# The benefits of Gas Seal Technology

The Center for Methane Emissions Solutions

## **Executive Summary**

- \* Why should US EPA consider **Gas Seal Technology** as the **Best Available Technology** for reducing Methane Emissions from Centrifugal Compressors equipped with Oil Seals?
  - Gas Seal Technology is proven and the current industry standard for all new equipment including Natural Gas applications
  - \* Oil Seal to Gas Seal Retrofits are **not new** and are applicable in the majority of cases
  - \* While the actual benefit is specific to a given compressor
  - \* Retrofit with Gas Seal Technology offers the Maximum Environmental Benefit
  - \* Retrofit with Gas Seal Technology offers the industry Safety Benefit
  - Retrofit with Gas Seal Technology offers the Maximum Reliability Benefit
  - \* Retrofit with Gas Seal Technology offers the Maximum Operational Savings

# Agenda

- \* Introduction
- \* The options for Methane Emissions Reduction
- Introducing the Lifecycle Cost Calculator (LCC)
- \* Summary

## Agenda

- \* Introduction
- \* The options for Methane Emissions Reduction
- Introducing the Lifecycle Cost Calculator (LCC)
- \* Summary

# Centrifugal Compressor Sealing 101

- \* Oil Seals are a **contacting** seal technology
- \* Gas Seals are a **non contacting** seal technology
  - Significantly reduced Emissions
  - No liquid required for lubrication
  - No liquid required for cooling
  - No liquid supply system required
  - \* No wear long life and reliability
  - Safer No Gas Entrapment
  - Very little power consumed
  - Reduced space and weight



Gas Seals are fundamentally a superior seal

## Gas Seal Technology Applications

#### **Extraction & Production**

Offshore Onshore Re-injection

CO2 Sequestration



#### Refineries

Catalytic Reformer Hydro-treater

Hydrocracker

Fluid Catalytic Cracker



Ethylene Methanol

**Butyl Polymers** 



#### **Organic Chemicals**

Ammonia

Urea

Acetyls

Nitric Acid



#### **Gas Gathering & Transmission**

Gas Treatment Gas Storage Pipeline **LNG** 

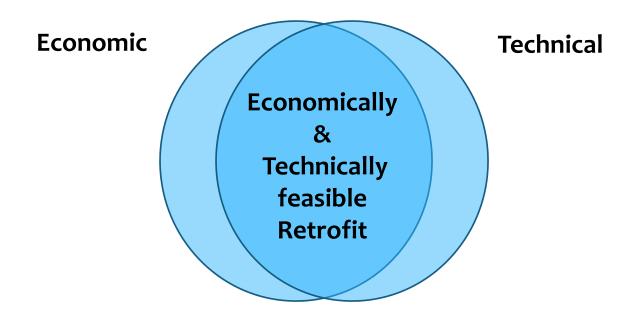
**GTL** 



## Gas Seal Technology typical Customers

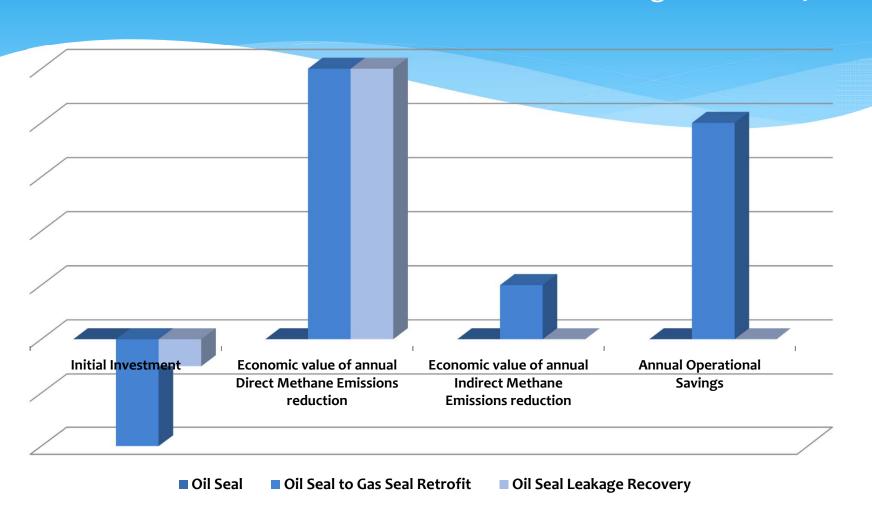


Gas Seal Technology – The choice of Blue Chips globally


## Agenda

- \* Introduction
- \* The options for Methane Emissions Reduction
- \* Introducing the Lifecycle Cost Calculator (LCC)
- \* Summary

## The options for Methane Emissions reduction


- \* New Centrifugal Compressor Applications
  - Gas Seal Technology
  - \* Oil Seal Technology with Leakage recovery
- Existing Centrifugal Compressors equipped with Oil Seals
  - Retrofit Oil Seals with Gas Seal Technology
  - \* Retrofit Oil Seals with Leakage recovery

# "In market" perspective Existing Equipment



Oil Seal to Gas Seal retrofits are not a panacea

# Qualitative Economic Comparison Oil Seal vs Gas Seal Retrofit vs Oil Seal Leakage Recovery

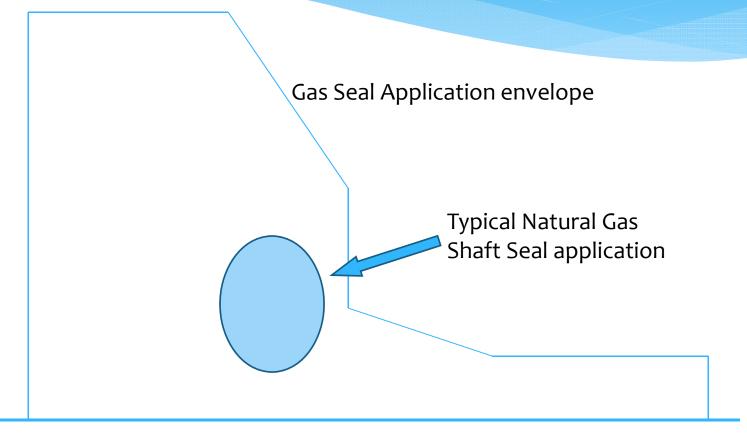


Oil Seal to Gas Seal Retrofit (Range dependent upon application specifics)

Oil Seal Leakage Recovery (Range dependent upon application specifics)

Time (Yrs)

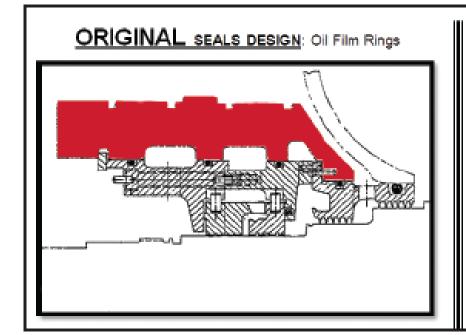
Oil Seal to Gas Seal Retrofit
(Range dependent upon application specifics)

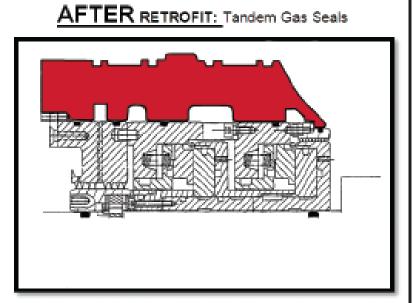

Oil Seal Leakage Recovery (Range dependent upon application specifics)

Time (Yrs)

Short Term (< 1yr) view is Oil Seal Leakage Recovery Long term (> 1yr) view is always Oil Seal to Gas Seal Retrofit Switch over point is application specific (The role of LCC)

Cumulative Financial Retur<mark>n</mark>

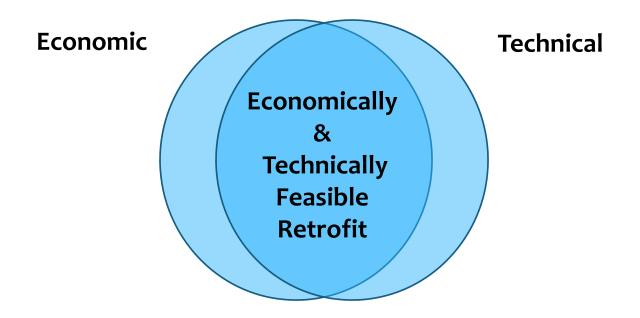

**Max Pressure** 




Natural Gas Applications are well within the Gas Seal Technology Envelope

**Shaft Diameter** 

# Technical Review The challenge





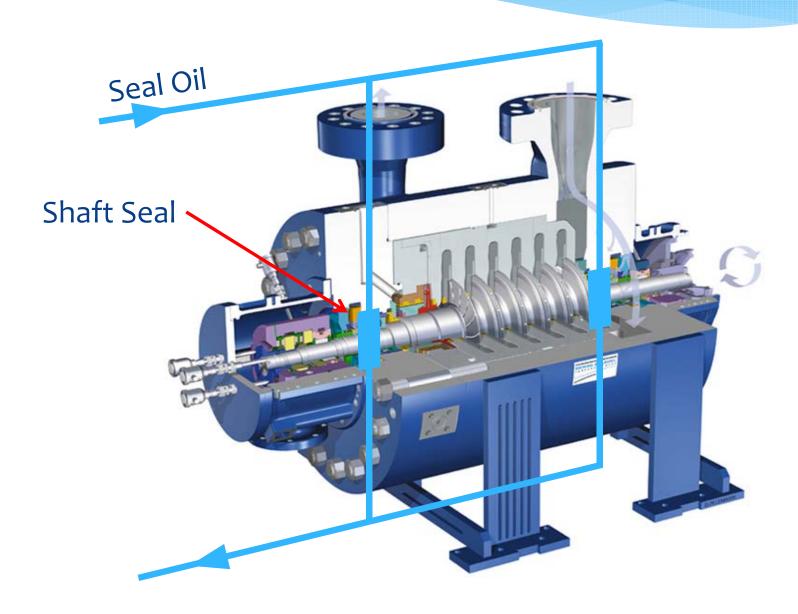

### **Technical Review**

- \* Standard Gas Seal designs don't fit interchangeably with wet seal solutions
  - Radial Cross Section
  - \* Axial Length
  - \* Porting
  - \* Rotor Dynamics
- \* Machining the compressor housing and or shaft to retrofit a gas seal adds cost, and can extend lead time

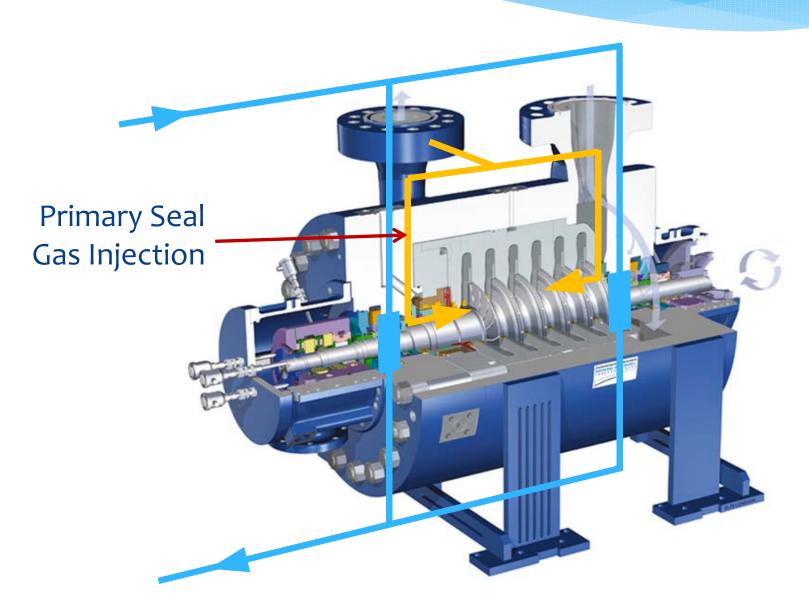
## "In market" perspective



Oil Seal to Gas Seal retrofits are not a panacea

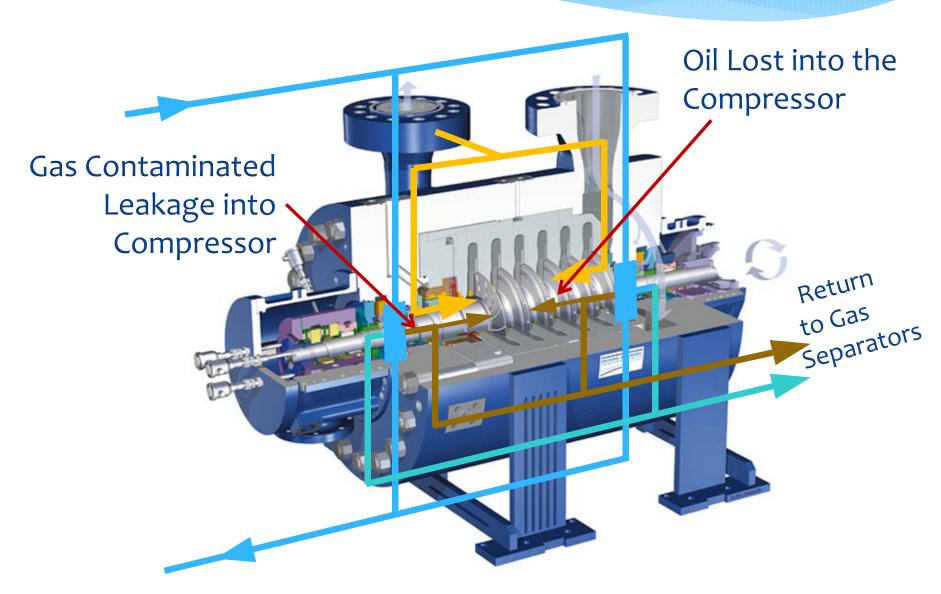

## Agenda

- \* Introduction
- \* The options for Methane Emissions Reduction
- \* Introducing the Lifecycle Cost Calculator (LCC)
- \* Summary


# How LCC Takes Us Beyond The Gas Star Paper

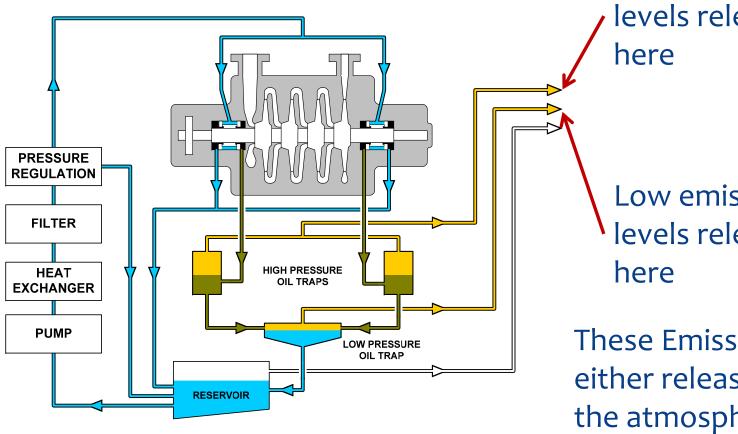
Life Cycle Cost

## Traditional Oil Seal System




## Traditional Oil Seal System





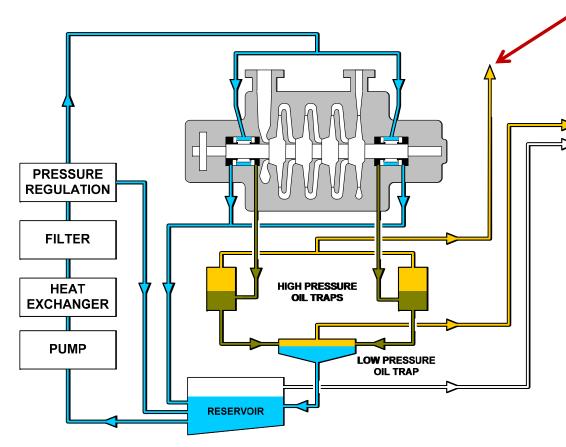





## **Traditional Oil Seal** System

### Where is the Problem?




High emissions levels release

Low emissions levels release

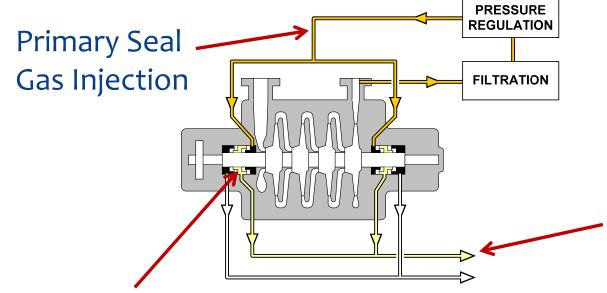
These Emissions are either released to the atmosphere or combusted in a flare

# **Enhanced Oil Seal System**

## **A Simple Solution**



High emissions levels recovered by routing to:


- Compressor suction
- Low pressure fuel

#### **Outcome:**

Small capital investment delivers substantial reductions in emissions

## **Gas Seal System**

### A More Advanced Solution



These Emissions are either released to the atmosphere or combusted in a flare

Very low emissions levels release here

Oil seal replaced with a dry gas seal

#### **Outcome:**

Large capital investment delivers substantial reductions in emissions

### **Short Term Investment Comparison**

| Shaft Sealing System                               | Implementation cost         | Emission levels |
|----------------------------------------------------|-----------------------------|-----------------|
| Traditional Oil Sealing<br>System                  | Base-line                   | High            |
| Enhanced leakage<br>Recovery Oil Sealing<br>System | Small Capital<br>Investment | Low             |
| Dry Gas Seal System                                | Large Capital<br>Investment | Low to Zero     |

However the life cycle costs and carbon footprint of each of the solutions are not considered.

## **Long Term Operational Costs**

| Operating Cost                                             | Traditional Oil<br>Sealing System | Enhanced Leakage<br>Recovery Oil<br>Sealing System | Dry Gas Seal<br>System |
|------------------------------------------------------------|-----------------------------------|----------------------------------------------------|------------------------|
| Maintenance and Downtime Costs                             | Very High                         | Very High<br>(unchanged)                           | Very Low               |
| Lost Energy from Seal Friction                             | High                              | High<br>(unchanged)                                | Very Low               |
| Energy Required to Operate Seal Oil<br>System              | High                              | High<br>(unchanged)                                | -                      |
| Product Loss due to Leakage                                | Very High                         | Low                                                | Low                    |
| Energy to Overcome Pipe Friction  Due To Oil Contamination | High                              | High<br>(unchanged)                                | -                      |
| Replacement of Consumed Seal Oil                           | High                              | High<br>(unchanged)                                | -                      |
| Compressor Blowdown                                        | Low                               | Low                                                | Very Low               |
| Gas Seal Separation Gas<br>Consumption                     | -                                 | -                                                  | Low                    |

## **Lost Energy**

| Source                                                                      | Traditional Oil<br>Sealing System | Enhanced Leakage<br>Recovery Oil<br>Sealing System | Dry Gas Seal<br>System |
|-----------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|------------------------|
| Lost Energy from Seal Friction                                              | Very High                         | Very High                                          | Very Low               |
| Energy Required to Operate Seal<br>System                                   | High                              | High                                               | -                      |
| Energy Lost to Compress Gas That is<br>Leaked                               | Low                               | Low                                                | Very Low               |
| Energy Lost to Overcome Pipe<br>Friction Due To Oil Contamination           | Very High                         | Very High                                          | -                      |
| Energy Lost to Compress Gas That is<br>Vented During Compressor<br>Blowdown | Low                               | Low                                                | Very Low               |

## **CO2 Equivalent Emissions**

| Source                                                                  | Traditional Oil<br>Sealing System | Enhanced Leakage<br>Recovery Oil<br>Sealing System | Dry Gas Seal<br>System |
|-------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|------------------------|
| Lost Energy from Seal Friction                                          | High                              | High                                               | Very Low               |
| Energy Required to Operate Seal<br>System                               | High                              | High                                               | -                      |
| Leakage of Compressed Gas to Atmosphere                                 | Extremely High                    | Low                                                | Low                    |
| Energy Lost to Overcome Pipe<br>Friction Due To Oil Contamination       | High                              | High                                               | -                      |
| Release of Compress Gas That is<br>Vented During Compressor<br>Blowdown | Low                               | Low                                                | Very Low               |

## What new insight does LCC provide

- \* Climate impact
- \* Energy impact
- \* Economics impact

The complete life cycle cost

### **LCC Inputs**

#### **Process Data**

- Methane Content
- Flow Rate
- Pressure
- Operational Hours
- Process Gas Value

#### **Reliability Data**

- Planned Maintenance Costs
- Unplanned Maintenance Costs
- Spare Parts Cost
- Lost Production Time
- MTBR

#### - Driver - Power

- Efficiency
- Number of Seals

**Compressor Data** 

- Shaft Size

#### **Seal Data**

- Frictional power
- Leakage Rate
- Gas Injection Source
- Leakage Destination

#### **Seal Support System Data**

- Power Requirements
- Cooling Configuration

Retrofit / Upgrade Data

- New Seals and Spares Costs
- System Upgrade/Replacement Costs
- Equipment Modification Costs
- Electrical and Instrumentation Costs
- Site Materials and Installation Costs
- Decommissioning and Disposal Costs
- Lost Production Time

#### **Utilities Data**

- Driver Fuel Value
- Electricity Value
- Purge Gas Value

### **LCC Outputs**

#### Costs

#### **Annual Operating Costs**

- Maintenance Cost
- Value of Leaked Gas
- Consumables
- Energy Consumed by Seal
- Energy Consumed by Seal System

#### **One-Time Costs**

- Total Retrofit Costs
- Payback

#### **Present Value**

 Present Value of Annual Operating Costs over Lifespan Remaining

#### **Total Life Cycle Cost**

### **Energy Consumed**

#### **Energy Consumed From:**

- Seal and Support System
- Compressed Gas Energy released
- Pipe Friction from Contamination

### **Carbon Footprint**

#### **Equivalent CO2 Emissions From:**

- Seal Leakage
- Compressor Blow Down
- Energy Required for the Seal and Support System
- Compressed Gas Energy Released
- Energy Required to Overcome Pipe Friction

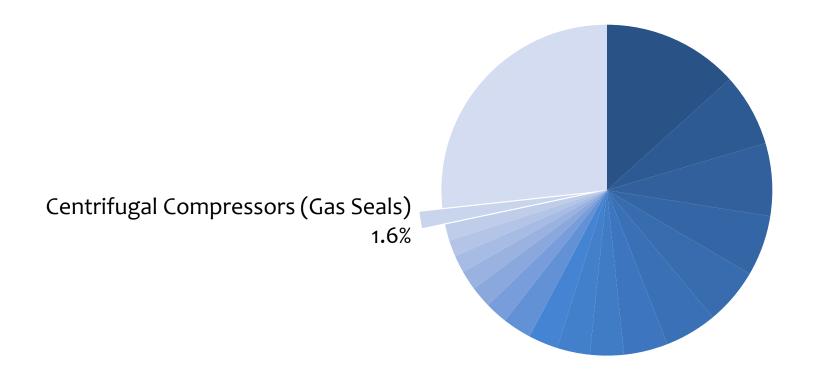
## LCC Calculation Example

#### **Example:**

Beam Type Pipeline Compressor from GasSTAR paper

- \* 4000 hr (167 Days) operation per year
- 5 year life remaining
- \* 6,130 hP gas turbine driver @ 14,000 RPM
- \* 620,000 SCFM flow rate
- \* 1,000 psig suction pressure, 1,200 psig seal pressure
- \* 6" shaft diameter at the seal
- \* Oil seal leakage: 194 SCFM HP oil trap, 3 SCFM LP oil trap
- Oil seal system motor power 100 kW (134.1 hP)
- \* Gas seal: 3 SCFM leakage, 5 kW (17,060 BTU/hr) power loss
- \* Gas seal seals and spares: \$240,000
- \* Gas seal support system: \$300,000
- \* Disposal of old seal system: \$20,000 credit

# Agenda


- \* Introduction
- \* The options for Methane Emissions Reduction
- \* Introducing the Lifecycle Cost Calculator (LCC)
- \* Summary

## **Executive Summary**

- \* Why should US EPA consider **Gas Seal Technology** as the **Best Available Technology** for reducing Methane Emissions from Centrifugal Compressors equipped with Oil Seals?
  - \* Gas Seal Technology is **proven** and the **current industry standard** for all new equipment including Natural Gas applications
  - \* Oil Seal to Gas Seal Retrofits are **not new** and are applicable in the majority of cases
  - \* While the actual benefit is specific to a given compressor
  - \* Retrofit with Gas Seal Technology offers the Maximum Environmental Benefit
  - \* Retrofit with Gas Seal Technology offers the industry Safety Benefit
  - \* Retrofit with Gas Seal Technology offers the Maximum Reliability Benefit
  - Retrofit with Gas Seal Technology offers the Maximum Operational Savings

Gas Seal Technology
Best Available Technology, Applicable, Executable

## One final thought...



2018 Projected Onshore Methane Emissions

(Source: ICF/EDF March 2014)