July 15, 2024

Provisions Creating Implementation Issues EPA's Final Rule

"Greenhouse Gas Reporting Rule: Revisions and Confidentiality Determinations for Petroleum and Natural Gas Systems"

Docket No. EPA-HQ-OAR-2023-0234

**Excerpt from API-AXPC Reconsideration Request Letter sent July 15, 2024

 The Tier 1 efficiency references NESHAP CC, an emission standard applying to petroleum refineries, which is operationally and economically infeasible to implement for upstream flares. NESHAP CC should be removed from the tiered approach for flare efficiencies under Subpart W.

Tier 1 efficiency requirements for flares are especially problematic since they reference testing and monitoring regulations for flares subject to National Emission Standards for Hazardous Air Pollutants from Petroleum Refineries (40 CFR Part 63, Subpart CC) (NESHAP CC). These requirements are technically infeasible and economically unreasonable to implement for flares in upstream and midstream operations; therefore, NESHAP CC must be removed from the tiered default destruction and combustion efficiencies for flares.

The provisions outlined in Tier 1 are based on the presumption that flares being used at a petroleum refinery would operate under the same conditions as those found in upstream oil and gas operations. Industry Trades explained in our respective comments 1 submitted October 2, 2023, on the proposed rule that such a presumption is invalid. API's comments also included testing data from over 100 flares that demonstrated mean and median destruction efficiencies of more than 98% (see pages 35-36 and Annex D). None of these flares were subject to NESHAP CC requirements, which strongly suggests compliance with NESHAP CC is not a prerequisite to achieving +98% destruction efficiency (DRE).

On page 522 of EPA's Response to Comment, EPA reiterated the incorrect premise that "the proper operation of a flare is not sector dependent." This presumption is categorically false as a flare or other control device must be designed and operated based on site process conditions including the flow streams and compositions it is designed to control. As such, upstream and downstream flares vary widely in design and operation as summarized in Table 1.

As Table 1 describes, the design conditions that drive compliance assurance requirements of NESHAP CC simply do not exist in the upstream industry segment making the application of those monitoring requirements inappropriate and unnecessary. As a reporting rule, Subpart W should not force upstream flares to comply with inappropriate refinery requirements from NESHAP CC to

https://www.regulations.gov/comment/EPA-HQ-OAR-2023-0234-0402; https://www.regulations.gov/comment/EPA-HQ-OAR-2023-0234-0295.

2

claim a 98% destruction efficiency for reporting emissions, as testing routinely shows flares meet +98% destruction efficiency without complying with NESHAP CC. Upstream flares should comply with regulations designed for the upstream industry segment, such as the New Source Performance Standards for Crude Oil and Natural Gas Facilities or air permit conditions that reference 40 CFR § 60.18. These upstream-specific regulations adequately and appropriately address proper flare operation to claim a 98% destruction efficiency as discussed below in more detail.

Table 1. Comparison of Relevant Characteristics of Upstream versus Petroleum Refinery Flares

Parameter	Upstream/Midstream Operations	Refinery Operations	Why it matters?
Staffing and Flare	Upstream sites are not staffed 24 hours per	Refineries are staffed all hours of the	The refinery flare provisions are
Count	day, nor are many midstream sites.	day, every day.	onerous and require significant
	Upstream and midstream operations consist	A typical large refinery has fewer than	monitoring and personnel
	of hundreds of thousands of geographically	twenty flares, all located at the facility.	resources for compliance. These
	dispersed flares, many located in remote		personnel and resources are
	locations.		available on site at a refinery.
			Maintaining the monitoring
			equipment alone requires
			significant human resources for a
			single refinery.
Flow Rate	Intermittent flows from storage tanks, liquids	Process gas flows from multiple	Upstream flare flows can be
	unloading operations, associated gas, and	process units are typically routed to	reliably quantified using
	certain controllers and pumps cause vapor	flare gas recovery and compression to	engineering calculations.
	flows to vary from zero to very high rates and	minimize the quantity of gas flared.	
	vice-versa in a short space of time.		
	Flare gas recovery and compression systems		
	are typically not installed due to limited		
	infrastructure and secondary markets to		
	distribute recovered gas in remote locations.		
	Upstream flare flows can be reliably		
	quantified using engineering calculations.		
Gas composition	Upstream and midstream operations have	Potentially hundreds of unique	Applying refinery flare ventgas
	highly variable, intermittent flow rates to	process streams are routed to a	composition monitoring is
	flares, with limited variability of gas	refinery flare header.	unnecessary in the
	compositions.	Composition of refinery streams is	midstream/upstream context
	There is a small number of streams routed to	highly variable.	because the vent gas stream
	flare (often only one stream), and the	Crude oil feedstocks are processed	composition is relatively
	composition of each stream is relatively	through multiple units to derive	constant.
	consistent over time. For example, a well	multiple products and intermediates.	
	pad site often has two flares, one for	Refineries routinely use inerts in their	
	handling low-pressure streams like tank	processes (e.g., clearing equipment	

Parameter	Upstream/Midstream Operations	Refinery Operations	Why it matters?
	vapors and another for handling any higher	for service, tank blanketing, etc.)	
	pressure streams.	which is reflected in the flare gas	
	The composition of the producing zone	composition.	
	remains relatively constant over time.		
	Upstream operations perform physical		
	separations, not multiple chemical		
	processing steps.		
	There are limited scenarios in Upstream		
	operations where inert gases are added to		
	the process (for example, enhanced oil		
	recovery and amine treating).		
	Please review the sample NHV data showing		
	the limited variability of composition in		
	Appendix 1.		
Pilot	Automatic ignition systems to initiate	Multiple refinery regulations require	Continuous burning pilot is an
	combustion in the flame zone (e.g.,	the constant presence of a pilot flame	emissions source that can be
	electronic spark ignition) are common in	to demonstrate compliance, resulting	eliminated effectively by
	upstream applications.	in increased GHG emissions.	installing automatic ignitors.
	Natural gas or refinery fuel gas is not readily	Natural gas or refinery fuel gas is	Further automatic ignitors are
	available in upstream to supply constant	readily available to supply constant	less prone to be affected by high
	pilot flame.	pilot flame needed for standard,	winds and inclement weather.
	Reducing the unnecessary continuous	constant flow to flare.	For these reasons, a separate
	combustion of pilot gas is an environmental		regulatory requirement should not mandate a continuous
	benefit.		burning pilot, nor should
	While many upstream and midstream flares will have continuous burning pilets.		operators be required to install
	will have continuous burning pilots		and operate one.
	necessitated by NSPS OOOOb and EG OOOOc compliance, many will not,		and operate one.
	especially lower emitting sources that will		
	not be subject to either rule.		
	Hot be subject to either fule.		