol, and tire crumb product is not yet included.

11. In fact, the number of all injuries from tire crumb fields should be collected and analyzed to include, but not be limited to: head injury and concussion; joint injuries (multiple); heat injury; blood cancer; lymphomas; testicular cancer; pulmonary illness; neurological impairment; kidney disease; diabetes; brain disease and cancers. These findings need to be documented, and the children who suffer from them should be screened for tire crumb field use and proximity. No doctor or oncologist should be prevented from asking questions, screening for, or questioning the safety of this product or contact with this product. We believe there are many more heat related illnesses, head injuries, and endocrine system disruptions directly resulting from exposure to the fields than what is being reported.

12. REQUEST MORE INVESTIGATION INTO EXISTING AND POTENTIAL CANCER CLUSTER: We ask that the multiagency group takes steps to
expedite the process of collecting epidemiological data and verification of the current soccer player cluster, and other potential clusters, to include field maintenance workers who rake the fields, field installers who pour the millions of pounds of material onto field surfaces, school custodians, high contact users of any kind, and school children in buildings adjacent to the fields. Residences near the fields should be considered in the scope of the study or subsequent studies. In our own informal assessment, and using the SEER database and known levels of cancer victims, we found the potential for 7-11 cancer clusters. We respectfully ask the CDC experts to look into this possibility and take the necessary steps to prevent additional injury and cancers.

13. NEED FOR EXPLICIT PROTECTION FROM RETRIBUTION: Sadly, the families, coaches, and school leaders who have reported illnesses do so with concern for retribution from the tire crumb industry, school boards, university administrations, and even sports league administrators, and may need explicit protection and remedy against retribution. Researchers who study the potential for harm tell us that they do not have protection from retribution from tire crumb field industry proponents. Public health and medical professionals sometimes make statements of concern anonymously to protect themselves from retribution—professionally and personally from industry proponents. Adequate protections need to be established to protect the professionals and parents who speak out.

14. PROTECTION FOR CHILDREN IS NOT A COST-BENEFIT ANALYSIS. Children have a unique vulnerability to toxic exposures—both intermittent high exposures—and to low dose exposures, and if we are aware of a carcinogenic presence, then we are responsible for using a precautionary principle, and removing that exposure risk. With due respect, this is not a
cost-benefit analysis that will show a percentage of children will get sick (cost) vs. tournaments played or jobs created (benefit). It is a decision made by a civil society that upholds protection for children’s health above all other industry priorities, and a recognition that tens of thousands of children, if not hundreds of thousands, are already being exposed to material with known carcinogenic, and harmful materials on school turf fields.

15. The CDC/CPSC/EPA should recognize that the fields serve children, acknowledge that there are zero safety controls on the material and the potential exposures, and immediately acknowledge tire crumb fields as children’s products, and use your existing authority to regulate them as children’s products. Therefore, we emphatically REQUEST THAT THE CPSC/EPA/CDC USE EXISTING AUTHORITY TO IMMEDIATELY CLASSIFY ARTIFICIAL TURF AS A CHILDREN’S PRODUCT, SINCE THOUSANDS OF CHILDREN ALREADY USE THE FIELDS, IN THOUSANDS OF SCHOOLS.

Since children and adults are already being exposed on tire crumb fields to the materials in tires, we ask for an immediate moratorium on further construction of tire crumb based or recycled rubber based artificial turf fields until adequate assurances that tire crumb particulate, off-gassing, and combinations are safe for children to inhale and safe for children to ingest.

Your three agencies do not need to conduct a study to know with absolute certainty that tires were not designed to be inhaled by children, and we should protect children, at any length, from chronic or lose dose carcinogenic exposures.
Even if we cannot model or know (or will we ever know) the exposures to each child, each day (and we will never know), we do know with certainty that:

1. Carcinogens are in tires.
2. Shredded, pulverized tire crumb contains everything in tires, and more ingredients, including: carbon black, phthalates, VOCs, PAHs, benzothiazoles, lead, chromium, zinc, nanoparticle additives, proprietary additives, 12 known carcinogens, 90 materials known to be harmful to human and environmental health, (EHHI)
3. The material can be inhaled when playing and ingested with contact, or intermittent adjacent contact.
4. Every single direct or indirect use has the potential for exposure to hotspots and low dose chronic exposures to multiple scenarios of these materials.
5. The exposures could impact children, school buildings, and surrounding areas; contamination travels to cars, homes, and even children’s bedrooms.
6. It is both within the authority and the responsibility of your three agencies to take immediate action to protect the public, especially children, from known carcinogenic, pathogenic exposures.

Only a complete moratorium on their use will protect the millions of children, athletes and bystanders from inhalation and ingestion of the materials that yield from tire crumb synthetic turf fields.

16. It is also evident that tire crumb will never be safe unless ALL tire ingredients, all “recipes”, the manufacturing of tires, and then preparation of materials for fields are controlled from a toxicity perspective. This level of voluntary cooperation from the tire manufacturing industry will, of course, never happen.
17. **ONLY UNIFORM MATERIAL SAFE TO INHALE AND INGEST IS APPROPRIATE FOR SCHOOL FIELDS; UNTIL THEN, A MORATORIUM.**

When the play surface material is uniform, consistent, and controlled, when it is tested by an adequate study with pediatric toxicology assessments to be safe for ingestion and inhalation, and results are peer reviewed following IRB standards, then we may consider a synthetic turf field might be safe. Until then, tire crumb should be rejected from any casual or unnecessary contact with children or adults.

18. **RECONSIDERATION:** A reconsideration of the moratorium could occur when the industry can demonstrate a uniform, non-carcinogenic, non-inhalable, non-ingestible alternative that does not present PAH, VOCs, phthalates, lead, chromium, mercury, 1,3-benzothiazoles, butadiene, styrenes, carbon black (in particulate, gaseous form, or any form to children); and the product undergoes strict, peer-reviewed study by independent qualified toxicologists who have a mandate to protect children’s health and the health of the environment above the interests of industry. The hypothetical product should be subject to regular reviews and quality control determinations to ensure safety over the life of the synthetic field. Safety Data Sheets should be provided and accessible for every user. If waste tires are used, the controls requested above will never be possible, since the tire material, by definition, is a composite of many toxins in unknown quantities and with unknown impacts.

PART TWO: CHARACTERIZATION OF TIRE CRUMB COMMENTS

1. **SCALE AND SCOPE:** Tire crumb potential to individuals, buildings, surrounding areas and stormwater for contamination is enormous.
2. PUBLIC HEALTH ISSUE: SCALE AND SCOPE CONCEPTS

The potential for contamination from tire crumb is a growing public health issue, in terms of the relative size of the product and its mass; the total number of potential fields; and their basic contact with students, athletes, school personnel, buildings, communities, and streams/storm water.

To give an idea of the existing volumes of material, the field runoff and children affected or who may be affected, we have developed reference tables, and the summary is attached to this filing. These tables indicate the scope and scale, and demonstrate that these are not isolated fields, nor tiny exposure potentials. The quantities of material are enormous. The source and reasoning is explained, but the tables are designed for your model development and quick reference.

3. ENORMOUS QUANTITIES ON EACH FIELD SURFACE.

To give an idea of the scale, a modest soccer field uses 30,000 waste tires. According to a randomly selected company selling packaged tire crumb infill for original or replacement treatments, 30,000 tires makes about 396,667 pounds of material. According to our calculations, the volume for 2” thick field is about 525 cubic yards. However, a large football field, three times the size of a small soccer field, could use 1,000,000 pounds of tire crumb material.

4. The tires are shredded, pulverized into crumb of various sizes, and the shredded material is poured on top of a plastic “grass” carpet. Importantly, the material is loose, unencapsulated and can loft into the air when struck by a ball or foot, or body. We estimate that, depending on the school, each field has regular, daily contact with at least 1000 athletes and students. At
sports events, busy tournaments, or with active use, a field can have contact with many, many more.

5. No fields we found have mandated capture of the leachate or particulate at the field.

6. TOTAL FIELD VOLUMES POTENTIAL:. The universe of potential tire crumb playfields is approximately 200,000 - 220,000 schools and athletic facilities in the US, based on number of schools. The potential reach of exposure from use of these fields is in the millions of children, millions of adults, hundreds of thousands of exposed buildings and adjacent soils, and hundreds of thousands of public easements and storm water access points (we estimate 1:1 ratio for field to point source drainage).

7. TABLE RUNOFF AND VOLUMES: SUMMARY OF KEY METRICS

For reference, we analysed fields by sport type, by Metropolitan Service Area, and calculated the volumes for rainfall (by city), and for amount of tire crumb material on a field surface.

Key metrics are the following:

- Estimated tire crumb per 85,000 sq feet field and 2” deep tire crumb infill is 525 cubic yards, 396,667 pounds, or 198 tons per field.

- The total amount of tire crumb material on surface of 12,000 fields is estimated to be 6,296,296 cubic yards, or 4,760,000,000 pounds or 2,380,000 tons that are currently in sports centers and schools in April 2016.
• Runoff is calculated by city and field size, but the total runoff for fields in the top 50 MSAs is 15,006,99,787 gallons.

• Total Runoff for 12,000 fields based on number of fields per MSA, accounting for rainfall in that MSA, and added together for 2016 is: 23,370,639,827 gallons... for a single year.

The calculations were made to illustrate the scale and scope of this product, and to characterize the reach of exposures from the field surface into the airway, and into the water pathway.

8. INGREDIENTS IN TIRE CRUMB: Lack Of Uniformity, High Variation, Multiple Toxins

Tire crumb appears to be a composite material, heterogenous with multiple known carcinogens, pathogens, and mutagens. The material is not uniform, comes from multiple sources and lots, and can be mixed with plastics and materials of unknown origin. The material can have anticlumping agents, flame retardant additives, paint, and strengthening or characteristic enhancing additives. Shredding of tires can cause small pieces of steel or metals to be included in the material from steel belted tires. Some tire crumb is from newer depositories from recalled tires, some from landfills, and some have been subjected to a variety of weather and conditions. Leachate and off gassing could be variable, with the expectation that newly installed/poured material off-gassing is higher than from an older field, but we expect those rates would vary with the age of the tires from which the tire crumb was made.
9. HETEROGENEOUS, MULTIPLE TOXINS, UNKNOWN ORIGIN: To say that tire crumb infill comes from multiple sources, is an understatement: dispensaries, landfills in the US, landfills abroad, collection centers, factory waste from China, factory waste from the US and abroad. Some of the newer marketed blends included multi colored sport shoe waste, shoe factory waste, and many unidentified synthetic materials. Just as tire companies may add anything to their “recipe” for a tire, an infill provider may offer materials that could have anything added into the blend. Tire plugs, tire polishes, tire coatings, and materials picked up on the roads should be considered. And even if it is known that there are only tires in the blend, there is a broad variation in the ingredients based on the use of the tire, and the manufacturer. Those tires may look the same, but from a toxicity standpoint their variation and the unknowns in the “recipe” create a margin of uncertainty that makes any claim of known safety for inhalation or ingestion impossible. If a vendor says he or she knows what is in a lot of tire crumb, and that is known to be safe, then they ignored the materials in the product. Since we never know what is in any field for sure, and if we know that they have tire crumb, they cannot be demonstrated safe for children to inhale, ingest, nor play upon.

10. What Is In Tires? SOME GROUPS WENT LOOKING

Since it was difficult from MSDS or any other source to identify the components in tires or tire crumb, some groups studied them directly.

11. Environment and Human Health Inc, and Yale University Study

EHHI, Inc. in cooperation with Yale University studied samples of rubber mulch, and new tire crumb with the intent of characterizing their ingredients.

The summary text of their characterization study is found here:
The EHII/Yale Study list of components found is explained this way:

The shredded rubber tire playground mulch samples tested were provided by the manufacturer and were purchased in new bags of rubber mulch for use in gardens and playgrounds. The rubber tire infill for synthetic turf fields was obtained as new infill material from installers of synthetic turf fields. There were 5 samples of infill from 5 different installers of fields and 9 different samples of rubber mulch taken from 9 different unopened bags of playground mulch.

RESULTS There were 96 chemicals found in 14 samples analyzed. Half of those chemicals had no government testing on them - so we have no idea whether they are safe or harmful to health. Of those chemicals found that have had some government testing done on them these are the findings with their health effects.

TWELVE (12) KNOWN CARCINOGENS

2-Mercaptobenzothiazole/ Carcinogen, toxic to aquatic life
9,10-Dimethylanthracene/ Carcinogen, respiratory irritant and can cause asthma
Bis(2-ethylhexyl) phthalate/ Carcinogen, may cause damage to fetuses
Fluoranthene / Carcinogen, Fluoranthene is one of the US EPA’s 16 priority pollutant, A PAH.
Heptadecane/ Carcinogen
2-mercaptobenzothiazole / Carcinogen

Phenol, 4-(1,1,3,3-tetramethylbutyl)/Carcinogen

Phenanthrene/ Carcinogen - A PAH

Phthalimide/ Carcinogen, skin, eye and lung irritan. A Fungicide

Pyrene, 1-methyl- /Carcinogen

Tetratriacontane /Carcinogen, eye and skin irritant. Can cause systemic damage to central nervous system.

Pyrene/ Carcinogen, toxic to liver and Kidneys, a PAH

Carbon Black/ Carcinogen

Carbon Black makes up to 20% to 30% of every tire. It is used as a reinforcing filler. Carbon Black is listed as a carcinogen by the International Agency for Research on Cancer (IARC).

Carbon Black, as such, was not analyzed by the Yale Study because Carbon Black is made up of a number of chemicals – some of which were found in the Yale study.

Carbon Black is not one chemical -- it is made up of many chemicals - often of petroleum products. Furthermore, carbon black has no fixed composition, even of the many compounds it contains. Carbon black from different sources will have differing compositions. In our method, carbon black will register as a series of substances extracted from it. There is no carbon black molecule, it is a mixture.

TWENTY (20) KNOWN IRRITANTS
1,4-Benzenediamine, N-(1,3-dimethylbutyl)-N’-phenyl-
Irritant - causes skin and eye irritation, toxic to aquatic life

1,4-Benzenediamine, N-(1-methylethyl)-N’-phenyl-
Irritant - causes skin and eye irritation, toxic to aquatic life

2(3H)-Benzothiazolone
Irritant - causes skin and lung irritantation

2-Dodecen-1-yl(-)succinic anhydride
Irritant - causes eyes, skin and lungs irritation

3,5-di-tert-Butyl-4-hydroxybenzaldehyde
Irritant - causes irritation to eyes, skin and lungs.

Anthracene
Irritant - causes skin, eye and respiratory irritation. Breathing it can irritate the nose, throat and lungs causing coughing and wheezing.

Benzenamine, 4-octyl-N-(4-octylphenyl)-
Irritant - causes eye and skin irritation

Benzenesulfonanilide

Considered hazardous, very little testing has been done on it.

Benzothiazole, 2-(methylthio)-
Irritant - causes Skin and eye irritation.

Dehydroabietic acid

Toxic to aquatic organisms

Docosane
Irritant - causes Skin irritation

Hexadecanoic acid, butyl ester

Irritant - causes eye, skin and lung irritant. Can cause reproductive effects.

Methyl stearate

Irritant - causes eye, skin and lung irritation.

Octadecane

Irritant - causes skin, eye and respiratory irritation

Octadecanoic acid also known as Stearic acid

Irritant - causes skin, eye and respiratory irritation

Oleic Acid

Irritant - causes skin and eye irritation

Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-ethyl-

Irritant - causes skin, eye and respiratory irritation

Tetradecanoic acid

 Toxic to aquatic organisms. Skin and eye irritant.

Anthracene, 2-methyl-

 Acute aquatic toxicity, Not much data available - what there is shows it to be an eye, skin and lung irritant

Anthracene, 9-methyl-

Acute aquatic toxicity, serious eye irritant
13. Carbon Black

Carbon black plays an extraordinary role in tires, and in their toxicity and potential for harm from exposures. Well known from decades of air pollution studies, urban epidemiological studies, airborne carbon black causes lung cancer, brain cancer, kidney cancer, heart disease, neurological disorders, and cognitive degenerative disease.

A known carcinogen (WHO), we have found variations in percentages of the amount of carbon black in a tire, from 30%-68%. (EHHI/Yale Study; NY STUDY, .pdf, pp19-20.) Carbon black breaks down into many sized particles, including PM10/PM2.5 and potentially smaller. That size particle was shown to cause several types of cancer, including brain cancer, kidney cancer, kidney disease, bladder cancer, and neurological disease and cognitive impairment disorders. (CITE; Harvard Mexico Studies and Urban Cohort Studies).

14. THE NY STUDY CHARACTERIZES TIRE CRUMB THIS WAY:

“The components of Firestone’s and Dow Chemical Company’s rubber are summarized in technical specification documents. Although they are only two of many different rubber manufacturers, a similarity between the two vendors is readily apparent, even between three different types of rubber, solution-SBR, cold polymerized emulsion SBR, and high cis2-4 polybutadiene rubber. In general, the following similarities were observed between the two manufacturers for the compounds used to produce the rubber:

- The polymer used to produce solution-SBR contained approximately 18-40% bound styrene.
• The oil content in the polymer ranged from 27.3-32.5% in solution-SBR and cold polymerized emulsion SBR. Oils used include aromatic oil, high viscosity naphthenic oil, and treated distillate aromatic extract oil.

• Besides the polymer used, the other components of the rubber were similar between manufacturers and the relative proportions (parts by weight) of these other components ranged as follows:

 o Carbon black: 50.00 – 68.75
 o Zinc oxide: 3.00
 o Stearic acid: 1.00 – 2.00
 o Sulfur: 1.5 – 1.75
 o N-tert-butyl benzothiazole sulfonamide (TBBS): 0.9 – 1.50
 o Naphthenic or aromatic oil: 5.00 – 15.0

The components summarized above are the principal components of the major type of rubber (SBR) used for the manufacturing of crumb rubber and therefore have the potential to have a significant presence in crumb rubber. As discussed in subsequent sections of this report, some of these components have been found to be prevalent in crumb rubber, including zinc (from the zinc oxide), benzothiazole compounds (from TBBS), and PAHs (possibly from the oils used). These compounds may be attributed to the SBR used in the manufacturing of crumb rubber.”

16. ZINC
Coastal Marine Resource Center Study, found levels of zinc in leachate from tire crumb fields with fatal impacts to an aquatic ecosystem within 48 hours.

Menichini and Abate Study: “Zn concentrations (1 to 19 g/kg) and BaP concentrations (0.02 to 11 mg/kg) in granulates largely exceeded the pertinent standards, up to two orders of magnitude”. “Zinc and BaP concentrations are high in rubber largely exceeding the Italian soil standards”.

17. METALS: MERCURY, CHROMIUM, ARSENIC

The highest median values were found for Zn (10,229 mg/kg), Al (755 mg/kg), Mg (456 mg/kg), Fe (305 mg/kg), followed by Pb, Ba, Co, Cu and Sr. The other elements were present at few units of mg/kg. The highest leaching was observed for Zn (2300 µg/l) and Mg (2500 µg/l), followed by Fe, Sr, Al, Mn and Ba. Little As, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Rb, Sb and V leached, and Be, Hg, Se, Sn, Tl and W were below quantification limits. Data obtained were compared with the maximum tolerable amounts reported for similar materials, and only the concentration of Zn (total and leached) exceeded the expected values.

18. LEAD, POLITICS and CHILDREN

The problem is synthetic turf is NOT REGULATED as a children’s product by the CPSC thwarting the ability to apply lead regulations that CPSC could enforce.

Lead was identified in synthetic turf fields as early as 2008 but was not
addressed in any systemic way due to lack of standards or required testing (although the CPSC could have required the testing mandated for children’s products since 2008). The CPSC has chosen not to mandate this children’s product testing for synturf and in fact advised the industry about not having it designated as a children’s product <http://parentscoalitionmc.blogspot.com/2009/03/artificial-turf-tale-of-lead-levels.html>.

This has led to a "buyer beware" situation especially after the CPSC tested synthetic turf carpets, found lead at varying levels depending on sample age, and astoundingly concluded the whole synthetic turf system was, always and everywhere, safe not just for adults but for children. The assumptions were based on inappropriate modelling for blood lead levels from a meager sampling and the troubling finding presupposes that there is, a safe level of blood lead, which most pediatricians and lead experts agree there is not safe level.

To this day the synthetic turf industry cites the still CPSC-posted "OK to Install, OK to Play on" press release which should never have been posted to begin with, has been disavowed, in front of US Congress, by CPSC commissioner Kaye and is an embarrassment to government science, policy and public health <http://www.cpsc.gov/en/Newsroom/News-Releases/2008/CPSC-Staff-Finds-Synthetic-Turf-Fields-OK-to-Install-OK-to-Play-On/>.

19. The Centers for Disease Control (CDC) in contrast warned and continues to warn that "there is no safe level of lead" to expose children to.

http://www.cdc.gov/nceh/lead/>

“No safe blood lead level in children has been identified.” Lead exposure can affect nearly every system in the body. Because lead exposure often occurs with no obvious symptoms, it frequently goes unrecognized.”

"Synthetic turf can deteriorate to form dust containing lead at levels that may pose a risk to children. Given elevated lead levels in turf and dust on recreational fields and in child care settings, it is *imperative that a consistent, nationwide approach for sampling, assessment, and action be developed*. In the absence of a standardized approach, we offer an interim approach to assess potential lead hazards when evaluating synthetic turf."

21. *But no such approach has ever been instituted.* Indeed as reported in USA today this year: "The CDC in 2008 said communities should test recreational areas with turf fibers made from nylon, and they should bar children younger than 6 from the areas if the lead level exceeded the federal limit for lead in soil in children's play areas. But some communities have refused to test their fields, fearing that a high lead level would generate lawsuits or force them to replace and remove a field, which costs about $1 million, according to a 2011 New Jersey state report. Forty-five of 50 New Jersey schools and towns contacted in 2009 by epidemiologist Stuart Shalat would not let him test their turf-and-rubber
fields, Shalat's report states. The EPA also found, in 2009, that "it was difficult to obtain access and permission to sample at playgrounds and synthetic turf fields."<http://www.usatoday.com/story/news/2015/03/15/artificial-turf-health-safety-studies/24727111/>

22. And for the past 2 years the company FieldTurf has, with impunity, noted its synturf fields contain lead during testimony on various bills in the Maryland State House.

The latest admission documented on video:

"...asked point-blank by one delegate, “Is there lead in your products? The executive answered, “There’s lead in a lot of things in this world.” ... "**Yes, there's lead in our products.**" In spite of this admission and the fact that the legislation in question was meant to post the CDC prescribed warnings about minimizing lead and other toxin exposures from the synturf and tire waste products, and in spite of the fact that the legislation had strong and broad input and support, the legislation was not even allowed to come up for a vote in committee by the committee chair.

23. **Public Employees for Environmental Responsibility compiled the literature as of early 2012 on lead**

see: <http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html> and specifically: 2012-07-12_lead-limits-needed-on-tire-crumb-playgrounds (NOTE if you go to PEER.ORG news releases: click on public health and "artificial turf" to find the actual filings with many links)
Unfortunately for the children, fields with high lead remain. But those responsible for protecting children are kept in the dark. NO ONE IS MONITORING OR REGULATING ARTIFICIAL TURF FOR LEAD OR OTHER TOXINS in either old or new fields, including the Consumer Product Safety Commission (CPSC) (see <http://www-peer.org/news/news-releases/cpsc-drops-artificial-turf-playground-safety-review.html> Even though the Chairman of the CPSC, recently admitted to congress that its soothing conclusions of safety after finding lead in synthetic turf were NOT correct.

Tested fields keep showing up with lead in them both old AND NEW. Some tested fields have little or no lead, some high levels and some have both within the same field. There is no way of knowing if any of the components of a field contain lead, and how much without stringent and thorough testing of each field.

This problem highlights the need for application of the designation as a children’s product for testing and regulation: 1) stringent testing of all the colors and of the backing of the carpet for total lead content (chromium and cadmium should also be tested for) AND 2) Testing many samples of the infill which is an ever-changing witch’s brew of chemicals - so undetectable, low and very high levels can all be found in the same field. In addition to having testimony both last year and this year in the MD state chambers from Field Turf that their product DOES indeed contain lead (as heard in the recent committee testimony on MD house Bill 883), and in addition to those referenced in the PEER review, other studies on lead also exist.

24. For a helpful media article on Lead in artificial turf which cites scientists and studies that the synturf industry avoids please go to:
For example as reported in that article:

Dr. Shalat’s New Jersey State Study (2012) on artificial turf found lead in the field dust in the respirable air space of a robot and real player- highly variable but sometimes very high (note most facilities would NOT LET THEM TEST).

25. PEER writes: The concerns about lead exposure have taken on a new urgency following the release in June of 2012 of a study done for the New Jersey Department of Environmental Protection which found artificial fields made of tire crumb can contain highly elevated levels of lead much greater than the allowed levels for children:

 a)· It reports "concerns with regard to potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial fields"; and

 b) *"Inhalable lead present in artificial turf fields can be resuspended by even minimal activity on the playing surface."*

26. Dr. Lioy of Rutgers who is quoted in the USA Today article recently participated as the senior author in a study which found lead and other toxins in the BOTH the plastic rug (supplied to them by the industry) and tire crumb infill. LEAD was also was found in simulated body fluids meaning there is little or no protection of any kind against the lead getting
out of the material into the body.

27. Pavilonis Study found lead.

"Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers", Brian T. Pavilonis1, Clifford P. Weisel1, Brian Buckley1, and Paul J. Lioy1

QUOTE from Pavilonis et al.: "Since it is possible that children may be exposed to potentially high concentrations of lead while using artificial turf fields we recommend, at a minimum, all infill and fibers should be certified for low or no lead content prior to purchase and installation."

The main outcomes of concern from Pavilonis et al:

a) the finding of lead, and chromium in both the tire crumb and the plastic rug and simulated body fluids at sometimes extremely high levels *EVEN IN NEW FIELD CARPETS.*

b) Benzothiazole derivatives and 4-(tert-octyl) phenol were also found in the simulated body fluids. Both are probable carcinogens (the subject of another fact sheet).

QUOTE: "Lead was detected in almost all field samples for digestive, sweat, and total extraction fluids with digestive fluid extract of one field sample as high as 260 mg/kg. Metal concentrations were not markedly different across the three different sample types (new infill, new turf fiber, tire crumb field sample). However, one of the *new* turf fiber samples contained
relatively large concentrations of chromium (820 mg/kg) and lead (4400 mg/kg) compared to the other samples tested...the variability of lead contained in the infill material is large and can span more than two orders of magnitude*. One field [tire crumb] sample did contain a high lead level (260 mg/kg) which was on the same order of magnitude as the NJ DEP cleanup value (400 mg/kg)."

In summary: Lead-free is the only acceptable level for child products (and indeed for people in general). There is NO safe level of lead for children. And yet many of our children are playing often, if not daily, on fields that may contain lead and certainly do contain many other toxic substances. Finding ANY lead in any play area for children of any age is unacceptable. As the CDC notes: Every effort should be made to eliminate ALL unnecessary sources of lead in the environment, especially a child's environment. *Lead in artificial turf is not only totally unnecessary but dangerous to health AT ANY LEVEL*.

28. Other sources of information on Lead in tire crumb fields:

www.safehealthyplayingfields.org<http://www.safehealthyplayingfields.org>

www.synturf.org<http://www.synturf.org>

At www.synturf.org, a sampling of findings of lead on fields is available on the page on lead:

No. 35] Durham, New Hampshire: Lead scare at UNH, s Memorial Field.
November 2012.
No. 34] Beware of lead content in exotic color artificial turf fields!

September 2012.
No. 33] Odessa, Texas: Eager fans will not be given pieces of the artificial turf field. September 2012.
No. 31] UNLV researcher spreads word about the need to test artificial turf fields. December 2010.
No. 29] Concord, Mass.: Town replaces fake grass fields, officials insist nothing is wrong with the lead levels! July 2012

28. TWELVE (12) CARCINOGENS found and HOW DO THEY INTERACT:
The Yale Study identified the presence of so many carcinogenic materials in a single material that it raises many more questions about interaction of PAHs with metals, and combination impacts. The interaction of the PAHs and benzothiazoles with other materials in the fields needs to be characterized and addressed

29. Strengthening Additives: Nanoparticles
We would also ask for information and clarity about tire strengthening additives of any kind that were built into the material anytime in the past 30 years, these would have been added to tires.
[http://nice.asu.edu/nano/carbon-black-and-amorphous-silica-tires]
Similarly, we request that the tire manufacturing industry explain their use of nanoparticle products, of any kind, including the type and size, source company and source country, and ask for an explanation about how:

a. they can be quantified in the product, and
b. how can they be cleaned up if they are released when the tire crumb and or plastic “grass” carpet degrades?
c. We would also like to understand what material characterization of their behavior in tires performance,
d. And or their behavior once they are released into the environment.
e. We ask for any epidemiological due diligence that was conducted by any tire company on nanoparticle use prior to using them in a commercial product.
f. Plans for continued use and safety precautions tire companies will impose upon themselves
g. Epidemiological studies conducted on these particles in tires

30. Plastics, Microplastic Fibers, Microbeads, and Small Particulate Plastics

Assessment of microfiber particulate and small particulate plastics needs to be assessed in characterization studies.

31. Flame Retardants

Flame retardants can be added to a tire in production, or applied post production in a shipping setting or possibly as tire crumb. Since flame retardants are known carcinogens with health issues of concern, and will be on the surface of the waste tire crumb, tire infill providers need to know
if they are present, and purchasers need to know that the material contains flame retardants prior to purchase.

32. **Tires and Tire Crumb Additives**
Myriad products exist to clean, protect, condition, and color tires. We wonder if they are components of tire crumb?

33. **Road Waste Picked Up By Tires**
Tires spend their lives on roadways, of course, and can pick up many materials in their travels. Debris, hydrocarbons, …

34. **CARCINOGENIC, PATHOGENIC, Endocrine disrupting and other harmful ingredients in tires cannot be removed by shredding tires into tire crumb and must be assumed to be accessible.**

35. **Tire crumb and repurposed rubber appear to be the same thing, with interchangeable use... but are they the same? We would like clarification.**

We would like clarification about the distinction between the tire crumb, repurposed crumb rubber, and crumb rubber. Specifically if using the term “repurposed rubber crumb” implies uniformity of ingredients? Does that term imply tires are not used? If so, what are the ingredients in repurposed rubber crumb and how do they differ from tire crumb?

36. **We would also like access to all MSDS/SDS of tire crumb manufacturers and tire companies**, and the ability to ask questions about how and where they were made, variations on lots, source and composite addendums. It is difficult to locate them.
37. **EXEMPTION ON LISTING HAZARDOUS MATERIALS:** We would like to understand why tire companies have an exemption on their need to list ingredients under Section 2: Hazardous Materials of an MSDS/SDS. We were unable to find the source of that exemption, if it has a deadline, and whether your study group thinks it is an obstacle to understanding and characterizing risk of exposure from tires and tire crumb.

38. Of those MSDS that we located, several, like this Michelin North America Material Safety Data Sheet for Michelin, Uniroyal, BF Goodrich, says in “**Section 2 HAZARDOUS INGREDIENTS: Note: Tires meet the definition of article as defined by the OSHA Hazard Communication Standard (29 CFR 1910.1200) and are exempt from MSDS requirements.**”

There was clearly no mention of 1,3 butadiene, carbon black, POHs, VOCs, benzothiazoles, or any plasticizers, nor metals, styrene, sulphur, known irritants, or well... anything. Since that section also outlines corrosive, combustible and waste treatment, it is important for more than this issue. We explicitly ask CDC/CPSC/EPA if they can use their existing authority to require tire crumb companies and tire companies to provide ingredient information.

39. **SOURCE MATERIAL UNKNOWN: MSDS/SDS CANNOT REPRESENT WHOLE FIELD.** Tire crumb comes from many tires, and many sources. Since not a single tire crumb field can accurately list or track which tires were source materials, or what other mixed in components, and there is no accountability from tire crumb recycling industry for the shredded product, then MSDS/SDS cannot be accurate for a whole field due to variability. Therefore, the burden of “proof” of risk lays squarely on the ability of the purchaser (schools, sports directors, booster clubs) to assess risk... of a
very very complex product. So, if the exemption stays in place, we will know for sure that we cannot know what is in a tire crumb based field.

40. TREATMENT TO SHOW NO PARTICULATE OR BREAKDOWN: SHOW US.

As for studies that claim that their product has been treated (such as cryogenic treatment) to not break down into dangerous particulate, we are deeply skeptical, and would ask for proof. We also ask for assay testing over a period of at least several summer weeks. We ask for the researchers to simulate the pounding over 10 years and assess the particulate characteristics and particle size. That testing in fact is being done right now... in thousands of children across the country. Simple observation on a player body, on the sideline benches, or under a microscope shows consistent breakdown into particulate.

41. SHREDDED, PULVERIZED, HIGH SURFACE AREA FORM OF TIRES and ADD INS is LIKELY MORE TOXIC THAN WHOLE TIRES.

Unfortunately, because it is shredded, pulverized, and in loose and unencapsulated form, tire crumb has exponentially more surface area than whole tires (Thomas, Gupta study;) and we are concerned the material is very likely more toxic--possibly many times more toxic--in the school field form than whole tire form, since the increased surface area provides more opportunity for molecules to escape. We know for sure that the increased amount of surface area in tire crumb makes the material in tire crumb more available to the breathing and exposure zones, and to runoff.

42. CRUMB IS SURROUNDED BY DUST PARTICULATE:

Accurate characterization technique must include a study of the particulate that surrounds tire crumbs, and steps must be taken to make sure that the
sampling process does not inadvertently remove that dust and particles. We found several examples of the samples being washed, some in unbuffered water, prior to their analyses being done. Of course, that removes the particulate that concerns us the most. Distribution of the particulate size and type is important. Those particulate can become aerosolized by numerous gases and we ask that attempts are made to properly model this dynamic under high heat conditions, primarily.
43. **VERY COMPLEX PICTURE From TOXICOLOGY PERSPECTIVE**: Tire crumb material is complex from a toxicology perspective, largely due to the chemical complexity presented by multiple known toxic components and variation. It has been described as a “toxic soup” of ingredients for which we have no consistent data on proportions or levels. Characterization of ingredients’ margin of error is unknown.

Testing must be done at the field levels using accepted sampling plans that have been statistically shown to be valid. Not fields have been tested in sufficient detail to determine or rule out any exposures or risks. A look at testing protocols for lead in urban soil sites illustrate the level of attention required and show the degree that current testing has fallen short of that needed for decision making for children’s health.

44. **CONTACT PATTERNS, FIELD USE and ADJACENT BUILDING CONTAMINATION**

Exposure is likely determined by ingredients in surface, activity, and number of children or users on field. Each school or community field has high use and high contact patterns, such as hosting contact sports, like football, lacrosse, soccer, and baseball, athletic camps, workshops and practices. In those sports, children dive into the field materials. As a child runs or skids or slide tackles, a column of material rises up, as does the dust and particulate that surround the tire crumbs themselves.

Testing for exposure need to list weather conditions including humidity, wind speed, and precipitation, temperature on field surface and ambient air temperature. Number of children on field, and activity level of that play needs to be recorded, video would be most interesting.

Children of all ages use the fields for multiple sports, recreation and school events. Artificial turf tire crumb fields abound in elementary schools and at
indoor and outdoor sports centers where children of all ages and all stages of development play soccer, lacrosse, football, track, cheerleading, band, and use the field for general recreational school activities. In the fields with which we are familiar, families with members of all ages use the fields; and the community holds events, picnics, special fairs, and activities. Some fields are immediately adjacent to a school building. That there are many uses, and probably many levels of contact and exposure is an important part of characterizing exposures, but both low dose exposures AND high contact exposure scenarios and use need to be examined, with appropriate epidemiological process.

45. SCHOOL BUILDINGS AND SURROUNDING AREAS ARE CONTAMINATED with a great deal of tire crumbs. The fields appear to lose from 1-30 tons of material over their 8-10 year life, and some of it goes directly into buildings, cars, and then homes. This impact needs to be studied as an inadvertent consequence.

46. CANNOT ARGUE NO INHALATION OR INGESTION RISK or SAFETY FOR EVEN A SINGLE FIELD. We argue that given the unique characteristic of nonuniformity, known carcinogenic materials, breakdown into particulate/dust, no known source of origin, and no accurate studies on complex interactivity of those components in the children’s exposure zone, in the tire crumb as it is installed today in 12,000 fields, not a single field installer, nor material provider can demonstrate that the material is safe from inhalation and ingestion during normal use, active use, and on hot days.

47. EVERY USE COULD POSE A TOXIC EXPOSURE and it would be irrational to argue otherwise. We argue that due to the high variability of toxins in the tire crumb substrate (from tires, unknown additives, and
factory waste add-ins), and lack of any control of the material, well-known sampling techniques will NOT accurately predict risks to human health.

48. CHILDREN CANNOT AVOID THE EXPOSURES: Since school children cannot self-advocate and take responsibility for staying off a field if directed to be there by coaches or school officials or parents, we must assume that children cannot avoid the exposures when they play on those fields.

49. CANNOT CLAIM THAT EXPOSURES WILL NOT OCCUR. Absolutely no way to responsibly claim that ingestion and inhalation of particulate from the material will NOT occur to those children.

50. HOTSPOTS of intermittent dangerous exposures are possible, and should be expected and searched for in every field.

We must assume that tires have different “recipes” based on their type of use. Therefore, knowing the type of tire used in tire crumb, and each tire “recipe” would be helpful in assessing characterization of ingredients. However, there is no way to ever know what tires, or what material is in any field, and therefore, an MSDS/SDS cannot be representative of any field, or even any meaningful part of a field. Alarmingly, the high variability in the ingredients presents worrisome “hotspots” potential, where the hotspots might be missed in sampling but even a single exposure could have very serious impacts for a child who has the unfortunate luck to dive into that hotspot. PAH’s may be more prevalent, and present dangerous levels for installation period of the field, and for some unknown period of time afterwards, and considered a “hotspot”, then the consistent release of PAHs in the subsequent years could mean low dose, chronic exposures. Both need to be examined.
51. Lead, chromium, mercury and arsenic could be present in hotspots, based on which tires were used, and how they were treated prior to being placed in the field.

52. For example, when we asked about the source of lead in tire crumb fields, an infill vendor explained to us that a) lead could be in any field as an ingredient of the tires, of the treatment of tires, and b) once, they were aware of a shipment of tires that was treated with an anticlumping material that contained lead and the whole lot had lead, and c) that some lots had flame retardants added as well. They would never really know, but “most purchasers never ask”, according to the infill material vendor. If an MSDS was required, an additional charge was to be imposed, since MSDS were not available from the materials they acquired from China or other countries. We have collected many more examples of the worrisome unknown ingredients in our fields and can share with the study teams, if requested. While this information is anecdotal, that is the point: we have no idea what is in any field, for sure.

53. Another example, but this is not anecdotal: in a primary study field exposures in CT, a researcher found that the children’s monitors showed benzene. Since there is no safe level of exposure for benzene, and in fact, tires are not expected to have benzene, the field was sampled more closely, until that “hotspot” was located. The original source of that benzene was not determined, but it was next to a busy parking lot where cars’ exhaust may have been a source as they turned the corner, or possibly the tire crumb material had been previously stored in an area with benzene in surrounding environment, or perhaps it was picked up from contact on roads. We will never know. That finding suggests that the carbon black in the tires can adsorb additional toxins present near tires or tire crumb, and
could release that material as the fields are pounded with running feet, or possibly on a hot day. The proper characterization of this material needs to account for adsorption characteristics of carbon black, and other interactions.

54. The point is, that it is impossible to locate hotspots for all toxins in every field, and incorrect to extrapolate the risk for a whole field from a single sample or even multiple samples, since every sample is unique. So, while hotspots can easily be missed in a field, the unfortunate child that dives into that particular part of a field has an exposure that can actually be life threatening, but missed in its entirety in the sampling based risk assessment.

55. In fact, since the tire crumb creates multi sized “dust” particles, and off gases, it is impossible to prove that even a single field is safe from inhalation or ingestion exposures from tire dust particulate, off-gassing components, multiple toxins and combinations of toxins, and heat.

56. Importance of the Heat Factor: Source of direct injury and chemical catalyst

HOT HOT HOT HOT EXTREMELY HOT FIELDS
Grass playfields remain close to the temperature of ambient air, and are often much cooler. Asphalt playgrounds used to have a use limit of 141°F and many schools remove children from playgrounds when temperatures get hot. With tire crumb based turf fields, surface temperatures can soar on even mild sunny days.
Tire crumb fields “superheat” to levels that are routinely over 150F on a sunny spring day, and in a recent study conducted on a sunny day Utah, found to be close to boiling point, 190F, according to the Penn State Field Turf Heat Study. The study found that tire crumb field surfaces are hotter than ambient air, and increase in heat in a non-linear function with each additional degree Kelvin of heat, hence the designation “superheating”. To draw an example, on a Labor Day Weekend in DC area, with ambient temps of 82F, the field surface temperature hit 164F by noon on several fields used in a busy, tournament for about 1000 children, both boys and girls, ages 8-15. Those levels are known to melt plastic cleats, require tubs of water on the sidelines to cool down shoes, and create heat-related injury including heat stroke, nausea, heat exhaustion, and dehydration in children and all users. It is not unusual for children players to vomit, faint, and suffer dehydration from hot conditions on the fields.

57. Marketing and sales for these fields tout their usability in all conditions as a benefit (more practice and play hours), but in fact, the heat build up on fields makes them very uncomfortable during many days and conditions. In DC, there are over 100 days of sunshine each year, and most are during the spring, summer and fall, making the fields uncomfortably hot and possibly dangerously hot for a third of a year. A calculus should be made on the percentage of safe days to play based on field yield risk, and heat.

58. Tire crumb fields do not have any protection from heat, and so they are irrigated to be cooled down, but the effect is temporary.

59. To our knowledge, there has been no well known place for doctors nor parents to report heat injury, though they are commonplace. (This author
specifically remembers a hot, poor air quality day in August in 2014 in Washington DC when during a single practice, 4 soccer players vomited, another child was taken to the hospital after passing out, and another sidelined himself against the coach's wishes, due to extreme dizziness and nausea.)

60. **Reluctance to Report?** Yet, it is curiously uncommon for school teachers, coaches and parents to remove the children from the fields, due to temperature. We cannot explain that in rational terms.

We have also noted another curious effect: as football, soccer and lacrosse increase in popularity and competition in the US, competition for spots on high performance teams is fierce. There is a perception from strong sales and marketing of the fields, that the turf fields present a competitive edge for a school, a club or even a teenager trying to get into college, and are worth the high price paid. As psychologist Dr. Wendy Miller, explains, “it is a culture where high performance parents, players and schools might be willing to overlook these injuries, thinking that to complain would jeopardize their child’s access to a competitive team. This thinking could easily lead to the silencing of reporting of injuries.”

Heat injury reporting needs to be included in the survey questionnaires, and victims of heat injury and illnesses need to have a place to report, with impunity.

61. **HEAT MAKES THE CHEMICAL DYNAMICS ABOVE A FIELD VERY COMPLEX**
In addition to the serious issue of direct injury from hot playfields to young children, or anyone, the super hot fields present a very challenging chemical situation.

Dr. David Brown, ShD, toxicologist, professor and former Deputy Director of Public Health Practice Group at ATSDR/ CDC explains that, “the unintended, and largely unstudied chemical consequences of what comes off such an enormous quantity of high surface area material, in amounts and sequence that is scientifically accurate is very difficult to predict and model. Since the chemicals in the area above the field could change instantaneously, the conditions are critically important (number of players, temperature, time from last rainfall, etc.), as is the sampling methodology. But no one has been able to come close to modeling the actual yield, we only know the materials by characterization with samples, and that variation in samples is so broad as to almost be meaningless, since it could be easy to miss harmful exposures.”

62. Analyzing the field yield on a hot day is very complex, and challenging to even trained toxicologists. The superheating of the fields makes gases yield at faster rates as temperatures on the tire crumb surface increases. So, as a day heats up, it is very likely that the yield increases directly with temperature increase; a hot day creates more gases. Based on well understood scientific laws, we presume that the gas yield from the field at surface temperature of 50F (a cloudy day in January in DC) would be considerably less than a field surface temperature of 158F measured last week. If more gases are escaping the surface, then there are more “opportunities” for particulate to adsorb onto the surface of the gases, creating very dynamic series of compounds, none of which would be recommended to inhale. The changes in the chemical composition over the fields as their temperatures rise is very difficult to test and model. These changes happen in an instant... as a threshold is reached... and the
exposures can increase sharply. It is a very sophisticated and difficult challenge to model. But what is the most important is not only that the 24 gases that escape tire crumb (Norway Study) create dangerous mixtures but those gas/particulate mixtures, (and air) create a vector for deep lung exposures of all the materials in the tire crumb field. So, on poor air quality days, when there are many children on the field and a lot of stirring up of the material, the fields could present enormous risk.

63. We are concerned about the range of yield levels, but, we are most concerned about the intermittent risk to children during those hot periods (a hot, poor air quality summer day during children’s soccer camp week in Washington DC, for example) when the fields are likely yielding more gas, and therefore particulate has more “carriage” into lungs, respiration rates are higher, skin is exposed, and perspiration is highest. All these are likely factors in exposure. It is during those days when exposures are probably highest, and high enough overwhelm a developing immune system.

64. Exposure Study Needs To Focus On Worst Case Conditions

We acknowledge that the level of yield from the fields might vary widely with material variation, and will also vary with outdoor weather (temperature, wind, humidity and sun) conditions. Taking averages from fields across the country will be meaningless, and will only help the industry to expand its message of “found no harm”. An analogy might be to determine the health of a forest taking 4 samples from 40 locations, evenly spaced, but the sampling might easily miss a blazing forest fire. That one day might destroy living material exponentially, but it could easily be missed. Dangerous exposures can be unpredictable in this material due to the scope and scale, the toxic character, and the superheating characteristic.
65. A better approach is to carefully detect high yield days, and look THAT DAY for exposures in a child’s body during those periods. Since the exposures might attenuate, the work would have to be done expeditiously. The harmful exposures may or may not be detectable a day or a month later in a child. Monitor both genders, for patterns that might lead to that awful air quality soccer camp in the city on a tire crumb field, on days when vomiting and melting shoes are commonplace. A focus on the impacts from the high end of those yields we believe will present exposures that are clearly, and unequivocally harmful from both heat injury perspective and toxicity exposure potential. We do not know for sure if the carcinogenic exposures from low dose regular exposures or from high dose “events” are more dangerous, but both need to be studied as separate situations, not as an average.

66. We urge your team to focus the study resources on primary measurements made in high use scenarios on hot days, and refrain from the approach used in earlier studies that look at chemical compositions during winter or rain conditions on limited number of fields.

67. The only reliable way to assess the risk to children from a particular field, or groups of fields, is to look at their direct exposures, and importantly look at bloodlevels of the known substances. Cooperation from both high use athletes and those exposed to chronic levels of materials will be important.

68. The Study Needs To Focus Also On Low Dose Exposure Risks
Trained immunotoxicologists look at the impacts of chronic low dose exposures to metals, PAHs, VOCs and many other materials in tire
crumb. Their input is crucial to understanding risk of exposure in a developing child.

69. Characterization Mistakes

Studies look convincing, but miss the forest for the trees. Tire recycling and tire crumb industry reports are quick to point out that when they find harmful materials in their samples, they are under the known safety limits. There are two interesting fallacies in that reasoning.

First, since the samples in several studies are few and not uniform, they fail to acknowledge the statistical significance of finding known regulated toxic material in 2 million pounds of powdered tires... if one finds the needle, is it luck, or is it because needles are more prevalent than expected?

Proof of presence is meaningful! For example, in the NY Study, PAHs were found, as were metals, benzothiazoles, and many substances. Their presence indicates a risk.

In a child’s product, since many materials are not known how they affect children, just knowing they are there is enough to use a precautionary principle and prevent the exposure. Arguing that the materials appear under a limit (especially if that quantity is an average of multiple samples), or there is no established limit (because it has not been studied), are not as meaningful as the proof of their presence.

Second, though the conclusions of the industry reports may be of no harm found/safety, a close look at the data itself on PAHs, lead, cobalt, chromium, etc. is useful, since a) it proves presence, and b) at levels that suggest risk for chronic exposure. Chronic exposure risk is the subject of
a great deal of new cancer research, and we care about all the materials, including those which are potentially toxic.

70. ARGUMENT FOR MORATORIUM BASED ON KNOWN CHARACTERIZATION FOR TIRE CRUMB

Because of the:

a. known loss of 1-30 tons of material from the fields during the 8-10 year “life of the field” into air and water
b. ingredients list: over 50% of its components are known carcinogens and pathogens, [cite Yale Study]
c. massive scope and scale of this product, (the amount of material and surface area of these fields is enormous; scale/millions of pounds in each installation),
d. inability to control the levels of toxic exposure to children, or even properly characterize them due to immense variation and chemical complexity of what happens on a hot day over a field, and around children. We cannot suggest mitigation strategies for the danger, because the material is inconsistent,
e. Even if we did know for sure what was in each field, and suggest mitigation techniques and protections.... All the tire company has to do is change their recipe, or many recipes, as they do continually, and the study is worthless. Children are still being exposed to whatever is in the tire, the lot or that particular field..

71. Moving Target Analogy

Even if the study were completely successful, and the tire crumb material categorized properly, the trouble is, tire manufacturers could change the “recipe” for tires... and in fact they do this regularly... and the study results will be useless, or at best, diminish in usefulness.
Any attempt to study tire crumb safety on turf fields is analogous to trying to hit a moving target. Tire crumb is a waste product. Tires are not designed or intended to be used as infill for turf fields.

Ingestion, inhalation and absorption of fine particulate by children is not a consideration of tire manufacturers as they choose chemicals and compounds for their tires. Nor are they bound to maintain any safety considerations for such use by children.

So any study of present day tire crumb is a futile endeavor, because such study tells us nothing about a field that gets installed immediately after the study. Tire manufacturers often change the chemical composition of tires and will likely do so again.

Even if a field passed safely concerns in a present day study, a new field could easily fail a hypothetical study conducted the day after the present study. So unless every field was tested using the exact same methodology after every installation, there is absolutely no way to assure the user that their new field is safe. Those new fields could easily have an entirely different chemical composition simply because tire manufacturers changed their tire ingredients.

So the present Federal Study is only a backwards looking study, not forward looking. Any conclusion must be transparent and clear on that issue - upfront and center. Otherwise the public is being misled into a false sense of security.

72. **Sampling: Not Appropriate For Tire Crumb**
The core pediatric toxicology problem in industry based safety studies, is that there appears to be an assumption that tire crumb is a uniform material, and behaves uniformly. It does not. There also appears to be an assumption that sampling will be an accurate method for studying tire crumb risk to children, and it is not. **Sampling will not be accurate to assess a non-uniform, heterogeneous material with multiple known toxic ingredients, high direct contact (dermal, hand to mouth, breathing zone) for pediatric use. Sampling cannot produce a single sample that is representative of the whole field, or even a part of the field, other than the sample itself.**

73. **Methodology needs to study PERFECT STORM exposure conditions, and be able to calculate exposures during those relatively dangerous days.**

Nor can sampling in the way it is proposed (samples from 40 fields across the US), illustrate impacts from a perfect storm of exposure conditions on a particular field, say, during an intense soccer camp in in summer in Washington, DC with high ambient and field surface temperatures (ie 160F), bad air quality, no wind, when working athletes are breathing in particulate with high VOC, PAH, benzothiazoles, and carbon black... and many more compounds, on a particularly high yield day. Averages cannot be relied upon in sampling for this type of product, since they will further obscure the risk from exposures to hot spots of high risk material that are on fields. Averaging the results from a national distribution in various weather conditions simply obscures the acute risks further; it is useless for risk analysis. In layman’s terms, it is like studying a forest using “x” number samples, but missing the forest fire that is blazing away at a nearby area of the park. For a child, it means that she plays on a field that was called “SAFE TO PLAY”, after sampling, but in fact she might easily have
been covered with multiple materials known to cause cancer, and in fact, that might be a regular event. The uncertainty of exposure frequency makes the risk higher, not less.

74. The core of the methodology used in the 50 studies asserted by the tire recycling industry were based on simple characterization of a single sample, but not on realistic, combined, nor worst case (the most important) use scenarios.

75. Multiple carcinogen and multiple pathogen combined effects need to be measured. Single material measurements could be only a fraction of the exposures, since the material exposures are likely to be from combinations of materials.

76. BIOMONITORING FRONT AND CENTER

Because sampling presents inconclusive results, a methodology that relies on biomonitoring will be more meaningful. We suggest that more sophisticated approach be considered. Personal sampling monitors attached to children, dermal, urine, breathing analyses, and particularly, blood and tissue samples from frequent users, players on “Perfect Storm Days” and those expected to have chronic low dose exposures. We understand that biomonitoring raises more issues, but absent a good model, empirical data is the most reliable way to accumulate actual evidence of exposures and to be able to establish a reliable causal link to the cancers and diseases we predict from exposures.

77. IMMUNOTOXICOLOGY SUPPORT: RECRUIT THE BEST PEDIATRIC IMMUNOTOXICOLOGISTS AND RESEARCHERS. Some researchers and epidemiological professionals are already on the trail of better ways to
identify actual exposures, and can create biomarker groups as indicators of presence of illness or exposures. These researchers have background in immunological toxicology, and can track subtle changes in an immune system that might be precursors to serious disease, like cancer, kidney disease, brain changes, and lung disease. It is possible to create biomarker group to prove tire crumb exposures in users and we believe that the preliminary proof of concept step could be accomplished in less than 6 months with cooperative athletes, and study volunteers, and modest budget. While we will not list them here, for protection of their privacy and frankly, for fear of industry retribution, we will nonetheless let you know that we have found multiple professionals who are capable and willing to work on this task, provided a protective forum and IRB standards are in place.

78. Immunotoxicology support: look carefully at the ages those immune system markers in all children who are using these fields, understanding that some metabolic types, and ages may be more vulnerable than others. In fact, there are early indications that certain age groups, such as prepubescent females (age 8-11), may be more vulnerable to exposures to benzothiazoles, plastics, phthalates, and endocrine disruptors in general, and therefore might be at higher risk to contract cancer or disease from low dose particulate exposures from tirecrumb, and the plastic “grass” carpet particulate. We need to establish the datum from players to study this. We still do not know, but some indications exist. For that reason, we respectfully request that the study team include toxicologists and epidemiologists that are trained to keep these concepts front and center.

79. LOW DOSE EXPOSURE CONCEPTS and CONCERNS
Based on what we know now about low dose exposures to VOCs, PAHs, benzothaizoles, styrenes, carbon black, plastics, plasticizers, and metals, even at low, sub-acute exposures, the fields could be very dangerous. That possibility was not considered in the CPSC study, EPA study, nor in multiple industry studies. These need to be assessed:

- Chronic exposure to metals, plastics and plasticizers
- Chronic exposure to carbon black mimics air pollution exposures
- Immune system reactions
- Endocrine disruption exposures from plasticizers and phthalates,
- Exposures from multiple low doses and chronic exposures

80. The study should calculate yield of material that leaves the fields, and how it leaves the fields. How much in the air, water pathways, and with users (in shoes, cars, etc.) Interviews with schools and vendors need to establish the replacement quantities of these fields, and how often new material is put into place, since it would affect exposures, and give an indication of gross yields. We estimate that the fields lose from 1-30 tons (estimated) of material, so exposures and impacts need to be measured in adjacent buildings, soils, and stormwater systems. With 12,000 existing facilities, this may need to be the subject of additional studies conducted to also assess if the fields shall be regulated as point source contamination under Clean Water Act and Clean Air Act. It is a very important metric, and a perfect opportunity to include it, with little incremental cost, in your study.

81. INTEGRITY STANDARDS. To track the history of the emergence of this product is to track effective lobbying for regulation changes that favored the tire industry, and the tire recycling industry. This industry took
advantage of an enormous quantity of recalled and used tire stockpiles, and heavily sold and marketed the materials to schools, and sports centers where millions of children play. Central to the steps that catapulted this industry forward was the removal of the designation of artificial turf fields as children's products, based on the rationale that adults played on them, too. Yet the fields continue to be sold to elementary schools and to sports centers brimming with elementary, middle and high school players. The sales oriented industry was willing to submit children, schools and communities to the materials in tires in enormous amounts, and call them safe. As this claim is deeply questioned now, we also urge you to NOT allow the sampling or data collection to be conducted by an interested party, including schools, sports centers, athletic group personnel or administrators, field installers or laboratories or consultants hired by those groups, and establish peer reviewed standards for testing.

82. Any group or individual who does participate in the study, including regulatory staff, needs to sign an affidavit certifying that she or he, and her/his group has not received compensation or benefits in any form, including but not limited to sales commissions, direct payment, compensation, bonuses, grass to artificial turf grant, field financing, water savings rebates (State of California and possibly others), or physical benefits including but not limited to uniforms, facility enhancements (restrooms, concession stands, parking lots, storage facilities, etc.), stadium components, or field equipment of any sort, from the field installers or tire crumb field industry and its assigns, and has no financial conflict of interest. The document should be filed with an appropriate agency and made public.

83. We ask for full transparency on all parts of the study process for parents, interested parties, and schools.
<table>
<thead>
<tr>
<th>Request</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Regulate tire crumb and rubber mulch as children’s product</td>
<td>PEER filed formal request; 12,000 fields x 30,000 tires is the amount of existing material in children’s use; see table A for details on volumes and surface area sizes, children/schools. Known</td>
</tr>
</tbody>
</table>
2. Remove “safe to play, safe to install” or any other references that imply safety from all EPA, CPSC and CDC websites and public information sources

3. Place all PEER artificial turf filings in Federal Record

4. Issue a directive to public health agencies to disseminate warnings regarding unknown risks from lead exposure from AT fields, as well as exposures to carbon black, known carcinogens, PAH, VOCs into air and water pathways; direct hospital systems and medical systems to screen for tire crumb field use, and report results

5. Use only independent lab or consultants unassociated with tirecrumb industry, adhering to high ethics guidelines; transparent process for review; affidavit of no conflict of interest

6. Commission a primary study, conducted by independent, peer reviewed group such as CDC to examine existing cancers AND illness in tire crumb field users and maintenance workers of tire crumb fields

7. Mandate Cal Recycle Study corrections to methodology; mandate methodology peer review; and mandate to impose Prop 65 rule based on OEHHA’s own findings on carcinogenic exposure

8. Convene a conference for presentation of risks and concerns from parent groups, cancer survivors to Federal Research Team

9. Convene series of webinars and open comment opportunities

10. Allow public health and environmental advocacy groups in Federal Research Team with complete transparency

11. Establish a collection point for recording experience of victims and those who may have suffered injury from use of the fields, including heat injury, concussion or head trauma, cognitive disorder, illness, and cancer for study and documentation; victim hotline; for both child and adult contact with fields

12. Funding to identify potential biomarkers of exposure; conclusive marker study in users

13. Conduct blood monitoring and studies on existing cancer survivors.

14. Conduct cancer cluster study on soccer player cluster, and identify additional clusters such as maintenance workers and installers

15. Provide full transparency with all interested parties

16. Conduct full epidemiological study of tire crumb on playfields existing and predictive

17. Study forms and questionnaires should include data collection on what is released from fields into air, adjacent areas, water pathways, and quantified. Replacement quantities for tire crumb fields should be quantified and examined as a metric that indicates yield.

18. Based on release/yield figures, and other inputs, tire crumb fields should be evaluated for compliance with Clean Water Act and Clean Air Act, and regulated accordingly.

19. We request that OEHHA study methodology be peer reviewed by your agencies before it begins, taking into account the comments received in this proceeding.

20. OEHHA Study Process and Methodology Concerns: How will these be considered?

21. Consider explicit protection from retribution steps be put in place to protect researchers, players, and concerned parents from retribution
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0081
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: Laura Johnson
Address: 98020
Email: wanpaf@yahoo.com

General Comment

Health professionals, including experts on children's environmental exposures from Mt. Sinai Hospital, are voicing extreme concern over exposure, particularly in children, to the known carcinogens, endocrine distributors, neuro-toxins, and toxic heavy metals, contained within the finely ground tire mixture. This concern is partly fueled by the growing number of cancer cases in children and young adults who were frequently exposed to the recycled rubber surfaces.

Previously, the EPA endorsed the use of crumb rubber as a viable way to dispose of millions of used tires, as well as a way to reduce injury, but some of its own scientists have pointed to research suggesting potential hazards from exposure to crumb rubber. This research includes the 2012 study: Hazardous Organic Chemicals in Rubber Recycled Tire Playgrounds and Pavers- which concluded that the "presence of a high number of harmful compounds, frequently at high or extremely high levels, in these recycled rubber materials. Therefore. They should be carefully controlled and their final use should be restricted or even prohibited in some cases", and a very recent 2015 study: Release of Polycyclic Aromatic Hydrocarbons (PAH's) and Heavy Metals from Rubber Crumb in Synthetic Fields- which concluded that "the recent study demonstrate that PAH's are continuously released from rubber through evaporation. Athletes frequenting grounds with synthetic turf are therefore exposed to chronic toxicity from PAH's."

I am among a growing group of parents who have opted to take the precautionary measure of
keeping our children off of these fields all together, and advocate for safer alternatives, while waiting for an answer to the question so many are asking "Are these fields safe?" Before I knew about the toxicity and carcinogenic chemicals contained in crumb rubber, my children did play on the fields. I remember that even on mildly warm days the smell of tires was significant, and on days over 80 degrees the combination of heat and smell was enough to drive many parents from the field, to sit on a nearby grass median. I remember watching babies crawling on the sidelines squishing the grass blades with their hands some attempting to eat the crumbs, many with bottles in hand. I saw preschoolers sitting and making piles of crumb rubber with one hand and a snack in the other hand. These children were just inches above the turf surface. We have created a situation where our youngest children are exposed to a toxic substance from birth and continuing through crucial developmental years. This type of use and exposure has, admittedly, not been adequately studied, and in essence we are carrying out a large scale experiment on our nation's children! Parents like me, have assumed that the fields are safe. We would never imagine that a substance, which can be inhaled and ingested, and is clearly marketed for children to play on, was not thoroughly tested for safety.

We need real answers- from epidemiological studies- and in the meantime the public should be provided with information on protective measures to take on current fields. Additionally, there should be a moratorium in place on construction of new crumb rubber fields. The potential is great and the risk is simply not acceptable.
PUBLIC SUBMISSION

Docket: ATSDR-2016-0002
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ

Comment On: ATSDR-2016-0002-0003
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill ATSDR-2016-0002

Document: ATSDR-2016-0002-0083
Collections Related to Synthetic Turf Fields with Crumb Rubber Infill 0923-16PJ Comment on FR Doc # 2016-03305

Submitter Information

Name: SHPFC Fairfax Chapter
Organization: Safe Healthy Playing Fields - Fairfax County Chapter

General Comment

These Comments were also submitted by the Safe and Healthy Playing Fields Coalition. The Fairfax Chapter is submitting them as well in order to document our support for the comments.

INTRODUCTION

On behalf of the millions of children, parents and athletes who play field sports in the US at schools, parks, athletic facilities and playgrounds, thank you for agreeing to study the potential harm caused by playing on or being near athletic fields with surfaces made waste tires. There are more than 12,000 of these playfields in place (15,000 according to the website of a large company that installs them), and they are being installed at a rate we estimate to be about 3000 a year. By our calculations, 12,000 fields currently present 2,380,000 tons or 4,760,000,000 pounds of loose, unencapsulated tire crumb on their field surface. (See our Table of Runoff and Material Volumes attached.) Tens of thousands of students and young athletes play on those fields, many more thousands have direct or indirect contact with the material. It is a public health issue of substantial importance.

The following lists our comments on the proposed study. We argue that the fields present known carcinogenic, pathogenic, and mutagenic material in a high surface area, pulverized form that is more toxic than whole tires, and should never have been allowed near children, or adults, because of risk of ingestion and inhalation exposure to all the ingredients in tires. On
warm, sunny days the surface temperature routinely reaches over 150F, which presents direct, well-known heat injury risks to children. The heat increases off-gassing of the tire components, increasing the likelihood of pulmonary exposures, and creates a complex dynamic in the children's exposure zone immediately above a field that has not been correctly modeled or studied yet. The material lacks uniformity, or any regulatory or exposure controls. We assert that it is impossible to assure even a single tire crumb field is free of inhalation and ingestion risk of dangerous particulate and gases inherent in tires, tire crumb, and add-in composites; and that dangerous and unwanted exposures from lead, benzothiazoles, 12 carcinogens, phthalates, carbon black and other materials, can happen with every use. The data gaps are enormous, and we hope CDC/CPSC/EPA will recognize there is no way the tire crumb industry can protect any player, on any field, from the potential for dangerous exposures with normal use. We argue that not enough scrutiny was placed on this material.

NOTE: The Safe and Healthy Playing Fields Coalition is a grass roots group of scientists, public health professionals, toxicologists, neurobiologist, educators, plastics engineers, medical doctors, waste management and remediation professionals, coaches, researchers, and parents who donate their own time and skills towards helping communities and individuals assess risks to their communities from tire crumb field use. We do not have a lobbying firm, law firm, hired laboratory, consultant, or revenue-generating source (such as tire crumb), and rely solely on the skill of researchers who donate time to compile our comments. That said, we have found compelling data that refutes almost all claims of safety, and when we asked for additional time to compile the information, we were given two weeks, but denied additional time. Hence, we are working at a disadvantage, and hope that during this study year, we will have time and opportunity to substantiate our concerns, and share our research with the study officials. One of our comments below explains our requests for a conference or virtual meeting that allows more disclosure and discussion.

Our comments are listed in numerically and organized into: 1. General Comments, 2. Characterization and methodology comments; 3. Summary List of requests, and a number of supporting documents are also submitted as part of our comments.

Attachments

SHPFC FINAL ASTDR 2016-0002
Comments on ASTDR 2016-0002-0003

Federal Research Action Plan on
Recycled Tire Crumbs Used on Playing Fields and Playgrounds
Submitted to Federal Register May 2, 2016

SAFE AND HEALTHY PLAYING FIELDS COALITION
www.safehealthyplayingfields.org
A grass roots coalition working for healthier alternatives for children and communities

INTRODUCTION

On behalf of the millions of children, parents and athletes who play field sports in the US at schools, parks, athletic facilities and playgrounds, thank you for agreeing to study the potential harm caused by playing on or being near athletic fields with surfaces made waste tires. There are more than 12,000 of these playfields in place (15,000 according to the website of a large company that installs them), and they are being installed at a rate we estimate to be about 3000 a year. By our calculations, 12,000 fields currently present 2,380,000 tons or 4,760,000,000 pounds of loose, unencapsulated tire crumb on their field surface. (See our Table of Runoff and Material Volumes attached.) Tens of thousands of students and young athletes play on those fields, many more thousands have direct or indirect contact with the material. It is a public health issue of substantial importance.

The following lists our comments on the proposed study. We argue that the fields present known carcinogenic, pathogenic, and mutagenic material in a high surface area, pulverized form that is more toxic than whole tires, and should never have been allowed near children, or adults, because of risk of
ingestion and inhalation exposure to all the ingredients in tires. On warm, sunny days the surface temperature routinely reaches over 150F, which presents direct, well-known heat injury risks to children. The heat increases off-gassing of the tire components, increasing the likelihood of pulmonary exposures, and creates a complex dynamic in the children’s exposure zone immediately above a field that has not been correctly modeled or studied yet. The material lacks uniformity, or any regulatory or exposure controls. We assert that it is impossible to assure even a single tire crumb field is free of inhalation and ingestion risk of dangerous particulate and gases inherent in tires, tire crumb, and add-in composites; and that dangerous and unwanted exposures from lead, benzothiazoles, 12 carcinogens, phthalates, carbon black and other materials, can happen with every use. The data gaps are enormous, and we hope CDC/CPSC/EPA will recognize there is no way the tire crumb industry can protect any player, on any field, from the potential for dangerous exposures with normal use. We argue that not enough scrutiny was placed on this material.

NOTE: The Safe and Healthy Playing Fields Coalition is a grass roots group of scientists, public health professionals, toxicologists, neurobiologist, educators, plastics engineers, medical doctors, waste management and remediation professionals, coaches, researchers, and parents who donate their own time and skills towards helping communities and individuals assess risks to their communities from tire crumb field use. We do not have a lobbying firm, law firm, hired laboratory, consultant, or revenue-generating source (such as tire crumb), and rely solely on the skill of researchers who donate time to compile our comments. That said, we have found compelling data that refutes almost all claims of safety, and when we asked for additional time to compile the information, we were given two weeks, but denied additional time. Hence, we are working at a
disadvantage, and hope that during this study year, we will have time and opportunity to substantiate our concerns, and share our research with the study officials. One of our comments below explains our requests for a conference or virtual meeting that allows more disclosure and discussion.

Our comments are listed in numerically and organized into: 1. General Comments, 2. Characterization and methodology comments; 3. Summary List of requests, and a number of supporting documents are also submitted as part of our comments.

PART I: GENERAL COMMENTS:

1. CPSC/CDC/EPA should use their existing authority to immediately reclassify tire crumb athletic fields as a children’s product, since thousands of fields have been installed in schools that serve hundreds of thousands of children.

2. We have grave concerns about their safety to human health and the environment, since known carcinogenic and pathogenic components in the field material yield into both air and water pathways, and provide ample opportunity for both chronic low dose exposures with every use of the field to lead, chromium, mercury, zinc, PAH, VOC, carbon black, styrenes, benzothiazoles, and plastics; and more intermittent, but dangerous high dose exposures from “HOTSPOTS” of component material. (See comments on Characterization). Each of the fields has material that is known to cause cancer, illnesses, and injury in humans; and leachate from runoff causes several negative impacts on the aquatic ecosystems. We believe that the potential for human illness (including several cancers) from both low dose and high dose exposures to the ingredients in tires is staggering. Basic logic favors our position. Based on
the known potential for exposures to children, and the finding of a group of 200 soccer players with cancer (the group represents the reach of a single charismatic soccer coach), an immediate moratorium on new construction of the fields should be put in place with the existing authority of CDC/CPSC/EPA, until the tire crumb fields can be shown to be safe to inhale and ingest.

3. **The tire crumb recycling industry, which appears “green” in its efforts to sell millions of used tires in “repurposed” shredded form, in fact enables a direct transfer of the contamination burden of waste tires from landfills/collection sites (in the US and abroad) to the play surfaces of 12,000 schools and sports centers, where tens of thousands of children and adults have direct contact with the toxins in tire crumb materials on the field surface, and these exposures could happen with every single contact.**

4. For the most part, the **schools and sports centers do not have resources to conduct toxicity due diligence**; meaning, they do not have access to a toxicologist who reads the industry studies with their health as the only priority. Purchasers rely on the tire crumb recycling industry statements, industry studies, and industry funded websites that claim toxicology assessment and public health guidance. The sales material can be striking, and the studies appear convincing on the surface, but our study groups have found significantly misleading information about the safety and actual risk of harm from the tire crumb fields to all users, particularly children. They are likely unaware that claims that the fields are “SAFE TO INSTALL; SAFE TO PLAY” have been repealed.

5. **PEER Filings.** Public Employees for Environmental Responsibility have filed a number of complaints and documents that argue for a repeal of
endorsements of tire crumb safety from EPA/CPSC, and those statements were in fact repealed; but most schools and potential purchasers are unaware of the removal of endorsements and claims of safety. The PEER filings are an excellent source for telling the toxicity story and regulatory story of this product. We respectfully request that the entire file of complaints and responses to the complaints, and other supporting material be entered into the record for ASTDR 2016-0002-0003.

The full list of documents for the ASTDR 2016-002-0003 collection and record can be found here: http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html. Please include all in that list, and all supporting materials.

6. Formal legal requests have been made to classify the tire crumb fields as a children’s product since children use them, and sales and marketing material are very clear about tire crumb fields are for children. CDC/CPSC/EPA should use their existing authority to explicitly label the fields as children’s products. (Please refer to PEER filings for details and supporting arguments: http://www.peer.org/campaigns/public-health/artificial-turf/news-releases.html)

7. CLASSIC CANCER CLUSTER APPEARANCE: SOCCER PLAYERS

Parents and schools may have trusted the “Safe to Play” statements, but the parents of the 200 young women and men, who played intense soccer and were stricken with cancer do not trust those claims anymore.
The case of over 200 young soccer players who used tire crumb fields and contracted cancer, strongly indicates a classic cancer cluster, though the cases have not undergone the formal validation process, not yet. That is because a process for the collection of this information, does not exist yet for either cancer victims, or for other illnesses, head injuries, and heat injuries/illness from the fields.

8. We respectfully request that an official study of the soccer player cancer cluster be initiated by CDC immediately.

Through our activist network, we learned about these cases, which were reported to the NBC news link, or directly to a single, trusted concerned soccer coach. EHHI reported as follows:

“New Cancer Numbers Among Soccer Players on Synthetic Turf, April 2016

It is important to remember that the only people counted in the numbers below are those who have known to call Amy Griffin. There is still no government agency tracking the cancers among the athletes who have played on synthetic turf. We know the actual numbers of athletes who have played on synthetic turf and contracted cancer have to be much greater than those who have known to report their illness to Amy Griffin.

In January of 2016, there were 159 cancers reported among soccer players; now (April 2016) there are 166. Ninety-seven of those in January were goalkeepers; now there are 102. Sixty-one percent of the soccer players with cancer are goalkeepers. As of this writing, 220 athletes of various sports who have played on synthetic turf have cancer; 166 soccer players who have played on synthetic turf also have cancer.
166 Soccer Players who have played on synthetic turf and have cancer

- 102 are goalkeepers (61% are goalkeepers)
- 64 soccer players with lymphomas, 39 are goalkeepers (61%—over half are goalkeepers)
- 10 soccer players with Non-Hodgkin lymphoma, 7 are goalkeepers (70%—over half)
- 54 soccer players with Hodgkin lymphoma, 32 are goalkeepers (60%—over half)
- 41 total leukemias, 24 are goalkeepers (59%—over half)
- 16 total sarcomas, 7 are goalkeepers (44%)
- 12 thyroid, 9 are goalkeepers (75%—over half)
- 11 brain—5 are goalkeepers (45%)
- 9 testicular—6 are goalkeepers (67%—over half)
- 4 lung—3 are goalkeepers (almost all are goalkeepers)

Remaining are OTHER rare cancers.”

Source: Various; Victim parent volunteers, EHHI primary collection; 4/2016 (ongoing) ____________________________

All the victims were frequent users of turf fields, spending multiple hours a week in close contact with the material in the fields. All were in their mid-twenties or younger.

9. The self-reporting to a trusted coach, is also an indication that the actual illness rates are not yet being properly assessed or managed by any hospital, medical system, or group; there is no “home” for this information, yet. The 200+ cancer victim count is likely the reach of a single coach with the help of a link in broadcast media, and a fraction of the actual count of victims of cancer or other serious illnesses. Better
investigation and creating a “safe” place to report serious and intermittent illness will uncover many more victims, and provide needed perspective on the accuracy of risk assessment for this product.

10. **The CDC and appropriate agencies should issue a directive asking for adequate screening for injury and disease.** That US hospital and medical systems are not yet set up to collect this data is a contributing factor; and concurrently, screening for synthetic field use should be part of a responsible screening protocol. To our utter dismay, we learned from pediatric oncologists in our group that at least some oncologist are prohibited from screening victims/patients for tire crumb field use; the screening must be part of the approved protocol, and tire crumb product is not yet included.

11. In fact, the number of all injuries from tire crumb fields should be collected and analyzed to include, but not be limited to: head injury and concussion; joint injuries (multiple); heat injury; blood cancer; lymphomas; testicular cancer; pulmonary illness; neurological impairment; kidney disease; diabetes; brain disease and cancers. These findings need to be documented, and the children who suffer from them should be screened for tire crumb field use and proximity. No doctor or oncologist should be prevented from asking questions, screening for, or questioning the safety of this product or contact with this product. We believe there are many more heat related illnesses, head injuries, and endocrine system disruptions directly resulting from exposure to the fields than what is being reported.

12. **REQUEST MORE INVESTIGATION INTO EXISTING AND POTENTIAL CANCER CLUSTER:** We ask that the multiagency group takes steps to expedite the process of collecting epidemiological data and verification of
the current soccer player cluster, and other potential clusters, to include
field maintenance workers who rake the fields, field installers who pour the
millions of pounds of material onto field surfaces, school custodians, high
contact users of any kind, and school children in buildings adjacent to the
fields. Residences near the fields should be considered in the scope of the
study or subsequent studies. **In our own informal assessment, and**
using SEER database and known levels of cancer victims, we found the
potential for 7-11 cancer clusters. We respectfully ask the CDC experts
to look into this possibility and take the necessary steps to prevent
additional injury and cancers.

13. NEED FOR EXPLICIT PROTECTION FROM RETRIBUTION: Sadly, the
families, coaches, and school leaders who have reported illnesses do so
with concern for **retribution from the tire crumb industry, school**
boards, university administrations, and even sports league
administrators, and may need explicit protection and remedy against
retribution. Researchers who study the potential for harm tell us that they
do not have protection from retribution from tire crumb field industry
proponents. Even in our own group, public health and medical
professionals must make statements of concern anonymously to protect
themselves from retribution—professionally and personally from industry
proponents. Adequate protections need to be established to protect the
professionals and parents who speak out.

14. PROTECTION FOR CHILDREN IS NOT A COST-BENEFIT ANALYSIS.
Children have a unique vulnerability to toxic exposures—both intermittent
high exposures—and to low dose exposures, and if we are aware of a
carcinogenic presence, then we are responsible for using a precautionary
principle, and removing that exposure risk. With due respect, this is not a
cost-benefit analysis that will show a percentage of children will get sick
(cost) vs. tournaments played or jobs created (benefit). It is a decision made by a civil society that upholds protection for children’s health above all other industry priorities, and a recognition that tens of thousands of children, if not hundreds of thousands, are already being exposed to material with known carcinogenic, and harmful materials on school turf fields.

15. The CDC/CPSC/EPA should recognize that the fields serve children, acknowledge that there are zero safety controls on the material and the potential exposures, and immediately acknowledge tire crumb fields as children’s products, and use your existing authority to regulate them as children’s products. Therefore, we emphatically REQUEST THAT THE CPSC/EPA/CDC USE EXISTING AUTHORITY TO IMMEDIATELY CLASSIFY ARTIFICIAL TURF AS A CHILDREN’S PRODUCT, SINCE THOUSANDS OF CHILDREN ALREADY USE THE FIELDS, IN THOUSANDS OF SCHOOLS.

Since children and adults are already being exposed on tire crumb fields to the materials in tires, we ask for an immediate moratorium on further construction of tire crumb based or recycled rubber based artificial turf fields until adequate assurances that tire crumb particulate, off-gassing, and combinations are safe for children to inhale and safe for children to ingest.

Your three agencies do not need to conduct a study to know with absolute certainty that tires were not designed to be inhaled by children, and we should protect children, at any length, from chronic or lose dose carcinogenic exposures.
Even if we cannot model or know (or will we ever know) the exposures to each child, each day (and we will never know), we do know with certainty that:

1. Carcinogens are in tires.
2. Shredded, pulverized tire crumb contains everything in tires, and more ingredients, including: carbon black, phthalates, VOCs, PAHs, benzothiazoles, lead, chromium, zinc, nanoparticle additives, proprietary additives, 12 known carcinogens, 90 materials known to be harmful to human and environmental health, (EHHI)
3. The material can be inhaled when playing and ingested with contact, or intermittent adjacent contact.
4. Every single direct or indirect use has the potential for exposure to hotspots and low dose chronic exposures to multiple scenarios of these materials.
5. The exposures could impact children, school buildings, and surrounding areas; contamination travels to cars, homes, and even children’s bedrooms.
6. It is both within the authority and the responsibility of your three agencies to take immediate action to protect the public, especially children, from known carcinogenic, pathogenic exposures.

Only a complete moratorium on their use will protect the millions of children, athletes and bystanders from inhalation and ingestion of the materials that yield from tire crumb synthetic turf fields.

16. It is also evident that tire crumb will never be safe unless ALL tire ingredients, all “recipes”, the manufacturing of tires, and then preparation of materials for fields are controlled from a toxicity perspective. This level of voluntary cooperation from the tire manufacturing industry will, of course, never happen.
17. **ONLY UNIFORM MATERIAL SAFE TO INHALE AND INGEST IS APPROPRIATE FOR SCHOOL FIELDS; UNTIL THEN, A MORATORIUM.**

When the play surface material is uniform, consistent, and controlled, when it is tested by an adequate study with pediatric toxicology assessments to be safe for ingestion and inhalation, and results are peer reviewed following IRB standards, then we may consider a synthetic turf field might be safe. Until then, tire crumb should be rejected from any casual or unnecessary contact with children or adults.

18. **RECONSIDERATION:** A reconsideration of the moratorium could occur when the industry can demonstrate a uniform, non-carcinogenic, non-inhalable, non-ingestible alternative that does not present PAH, VOCs, phthalates, lead, chromium, mercury, 1,3-benzothiazoles, butadiene, styrenes, carbon black (in particulate, gaseous form, or any form to children); and the product undergoes strict, peer-reviewed study by independent qualified toxicologists who have a mandate to protect children’s health and the health of the environment above the interests of industry. The hypothetical product should be subject to regular reviews and quality control determinations to ensure safety over the life of the synthetic field. Safety Data Sheets should be provided and accessible for every user. If waste tires are used, the controls requested above will never be possible, since the tire material, by definition, is a composite of many toxins in unknown quantities and with unknown impacts.

PART TWO: CHARACTERIZATION OF TIRE CRUMB COMMENTS

1. **SCALE AND SCOPE:** Tire crumb potential to individuals, buildings, surrounding areas and stormwater for contamination is enormous.
2. PUBLIC HEALTH ISSUE: SCALE AND SCOPE CONCEPTS

The potential for contamination from tire crumb is a growing public health issue, in terms of the relative size of the product and its mass; the total number of potential fields; and their basic contact with students, athletes, school personnel, buildings, communities, and streams/storm water.

To give an idea of the existing volumes of material, the field runoff and children affected or who may be affected, we have developed reference tables, and the summary is attached to this filing. These tables indicate the scope and scale, and demonstrate that these are not isolated fields, nor tiny exposure potentials. The quantities of material are enormous. The source and reasoning is explained, but the tables are designed for your model development and quick reference.

3. ENORMOUS QUANTITIES ON EACH FIELD SURFACE.

To give an idea of the scale, a modest soccer field uses 30,000 waste tires. According to a randomly selected company selling packaged tire crumb infill for original or replacement treatments, 30,000 tires makes about 396,667 pounds of material. According to our calculations, the volume for 2” thick field is about 525 cubic yards. However, a large football field, three times the size of a small soccer field, could use 1,000,000 pounds of tire crumb material.

4. The tires are shredded, pulverized into crumb of various sizes, and the shredded material is poured on top of a plastic “grass” carpet. Importantly, the material is loose, unencapsulated and can loft into the air when struck by a ball or foot, or body. We estimate that, depending on the school, each field has regular, daily contact with at least 1000 athletes and students. At
sports events, busy tournaments, or with active use, a field can have contact with many, many more.

5. No fields we found have mandated capture of the leachate or particulate at the field.

6. **TOTAL FIELD VOLUMES POTENTIAL:** The universe of potential tire crumb playfields is approximately 200,000 - 220,000 schools and athletic facilities in the US, based on number of schools. The potential reach of exposure from use of these fields is in the millions of children, millions of adults, hundreds of thousands of exposed buildings and adjacent soils, and hundreds of thousands of public easements and storm water access points (we estimate 1:1 ratio for field to point source drainage).

7. **TABLE RUNOFF AND VOLUMES: SUMMARY OF KEY METRICS**

For reference, we analysed fields by sport type, by Metropolitan Service Area, and calculated the volumes for rainfall (by city), and for amount of tire crumb material on a field surface.

Key metrics are the following:

- Estimated tire crumb per 85,000 sq feet field and 2” deep tire crumb infill is 525 cubic yards, 396,667 pounds, or 198 tons per field.

- The total amount of tire crumb material on surface of 12,000 fields is estimated to be 6,296,296 cubic yards, or 4,760,000,000 pounds or 2,380,000 tons that are currently in sports centers and schools in April 2016.
- Runoff is calculated by city and field size, but the total runoff for fields in the top 50 MSAs is 15,006,997,787 gallons.

- Total Runoff for 12,000 fields based on number of fields per MSA, accounting for rainfall in that MSA, and added together for 2016 is: 23,370,639,827 gallons... for a single year.

The calculations were made to illustrate the scale and scope of this product, and to characterize the reach of exposures from the field surface into the airway, and into the water pathway.

8. INGREDIENTS IN TIRE CRUMB: Lack Of Uniformity, High Variation, Multiple Toxins

Tire crumb appears to be a composite material, heterogenous with multiple known carcinogens, pathogens, and mutagens. The material is not uniform, comes from multiple sources and lots, and can be mixed with plastics and materials of unknown origin. The material can have anticlumping agents, flame retardant additives, paint, and strengthening or characteristic enhancing additives. Shredding of tires can cause small pieces of steel or metals to be included in the material from steel belted tires. Some tire crumb is from newer depositories from recalled tires, some from landfills, and some have been subjected to a variety of weather and conditions. Leachate and off gassing could be variable, with the expectation that newly installed/poured material off-gassing is higher than from an older field, but we expect those rates would vary with the age of the tires from which the tire crumb was made.
9. HETEROGENEOUS, MULTIPLE TOXINS, UNKNOWN ORIGIN: To say that tire crumb infill comes from multiple sources, is an understatement: dispensaries, landfills in the US, landfills abroad, collection centers, factory waste from China, factory waste from the US and abroad. Some of the newer marketed blends included multi colored sport shoe waste, shoe factory waste, and many unidentified synthetic materials. Just as tire companies may add anything to their “recipe” for a tire, an infill provider may offer materials that could have anything added into the blend. Tire plugs, tire polishes, tire coatings, and materials picked up on the roads should be considered. And even if it is known that there are only tires in the blend, there is a broad variation in the ingredients based on the use of the tire, and the manufacturer. Those tires may look the same, but from a toxicity standpoint their variation and the unknowns in the “recipe” create a margin of uncertainty that makes any claim of known safety for inhalation or ingestion impossible. If a vendor says he or she knows what is in a lot of tire crumb, and that is known to be safe, then they ignored the materials in the product. Since we never know what is in any field for sure, and if we know that they have tire crumb, they cannot be demonstrated safe for children to inhale, ingest, nor play upon.

10. What Is In Tires? SOME GROUPS WENT LOOKING

Since it was difficult from MSDS or any other source to identify the components in tires or tire crumb, some groups studied them directly.

11. Environment and Human Health Inc, and Yale University Study

EHHI, Inc. in cooperation with Yale University studied samples of rubber mulch, and new tire crumb with the intent of characterizing their ingredients.

The summary text of their characterization study is found here:
http://www.ehhi.org/turf/findings0815.shtml

The EHII/Yale Study list of components found is explained this way:

The shredded rubber tire playground mulch samples tested were provided by the manufacturer and were purchased in new bags of rubber mulch for use in gardens and playgrounds. The rubber tire infill for synthetic turf fields was obtained as new infill material from installers of synthetic turf fields. There were 5 samples of infill from 5 different installers of fields and 9 different samples of rubber mulch taken from 9 different unopened bags of playground mulch.

RESULTS There were 96 chemicals found in 14 samples analyzed. Half of those chemicals had no government testing on them - so we have no idea whether they are safe or harmful to health. Of those chemicals found that have had some government testing done on them these are the findings with their health effects.

TWELVE (12) KNOWN CARCINOGENS

2-Mercaptobenzothiazole / Carcinogen, toxic to aquatic life
9,10-Dimethylanthracene / Carcinogen, respiratory irritant and can cause asthma
Bis(2-ethylhexyl) phthalate / Carcinogen, may cause damage to fetuses
Fluoranthene / Carcinogen, Fluoranthene is one of the US EPA’s 16 priority pollutant, A PAH.

Heptadecane / Carcinogen
2-mercaptobenzothiazole / Carcinogen

Phenol, 4-(1,1,3,3-tetramethylbutyl)/Carcinogen

Phenantherene/ Carcinogen - A PAH

Phthalimide/ Carcinogen, skin, eye and lung irritan. A Fungicide

Pyrene, 1-methyl- /Carcinogen

Tetratriacontane /Carcinogen, eye and skin irritant. Can cause systemic damage to central nervous system.

Pyrene/ Carcinogen, toxic to liver and Kidneys, a PAH

Carbon Black/ Carcinogen

Carbon Black makes up to 20% to 30% of every tire. It is used as a reinforcing filler. Carbon Black is listed as a carcinogen by the International Agency for Research on Cancer (IARC).

Carbon Black, as such, was not analyzed by the Yale Study because Carbon Black is made up of a number of chemicals – some of which were found in the Yale study.

Carbon Black is not one chemical -- it is made up of many chemicals - often of petroleum products. Furthermore, carbon black has no fixed composition, even of the many compounds it contains. Carbon black from different sources will have differing compositions. In our method, carbon black will register as a series of substances extracted from it. There is no carbon black molecule, it is a mixture.

TWENTY (20) KNOWN IRRITANTS
1,4-Benzenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-
Irritant - causes skin and eye irritation, toxic to aquatic life

1,4-Benzenediamine, N-(1-methylethyl)-N'-phenyl-
Irritant - causes skin and eye irritation, toxic to aquatic life

2(3H)-Benzothiazolone
Irritant - causes skin and lung irritation

2-Dodecen-1-yl(-)succinic anhydride
Irritant - causes eyes, skin and lungs irritation

3,5-di-tert-Butyl-4-hydroxybenzaldehyde
Irritant - causes irritation to eyes, skin and lungs.

Anthracene
Irritant - causes skin, eye and respiratory irritation. Breathing it can irritate the nose, throat and lungs causing coughing and wheezing.

Benzenamine, 4-octyl-N-(4-octylphenyl)-
Irritant - causes eye and skin irritation

Benzenesulfonanilide

Considered hazardous, very little testing has been done on it.

Benzothiazole, 2-(methylthio)-
Irritant - causes Skin and eye irritation.

Dehydroabietic acid

Toxic to aquatic organisms

Docosane
Irritant - causes Skin irritation

Hexadecanoic acid, butyl ester

Irritant - causes eye, skin and lung irritant. Can cause reproductive effects.

Methyl stearate

Irritant - causes eye, skin and lung irritation.

Octadecane

Irritant - causes skin, eye and respiratory irritation

Octadecanoic acid also known as Stearic acid

Irritant - causes skin, eye and respiratory irritation

Oleic Acid

Irritant - causes skin and eye irritation

Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-ethyl-

Irritant - causes skin, eye and respiratory irritation

Tetradecanoic acid

Toxic to aquatic organisms. Skin and eye irritant.

Anthracene, 2-methyl-

Acute aquatic toxicity, Not much data available - what there is shows it to be an eye, skin and lung irritant

Anthracene, 9-methyl-

Acute aquatic toxicity, serious eye irritant
13. Carbon Black

Carbon black plays an extraordinary role in tires, and in their toxicity and potential for harm from exposures. Well known from decades of air pollution studies, urban epidemiological studies, carbon black causes lung cancer, brain cancer, kidney cancer, heart disease, neurological disorders, and cognitive degenerative disease.

A known carcinogen (WHO), we have found variations in percentages of the amount of carbon black in a tire, from 30%-68%. (EHII/Yale Study; NY STUDY, .pdf, pp19-20.) Carbon black breaks down into many sized particles, including PM10/PM2.5. That size particle was shown to cause several types of cancer, including brain cancer, kidney cancer, kidney disease, bladder cancer, and neurological disease and cognitive impairment disorders. (CITE; Harvard Mexico Studies and Urban Cohort Studies) We know for sure that carbon black is in tires, in part from simple observation of color.

14. THE NY STUDY CHARACTERIZES TIRE CRUMB THIS WAY:

“The components of Firestone’s and Dow Chemical Company’s rubber are summarized in technical specification documents. Although they are only two of many different rubber manufacturers, a similarity between the two vendors is readily apparent, even between three different types of rubber, solution-SBR, cold polymerized emulsion SBR, and high cis2-4 polybutadiene rubber. In general, the following similarities were observed between the two manufacturers for the compounds used to produce the rubber:

- The polymer used to produce solution-SBR contained approximately 18-40% bound styrene.
• The oil content in the polymer ranged from 27.3-32.5% in solution-SBR and cold polymerized emulsion SBR. Oils used include aromatic oil, high viscosity naphthenic oil, and treated distillate aromatic extract oil.

• Besides the polymer used, the other components of the rubber were similar between manufacturers and the relative proportions (parts by weight) of these other components ranged as follows:

 o Carbon black: 50.00 – 68.75
 o Zinc oxide: 3.00
 o Stearic acid: 1.00 – 2.00
 o Sulfur: 1.5 – 1.75
 o N-tert-butyl benzothiazole sulfonamide (TBBS): 0.9 – 1.50
 o Naphthenic or aromatic oil: 5.00 – 15.0

The components summarized above are the principal components of the major type of rubber (SBR) used for the manufacturing of crumb rubber and therefore have the potential to have a significant presence in crumb rubber. As discussed in subsequent sections of this report, some of these components have been found to be prevalent in crumb rubber, including **zinc (from the zinc oxide)**, **benzothiazole compounds** (from TBBS), and **PAHs** (possibly from the oils used). These compounds may be attributed to the SBR used in the manufacturing of crumb rubber.”

16. ZINC

Coastal Marine Resource Center Study, found fatal levels of zinc in leachate from tire crumb fields. This amount would cause fatal impacts to aquatic ecosystem within 48 hours. This is a notable amount, and though was assessed in terms of environmental health, indicates presence.

Menichini and Abate Study: “Zn concentrations (1 to 19 g/kg) and BaP concentrations (0.02 to 11 mg/kg) in granulates largely exceeded the pertinent standards, up to two orders of magnitude”. “Zinc and BaP concentrations are high in rubber largely exceeding the Italian soil standards”.

17. METALS: MERCURY, CHROMIUM, ARSENIC

The highest median values were found for Zn (10,229 mg/kg), Al (755 mg/kg), Mg (456 mg/kg), Fe (305 mg/kg), followed by Pb, Ba, Co, Cu and Sr. The other elements were present at few units of mg/kg. The highest leaching was observed for Zn (2300 μg/l) and Mg (2500 μg/l), followed by Fe, Sr, Al, Mn and Ba. Little As, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Rb, Sb and V leached, and Be, Hg, Se, Sn, Tl and W were below quantification limits. Data obtained were compared with the maximum tolerable amounts reported for similar materials, and only the concentration of Zn (total and leached) exceeded the expected values.

18. LEAD, POLITICS and CHILDREN

The problem is synthetic turf is NOT REGULATED as a children's product by the CPSC thwarting the ability to apply lead regulations that CPSC could enforce.
Lead was identified in synthetic turf fields as early as 2008 but was not addressed in any systemic way due to lack of standards or required testing (although the CPSC could have required the testing mandated for children’s products since 2008). The CPSC has chosen not to mandate this children’s product testing for synturf and in fact advised the industry about not having it designated as a children’s product <http://parentscoalitionmc.blogspot.com/2009/03/artificial-turf-tale-of-lead-levels.html>.

This has led to a “buyer beware” situation especially after the CPSC tested synthetic turf carpets, found lead at varying levels depending on sample age, and astoundingly concluded the whole synthetic turf system was, always and everywhere, safe not just for adults but for children. The assumptions were based on inappropriate modelling for blood lead levels from a meager sampling and the troubling finding presupposes that there is, a safe level of blood lead, which most pediatricians and lead experts agree there is not safe level.

To this day the synthetic turf industry cites the still CPSC-posted "OK to Install, OK to Play on" press release which should never have been posted to begin with, has been disavowed, in front of US Congress, by CPSC commissioner Kaye and is an embarrassment to government science, policy and public health <http://www.cpsc.gov/en/Newsroom/News-Releases/2008/CPSC-Staff-Finds-Synthetic-Turf-Fields-OK-to-Install-OK-to-Play-On/>.

19. By contrast, The Centers for Disease Control (CDC) in contrast warned and continues to warn the "there is no safe level of lead" to expose children.
"No safe blood lead level in children has been identified. Lead exposure can affect nearly every system in the body. Because lead exposure often occurs with no obvious symptoms, it frequently goes unrecognized."

In 2010 Van Ulirsch et al (Environ Health Perspect. 2010 Oct;118(10):1345-9) concluded that:

"Synthetic turf can deteriorate to form dust containing lead at levels that may pose a risk to children. Given elevated lead levels in turf and dust on recreational fields and in child care settings, it is *imperative that a consistent, nationwide approach for sampling, assessment, and action be developed*. In the absence of a standardized approach, we offer an interim approach to assess potential lead hazards when evaluating synthetic turf."

But no such approach has ever been instituted. Indeed as reported in USA today this year: "The CDC in 2008 said communities should test recreational areas with turf fibers made from nylon, and they should bar children younger than 6 from the areas if the lead level exceeded the federal limit for lead in soil in children's play areas. But some communities have refused to test their fields, fearing that a high lead level would generate lawsuits or force them to replace and remove a field, which costs about $1million, according to a 2011 New Jersey state report. Forty-
five of 50 New Jersey schools and towns contacted in 2009 by epidemiologist Stuart Shalat would not let him test their turf-and-rubber fields, Shalat’s report states. The EPA also found, in 2009, that "it was difficult to obtain access and permission to sample at playgrounds and synthetic turf fields."<http://www.usatoday.com/story/news/2015/03/15/artificial-turf-health-safety-studies/24727111/>

22. And for the past 2 years the company FieldTurf has, with impunity, noted its synturf fields contain lead during testimony on various bills in the Maryland State House.

The latest admission documented on video:

"...asked point-blank by one delegate, “Is there lead in your products? The executive answered, “There’s lead in a lot of things in this world.”... “Yes, there’s lead in our products.” In spite of this admission and the fact that the legislation in question was meant to post the CDC prescribed warnings about minimizing lead and other toxin exposures from the synturf and tire waste products, and in spite of the fact that the legislation had strong and broad input and support, the legislation was not even allowed to come up for a vote in committee by the committee chair.

Unfortunately for the children, fields with high lead remain. But those responsible for protecting children are kept in the dark. NO ONE IS MONITORING OR REGULATING ARTIFICIAL TURF FOR LEAD OR OTHER TOXINS in either old or new fields, including the Consumer Product Safety Commission (CPSC) (see <http://www.peer.org/news/news-releases/cpsc-drops-artificial-turf-playground-safety-review.html> Even though the Chairman of the CPSC, recently admitted to congress that its soothing conclusions of safety after finding lead in synthetic turf were NOT correct.

Tested fields keep showing up with lead in them both old AND NEW. Some tested fields have little or no lead, some high levels and some have both within the same field. There is no way of knowing if any of the components of a field contain lead, and how much without stringent and thorough testing of each field.

This problem highlights the need for application of the designation as a children’s product for testing and regulation: 1) stringent testing of all the colors and of the backing of the carpet for total lead content (chromium and cadmium should also be tested for) AND 2) Testing many samples of the infill which is an ever-changing â€˜witches brewâ€™ of chemicals- so undetectable, low and very high levels can all be found in the same field. In addition to having testimony both last year and this year in the MD state chambers from Field Turf that their product DOES indeed contain lead (as you heard in the recent committee testimony on MD house Bill 883 , and in addition to those referenced in the PEER review, other studies on lead also exist.

crumb-playgrounds *(NOTE if you go to PEER.ORG news releases: click on public health and "artificial turf" to find the actual filings with many links)*
24. For a comprehensive media article on Lead in artificial turf which cites scientists and studies that the synturf industry avoids please go to:

For example as reported in that article:

Dr. Shalat’s New Jersey State Study (2012) on artificial turf found lead in the field dust in the respirable air space of a robot and real player- highly variable but sometimes very high (note most facilities would NOT LET THEM TEST).

25. PEER writes: The concerns about lead exposure have taken on a new urgency following the release in June of 2012 of a study done for the New Jersey Department of Environmental Protection which found artificial fields made of tire crumb can contain highly elevated levels of lead much greater than the allowed levels for children:

a) It reports "concerns with regard to potential hazards that may exist for individuals and in particular children who engage in sports activities on artificial fields"; and

b) *"Inhalable lead present in artificial turf fields can be resuspended by even minimal activity on the playing surface."*

26. Dr. Lioy of Rutgers who is quoted in the USA Today article recently participated as the senior author in a study which found lead and other
toxins in the BOTH the plastic rug (supplied to them by the industry) and tire crumb infill. LEAD was also was found in simulated body fluids meaning there is little or no protection of any kind against the lead getting out of the material into the body.

27. Pavilonis Study found lead.

" Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers" , Brian T. Pavilonis1, Clifford P. Weisel1, Brian Buckley1, and Paul J. Lioy1

QUOTE from Pavilonis et al: "Since it is possible that children may be exposed to potentially high concentrations of lead while using artificial turf fields we recommend, at a minimum, all infill and fibers should be certified for low or no lead content prior to purchase and installation."

*The main out-comes of concern from Pavilonis et al:

a) the finding of lead, and chromium in both the tire crumb and the plastic rug and simulated body fluids at sometimes extremely high levels *EVEN IN NEW FIELD CARPETS.*

b) Benzothiazole derivatives and 4-(tert-octyl) phenol were also found in in the simulated body fluids. Both are probable carcinogens (the subject of another fact sheet).

QUOTE: "Lead was detected in almost all field samples for digestive, sweat, and total extraction fluids with digestive fluid extract of one field sample as high as 260 mg/kg. Metal
concentrations were not markedly different across the three different sample types (new infill, new turf fiber, tire crumb field sample). However, one of the *new* turf fiber samples contained relatively large concentrations of chromium (820 mg/kg) and lead (4400 mg/kg) compared to the other samples tested...the variability of lead contained in the infill material is large and can span more than two orders of magnitude*. One field [tire crumb] sample did contain a high lead level (260 mg/kg) which was on the same order of magnitude as the NJ DEP cleanup value (400 mg/kg).”

In summary: Lead-free is the only acceptable level for child products (and indeed for people in general). **There is NO safe level of lead for children.** And yet many of our children are playing often, if not daily, on fields that may contain lead and certainly do contain many other toxic substances. Finding ANY lead in any play area for children of any age is unacceptable. As the CDC notes: Every effort should be made to eliminate ALL unnecessary sources of lead in the environment, especially a child's environment. *Lead in artificial turf is not only totally unnecessary but dangerous to health AT ANY LEVEL*.

28. Other sources of information on Lead in tire crumb fields:

www.safehealthyplayingfields.org<http://www.safehealthyplayingfields.org>
www.synturf.org<http://www.synturf.org>

April 2015.
November 2012.
No. 34] Beware of lead content in exotic color artificial turf fields!
September 2012.
No. 33] Odessa, Texas: Eager fans will not be given pieces of the artificial turf field. September 2012.
No. 31] UNLV researcher spreads word about the need to test artificial turf fields. December 2010.
No. 29] Concord, Mass.: Town replaces fake grass fields, officials insist nothing is wrong with the lead levels! July 2012

28. TWELVE (12) CARCINOGENS found and HOW DO THEY INTERACT:
The Yale Study identified the presence of so many carcinogenic materials in a single material that it raises many more questions about interaction of PAHs with metals, and combination impacts. The interaction of the PAHs and benzothiazoles with other materials in the fields needs to be characterized and addressed

29. Strengthening Additives: Nanoparticles
We would also ask for information and clarity about tire strengthening additives of any kind that were built into the material anytime in the past
30 years, these would have been added to tires.
[http://nice.asu.edu/nano/carbon-black-and-amorphous-silica-tires]

Similarly, we request that the tire manufacturing industry explain their use of nanoparticle products, of any kind, including the type and size, source company and source country, and ask for an explanation about how:

a. they can be quantified in the product, and
b. how can they be cleaned up if they are released when the tire crumb and or plastic “grass” carpet degrades?
c. We would also like to understand what material characterization of their behavior in tires performance,
d. And or their behavior once they are released into the environment.
e. We ask for any epidemiological due diligence that was conducted by any tire company on nanoparticle use prior to using them in a commercial product.
f. Plans for continued use and safety precautions tire companies will impose upon themselves
g. Epidemiological studies conducted on these particles in tires

30. Plastics, Microplastic Fibers, Microbeads, and Small Particulate Plastics

Assessment of microfiber particulate and small particulate plastics needs to be assessed in characterization studies.

31. Flame Retardants

Flame retardants can be added to a tire in production, or applied post production in a shipping setting or possibly as tire crumb. Since flame
retardants are known carcinogens with health issues of concern, and will be on the surface of the waste tire crumb, tire infill providers need to know if they are present, and purchasers need to know that the material contains flame retardants prior to purchase.

32. Tires and Tire Crumb Additives
Myriad products exist to clean, protect, condition, and color tires. We wonder if they are components of tire crumb?

33. Road Waste Picked Up By Tires
Tires spend their lives on roadways, of course, and can pick up many materials in their travels. Debris, hydrocarbons,

34. CARINOGENIC, PATHOGENIC, and MUTAGENIC ingredients in tires cannot be removed by shredding tires into tire crumb and must be assumed to be accessible.

35. Tire crumb and repurposed rubber appear to be the same thing, with interchangeable use... but are they the same? We would like clarification.

We would like clarification about the distinction between the tire crumb, repurposed crumb rubber, and crumb rubber. Specifically if using the term "repurposed rubber crumb" implies uniformity of ingredients? Does that term imply tires are not used? If so, what are the ingredients in repurposed rubber crumb and how do they differ from tire crumb?

36. We would also like access to all MSDS/SDS of tire crumb manufacturers and tire companies, and the ability to ask questions about
how and where they were made, variations on lots, source and composite addendums. It is difficult to locate them.

37. **EXEMPTION ON LISTING HAZARDOUS MATERIALS:** We would like to understand why tire companies have an exemption on their need to list ingredients under Section 2: Hazardous Materials of an MSDS/SDS. We were unable to find the source of that exemption, if it has a deadline, and whether your study group thinks it is an obstacle to understanding and characterizing risk of exposure from tires and tire crumb.

38. Of those MSDS that we located, several, like this Michelin North America Material Safety Data Sheet for Michelin, Uniroyal, BF Goodrich, says in “**Section 2 HAZARDOUS INGREDIENTS: Note: Tires meet the definition of article as defined by the OSHA Hazard Communication Standard (29 CFR 1910.1200) and are exempt from MSDS requirements.**”

There was clearly no mention of 1,3 butadiene, carbon black, POHs, VOCs, benzothiazoles, or any plasticizers, nor metals, styrene, sulphur, known irritants, or well... anything. Since that section also outlines corrosive, combustible and waste treatment, it is important for more than this issue. We explicitly ask CDC/CPSC/EPA if they can use their existing authority to require tire crumb companies and tire companies to provide ingredient information.

39. **SOURCE MATERIAL UNKNOWN: MSDS/SDS CANNOT REPRESENT WHOLE FIELD.** Tire crumb comes from many tires, and many sources. Since not a single tire crumb field can accurately list or track which tires were source materials, or what other mixed in components, and there is no accountability from tire crumb recycling industry for the shredded product,
then MSDS/SDS cannot be accurate for a whole field due to variability. Therefore, the burden of “proof” of risk lays squarely on the ability of the purchaser (schools, sports directors, booster clubs) to assess risk... of a very very complex product. So, if the exemption stays in place, we will know for sure that we cannot know what is in a tire crumb based field.

40. TREATMENT TO SHOW NO PARTICULATE OR BREAKDOWN: SHOW US.

As for studies that claim that their product has been treated (such as cryogenic treatment) to not break down into dangerous particulate, we are deeply skeptical, and would ask for proof. We also ask for assay testing over a period of at least several summer weeks. We ask for the researchers to simulate the pounding over 10 years and assess the particulate characteristics and particle size. That testing in fact is being done right now... in thousands of children across the country. Simple observation on a player body, on the sideline benches, or under a microscope shows consistent breakdown into particulate.

41. SHREDDED, PULVERIZED, HIGH SURFACE AREA FORM OF TIRES and ADD INS is LIKELY MORE TOXIC THAN WHOLE TIRES.

Unfortunately, because it is shredded, pulverized, and in loose and unencapsulated form, tire crumb has exponentially more surface area than whole tires (Thomas, Gupta study;) and we are concerned the material is very likely more toxic—possibly many times more toxic—in the school field form than whole tire form, since the increased surface area provides more opportunity for molecules to escape. We know for sure that the increased amount of surface area in tire crumb makes the material in tire crumb more available to the breathing and exposure zones, and to runoff.
42. CRUMB IS SURROUNDED BY DUST PARTICULATE:

Accurate characterization technique must include a study of the particulate that surrounds tire crumbs, and steps must be taken to make sure that the sampling process does not inadvertently remove that dust and particles. We found several examples of the samples being washed, some in unbuffered water, prior to their analyses being done. Of course, that removes the particulate that concerns us the most. Distribution of the particulate size and type is important. Those particulate can become aerosolized by numerous gases and we ask that attempts are made to properly model this dynamic under high heat conditions, primarily.
43. **VERY COMPLEX PICTURE From TOXICOLOGY PERSPECTIVE**: Tire crumb material is complex from a toxicology perspective, largely due to the chemical complexity presented by multiple known toxic components and variation. It has been described as a “toxic soup” of ingredients for which we have no consistent data on proportions or levels. Characterization of ingredients’ margin of error is unknown.

Testing must be done at the field levels using accepted sampling plans that have been statistically shown to be valid. Not fields have been tested in sufficient detail to determine or rule out any exposures or risks. A look at testing protocols for lead in urban soil sites illustrate the level of attention required and show the degree that current testing has fallen short of that needed for decision making for children’s health.

44. **CONTACT PATTERNS, FIELD USE and ADJACENT BUILDING CONTAMINATION**

Exposure is likely determined by ingredients in surface, activity, and number of children or users on field. Each school or community field has high use and high contact patterns, such as hosting contact sports, like football, lacrosse, soccer, and baseball, athletic camps, workshops and practices. In those sports, children dive into the field materials. As a child runs or skids or slide tackles, a column of material rises up, as does the dust and particulate that surround the tire crumbs themselves.

Testing for exposure need to list weather conditions including humidity, wind speed, and precipitation, temperature on field surface and ambient air temperature. Number of children on field, and activity level of that play needs to be recorded, video would be most interesting.

Children of all ages use the fields for multiple sports, recreation and school events. Artificial turf tire crumb fields abound in elementary schools and at
indoor and outdoor sports centers where children of all ages and all stages of development play soccer, lacrosse, football, track, cheerleading, band, and use the field for general recreational school activities. In the fields with which we are familiar, families with members of all ages use the fields; and the community holds events, picnics, special fairs, and activities. Some fields are immediately adjacent to a school building. That there are many uses, and probably many levels of contact and exposure is an important part of characterizing exposures, but both low dose exposures AND high contact exposure scenarios and use need to be examined, with appropriate epidemiological process.

45. SCHOOL BUILDINGS AND SURROUNDING AREAS ARE CONTAMINATED with a great deal of tire crumbs. The fields appear to lose from 1-30 tons of material over their 8-10 year life, and some of it goes directly into buildings, cars, and then homes. This impact needs to be studied as an inadvertent consequence.

46. CANNOT ARGUE NO INHALATION OR INGESTION RISK or SAFETY FOR EVEN A SINGLE FIELD. We argue that given the unique characteristic of nonuniformity, known carcinogenic materials, breakdown into particulate/dust, no known source of origin, and no accurate studies on complex interactivity of those components in the children’s exposure zone, in the tire crumb as it is installed today in 12,000 fields, not a single field installer, nor material provider can demonstrate that the material is safe from inhalation and ingestion during normal use, active use, and on hot days.

47. EVERY USE COULD POSE A TOXIC EXPOSURE and it would be irrational to argue otherwise. We argue that due to the high variability of toxins in the tire crumb substrate (from tires, unknown additives, and
factory waste add-ins), and lack of any control of the material, well-known sampling techniques will NOT accurately predict risks to human health.

48. **CHILDREN CANNOT AVOID THE EXPOSURES:** Since school children cannot self-advocate and take responsibility for staying off a field if directed to be there by coaches or school officials or parents, we must assume that children cannot avoid the exposures when they play on those fields.

49. **CANNOT CLAIM THAT EXPOSURES WILL NOT OCCUR.** Absolutely no way to responsibly claim that ingestion and inhalation of particulate from the material will NOT occur to those children.

50. **HOTSPOTS of intermittent dangerous exposures are possible, and should be expected and searched for in every field.**

We must assume that tires have different “recipes” based on their type of use. Therefore, knowing the type of tire used in tire crumb, and each tire “recipe” would be helpful in assessing characterization of ingredients. However, there is no way to ever know what tires, or what material is in any field, and therefore, an MSDS/SDS cannot be representative of any field, or even any meaningful part of a field. Alarmingly, the high variability in the ingredients presents worrisome “hotspots” potential, where the hotspots might be missed in sampling but even a single exposure could have very serious impacts for a child who has the unfortunate luck to dive into that hotspot. PAH’s may be more prevalent, and present dangerous levels for installation period of the field, and for some unknown period of time afterwards, and considered a “hotspot”, then the consistent release of PAHs in the subsequent years could mean low dose, chronic exposures. Both need to be examined.
51. Lead, chromium, mercury and arsenic could be hotspot sources, based on which tires were used, and how they were treated prior to being placed in the field.

52. For example, when we asked about the source of lead in tire crumb fields, an infill vendor explained to us that a) lead could be in any field as an ingredient of the tires, of the treatment of tires, and b) once, they were aware of a shipment of tires that was treated with an anticlumping material that contained lead and the whole lot had lead, and c) that some lots had flame retardants added as well. They would never really know, but “most purchasers never ask”, according to the infill material vendor. If an MSDS was required, an additional charge was to be imposed, since MSDS were not available from the materials they acquired from China or other countries. We have collected many more examples of the worrisome unknown ingredients in our fields and can share with the study teams, if requested. While this information is anecdotal, that is the point: we have no idea what is in any field, for sure.

53. Another example, but this is not anecdotal: in a primary study field exposures in CT, a researcher found that the children’s monitors showed benzene. Since there is no safe level of exposure for benzene, and in fact, tires are not expected to have benzene, the field was sampled more closely, until that “hotspot” was located. The original source of that benzene was not determined, but it was next to a busy parking lot where cars’ exhaust may have been a source as they turned the corner, or possibly the tire crumb material had been previously stored in an area with benzene in surrounding environment, or perhaps it was picked up from contact on roads. We will never know. That finding suggests that the carbon black in the tires can adsorb additional toxins present near tires or tire crumb, and
could release that material as the fields are pounded with running feet, or possibly on a hot day. The proper characterization of this material needs to account for adsorption characteristics of carbon black, and other interactions

54. The point is, that it is impossible to locate hotspots for all toxins in every field, and incorrect to extrapolate the risk for a whole field from a single sample or even multiple samples, since every sample is unique. So, while hotspots can easily be missed in a field, the unfortunate child that dives into that particular part of a field has an exposure that can actually be life threatening, but missed in its entirety in the sampling based risk assessment.

55. In fact, since the tire crumb creates multi sized “dust” particles, and off gases, it is impossible to prove that even a single field is safe from inhalation or ingestion exposures from tire dust particulate, off-gassing components, multiple toxins and combinations of toxins, and heat.

56. Importance of the Heat Factor: Source of direct injury and chemical catalyst

HOT HOT HOT HOT EXTREMELY HOT FIELDS

Grass playfields remain close to the temperature of ambient air, and are often much cooler. Asphalt playgrounds used to have a use limit of 141F and many schools remove children from playgrounds when temperatures get hot. With tire crumb based turf fields, surface temperatures can soar on even mild sunny days.
Tire crumb fields “superheat” to levels that are routinely over 150F on a sunny spring day, and in a recent study conducted on a sunny day Utah, found to be close to boiling point, 190F, according to the Penn State Field Turf Heat Study. The study found that tire crumb field surfaces are hotter than ambient air, and increase in heat in a non-linear function with each additional degree Kelvin of heat, hence the designation “superheating”. To draw an example, on a Labor Day Weekend in DC area, with ambient temps of 82F, the field surface temperature hit 164F by noon on several fields used in a busy, tournament for about 1000 children, both boys and girls, ages 8-15. Those levels are known to melt plastic cleats, require tubs of water on the sidelines to cool down shoes, and create heat-related injury including heat stroke, nausea, heat exhaustion, and dehydration in children and all users. It is not unusual for children players to vomit, faint, and suffer dehydration from hot conditions on the fields.

57. Marketing and sales for these fields tout their usability in all conditions as a benefit (more practice and play hours), but in fact, the heat build up on fields makes them very uncomfortable during many days and conditions. In DC, there are over 100 days of sunshine each year, and most are during the spring, summer and fall, making the fields uncomfortably hot and possibly dangerously hot for a third of a year. A calculus should be made on the percentage of safe days to play based on field yield risk, and heat.

58. Tire crumb fields do not have any protection from heat, and so they are irrigated to be cooled down, but the effect is temporary.

59. To our knowledge, there has been no well known place for doctors nor parents to report heat injury, though they are commonplace. (This author
specifically remembers a hot, poor air quality day in August in 2014 in Washington DC when during a single practice, 4 soccer players vomited, another child was taken to the hospital after passing out, and another sidelined himself against the coach’s wishes, due to extreme dizziness and nausea.)

60. **Reluctance to Report?** Yet, it is curiously uncommon for school teachers, coaches and parents to remove the children from the fields, due to temperature. We cannot explain that in rational terms.

We have also noted another curious effect: as football, soccer and lacrosse increase in popularity and competition in the US, competition for spots on high performance teams is fierce. There is a perception from strong sales and marketing of the fields, that the turf fields present a competitive edge for a school, a club or even a teenager trying to get into college, and are worth the high price paid. As psychologist Dr. Wendy Miller, explains, “it is a culture where high performance parents, players and schools might be willing to overlook these injuries, thinking that to complain would jeopardize their child’s access to a competitive team. This thinking could easily lead to the silencing of reporting of injuries.”

Heat injury reporting needs to be included in the survey questionnaires, and victims of heat injury and illnesses need to have a place to report, with impunity.

61. HEAT MAKES THE CHEMICAL DYNAMICS ABOVE A FIELD VERY COMPLEX
In addition to the serious issue of direct injury from hot playfields to young children, or anyone, the super hot fields present a very challenging chemical situation.

Dr. David Brown, ShD, toxicologist, professor and former Deputy Director of Public Health Practice Group at ATSDR/ CDC explains that, “the unintended, and largely unstudied chemical consequences of what comes off such an enormous quantity of high surface area material, in amounts and sequence that is scientifically accurate is very difficult to predict and model. Since the chemicals in the area above the field could change instantaneously, the conditions are critically important (number of players, temperature, time from last rainfall, etc.), as is the sampling methodology. But no one has been able to come close to modeling the actual yield, we only know the materials by characterization with samples, and that variation in samples is so broad as to almost be meaningless, since it could be easy to miss harmful exposures.”

62. Analyzing the field yield on a hot day is very complex, and challenging to even trained toxicologists. The superheating of the fields makes gases yield at faster rates as temperatures on the tire crumb surface increases. So, as a day heats up, it is very likely that the yield increases directly with temperature increase; a hot day creates more gases. Based on well understood scientific laws, we presume that the gas yield from the field at surface temperature of 50F (a cloudy day in January in DC) would be considerably less than a field surface temperature of 158F measured last week. If more gases are escaping the surface, then there are more “opportunities” for particulate to adsorb onto the surface of the gases, creating very dynamic series of compounds, none of which would be recommended to inhale. The changes in the chemical composition over the fields as their temperatures rise is very difficult to test and model. These changes happen in an instant... as a threshold is reached... and the
exposures can increase sharply. It is a very sophisticated and difficult challenge to model. But what is the most important is not only that the 24 gases that escape tire crumb (Norway Study) create dangerous mixtures but those gas/particulate mixtures, (and air) create a vector for deep lung exposures of all the materials in the tire crumb field. So, on poor air quality days, when there are many children on the field and a lot of stirring up of the material, the fields could present enormous risk.

63. We are concerned about the range of yield levels, but, we are most concerned about the intermittent risk to children during those hot periods (a hot, poor air quality summer day during children’s soccer camp week in Washington DC, for example) when the fields are likely yielding more gas, and therefore particulate has more “carriage” into lungs, respiration rates are higher, skin is exposed, and perspiration is highest. All these are likely factors in exposure. It is during those days when exposures are probably highest, and high enough overwhelm a developing immune system.

64. Exposure Study Needs To Focus On Worst Case Conditions
We acknowledge that the level of yield from the fields might vary widely with material variation, and will also vary with outdoor weather (temperature, wind, humidity and sun) conditions. Taking averages from fields across the country will be meaningless, and will only help the industry to expand its message of “found no harm”. An analogy might be to determine the health of a forest taking 4 samples from 40 locations, evenly spaced, but the sampling might easily miss a blazing forest fire. That one day might destroy living material exponentially, but it could easily be missed. Dangerous exposures can be unpredictable in this material due to the scope and scale, the toxic character, and the superheating characteristic.
65. **A better approach is to carefully detect high yield days, and look THAT DAY for exposures in a child’s body during those periods.** Since the exposures might attenuate, the work would have to be done expeditiously. The harmful exposures may or may not be detectable a day or a month later in a child. Monitor both genders, for patterns that might lead to that awful air quality soccer camp in the city on a tire crumb field, on days when vomiting and melting shoes are commonplace. A focus on the impacts from the high end of those yields we believe will present exposures that are clearly, and unequivocally harmful from both heat injury perspective and toxicity exposure potential. We do not know for sure if the carcinogenic exposures from low dose regular exposures or from high dose “events” are more dangerous, but both need to be studied as separate situations, not as an average.

66. **We urge your team to focus the study resources on primary measurements made in high use scenarios on hot days,** and refrain from the approach used in earlier studies that look at chemical compositions during winter or rain conditions on limited number of fields.

67. The only reliable way to assess the risk to children from a particular field, or groups of fields, is to look at their direct exposures, and importantly look at bloodlevels of the known substances. Cooperation from both high use athletes and those exposed to chronic levels of materials will be important.

68. **The Study Needs To Focus Also On Low Dose Exposure Risks**

Trained immunotoxicologists look at the impacts of chronic low dose exposures to metals, PAHs, VOCs and many other materials in tire
crumb. Their input is crucial to understanding risk of exposure in a developing child.

69. Characterization Mistakes

Studies look convincing, but miss the forest for the trees.

Tire recycling and tire crumb industry reports are quick to point out that when they find harmful materials in their samples, they are under the known safety limits. There are two interesting fallacies in that reasoning.

First, since the samples in several studies are few and not uniform, they fail to acknowledge the statistical significance of finding known regulated toxic material in 2 million pounds of powdered tires... if one finds the needle, is it luck, or is it because needles are more prevalent than expected?

Proof of presence is meaningful! For example, in the NY Study, PAHs were found, as were metals, benzothiazoles, and many substances. Their presence indicates a risk.

In a child’s product, since many materials are not known how they affect children, just knowing they are there is enough to use a precautionary principle and prevent the exposure. Arguing that the materials appear under a limit (especially if that quantity is an average of multiple samples), or there is no established limit (because it has not been studied), are not as meaningful as the proof of their presence.

Second, though the conclusions of the industry reports may be of no harm found/safety, a close look at the data itself on PAHs, lead, cobalt, chromium, etc. is useful, since a) it proves presence, and b) at levels that suggest risk for chronic exposure. Chronic exposure risk is the subject of
a great deal of new cancer research, and we care about all the materials, including those which are potentially toxic.

70. ARGUMENT FOR MORATORIUM BASED ON KNOWN CHARACTERIZATION FOR TIRE CRUMB

Because of the:

a. known loss of 1-30 tons of material from the fields during the 8-10 year “life of the field” into air and water

b. ingredients list: over 50% of its components are known carcinogens and pathogens, [cite Yale Study]

c. massive scope and scale of this product, (the amount of material and surface area of these fields is enormous; scale/millions of pounds in each installation),

d. inability to control the levels of toxic exposure to children, or even properly characterize them due to immense variation and chemical complexity of what happens on a hot day over a field, and around children. We cannot suggest mitigation strategies for the danger, because the material is inconsistent,

e. Even if we did know for sure what was in each field, and suggest mitigation techniques and protections.... All the tire company has to do is change their recipe, or many recipes, as they do continually, and the study is worthless. Children are still being exposed to whatever is in the tire, the lot or that particular field..

71. Moving Target Analogy

Even if the study were completely successful, and the tire crumb material categorized properly, the trouble is, tire manufacturers could change the “recipe” for tires... and in fact they do this regularly... and the study results will be useless, or at best, diminish in usefulness.
Any attempt to study tire crumb safety on turf fields is analogous to trying to hit a moving target. Tire crumb is a waste product. Tires are not designed or intended to be used as infill for turf fields.

Ingestion, inhalation and absorption of fine particulate by children is not a consideration of tire manufacturers as they choose chemicals and compounds for their tires. Nor are they bound to maintain any safety considerations for such use by children.

So any study of present day tire crumb is a futile endeavor, because such study tells us nothing about a field that gets installed immediately after the study. Tire manufacturers often change the chemical composition of tires and will likely do so again.

Even if a field passed safely concerns in a present day study, a new field could easily fail a hypothetical study conducted the day after the present study. So unless every field was tested using the exact same methodology after every installation, there is absolutely no way to assure the user that their new field is safe. Those new fields could easily have an entirely different chemical composition simply because tire manufacturers changed their tire ingredients.

So the present Federal Study is only a backwards looking study, not forward looking. Any conclusion must be transparent and clear on that issue - upfront and center. Otherwise the public is being misled into a false sense of security.

72. **Sampling: Not Appropriate For Tire Crumb**
The core pediatric toxicology problem in industry based safety studies, is that there appears to be an assumption that tire crumb is a uniform material, and behaves uniformly. It does not. There also appears to be an assumption that sampling will be an accurate method for studying tire crumb risk to children, and it is not. **Sampling will not be accurate to assess a nonuniform, heterogeneous material with multiple known toxic ingredients, high direct contact (dermal, hand to mouth, breathing zone) for pediatric use.** Sampling cannot produce a single sample that is representative of the whole field, or even a part of the field, other than the sample itself.

73. **Methodology needs to study PERFECT STORM exposure conditions, and be able to calculate exposures during those relatively dangerous days.**

Nor can sampling in the way it is proposed (samples from 40 fields across the US), illustrate impacts from a perfect storm of exposure conditions on a particular field, say, during an intense soccer camp in in summer in Washington, DC with high ambient and field surface temperatures (ie 160F), bad air quality, no wind, when working athletes are breathing in particulate with high VOC, PAH, benzothiazoles, and carbon black... and many more compounds, on a particularly high yield day. Averages cannot be relied upon in sampling for this type of product, since they will further obscure the risk from exposures to hot spots of high risk material that are on fields. Averaging the results from a national distribution in various weather conditions simply obscures the acute risks further; it is useless for risk analysis. In layman’s terms, it is like studying a forest using “x” number samples, but missing the forest fire that is blazing away at a nearby area of the park. For a child, it means that she plays on a field that was called “SAFE TO PLAY”, after sampling, but in fact she might easily have
been covered with multiple materials known to cause cancer, and in fact, that might be a regular event. The uncertainty of exposure frequency makes the risk higher, not less.

74. The core of the methodology used in the 50 studies asserted by the tire recycling industry were based on simple characterization of a single sample, but not on realistic, combined, nor worst case (the most important) use scenarios.

75. Multiple carcinogen and multiple pathogen combined effects need to be measured. Single material measurements could be only a fraction of the exposures, since the material exposures are likely to be from combinations of materials.

76. BIOMONITORING FRONT AND CENTER

Because sampling presents inconclusive results, a methodology that relies on biomonitoring will be more meaningful. We suggest that more sophisticated approach be considered. Personal sampling monitors attached to children, dermal, urine, breathing analyses, and particularly, blood and tissue samples from frequent users, players on “Perfect Storm Days” and those expected to have chronic low dose exposures. We understand that biomonitoring raises more issues, but absent a good model, empirical data is the most reliable way to accumulate actual evidence of exposures and to be able to establish a reliable causal link to the cancers and diseases we predict from exposures.

77. IMMUNOTOXICOLOGY SUPPORT: RECRUIT THE BEST PEDIATRIC IMMUNOTOXICOLOGISTS AND RESEARCHERS. Some researchers and epidemiological professionals are already on the trail of better ways to
identify actual exposures, and can create biomarker groups as indicators of presence of illness or exposures. These researchers have background in immunological toxicology, and can track subtle changes in an immune system that might be precursors to serious disease, like cancer, kidney disease, brain changes, and lung disease. It is possible to create biomarker group to prove tire crumb exposures in users and we believe that the preliminary proof of concept step could be accomplished in less than 6 months with cooperative athletes, and study volunteers, and modest budget. While we will not list them here, for protection of their privacy and frankly, for fear of industry retribution, we will nonetheless let you know that we have found multiple professionals who are capable and willing to work on this task, provided a protective forum and IRB standards are in place.

78. Immunotoxicology support: look carefully at the ages those immune system markers in all children who are using these fields, understanding that some metabolic types, and ages may be more vulnerable than others. In fact, there are early indications that certain age groups, such as prepubescent females (age 8-11), may be more vulnerable to exposures to benzothiazoles, plastics, phthalates, and endocrine disruptors in general, and therefore might be at higher risk to contract cancer or disease from low dose particulate exposures from tirecrumb, and the plastic “grass” carpet particulate. We need to establish the datum from players to study this. We still do not know, but some indications exist. For that reason, we respectfully request that the study team include toxicologists and epidemiologists that are trained to keep these concepts front and center.

79. LOW DOSE EXPOSURE CONCEPTS and CONCERNS
Based on what we know now about low dose exposures to VOCs, PAHs, benzothaizoles, styrenes, carbon black, plastics, plasticizers, and metals, even at low, sub acute exposures, the fields could be very dangerous. That possibility was not considered in the CPSC study, EPA study, nor in multiple industry studies. These need to be assessed:

- Chronic exposure to metals, plastics and plasticizers
- Chronic exposure to carbon black mimics air pollution exposures
- Immune system reactions
- Endocrine disruption exposures from plasticizers and phthalates,
- Exposures from multiple low doses and chronic exposures

80. The study should calculate yield of material that leaves the fields, and how it leaves the fields. How much in the air, water pathways, and with users (in shoes, cars, etc.) Interviews with schools and vendors need to establish the replacement quantities of these fields, and how often new material is put into place, since it would affect exposures, and give an indication of gross yields. We estimate that the fields lose from 1-30 tons (estimated) of material, so exposures and impacts need to be measured in adjacent buildings, soils, and stormwater systems. With 12,000 existing facilities, this may need to be the subject of additional studies conducted to also assess if the fields shall be regulated as point source contamination under Clean Water Act and Clean Air Act. It is a very important metric, and a perfect opportunity to include it, with little incremental cost, in your study.

81. INTEGRITY STANDARDS. To track the history of the emergence of this product is to track effective lobbying for regulation changes that favored the tire industry, and the tire recycling industry. This industry took
advantage of an enormous quantity of recalled and used tire stockpiles, and heavily sold and marketed the materials to schools, and sports centers where millions of children play. Central to the steps that catapulted this industry forward was the removal of the designation of artificial turf fields as children’s products, based on the rationale that adults played on them, too. Yet the fields continue to be sold to elementary schools and to sports centers brimming with elementary, middle and high school players. The sales oriented industry was willing to submit children, schools and communities to the materials in tires in enormous amounts, and call them safe. As this claim is deeply questioned now, we also urge you to NOT allow the sampling or data collection to be conducted by an interested party, including schools, sports centers, athletic group personnel or administrators, field installers or laboratories or consultants hired by those groups, and establish peer reviewed standards for testing.

82. Any group or individual who does participate in the study, including regulatory staff, needs to sign an affidavit certifying that she or he, and her/his group has not received compensation or benefits in any form, including but not limited to sales commissions, direct payment, compensation, bonuses, grass to artificial turf grant, field financing, water savings rebates (State of California and possibly others), or physical benefits including but not limited to uniforms, facility enhancements (restrooms, concession stands, parking lots, storage facilities, etc.), stadium components, or field equipment of any sort, from the field installers or tire crumb field industry and its assigns, and has no financial conflict of interest. The document should be filed with an appropriate agency and made public.

83. We ask for full transparency on all parts of the study process for parents, interested parties, and schools.
<table>
<thead>
<tr>
<th>Request</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Regulate tire crumb and rubber mulch as children’s product</td>
<td>PEER filed formal request; 12,000 fields x 30,000 tires is the amount of existing material in children’s use; see table A for details on volumes and surface area sizes, children/schools. Known carcinogenic material and known</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2. Remove “safe to play, safe to install” or any other references that imply safety from all EPA, CPSC and CDC websites and public information sources</td>
<td>PEER Formal Request; agencies must remove all endorsements of safety.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Issue a directive to public health agencies to disseminate warnings regarding unknown risks from lead exposure from AT fields, as well as exposures to carbon black, known carcinogens, PAH, VOCs into air and water pathways; direct hospital systems and medical systems to screen for tire crumb field use, and report results</td>
<td>For parents, schools, athletic groups, and communities; conduct parent outreach webinars</td>
</tr>
<tr>
<td>5. Use only independent lab or consultants unassociated with tirecrumb industry, adhering to high ethics guidelines; transparent process for review; affidavit of no conflict of interest</td>
<td></td>
</tr>
<tr>
<td>6. Commission a primary study, conducted by independent, peer reviewed group such as CDC to examine existing cancers AND illness in tire crumb field users and maintenance workers of tire crumb fields</td>
<td>Needs participation from CDC/CPSC/EPA staff so parents and public can have direct contact</td>
</tr>
<tr>
<td>7. Mandate Cal Recycle Study corrections to methodology; mandate methodology peer review; and mandate to impose Prop 65 rule based on OEHHA’s own findings on carcinogenic exposure</td>
<td></td>
</tr>
<tr>
<td>8. Convene a conference for presentation of risks and concerns from parent groups, cancer survivors to Federal Research Team</td>
<td></td>
</tr>
<tr>
<td>9. Convene series of webinars and open comment opportunities</td>
<td></td>
</tr>
<tr>
<td>10. Allow public health and environmental advocacy groups in Federal Research Team with complete transparency</td>
<td></td>
</tr>
<tr>
<td>11. Establish a collection point for recording experience of victims and those who may have suffered injury from use of the fields, including heat injury, concussion or head trauma, cognitive disorder, illness, and cancer for study and documentation; victim hotline; for both child and adult contact with fields</td>
<td></td>
</tr>
<tr>
<td>12. Funding to identify potential biomarkers of exposure; conclusive marker study in users</td>
<td></td>
</tr>
<tr>
<td>13. Conduct blood monitoring and studies on existing cancer survivors.</td>
<td></td>
</tr>
<tr>
<td>14. Conduct cancer cluster study on soccer player cluster, and identify additional clusters such as maintenance workers and installers</td>
<td></td>
</tr>
<tr>
<td>15. Provide full transparency with all interested parties</td>
<td></td>
</tr>
<tr>
<td>16. Conduct full epidemiological study of tire crumb on playfields existing and predictive</td>
<td></td>
</tr>
<tr>
<td>17. Study forms and questionnaires should include data collection on what is released from fields into air, adjacent areas, water pathways, and quantified. Replacement quantities for tire crumb fields should be quantified and examined as a metric that indicates yield.</td>
<td></td>
</tr>
<tr>
<td>18. Based on release/yield figures, and other inputs, tire crumb fields should be evaluated for compliance with Clean Water Act and Clean Air Act, and regulated accordingly.</td>
<td></td>
</tr>
<tr>
<td>19. We request that OEHHA study methodology be peer reviewed by your agencies before it begins, taking into account the comments received in this proceeding.</td>
<td></td>
</tr>
<tr>
<td>20. OEHHA Study Process and Methodology Concerns: How will those be considered?</td>
<td></td>
</tr>
<tr>
<td>21. Consider explicit protection from retribution steps be put in place to protect researchers, players, and concerned parents from retribution</td>
<td></td>
</tr>
</tbody>
</table>