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The unequal spatial distribution of ambient nitrogen dioxide
(NO2), an air pollutant related to traffic, leads to higher expo-
sure for minority and low socioeconomic status communities.
We exploit the unprecedented drop in urban activity during the
COVID-19 pandemic and use high-resolution, remotely sensed
NO2 observations to investigate disparities in NO2 levels across
different demographic subgroups in the United States. We show
that, prior to the pandemic, satellite-observed NO2 levels in the
least White census tracts of the United States were nearly triple
the NO2 levels in the most White tracts. During the pandemic, the
largest lockdown-related NO2 reductions occurred in urban neigh-
borhoods that have 2.0 times more non-White residents and 2.1
times more Hispanic residents than neighborhoods with the small-
est reductions. NO2 reductions were likely driven by the greater
density of highways and interstates in these racially and eth-
nically diverse areas. Although the largest reductions occurred
in marginalized areas, the effect of lockdowns on racial, eth-
nic, and socioeconomic NO2 disparities was mixed and, for many
cities, nonsignificant. For example, the least White tracts still
experienced ∼1.5 times higher NO2 levels during the lockdowns
than the most White tracts experienced prior to the pandemic.
Future policies aimed at eliminating pollution disparities will need
to look beyond reducing emissions from only passenger traffic
and also consider other collocated sources of emissions such as
heavy-duty vehicles.

nitrogen dioxide | air pollution | environmental justice | COVID-19 |
TROPOMI

Adverse air quality is an environmental justice issue, as it
disproportionately affects marginalized and disenfranchised

populations around the world (1–4). Growing evidence suggests
that these populations experience more air pollution than is
caused by their consumption (5–7). Within the United States,
disparities in exposure are persistent, despite successful regu-
latory measures that have reduced pollution (8, 9). Nitrogen
dioxide (NO2) is a short-lived trace gas formed shortly after fos-
sil fuel combustion and regulated by the National Ambient Air
Quality Standards under the Clean Air Act. Exposure to NO2

is associated with a range of respiratory diseases and premature
mortality (10–12). NO2 is also a precursor to other pollutants
such as ozone and particulate matter (13). Major sources of
anthropogenic NO2, such as roadways and industrial facilities,
are often located within or nearby marginalized and disenfran-
chised communities (14, 15), and disparities in NO2 exposure
across demographic subgroups have been the focus of several
recent studies (4, 8, 16–18).

In early 2020, governments around the world imposed lock-
downs and shelter-in-place orders in response to the spread of
COVID-19. The earliest government-mandated lockdowns in
the United States began in California on 19 March 2020, and
many states followed suit in the following days. Changes in mobil-
ity patterns indicate that self-imposed social distancing practices
were underway days to weeks before the formal announce-
ment of lockdowns (19). Lockdowns led to sharp reductions in
surface-level NO2 (20–23) and tropospheric column NO2 mea-

sured from satellite instruments (21, 24–27) over the United
States, China, and Europe. According to government-reported
inventories, roughly 60% of anthropogenic emissions of nitro-
gen oxides (NOx ≡ NO + NO2) in the United States in
2010 were emitted by on-road vehicles (28), and up to 80%
of ambient NO2 in urban areas can be linked to traffic emis-
sions (29, 30). As such, NO2 is often used as a marker for
road traffic in urban areas. Multiple lines of evidence such as
seismic quieting and reduced mobility via location-based ser-
vices point to changes in traffic-related emissions as the main
driver of reductions in NO2 pollution during lockdowns, due
to the large proportion of the population working from home
(21, 23, 31, 32).

Here we exploit the unprecedented changes in human activ-
ity unique to the COVID-19 lockdowns and remotely sensed
NO2 columns with extraordinary spatial resolution and coverage
to understand inequalities in the distribution of NO2 pollu-
tion for different racial, ethnic, and socioeconomic subgroups
in the United States. Specifically, we address the following:
Which demographic subgroups received the largest NO2 reduc-
tions? Did the lockdowns grow or shrink the perennial dispari-
ties in NO2 pollution across different demographic subgroups?
Although the lockdowns are economically unsustainable, how
can they advance environmental justice and equity by informing
long-term policies to reduce NO2 disparities and the associated
public health damages?

Significance

We leverage the unparalleled changes in human activity dur-
ing COVID-19 and the unmatched capabilities of the TRO-
POspheric Monitoring Instrument to understand how lock-
downs impact ambient nitrogen dioxide (NO2) pollution dis-
parities in the United States. The least White communities
experienced the largest NO2 reductions during lockdowns;
however, disparities between the least and most White com-
munities are so large that the least White communities
still faced higher NO2 levels during lockdowns than the
most White communities experienced prior to lockdowns,
despite a ∼50% reduction in passenger vehicle traffic. Similar
findings hold for ethnic, income, and educational attain-
ment population subgroups. Future strategies to reduce NO2
disparities will need to target emissions from heavy-duty
vehicles.
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Results
Previous studies examining satellite-derived NO2 found the high-
est levels in urban areas (33–35), and we find that these areas
clearly stand out as NO2 hotspots during our baseline period
(Fig. 1A). NO2 column densities averaged over all urban areas
are ∼ 2 times higher than over rural areas during the base-
line period. Absolute differences in NO2 between the baseline
and lockdown periods (“drops”) show sharp decreases over vir-
tually all major metropolitan regions (Fig. 1B). The use of
only spring 2019 for our baseline period stems from the short
data record offered by the Tropospheric Monitoring Instru-
ment (TROPOMI), and the slight increases in NO2 in parts
of the Great Plains and Midwest during lockdowns (< 0.5×
1015 molecules per square centimeter) could reflect differences
in natural (e.g., soil, lightning, stratospheric NOx ) or anthro-
pogenic sources of NO2 between the baseline and lockdown
periods. Demetillo et al. (4) found that TROPOMI is capa-
ble of resolving NO2 differences between census tracts in the
Houston area, and our nationwide comparison of TROPOMI
NO2 with surface-level observations reveals TROPOMI’s util-
ity as a tool to understand NO2 variability (SI Appendix, Text
S1 and Fig. S1). The 3-mo baseline and lockdown periods used
in this study have sufficient length to account for the influence
of meteorological variability on NO2, and NO2 disparities found
using a 3-mo period closely resemble disparities calculated with
longer timeframes (SI Appendix, Fig. S2). Given that the largest
lockdown-related changes in NO2 occur in urban areas and to
avoid urban–rural demographic gradients, we primarily focus on

urban NO2 changes and how these changes impact different
demographic subgroups in urban areas.

The largest urban NO2 drops occur in census tracts that are
more non-White and Hispanic, have lower median household
income, and have a higher proportion of their population with-
out a vehicle or a postsecondary education compared with tracts
with the smallest drops (Fig. 1 D–H). In tracts with the largest
drops, there are ∼ 2.0 times more non-White residents and ∼ 2.1
times more Hispanic residents than in tracts with the small-
est drops (Fig. 1 D and G). The differences in the “Other”
category between tracts with largest and smallest drops (Fig.
1G) reflect differences in the Asian population (5% in tracts
with the smallest drops; 14% in tracts with the largest drops)
and the proportion of the population that does not identify as
one of the census-designed racial categories (4% in tracts with
smallest drops; 19% in tracts with the largest drops). These
results for urban tracts also hold in all (urban and rural) tracts
and rural tracts, despite the different demographic composi-
tion (compare Fig. 1 and SI Appendix, Fig. S3). Differences in
distributions of demographic variables between tracts with the
largest versus smallest drops in Fig. 1 C–H are all statistically
significant.

Communities with lower income and educational attainment
and a large proportion of racial and ethnic minorities have faced
higher levels of NO2 and other pollutants for decades (3, 8, 9, 16,
36), and we find that these communities experienced the largest
drops in NO2 pollution during COVID-19 lockdowns. However,
Fig. 1 does not indicate how lockdown-related NO2 drops grew

A B

C D

E F

G H

Fig. 1. Spatial distribution of NO2 columns during the baseline and COVID-19 lockdown periods and apportionment of drops among different demographic
subgroups. (A) Census tract average baseline NO2 (13 March to 13 June 2019). (B) Absolute difference between lockdown (13 March to 13 June 2020) and
baseline NO2 (∆ NO2), where ∆ NO2 < 0 corresponds to NO2 drops during lockdowns. (C–H) Demographic data averaged over urban tracts with the largest
drops (∆ NO2 in first decile), all urban tracts, and urban tracts with the smallest drops (∆ NO2 in the tenth decile). “Other” in G includes American Indian or
Alaska Native, Asian, Native Hawaiian or other Pacific Islander, two or more races, and some other race. The census-designated concept of race differs from
ethnicity, and the percentage of White residents in G includes individuals with Hispanic origin or descent.
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or shrunk disparities, and we next examine disparities in base-
line and lockdown NO2 in the most marginalized versus least
marginalized census tracts in the United States.

In the baseline and lockdown periods, neighborhoods with
lower income and educational attainment and those with a larger
proportion of minority residents consistently face higher levels
of NO2 among all urban tracts across the United States and in
nearly all of the 15 largest metropolitan statistical areas (MSAs)
in the United States (Fig. 2 and SI Appendix, Fig. S4). There are
some cases in which the most marginalized tracts do not expe-
rience the highest NO2 levels. For example, rural tracts with
the highest income and educational attainment have higher NO2

levels than tracts with the lowest income or educational attain-
ment (Fig. 2 B and C), and similar findings hold for specific
MSAs (e.g., Riverside in Fig. 2B, Atlanta in Fig. 2C). More-
over, there are no significant differences in NO2 distributions for
tracts with the highest versus lowest income during the baseline
period (Fig. 2B).

When considering all census tracts (both urban and rural), the
most pronounced disparities, defined as the ratio of mean NO2

for the marginalized subgroup to the nonmarginalized subgroup,
are on the basis of race and ethnicity. The least White tracts and
most Hispanic tracts have 2.6 and 2.2 times greater baseline NO2

levels than the most White and least Hispanic tracts, respectively
(Fig. 2A and SI Appendix, Figs. S4A and S5G). These disparities
persist when examining individual MSAs in the United States.
For example, baseline NO2 in tracts with the lowest median
household income in New York and Los Angeles is 1.4 and 1.8
times higher, respectively, than in tracts with the highest income
(Fig. 2B and SI Appendix, Fig. S4B).

The unprecedented change in human activity during COVID-
19 lockdowns led to mixed impacts on relative NO2 disparities
across different population subgroups, depending on the demo-
graphic variable and MSA considered (Fig. 2 and SI Appendix,
Fig. S4). Racial NO2 disparities for all census tracts significantly
decreased from 2.6 to 2.0 during lockdowns, and a majority of
the featured MSAs experienced significant reductions in their
racial disparities (Fig. 2A and SI Appendix, Fig. S4A). Dispari-
ties for other demographic variables, however, were less affected
by lockdowns. For example, a majority of MSAs had no sig-
nificant reduction in disparities for different levels of income
and educational attainment (Fig. 2 B and C and SI Appendix,
Fig. S4 B and C). Understanding inconsistencies in the exact
magnitude of NO2 drops across MSAs for different popula-
tion subgroups is beyond the scope of this study but could
stem from varying stringencies of or adherence to lockdown
measures.

Although urban areas experienced broad drops in NO2 dur-
ing lockdowns, with the largest drops occurring in marginalized
neighborhoods (Fig. 1 C–H), NO2 disparities in the baseline
period were so large that even significant reductions in disparities
did not generally bring lockdown NO2 levels for marginalized
neighborhoods to the levels experienced by nonmarginalized
neighborhoods during the baseline period (Fig. 2). As an exam-
ple, despite the unprecedented drop in human activity during
the COVID-19 pandemic, NO2 levels in the least White neigh-
borhoods in New York and Chicago were ∼ 1× 1015 and ∼
2× 1015 molecules per square centimeter higher, respectively,
during lockdowns than levels in the most White neighborhoods
during the baseline period. Houston, Washington, Philadelphia,

A B C

Fig. 2. Disparities in baseline and lockdown NO2 columns for different (A) racial, (B) median household income, and (C) educational attainment population
subgroups. Disparities are shown for three conglomerations (all, urban, and rural census tracts), and urban tracts are further separated into the 15 largest
MSAs in the United States. For each conglomeration or MSA, demographic subgroups are determined using the 10th and 90th percentiles as thresholds. NO2

levels are thereafter averaged over tracts within these subgroups. If the difference in subgroup NO2 distributions for a particular demographic variable and
time period is not statistically significant, mean NO2 levels are denoted with an “X” and no connector lines. Conglomerations or MSAs with no significant
change in NO2 disparities between the baseline and lockdown periods are shaded in gray.
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and San Francisco are notable exceptions to this result, and NO2

levels for the least White tracts during lockdowns fell below NO2

levels for the most White tracts during the baseline period in
these cities. We observe similar results for population subgroups
based on ethnicity, income, and educational attainment (Fig. 2
and SI Appendix, Figs. S4 and S5).

Within urban areas, we find that the magnitude of NO2 drops
is tightly coupled to the density of nearby primary roads (high-
ways and interstates). The density of primary roads in urban
tracts with the largest NO2 drops (i.e., tracts in the first decile)
is 9.5 times greater than in urban tracts with the smallest NO2

drops (i.e., tenth decile) (Fig. 3). The racial, ethnic, income, and
educational compositions of tracts are also closely related to pri-
mary road density. Urban tracts with lower income and vehicle
ownership and a larger percentage of racial and ethnic minori-
ties are located near a higher density of primary roads (Fig. 3).
The difference in primary road density on the basis of vehicle
ownership is especially stark: Tracts with the lowest vehicle own-
ership have a ∼ 9.5 times higher primary road density than tracts
with the highest ownership. Similarly, the least White tracts have
a primary road density ∼ 4.5 times higher than the most White
tracts. Educational attainment is the only demographic variable
considered in this study that exhibits a different relationship with
primary road density, and we observe a U-shaped relationship
between these variables (Fig. 3).

To better understand the impact of the lockdowns on NO2

disparities, we consider case studies of individual cities: New
York, Detroit, and Atlanta (Fig. 4). Among individual neigh-
borhoods in each of these cities, the magnitude of NO2 drops
varies up to 50% above and below the citywide average (Fig.
4 A–C). The portions of New York, Atlanta, and Detroit that
received the largest drops tend to have lower median household
income and a high percentage of non-White residents (Fig. 4 D–
I). Although the sharp decrease in passenger vehicle emissions
(21, 23, 37) is the primary factor in explaining the large-scale
NO2 drops, examining drops on smaller neighborhood scales in
New York, Atlanta, Detroit (Fig. 4), or other MSAs suggests that
other sectors may contribute to the NO2 drops, in addition to on-
road activity. In New York, the largest drops are concentrated
in Harlem and the South Bronx (Fig. 4A), where the high con-
centration of major highways and industrial facilities has been

Fig. 3. The relationship of road density with urban lockdown-related drops
in NO2 columns and demographic variables. Road density is calculated as the
number of primary road segments within a 1-km radius of tracts’ centroids
for each decile of demographic variables. The colored legend indicates the
directionality of each demographic variable. As an example, the density cor-
responding to the lowest decile of the “White” curve represents the road
density in urban tracts that are the least White (i.e., in the first decile of the
percentage of their population that is White). Shading for the ∆NO2 curve
illustrate the 90% CI.

linked to disproportionate exposure to air pollution (38). The
largest drops in Atlanta occur in the southwestern part of the
city, where median household income generally is < $30,000 and
the percentage of Black residents in each tract is nearly 100.
Hartsfield-Jackson International Airport and several major high-
ways are located in this part of Atlanta (Fig. 4B). The airport
reported a ∼ 50% decrease in the daily number of flights during
lockdowns (39). Therefore, both on-road and aviation emissions
may be responsible for the disparities in NO2 levels in Atlanta.
The largest drops in Detroit are concentrated on the west shores
of the Detroit River; Interstates 75 and 94 and the Ambassador
Bridge, one of the busiest US–Canada border crossings, transect
this part of Detroit (Fig. 4C) (40). Although these Detroit neigh-
borhoods are not predominantly non-White (Fig. 4F), they are
home to a large Hispanic population with low median household
income (Fig. 4I).

Discussion
Neighborhoods with a large proportion of racial and ethnic
minorities, lower income, and lower educational attainment saw
the greatest decreases in NO2 pollution during the COVID-
19 lockdowns. Although lockdowns were lauded as a tempo-
rary glimpse of the potential for cleaner urban air, NO2 dis-
parities persisted during this global natural experiment. For
many cities, there were no significant changes in NO2 dispari-
ties during the lockdowns, and marginalized communities faced
higher NO2 levels during the lockdowns than nonmarginal-
ized communities experienced prior to the lockdowns. Our
findings build on Demetillo et al. (4), who similarly used
TROPOMI to understand environmental justice in Houston and
inform drivers of inequality, and are consistent with contem-
poraneous studies that have analyzed long-term trends in NO2

and other air pollutants and found that, despite widespread
decreases in pollution, the most exposed demographic sub-
groups in the 1980s and 1990s remain the most exposed in the
present day (8, 9).

Sources of urban NO2 such as railroads, ports, airports,
or industrial facilities are not disproportionately located in
marginalized neighborhoods, do not contribute in a major way
to total urban NOx emissions, or were not largely affected by the
pandemic (SI Appendix, Text S1 and Figs. S6–S8). The location
of primary roads, however, is heavily skewed toward marginal-
ized neighborhoods (Fig. 3), and on-road emissions from light-
and heavy-duty vehicles represent a sizable contribution (∼40
to 50%) to urban NOx emissions (SI Appendix, Fig. S7). The
collocation of primary roads with poor, minority communities
is not happenstance but a consequence of the Eisenhower-era
federal highway program, which often deliberately routed high-
ways through these poor, minority neighborhoods (8, 15, 41, 42).
While passenger vehicle traffic experienced a precipitous decline
during the pandemic (21, 23, 37), heavy-duty trucking largely
continued unabated (SI Appendix, Fig. S8). Together, these find-
ings indicate that heavy-duty trucking plays a major role in
explaining persistent disparities of NO2 pollution among demo-
graphic subgroups. As was previously pointed out with the case
studies of New York, Atlanta, and Detroit (Fig. 4), NO2 sources
beyond on-road transportation may be important to understand
NO2 disparities locally, but the small contribution of these other
sources to total urban NOx , their small or inconsistent changes
during lockdowns, and their point source nature suggest that
they are unlikely to explain the nationwide urban NO2 disparities
detailed herein.

Interestingly, urban tracts with the lowest vehicle ownership
have both the highest density of nearby primary roads and the
largest drops in NO2 (Figs. 1H and 3). This result suggests
that these communities may breathe more traffic-related NO2

pollution than they produce. This is indeed the case for par-
ticulate matter pollution: Recent work found that particulate

4 of 8 | PNAS
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D E
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G H I

Fig. 4. Case studies of lockdown NO2 drops, income, and race for (A, D, and G) New York, (B, E, and H) Atlanta, and (C, F, and I) Detroit. (A–C) ∆ NO2, local

is calculated from oversampled TROPOMI data as the difference between ∆ NO2 and the city average ∆ NO2 to highlight neighborhoods with larger drops
(i.e., negative values) and smaller drops (i.e., positive values) compared with the city-averaged drops. Primary roads are shown in thick black lines. (D–F)
Median household income and (G–I) percentage of the population that is White. Tracts in D–I that are employment centers, airports, parks, or forests and
therefore report no demographic data are denoted with hatching.

matter exposure is disproportionately caused by wealthy, non-
Hispanic White communities, while poor, Black, and Hispanic
communities face higher exposure than is caused by their own
consumption (6, 7).

Preliminary research suggests that high levels of NO2 pol-
lution contribute to underlying health conditions that lead to
increased COVID-19 fatality rates (43). Therefore, the decrease
in NO2 in diverse communities with low income or educational
attainment could decrease population susceptibility to COVID-
19. This result is especially important as these communities have
increased risk for COVID-19 and higher hospitalization rates
(44). Since short-term NO2 exposure is associated with respi-
ratory disease (45, 46), the temporary NO2 drops may have
also reduced acute respiratory health outcomes, but the actual
health effects of NO2 drops during the pandemic are difficult
to tease out since the degree to which people sought health
care was also affected by the pandemic. These findings are espe-
cially relevant for marginalized neighborhoods in cities (e.g.,
New York, Atlanta, and Detroit; Fig. 4) that have been long
plagued by high rates of asthma and other respiratory diseases
due, in part, to their proximity to on-road and point source NOx

emissions (38, 40).

We have considered singular demographic variables and their
relationship with baseline and lockdown NO2. The case studies
in Fig. 4 hint that the intersectionality between race and poverty
may be associated with even more pronounced lockdown-related
drops in NO2 pollution. Although the vast majority of tracts in
the southern half of Atlanta have a majority non-White popu-
lation (Fig. 4H), the largest drops occur in tracts that are both
majority non-White and low income (Fig. 4 B, E, and H). Clark
et al. (17) and Demetillo et al. (4) examined NO2 exposure in
neighborhoods where poverty and racial and ethnic identities
intersect and found a disproportionate share of NO2 pollution
for neighborhoods with these intersecting identities. Assessing
other forms of intersectionality and their relationship with air
pollution exposure is a key area for future research.

Recent work demonstrates that satellite-observed NO2 is
a powerful proxy for ground-level NO2 gradients (47), and
TROPOMI, in particular, provides significant advances over
predecessor instruments, on account of its unprecedented spa-
tial resolution (48). We tested whether TROPOMI has consis-
tent spatial patterns with surface-level observations during the
baseline period and found good agreement (SI Appendix, Fig.
S1A). TROPOMI’s correlation with surface-level monitors (SI
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Appendix, Text S1 and Fig. S1A) is a dramatic improvement
over predecessor instruments (49). Moreover, the ratios of 24-
h average NO2 to NO2 near the time of satellite overpass are
also similar between least and most polluted sites (SI Appendix,
Fig. S1B). We note, however, that satellite-derived NO2 tends to
underestimate NO2 in highly polluted urban regions, on account
of satellite footprint resolution (50). This underestimation, cou-
pled with the fact that marginalized communities tend to live
closer to potent NO2 sources such as highways (Fig. 3) that
cannot be resolved given TROPOMI’s resolution, suggests that
our current methodology may underestimate the magnitude of
disparities and lockdown-related changes.

Our results are neither an artifact of how we defined demo-
graphic subgroups (SI Appendix, Fig. S5) nor the time period
over which we characterize disparities, although the precise abso-
lute NO2 levels and magnitude of disparities change with the
start dates and length of the periods (SI Appendix, Figs. S2 and
S9). We encourage future work using surface-level NO2 con-
centrations to better understand exposure across demographic
subgroups during lockdowns. Current surface-level observational
networks are inadequate for doing so, due to their sparse and
uneven distribution (51), but surface concentrations of NO2

observed from networks of low-cost sensors (52) or inferred
using land-use regression models (53) and chemical transport
models (34, 54) may prove useful. Future work might also exam-
ine how lockdown-related changes in other air pollutants such as
ozone and particulate matter, whose changes during lockdowns
do not exhibit the same spatial patterns as NO2 (22, 23, 55),
impact disparities.

Conclusions
This study provides a unique look at air pollution disparities
in the United States, leveraging the confluence of unparalleled
changes in human activity during COVID-19 lockdowns and the
unmatched spatial coverage and resolution of air quality surveil-
lance from the TROPOMI satellite instrument. Lockdowns
decreased tropospheric column abundances of NO2 across the
vast majority of urban areas. However, drops in NO2 pollution
were uneven within these urban areas, and the largest drops
occurred in communities with a high proportion of racial and
ethnic minorities and lower educational attainment and income.
Our results reveal that, despite the decreases in NO2 pollution
during lockdowns, racial, ethnic, and socioeconomic NO2 dispar-
ities persisted, and marginalized communities continued to face
higher levels of NO2 during the lockdowns than nonmarginalized
communities experienced prior to the pandemic. As passen-
ger vehicles represent a large source of urban NOx emissions,
the proximity of marginalized neighborhoods to a high density
of major roadways is likely the key determinant in explaining
lockdown-related drops in NO2.

Our results offer insight into policies aimed at reducing or
eliminating ethnoracial and socioeconomic NO2 disparities. The
COVID-19 lockdowns showed that a dramatic drop in NOx

emissions mainly from the passenger vehicle sector narrowed
NO2 disparities only modestly and not consistently across major
US cities. Heavy-duty diesel vehicles, on the other hand, main-
tained more or less the same activity levels during the COVID-19
lockdowns, continue to be a major contributor to urban NOx

emissions, and use highways and interstates disproportionately
located in marginalized communities. While decreasing NOx

emissions from passenger vehicles, airports, railways, ports, and
industry would broadly reduce NO2 levels and is relevant for dis-
parities in some cities, targeting NOx emissions from heavy-duty
diesel vehicles is likely the most effective strategy for reducing
disparities across cities nationwide. Future studies and policy
strategies should therefore examine how targeting heavy-duty
diesel traffic can address inequity in exposure while maximizing
health benefits.

Materials and Methods
Remotely Sensed NO2. We obtain retrievals of the tropospheric NO2 column
from the TROPOMI aboard the Sentinel-5 Precursor (S5P) satellite. S5P is a
nadir-viewing satellite in a sun-synchronous, low-Earth orbit that achieves
near-global daily coverage with a local overpass time of ∼ 1,330 h (56).
TROPOMI provides NO2 measurements at an unprecedented spatial reso-
lution of 5× 3.5 km (7× 3.5 km prior to 6 August 2019) (57). We use level 2
data and only consider pixels with a quality assurance value of > 0.75. The
change in satellite resolution occurring in August 2019 as well as intrinsic
limitations stemming from the retrieval process and satellite footprint likely
lead to an underestimation of NO2 levels in urban areas and potentially
the NO2 change during lockdowns (47, 50). TROPOMI data are thereafter
oversampled by regridding to a standard grid with a resolution of 0.01◦ lat-
itude × 0.01◦ longitude (∼ 1× 1 km) and averaged over two time periods:
a baseline period (13 March to 13 June 2019) and a lockdown period (13
March to 13 June 2020). Regridded data are publicly available at Figshare
(https://figshare.com/s/75a00608f3faedc4bca7).

Comparing the same time period across different years is commonplace
in satellite studies investigating changes in NOx and other trace gases,
and averaging over 3-mo timeframes smooths natural NO2 variations that
arise from differences in meteorology and sun angle, which are especially
relevant during boreal spring (26) (SI Appendix, Fig. S2). This temporal
averaging also removes most of the random error in the TROPOMI single-
pixel uncertainties, which can be 40 to 60% of the tropospheric column
abundances (24).

Sociodemographic Data. Demographic information is derived from the
American Community Survey (ACS) conducted by the US Census Bureau and
maintained by the National Historical Geographic Information System (58).
Data are publicly available at https://www.nhgis.org. We extract 2014–2018
5-y estimates on race, Hispanic or Latino origin (henceforth “ethnicity”),
educational attainment, median household income, and vehicle availabil-
ity for the 72,538 census tracts in the contiguous United States. To minimize
the number of different categorical variables presented in this study, we
combine racial groups into three categories: White, Black (includes Black
and African American), and Other (includes American Indian or Alaska
Native, Asian, Native Hawaiian or Other Pacific Islander, two or more races,
and some other race). Similarly, we form three different levels for educa-
tional attainment: high school (includes no high school diploma, regular
high school diploma, and GED or alternative credentials), college (includes
some college without a degree, associate’s degree, and bachelor’s degree),
and graduate (includes master’s degree, professional school degree, and
doctorate degree).

Methods We harmonize the regridded TROPOMI NO2 measurements with
tract-level ACS demographics by determining the geographic boundaries of
each tract and thereafter calculating a simple arithmetic average over all
TROPOMI grid cells within the tract for the baseline and lockdown peri-
ods. While the area of most census tracts is much larger than the ∼ 1× 1
km TROPOMI grid cells (SI Appendix, Fig. S10), approximately 8% of tracts
lack a colocated grid cell, due to their small size (or irregular geometry).
For example, the median area of census tracts in New York is 0.7 km2

(SI Appendix, Fig. S10). For these small tracts, we employ inverse distance
weighting interpolation to calculate the NO2 levels at their centroids using
NO2 levels in the eight neighboring grid cells. This approach may smooth
over the fine-scale NO2 gradients present in very small tracts and poten-
tially underestimate the impacts of NOx emissions (4). Tracts are classified
as either rural or urban based on the census-designed rurality level from
the last decadal census in 2010. Urban census tracts lie within the bound-
aries of an incorporated or census-designed place with > 2,500 residents,
and rural tracts are located outside these boundaries. Therefore, subur-
ban areas on the periphery of cities with > 2,500 residents are classified as
“urban” in this study. We further stratify the tracts into metropolitan-level
subsets for the 15 largest MSAs in the United States: New York City–Newark–
Jersey City, NY–NJ–PA; Los Angeles–Long Beach–Anaheim, CA; Chicago–
Naperville–Elgin, IL–IN–WI; Dallas–Fort Worth–Arlington, TX; Houston–
The Woodlands–Sugar Land, TX; Washington–Arlington–Alexandria, DC–
VA–MD–WV; Miami–Fort Lauderdale–Pompano Beach, FL; Philadelphia–
Camden–Wilmington, PA–NJ–DE–MD; Atlanta–Sandy Springs–Alpharetta,
GA; Phoenix–Mesa–Chandler, AZ; Boston–Cambridge–Newton, MA–NH;
San Francisco–Oakland–Berkeley, CA; Riverside–San Bernardino–Ontario,
CA; Detroit–Warren–Dearborn, MI; and Seattle–Tacoma–Bellevue, WA.
For brevity, we refer to these MSAs by their colloquial names (e.g.,
Los Angeles, rather than Los Angeles–Long Beach–Anaheim, CA) when
discussing them.
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We calculate the density of nearby primary roadways for each census
tract as a proxy for exposure to traffic-related NO2 pollution. Primary roads
are generally divided, limited-access highways within the Interstate High-
way System or under state management, and their locations are determined
from the US Census Bureau’s TIGER/Line geospatial database. Specifically, we
determine density as the number of primary road segments within 1 km of
a tract’s centroid. We choose 1 km as our threshold for “nearby,” as NO2

concentrations decrease up to ∼ 50% within 0.5 km to 2 km from major
roadways (4, 53). Other means of quantifying traffic exist (e.g., length of
roadway within a specified distance, traffic within buffer zones, sum of dis-
tance traveled) (59), but our approach allows for consistent use of geospatial
data from the US Census Bureau.

We partition census tracts by extreme values of their change in NO2

(∆ NO2) or demographic variables using the first decile (0 to 10th per-
centile) and tenth decile (90th to 100th percentile). As examples, tracts
classified as “most White” or “highest income” have a White population
fraction or median household income which falls in the tenth decile. Sim-
ilarly, ∆ NO2 in tracts with the “largest drops” (i.e., the largest decrease
in NO2 during lockdowns) falls in the first decile. Decile thresholds are
defined separately for all, urban, and rural census tracts and for different
MSAs to account for urban–rural gradients and differences among MSAs.
We note that, when this approach is applied to all (urban and rural) cen-
sus tracts, a broad distribution of tracts is selected, not just tracts from
a certain geographic region; for example, the ∼7,200 tracts classified as
“most White” for all urban and rural census tracts represent tracts from
all 48 states in the contiguous United States and Washington, DC. Our
results are not sensitive to the use of the first and tenth deciles, and we
have tested the upper and lower vigintiles, quintiles, and quartiles and
obtained similar results (SI Appendix, Fig. S5). The use of percentiles rather
than absolute thresholds yields a consistent sample size for the upper and
lower extrema and also avoids defining absolute thresholds for different
variables.

We applied the two-sample Kolmogorov–Smirnov (KS) test to determine
whether distributions of demographic variables in tracts with the largest

and smallest NO2 drops (Fig. 1 C–H) and tract-averaged NO2 for the upper
and lower extrema of demographic variables (Fig. 2) are drawn from the
same distribution (SI Appendix, Fig. S11). If the p value corresponding to
the KS test statistic is less thanα= 0.05, we declare that there are significant
differences in the distributions. We also assess whether the NO2 disparities
shown in Fig. 2 undergo significant changes between the baseline and lock-
down periods, using a two-sample z test. To meet the normality assumption
of the z test, we log-transform the skewed NO2 distributions prior to com-
puting the test statistic. Changes in baseline versus lockdown disparities are
classified as significant when the absolute value of the test statistic is larger
than 1.96, the critical value for a 95% level of confidence (p< 0.05). We note
that this approach to assess the significance of changes in disparities agrees
well with other methods, such as examining whether 95% confidence lev-
els of the baseline and lockdown disparities overlap (compare Fig. 2 and SI
Appendix, Fig. S4).

The start date of the baseline and lockdowns periods used in this study
(13 March) corresponds to the date of national emergency declaration in
the United States and the beginning of a pronounced decrease in mobility
patterns in 2020 (19). We test whether the overall racial, ethnic, income,
and educational disparities hold for other periods and find that the dispari-
ties among different demographic subgroups persist regardless of the start
date or length of the baseline period (SI Appendix, Figs. S2 and S9). We are
inherently limited by the short TROPOMI data record, and interannual vari-
ability could play a role in modulating the magnitude of disparities in NO2

levels. Testing this possibility is important as more TROPOMI data become
available.

Data Availability. All study data are included in the article and SI Appendix.
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37. C. L. Quéré et al., Temporary reduction in daily global CO2 emissions dur-
ing the COVID-19 forced confinement. Nat. Clim. Change 10, 647–653
(2020).

38. M. M. Patel et al., Spatial and temporal variations in traffic-related particulate matter
at New York City high schools. Atmos. Environ. 43, 4975–4981 (2009).

39. K. Shah, ‘Mostly empty’: COVID-19 has nearly shut down world’s busiest airport. The
Guardian, 13 April 2020. https://www.theguardian.com/world/2020/apr/13/atlanta-
hartsfield-jackson-coronavirus-airport-shut-down. Accessed 15 October 2020.

40. S. Martenies, C. Milando, G. Williams, S. Batterman, Disease and health inequalities
attributable to air pollutant exposure in Detroit, Michigan. Int. J. Environ. Res. Publ.
Health 14, 1243 (2017).

41. M. H. Rose, R. A. Mohl, Interstate: Highway Politics and Policy since 1939 (The
University of Tennessee Press, Knoxville, TN, ed. 3, 2012).

42. T. K. Boehmer, S. L. Foster, J. R. Henry, E. L. Woghiren-Akinnifesi, F. Y. Yip, Residential
proximity to major highways - United States, 2010. Morb. Mortal. Wkly. Rep. 62, 46–
50 (2013).

43. D. Liang et al., Urban air pollution may enhance COVID-19 case-fatality and mortality
rates in the United States. Innovation 1, 100047 (2020).

44. M. A. Raifman, J. R. Raifman, Disparities in the population at risk of severe ill-
ness from COVID-19 by race/ethnicity and income. Am. J. Prev. Med. 59, 137–139
(2020).

45. A. Chauhan et al., Personal exposure to nitrogen dioxide (NO2) and the severity of
virus-induced asthma in children. Lancet 361, 1939–1944 (2003).

46. N. N. Hansel, M. C. McCormack, V. Kim, The effects of air pollution and temperature
on COPD. COPD 13, 372–379 (2015).

47. M. J. Bechle, D. B. Millet, J. D. Marshall, Remote sensing of exposure to NO2: Satellite
versus ground-based measurement in a large urban area. Atmos. Environ. 69, 345–353
(2013).

48. D. L. Goldberg et al., Enhanced capabilities of TROPOMI NO2: Estimating NOx from
North American cities and power plants. Environ. Sci. Technol. 53, 12594–12601
(2019).

49. D. L. Goldberg et al., A high-resolution and observationally constrained OMI NO2
satellite retrieval. Atmos. Chem. Phys. 17, 11403–11421 (2017).

50. L. M. Judd et al., Evaluating the impact of spatial resolution on tropospheric NO2
column comparisons within urban areas using high-resolution airborne data. Atmos.
Meas. Tech. 12, 6091–6111 (2019).

51. L. N. Lamsal et al., U.S. NO2 trends (2005-2013): EPA Air Quality System (AQS) data
versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos.
Environ. 110, 130–143 (2015).

52. K. Do et al., A data-driven approach for characterizing community scale air pollution
exposure disparities in inland Southern California. J. Aerosol Sci. 152, 105704 (2021).

53. E. V. Novotny, M. J. Bechle, D. B. Millet, J. D. Marshall, National satellite-based land-
use regression: NO2 in the United States. Environ. Sci. Technol. 45, 4407–4414 (2011).

54. J. A. Geddes, R. V. Martin, B. L. Boys, A. van Donkelaar, Long-term trends worldwide
in ambient NO2 concentrations inferred from satellite observations. Environ. Health
Perspect. 124, 281–289 (2016).

55. Y. Chang et al., Puzzling haze events in China during the coronavirus (COVID-19)
shutdown. Geophys. Res. Lett. 47, e2020GL088533. (2020).

56. J. Veefkind et al., TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for
global observations of the atmospheric composition for climate, air quality and ozone
layer applications. Rem. Sens. Environ. 120, 70–83 (2012).

57. J. van Geffen et al., S5P TROPOMI NO2 slant column retrieval: Method, stability,
uncertainties and comparisons with OMI. Atmos. Meas. Tech. 13, 1315–1335 (2020).

58. S. Manson, J. Schroeder, D. V. Riper, S. Ruggles, IPUMS National historical
geographic information system: Version 14.0 (IPUMS, Minneapolis, MN, 2019).
http://doi.org/10.18128/D050.V14.0. Accessed 18 August 2020.

59. G. C. Pratt et al., Quantifying traffic exposure. J. Expo. Sci. Environ. Epidemiol. 24,
290–296 (2013).

8 of 8 | PNAS
https://doi.org/10.1073/pnas.2022409118

Kerr et al.
COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ja
nu

ar
y 

28
, 2

02
2 

https://www.theguardian.com/world/2020/apr/13/atlanta-hartsfield-jackson-coronavirus-airport-shut-down
https://www.theguardian.com/world/2020/apr/13/atlanta-hartsfield-jackson-coronavirus-airport-shut-down
http://doi.org/10.18128/D050.V14.0
https://doi.org/10.1073/pnas.2022409118

