ICCT Briefing to OMB

31 January 2022

OPINION GUEST ESSAY

These Carbon-Spewing Vehicles Must Be Stopped

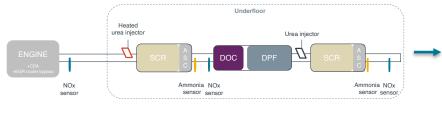
Jan. 12, 2022

100% 'emissions-free' truck and bus sales no later than 2040

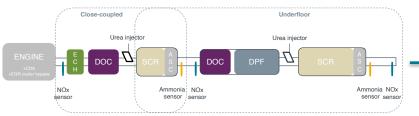
President Biden at the Ford Rouge Electric Vehicle Center in Dearborn, Mich. Doug Mills/The New York Times

By Margo Oge and Drew Kodia

Ms. Oge is the chair of the International Council on Clean Transportation and was the director of the U.S. Environmental Protection Agency's Office of Transportation and Air Ouality from 1994 to 2012. Mr. Kodlak is the executive director of the I.C.C.T.


Key Points

- 1. A .02 NOx engine standard is technically feasible and cost-effective;
- 2. A targeted revision to the HDV GHG Phase II standards is necessary to meet Paris climate goals
- 3. These actions advance Biden Administrative objectives to secure environmental justice for disadvantaged communities and address the climate crisis


Various pathways to 0.02g/bhp-hr of NO_X

Diesel:

Demonstrated by SwRI, up to 600k miles with 30% compliance room (Status Dec/2021)

Source: SwRI 2021. Ultra Low NOXWorking Group -Webinar

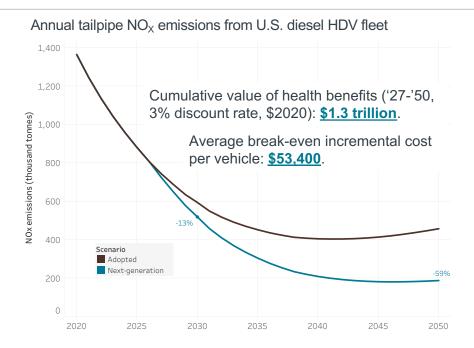
Ongoing project in Europe at the vehicle level in real world use

Source: AECC 2021. https://www.aecc.eu/wp-content/uploads/2021/10/211005-AECC-presentation-Aachen-1.pdf

Heavy Duty Engines Certified to Meet CARB's Optional Low NOx Emission Standards

Gas and opposed piston engines:

Low NOx Engine	Engine Family	Displacement (Liters)	NOx Certification Standard (g/bhp-hr)	NOx Reduction Percent (%)	Fuel	Intended Service Class
2020 EOs						
PSI 8.8	LPSIE8.8LN1	8.8	0.02	90%	LPG	HDO
Cummins 6.7	LCEXH0408BBC	6.7	0.02	90%	NG	MHDD
Cummins 8.9	LCEXH0540LBN	8.9	0.02	90%	NG	HHDD
Cummins 8.9	LCEXH0540LBL	8.9	0.02	90%	NG	MHDD
Cummins 8.9	LCEXH0540LBM	8.9	0.02	90%	NG	UB
Cummins 11.9	LCEXH0729XBC	11.9	0.02	90%	NG	HHDD-UB


| Cummins 11.9 | LCEXH0729XBC | 11.9 | 0.02 | 90% | NG | HHDD-UB |
Source: EPA 2021, https://www.epa.gov/sites/default/files/2021-01/documents/420f21002.pdf

Source: Achates Power 2020, https://achatespower.com/achates-engine-reaches-2027-emissions-levels/

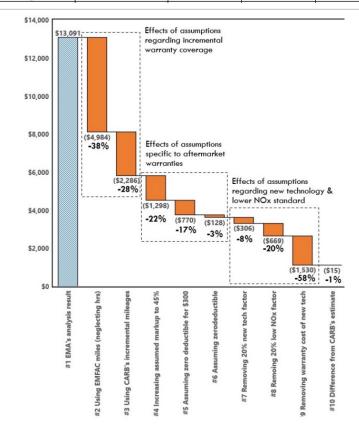
Benefits outweigh costs

Study	Cost range (HHDD)	Remarks
ICCT	\$2,200 to \$3,200	Bottom-up. No warranty included
MECA	\$3,500 to \$4,800	1 MM mile FUL, 800k mile warranty
CARB	\$6,000 to \$6,700	Range MY27/MY31. Accounting for ACT regulation
NREL	\$10,000 to \$50,000	Survey. 4 anonymous respondents plus EMA
ACT R. for EMA	\$17,000 to \$65,000 MY27 \$26,000 to \$80,000 MY31	Confidential industry input. Range represents low/high volume/discount.
Ricardo for EMA	\$5,900 to \$35,000	Low/high for current/extended UL/Warr. Methodology unknown

Source: ICCT 2021, https://theicct.org/publication/air-quality-and-health-impacts-of-heavy-duty-vehicles-in-g20-economies/

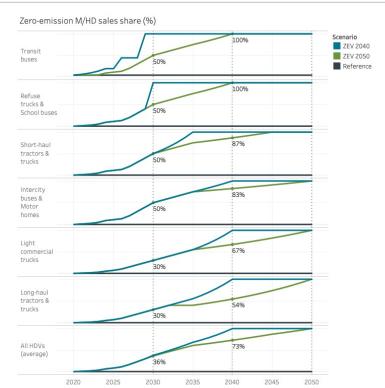
Source: Various. Summary: ICCT 2021, https://theicct.org/what-will-it-really-cost-to-build-the-next-generation-of-low-nox-trucks/

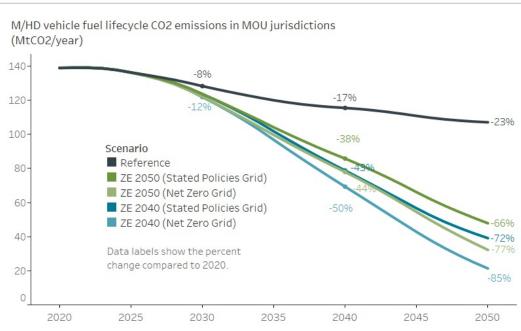
Warranty costs


 Table I.1. Summary of Estimated Step 2 Warranty Costs and Assumptions

	CARB Step 2 Warranty	NREL	ACT Research	EMA
Incremental warranty cost per HHDD engine ^a	\$1,104	\$23,061 ^b	\$7,227°	\$13,091

CARB analyzed discrepancies with EMA's warranty cost estimates. Three areas:

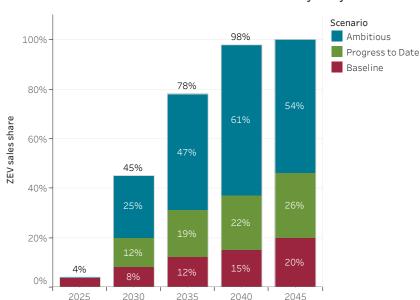

- 1. 40% owners already purchase extended warranties voluntarily. Not all segments have high mileages. Many vehicles reach warranty hour-limits first.
- 2. Differences in the profit of the aftermarket service, and accounting of deductibles.
- 3. Extending durability is an R&D cost, not warranty. New technology costs are offset by improvements in current technologies. Increasing warranty costs for new technology does not change the CBA greatly.



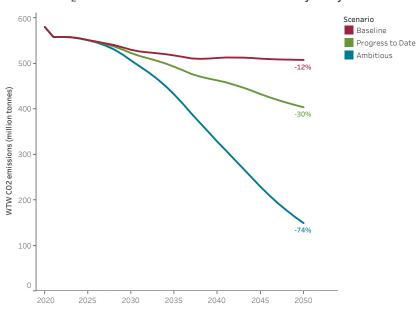
Importance for US EPA to accelerate EV penetration in key market segments

State-level actions could reduce 15 states' M/HDV CO₂ emissions by 50% in 2040 and 85% in 2050. But these actions are likely to only cover at most 35% of M/HDVs nationwide and likely a much smaller share of long-haul tractor trucks.

Assumed sales shares of new zero-emission M/HD vehicles in MOU signatories, not including California, from 2020–2050.


Comparison of M/HD vehicle fuel lifecycle CO₂ emissions across scenarios. *Caveat: These benefits could be undermined by out-of-state vehicles.*

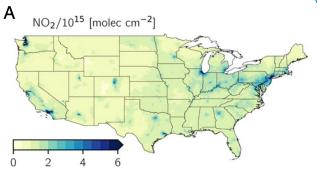
Arijit Sen, Ray Minjares, Josh Miller, and Caleb Braun, "Benefits of the 2020 Multi-State Medium- and Heavy-Duty Zero-Emission Vehicle Memorandum of Understanding" (forthcoming)

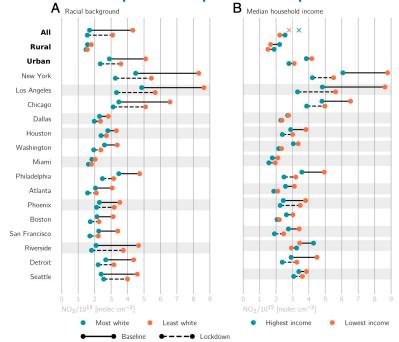

Importance for US EPA to accelerate EV penetration in key market segments

State-level actions and Phase 2 GHG standards are projected to reduce nationwide M/HDV CO₂ emissions by 30% in 2050. Federal action is needed to more than double the rate of zero-emission M/HDV uptake and align with a 2°C goal.

Sales share of zero-emission medium- and heavy-duty vehicles

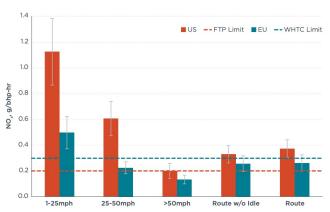
WTW CO₂ emissions from medium- and heavy-duty vehicles


Baseline scenario: Includes federal HDV Phase 2 GHG standards to MY2027 and California's ACT, ICT, and Omnibus rules Progress to Date scenario: Also considers California's EO-N-79-20 and the Multi-state MOU signed by 15 states + D.C. Ambitious scenario: Also considers new federal standards for HDVs MY2027+ that achieve nearly 100% ZEV sales by 2040. https://theicct.org/publication/zevtc-accelerating-global-transition-dec2021/


COVID19 has revealed the central role of HDVs in pollution exposure disparities

Disparities in NO2 exposure pre- and post COVID19

'... targeting NOx emissions from heavy-duty diesel vehicles is likely the most effective strategy for reducing disparities nationwide.'


- Hunter et al. (2021)

Kerr, Gaige Hunter, Daniel L. Goldberg, and Susan C. Anenberg. 2021. "COVID-19 Pandemic Reveals Persistent Disparities in Nitrogen Dioxide Pollution." *Proceedings of the National Academy of Sciences* 118 (30): e2022409118. https://doi.org/10.1073/pnas.2022409118.

One more lesson from Dieselgate: excess NOx from HDVs in the U.S. linked to ~ 1,000 premature deaths annually in 2015 – 10x greater than from light-duty vehicles

Figure ES-1. NO_x emissions by speed bin for European and U.S. HDVs. Dotted lines represent engine emission NO_x limits for U.S. and European HDVs. Error bars show confidence intervals at 95%.

https://theicct.org/publication/in-use-nox-emissions-and-compliance-evaluation-for-modern-heavy-duty-vehicles-in-europe-and-the-united-states/

Annual premature deaths attributable to on-road diesel vehicle NOx emissions, 2015 Total deaths Share of deaths by source China 31,397 28,456 60% EU-28 26,739 33% 65% India 8,968 63% Rest of world* 3.380 15% 77% Russia 34% 63% U.S. 2,982 74% Japan 1.970 71% 1.818 Brazil 84% Mexico 907 30% 65% 788 South Korea 58% Canada 220 65% Global 107,626 20% 30% 40% 50% 60% 70% 80% 90% NOx within regulated limits *Counts only those premature deaths Excess NOx from trucks and buses resulting from NOx emissions produced in the other regions shown here. Excess NOx from cars and vans

Questions

