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1. Introduction	
The	purpose	of	this	study	is	to	estimate	the	land-use	change	(LUC)	emissions	from	
increased	production	of	cellulosic	ethanol	produced	from	corn	stover	and	switchgrass	in	the	
U.S.	For	this	analysis,	we	used	version	4.0	of	the	Global	Change	Assessment	Model	(GCAM	
4.0),	a	global	long-term	economy,	energy,	and	environment	model	developed	and	managed	
by	the	Pacific	Northwest	National	Laboratory	(PNNL)	(Clarke,	Lurz	et	al.	2007;	Calvin,	
Clarke	et	al.	2011).	

The	general	approach	is	to	create	a	reference	scenario	similar	to	EPA’s	reference	case	used	
in	its	RFS2	analysis,	and	estimate	the	change	in	emissions	resulting	from	a	given	change	in	
production	of	stover	ethanol	and	of	switchgrass	ethanol.	More	specifically,	we	calibrated	
GCAM	to	match	the	RFS2	volumes	of	domestically	produced	biofuels	in	years	2020	and	
2025	(Baseline	Scenario),	shown	in	Table	1.	

Table	1.	Baseline	RFS2	biofuel	volumes	

Fuel	 Volume	
(109	gal/y)	

Notes	

Corn	ethanol	 15	 In	2020-2050	
Cellulosic	ethanol	 2.92	 In	2020-2050	
Biodiesel	 0.85	 In	2020-2050	
Fischer-Tropsch	biofuels	 see	note	 3.87	B	gal/y	in	2020;	6.52	B	gal/y	in	2025-2050	
	
To	calculate	the	carbon	intensity	of	switchgrass	ethanol,	we	modeled	an	increase	in	
cellulosic	ethanol	production	by	2	billion	gallons	per	year	in	2025	and	beyond,	with	the	
incremental	production	sourced	entirely	from	switchgrass.	We	refer	to	this	case	as	the	
switchgrass	ethanol	scenario.		

We	adopted	a	similar	approach	for	stover	ethanol,	except	that	the	incremental	biomass	
production	was	sourced	from	crop	and	forest	residue,	with	the	predominant	source	being	
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corn	stover	(stover	ethanol	scenario).	Table	2	shows	the	shock	volumes	in	gallons	and	
exajoules	(EJ),	and	the	ILUC	emissions	intensities	under	two	accounting	approaches.	

Table	2.	Summary	of	results.	LUC-only	counts	only	CO2	from	the	oxidation	of	soil	and	
biomass	carbon;	RFS-style	adds	to	this	the	(100y)	CO2-equivalent	emissions	of	N2O	
and/or	CH4	resulting	from	changes	in	rice	and	livestock	production	and	the	
production	and	use	of	fertilizer.	

Fuel	
Shock	(109	gal/y)	

(EJ/y)	
Land-use	change	only	

(g	CO2e	MJ-1)	

RFS-style	
accounting	
(g	CO2e	MJ-1)	

Corn	stover	ethanol	 2	(0.17)	 -2.5	 -2.3	
Switchgrass	ethanol	 2	(0.17)	 45	 52	
	

2. Carbon	intensity	metrics	

To	allow	comparison	of	our	results	with	the	analyses	performed	by	EPA	for	the	Renewable	
Fuel	Standard	(RFS2)	regulation,	we	match	as	closely	as	possible	the	emissions	intensity	
metric	used	in	EPA’s	analysis	and	expressed	in	units	of	g	CO2e	MJ-1	biofuel.	The	denominator	
represents	the	change	in	biofuel	production	(gallons	per	year	converted	to	megajoules)	
used	to	“shock”	the	model.	For	both	the	baseline	and	switchgrass	scenarios,	the	change	in	
cellulosic	ethanol	production	was	linearly	interpolated	between	5	year	time-steps	to	
produce	annual	quantities,	and	then	summed	over	the	30-year	period	modeled.	

The	numerator	represents	the	change	in	CO2e	emissions	resulting	from	the	shock.	In	EPA’s	
RFS2	analysis2,	the	numerator	included	changes	in:	

a. Global	soil	and	biomass	carbon	stocks	(emissions	or	sequestration)	and	other	land-
use	change	(LUC)	emissions,	expressed	as	CO2	

b. Emissions	of	methane	(CH4)	resulting	from	changes	in	global	rice	and	livestock	
production	

c. N2O	emissions	related	to	crop	fertilization	
d. Changes	in	on-farm	energy	use	resulting	from	crop	shifting	

Unlike	EPA,	changes	in	energy	use	in	farm	operations	are	not	included	in	GCAM	results.	

We	summed	emissions	weighted	by	their	100-year	IPCC	(AR4)	global	warming	potential	
(GWP)	values	(Forster,	Ramaswamy	et	al.	2007),	summed,	and	linearly	interpolated	results	

																																								 																					
2 We note that other jurisdictions define the LUC emissions intensity differently. For the Low-Carbon Fuel 
Standard, the California Air Resources Board includes only changes in soil and biomass carbon stocks and 
related land-clearing emissions. 
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projected	for	5-year	time-steps	to	produce	annual	values.3	The	resulting	emissions	intensity	
is	expressed	in	units	of	g	CO2e	MJ-1.	We	also	present	results	for	LUC	emissions	only.	

2.1. Challenges	of	modeling	specific	cellulosic	biofuel	pathways	

While	corn	and	cane	ethanol	are	represented	in	GCAM	as	distinct	feedstock-biorefining-fuel	
pathways,	all	cellulosic	feedstocks	are	aggregated	into	a	homogenous	“regional	biomass”,	
which	serves	as	the	input	to	various	biomass-consuming	processes	for	liquid	fuel	
production	as	well	as	for	other	uses.		Figure	1	presents	a	schematic	of	the	biomass	and	
biofuels	sectors	in	GCAM.	

In	GCAM,	the	"regional	biomass"	market	incorporates	biomass	from	crop	residue	as	well	as	
from	forestry	residue,	municipal	solid	waste	(MSW),	and	purpose-grown	energy	crops.	In	
addition	to	use	in	the	production	of	liquid	biofuels,	regional	biomass	is	consumed	by	the	
electricity	sector	and	is	an	input	to	the	"delivered	biomass"	market	subsector,	which	in	turn	
provides	inputs	to	industrial	and	commercial	sector.	

Several	of	the	biomass	sources	(e.g.,	Miscanthus,	Willow,	Eucalyptus)	occur	in	only	a	couple	
of	regions.	GCAM	does	not	explicitly	model	“switchgrass”;	however,	the	generic	purpose-
grown	“biomass”	in	the	U.S.	is	modeled	on	switchgrass.	

Crop	and	forestry	residues	are	a	“secondary”	output	in	GCAM,	which	means	their	
availability	is	determined	by	the	primary	product	(timber	or	crops),	while	the	quantity	
harvested	is	determined	by	the	market	price	of	regional	biomass,	constrained	by	a	
requirement	to	leave	a	fixed	amount	(kg/ha)	unharvested	to	control	erosion.		A	challenge	
with	modeling	corn	stover	ethanol	in	GCAM	is	that	it	is	not	possible	to	create	a	market	for	
secondary	outputs,	so	we	cannot	directly	constrain	corn	stover	(or	any	residues)	to	a	
desired	quantity.	Rather,	we	must	adjust	the	supply	curves	and/or	erosion	control	
parameters	to	affect	which	residues	are	available	and	in	what	quantities.	

																																								 																					
3	We	configured	GCAM	to	report	LUC	emissions	on	an	annual	basis	since	linear	interpolation	of	
annual	values	at	5-year	time-steps	cannot	correctly	reproduce	total	emissions.	All	other	GHG	
emissions	were	interpolated	as	described.	
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Figure	1.	Schematic	of	biofuel	pathways	in	GCAM.	Although	the	default	model	does	
not	include	distillers	grains,	we	added	these	as	a	second	output	of	the	corn	ethanol	
production	process.	

	

3. GCAM	reference	and	EWG	baseline	scenarios	

The	following	tables	compare	key	results	for	the	standard	GCAM	reference	and	the	EWG	
baseline	scenario.	The	biofuel	volumes	in	the	EWG	baseline	match	the	targeted	RFS2	
volumes	with	minimal	distortion	of	prices	or	quantities,	as	shown	in	the	tables	below.	The	
EWG	baseline	includes	the	modifications	from	the	GCAM	reference	assumptions	shown	in	
Table	3.	

By	default,	the	market	for	biomass	is	global	in	GCAM.	We	implemented	instead	a	separate	
U.S.	market	to	prevent	knock-on	effects	in	other	regions	from	changes	in	cellulosic	ethanol	
production	in	the	U.S.,	so	that	additional	domestically	produced	biomass	feedstock	is	
consumed	entirely	in	the	U.S.,	and	all	bioenergy	produced	in	the	U.S.	is	based	on	
domestically	produced	biomass.	The	rest	of	the	world’s	regions	continue	to	trade	biomass.	

To	match	RFS2	projected	production	volumes	of	corn	ethanol,	cellulosic	ethanol,	FT	
biofuels,	and	biodiesel,	we	implemented	the	following	changes:		

1. Created	markets	for	each	of	these	biofuels	and	taxed	or	subsidized	the	fuel	so	that	
production	was	constrained	to	the	desired	level.		

2. Allowed	introduction	of	FT	biofuels	and	cellulosic	ethanol	in	2015.	(By	default	they	
become	available	in	2020,	making	it	difficult	to	ramp	up	production	as	desired.	

3. To	produce	a	cellulosic	ethanol	scenario	sourced	predominantly	from	corn	stover,	
we	restricted	the	response	of	other	crop	residues,	forest	residues,	and	MSW,	as	
described	in	Table	3.	



	
	

5	
	

Table	3.	Modifications	to	GCAM	reference	to	produce	EWG	baseline	

GCAM	Reference	 EWG	Baseline	 Rationale	
Biomass	is	traded	globally.	 The	U.S.	has	its	own	regional	

biomass	market;	the	rest	of	the	
world	trades	globally.	

This	minimizes	cascade	effects	
of	manipulating	biomass	
markets	in	the	U.S..	

Distillers	grains	from	corn	ethanol	
production	are	not	represented.	

Included	DDGS	output	from	corn	
ethanol	conversion	process	as	
animal	feed.	(Further,	corn	
ethanol	conversion	costs	and	
efficiency	factors	were	adjusted	to	
match	EPA	assumptions.)	

Leaving	out	DDGS	
overestimates	land-use	
changes.	

FT	biofuels	and	cellulosic	ethanol	
aren’t	available	until	2020.	

These	fuels	become	available	in	
2015.	

This	is	necessary	to	allow	
rapid	scale-up	to	the	target.	

FT	biofuel	non-energy	cost	starts	at	
about	1975$2.75	in	2020	and	
declines	somewhat	over	time.	

FT	biofuel	non-energy-cost	is	
increased	to	3.25	before	2030	and	
to	4.10	from	2030	onward.	

This	makes	the	subsidy	
constraint	binding	in	all	years.	
Otherwise	FT	biofuels	would	
need	a	tax	in	some	years	and	
subsidy	in	others	(not	
possible.)	

Residue	supply	curves	allow	up	to	
25%	of	residue	to	be	harvested	at	
1975$1.20,	65%	at	1975$1.50,	and	
100%	at	$10	for	all	crops	and	
regions*	

Changed	these	to	25%	at	$1.50	
and	50%	at	$2.00	and	(NB:	prices	
remain	under	$6	in	all	cases.)	

Ensure	that	residue	is	sourced	
predominantly	from	corn	
stover.	

Forest	residue	supply	curve	allows	
60%	harvesting	at	$1.20	and	80%	
at	$1.50*	

Changed	these	to	10%	at	$2.50	
and	80%	at	$4.00.	

Reduces	response	of	these	
residues	to	changes	in	
biomass	demand.	

Municipal	solid	waste*	 Reduced	the	supply	elasticity	and	
increased	the	price	of	MSW.	

Reduces	response	of	MSW	to	
changes	in	biomass	demand.	

Corn	stover	has	same	supply	curve	
as	other	residues,	in	all	regions.	

Modified	U.S.	corn	stover	supply	
curve	to	allow:	60%	at	$2.00,	and	
85%	at	$1.45.	

Stover	supply	responds	more	
readily	to	biofuel	feedstock	
demand.	

N/A	 Created	tax	on	cellulosic	ethanol,	
and	subsidies	on	FT	biofuels,	corn	
ethanol,	and	biodiesel.	

Required	to	force	GCAM	to	
produce	these	fuels	at	the	
desired	levels.	

About	90%	of	forest	land	is	
“protected”,	i.e.,	not	available	for	
conversion.	

Land	protections	have	been	
removed.	

To	ensure	that	the	reference	
case	does	not	underestimate	
forest	conversion.	

*	These	changes	ensure	that	residue	and	waste	for	cellulosic	ethanol	is	sourced	predominantly	from	
corn	stover	in	the	corn	stover	ethanol	scenario.	They	were	implemented	in	the	baseline	although	
they	were	needed	only	for	the	corn	stover	ethanol	scenario.	These	changes	do	not	affect	the	results	
when	modeling	switchgrass	ethanol	scenario,	but	we	include	them	here	so	that	both	fuel	shocks	are	
compared	to	an	identical	baseline.	Note	that	the	percentage	harvested	shown	is	the	percentage	of	
residue	remaining	after	accounting	for	the	amount	required	to	be	left	behind	for	erosion	control.	

3.1. Fuel	production	volumes	

Table	4	and	Table	5	show	the	volume	of	liquid	fuels	produced,	in	exajoules	(EJ	=	1012	MJ).	
Comparing	the	GCAM	reference	with	the	EWG	baseline,	we	see	that	the	baseline	meets	the	
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designated	target	volumes	from	2025	through	2050.	The	total	volume	of	fuel	produced	is	
very	similar	between	the	two	cases.	

Table	4.	GCAM	Reference:	Refined	liquid	fuel	production	in	the	U.S.,	by	technology	
(EJ)	

Technology	 2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
FT	biofuels	 0.00	 0.29	 0.47	 0.66	 0.83	 1.00	 1.14	 1.27	
biodiesel	 0.03	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	
cell	ethanol	 0.00	 0.35	 0.56	 0.78	 1.00	 1.20	 1.37	 1.53	
coal	to	liquids	 0.00	 0.80	 2.03	 3.02	 3.90	 4.80	 5.61	 6.35	
corn	ethanol	 1.48	 1.28	 1.19	 1.13	 1.05	 1.01	 0.95	 0.91	
gas	to	liquids	 0.00	 0.82	 2.04	 2.97	 3.72	 4.37	 4.84	 5.16	
oil	refining	 34.77	 33.77	 31.87	 30.25	 28.93	 28.23	 27.79	 27.69	
TOTAL	 36.28	 37.33	 38.18	 38.82	 39.45	 40.62	 41.71	 42.92	
	

Table	5.	EWG	Baseline:	Refined	liquid	fuel	production	in	the	U.S.,	by	technology	(EJ)	

Technology	 2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
FT	biofuels	 0.37	 0.50	 0.85	 0.85	 0.85	 0.85	 0.85	 0.85	
biodiesel	 0.04	 0.11	 0.11	 0.11	 0.11	 0.11	 0.11	 0.11	
cellulosic	ethanol	 0.00	 0.23	 0.23	 0.23	 0.23	 0.23	 0.23	 0.23	
coal	to	liquids	 0.00	 0.00	 1.42	 2.61	 3.64	 4.69	 5.61	 6.47	
corn	ethanol	 1.00	 1.21	 1.21	 1.21	 1.21	 1.21	 1.21	 1.21	
gas	to	liquids	 0.00	 0.00	 1.43	 2.56	 3.47	 4.26	 4.83	 5.24	
oil	refining	 34.90	 35.10	 32.92	 31.32	 30.04	 29.39	 29.01	 28.97	
TOTAL	 36.31	 37.15	 38.17	 38.89	 39.54	 40.75	 41.85	 43.08	
	

3.2. Purpose-grown	biomass	production	

The	quantity	of	purpose-grown	biomass	(effectively,	switchgrass)	in	the	U.S.	is	shown	in	
Table	6	(GCAM	reference)	and	Table	7	(EWG	baseline).	By	default,	GCAM	produces	
substantial	quantities	of	both	FT	biofuel	and	cellulosic	ethanol,	which	require	a	large	
quantity	of	biomass.	Since	we	(i)	hold	the	volumes	of	FT	and	cellulosic	ethanol	to	lower	
levels,	(ii)	separated	the	U.S.	from	the	global	biomass	market,	and	(iii)	made	corn	stover	
more	readily	available,	the	reduction	in	fuel	demand	translates	into	a	reduction	in	biomass	
demand.	

Table	6.	GCAM	Reference:	Purpose-grown	biomass	in	the	U.S.	(EJ)	

2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
0.00	 1.78	 3.35	 5.24	 7.04	 7.81	 8.33	 8.70	
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Table	7.	EWG	Baseline:	Purpose-grown	biomass	in	the	U.S.	(EJ)	

2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
0.00	 1.79	 2.93	 3.61	 4.18	 4.58	 5.00	 5.45	

	

3.3. Select	prices	
Table	8	and	Table	9	show	prices	of	select	feedstocks	and	end	products,	again,	mainly	for	
comparison	to	show	that	the	EWG	baseline	does	not	distort	prices	very	much.	

Table	8.	GCAM	Reference:	Select	prices	in	the	U.S.	by	technology	(1975$/GJ)	

Sector	 2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
refined	liquids	end-use	 5.90	 5.92	 5.91	 5.96	 6.01	 6.06	 6.09	 6.12	
regional	biomass	 1.98	 1.93	 1.89	 1.85	 1.83	 1.86	 1.89	 1.92	
regional	biomass	oil	 10.25	 9.57	 9.37	 9.19	 9.05	 8.91	 8.78	 8.66	
regional	corn	for	ethanol	 3.57	 3.49	 3.45	 3.40	 3.39	 3.38	 3.37	 3.36	
regional	oil	 3.48	 3.57	 3.64	 3.71	 3.78	 3.84	 3.88	 3.90	
regional	sugar	for	ethanol	 7.40	 6.97	 6.77	 6.61	 6.49	 6.38	 6.28	 6.19	
traded	unconventional	oil	 3.84	 3.70	 3.71	 3.71	 3.71	 3.72	 3.73	 3.74	
	
Table	9.	EWG	Baseline:	Select	prices	in	the	U.S.	by	technology	(1975$/GJ)	

	 Sector	 2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
refined	liquids	end-use	 5.89	 5.99	 5.90	 5.92	 5.96	 6.01	 6.04	 6.06	
regional	biomass	 2.16	 1.92	 1.86	 1.77	 1.73	 1.74	 1.76	 1.77	
regional	biomass	oil	 9.93	 9.70	 9.47	 9.27	 9.12	 8.97	 8.83	 8.70	
regional	corn	for	ethanol	 3.43	 3.42	 3.39	 3.36	 3.35	 3.35	 3.34	 3.33	
regional	oil	 3.51	 3.57	 3.64	 3.72	 3.79	 3.85	 3.88	 3.91	
regional	sugar	for	ethanol	 7.22	 6.99	 6.77	 6.61	 6.49	 6.38	 6.28	 6.19	
traded	unconventional	oil	 3.69	 3.70	 3.71	 3.71	 3.71	 3.72	 3.73	 3.74	
	

3.4. Residue	production	
Projected	residue	production	is	shown	in	Table	10	(GCAM	Reference)	and	Table	11	(EWG	
Baseline).	By	design,	the	EWG	Baseline	results	in	more	corn	stover	production,	which	
inevitably	results	in	somewhat	less	production	of	residues	from	other	crops.	Since	we	hold	
biomass-based	fuel	volumes	constant	over	time,	the	total	residue	production	in	the	EWG	
baseline	varies	less	than	in	the	GCAM	Reference	case.	Here,	we	were	aiming	mainly	to	avoid	
large	distortions	in	the	production	of	residues	other	than	corn	stover.	
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Table	10.	GCAM	Reference:	Residue	production	by	crop	(EJ)	

Crop	 2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
Corn	 0.87	 0.87	 0.87	 0.89	 0.95	 1.01	 1.06	 0.87	
FiberCrop	 0.04	 0.04	 0.04	 0.04	 0.04	 0.04	 0.04	 0.04	
MiscCrop	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	
Forestry	 0.47	 0.48	 0.48	 0.49	 0.52	 0.55	 0.59	 0.47	
OilCrop	 0.11	 0.11	 0.12	 0.14	 0.16	 0.19	 0.21	 0.11	
OtherGrain	 0.04	 0.04	 0.04	 0.04	 0.04	 0.04	 0.04	 0.04	
Rice	 0.04	 0.04	 0.04	 0.03	 0.03	 0.04	 0.04	 0.04	
Root_Tuber	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	
SugarCrop	 0.02	 0.02	 0.02	 0.02	 0.02	 0.02	 0.02	 0.02	
Wheat	 0.19	 0.22	 0.25	 0.26	 0.28	 0.31	 0.33	 0.19	
TOTAL	 1.80	 1.84	 1.87	 1.92	 2.07	 2.21	 2.35	 1.80	
	
Table	11.	EWG	Baseline:	Residue	production	by	crop	(EJ)	

Crop	 2015	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
Corn	 2.60	 2.36	 2.36	 2.31	 2.33	 2.45	 2.57	 2.69	
FiberCrop	 0.04	 0.03	 0.03	 0.03	 0.03	 0.03	 0.03	 0.03	
MiscCrop	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	
Forestry	 0.26	 0.23	 0.22	 0.21	 0.21	 0.22	 0.23	 0.25	
OilCrop	 0.09	 0.09	 0.09	 0.09	 0.10	 0.12	 0.14	 0.15	
OtherGrain	 0.04	 0.03	 0.03	 0.03	 0.03	 0.03	 0.03	 0.03	
Rice	 0.04	 0.03	 0.03	 0.03	 0.02	 0.03	 0.03	 0.03	
Root_Tuber	 0.01	 0.01	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	
SugarCrop	 0.02	 0.02	 0.02	 0.02	 0.02	 0.01	 0.01	 0.01	
Wheat	 0.15	 0.15	 0.17	 0.18	 0.19	 0.20	 0.22	 0.23	
TOTAL	 3.26	 2.95	 2.97	 2.91	 2.94	 3.10	 3.26	 3.43	
	

4. Point	estimate	results	

In	this	section,	we	present	differences	between	each	of	the	switchgrass	and	corn	stover	
ethanol	scenarios	and	the	EWG	baseline.	Note	that	GCAM	reports	results	in	5-year	time-
steps,	however	our	calculations	were	performed	on	an	annual	basis,	with	values	between	
time-step	years	interpolated	linearly.	

In	the	two	policy	scenarios—switchgrass	and	corn	stover	ethanol—we	constrained	the	
production	volumes	of	all	biofuels	other	than	cellulosic	ethanol	to	the	baseline	levels.	In	
both	scenarios,	we	increased	cellulosic	ethanol	production	by	2	B	gal/y	in	2025	and	beyond.	
The	incremental	production	is	sourced	entirely	from	switchgrass	in	the	switchgrass	ethanol	
scenario,	and	from	crop	and	forestry	residue	(predominantly	corn	stover)	in	the	stover	
ethanol	scenario.	Figure	3	shows	changes	in	cellulosic	ethanol	production	in	the	U.S.	in	the	
switchgrass	scenario.	A	similar	change	was	implemented	for	the	stover	scenario.	
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In	both	the	switchgrass	and	corn	stover	scenarios,	we	constrained	the	total	biomass	
consumed	by	all	other	sectors	of	the	U.S.	economy	to	the	baseline	level	to	prevent	changes	
in	ethanol	production	from	affecting	biomass	consumption	in	those	sectors.	To	accomplish	
this,	we	read	the	results	from	the	baseline	scenario	and	created	constraints	on	regional	
biomass	equal	to	the	baseline	results	plus	the	quantity	of	additional	biomass	required	to	
produced	the	desired	quantity	of	cellulosic	ethanol,	based	on	GCAM’s	assumed	conversion	
efficiencies,	which	improve	over	time.	

4.1. Switchgrass	ethanol	

4.1.1. Carbon intensity 
The	estimated	carbon	intensity	of	switchgrass	ethanol	considering	only	land-use	change	
CO2	emissions	(i.e.,	CO2	from	the	oxidation	of	soil	and	biomass	carbon	resulting	from	land	
use	changes)	is	45	g	CO2e	MJ-1.	In	addition	to	emissions	attributed	to	changes	in	land	use,	
GCAM	projects	increased	emissions	from	the	production	and	use	of	fertilizer	applied	to	the	
additional	switchgrass.	Consistent	with	the	RFS2	Regulatory	Impact	Analysis,	we	also	count	
CH4	and	N2O	emissions	from	changes	in	livestock	and	CH4	from	rice	production,	these	
quantities	are	negligible	in	the	final	total.	Inclusion	of	these	emissions	in	the	“RFS-style”	
result	increases	the	estimated	carbon	intensity	to	52	g	CO2e	MJ-1.	The	breakdown	by	
contributing	GHG	source	is	depicted	in	Figure	2.	

Figure	2.	Estimated	carbon	intensity	of	switchgrass	ethanol,	disaggregated	by	source.	
This	figure	is	based	on	RFS-style	accounting.	The	dark	green	segments	represent	the	
LUC-only	portion	of	the	total.

	

	

These	values	are	within	the	range	of	values	estimated	by	Wise	et	al.	(2015),	which	varied	
between	about	14	and	70	g	CO2e	MJ-1	and	close	to	their	estimate	for	switchgrass	in	AEZ-7,	
which	is	about	35	g	CO2e	MJ-1	(reading	from	their	figure	7,	shown	here	as		Figure	10.)	
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4.1.2. Switchgrass production 
We	used	a	subsidy	to	increase	switchgrass	production	relative	to	the	baseline	level	by	the	
exact	amount	necessary	to	produce	the	desired	quantity	of	additional	cellulosic	ethanol,	
based	on	GCAM’s	modeled	conversion	efficiencies	(which	improve	by	about	1.8%	per	year.)	

Figure	4	shows	the	changes	in	biomass	consumption	in	the	switchgrass	scenario.	Figure	5	
shows	the	change	in	total	biomass	consumption	by	region,	virtually	all	of	which	occurs	in	
the	U.S.,	as	intended.	Figure	6	shows	that	residue	production	was	barely	changed	in	this	
scenario.	(Note	that	the	scale	is	much	smaller	than	in	the	other	figures.)	These	three	figures	
show	that	virtually	all	of	the	increased	biomass	production	is	sourced	from	purpose-grown	
biomass	(i.e.,	switchgrass)	in	the	U.S.,	as	expected.	

Figure	3.	Modeled	change	in	cellulosic	ethanol	production	in	the	U.S.	in	the	
switchgrass	ethanol	scenario	relative	to	the	baseline.	Production	of	other	biofuels	
was	constrained	to	baseline	levels.		

	

As	shown	in	Figure	3,	GCAM	projects	that	producing	biofuels	in	the	USA	results	in	a	slight	
decrease	in	total	global	liquid	fuel	production.	We	note	that	this	result	runs	counter	to	many	
other	economic	analyses	of	fossil	fuel	displacement	by	biofuels	(Smeets,	Tabeau	et	al.	2014).	
The	GCAM	outcome	is	the	result	of	several	GCAM	assumptions,	including:		

1. Elasticities	of	fuel	supply	and	demand	with	respect	to	price	(expressed	in	GCAM	as	
share-weights	and	logit	function	exponents).	

2. Price	and	availability	of	GTL	and	CTL	fuels.	
3. Treating	the	global	crude	oil	market	as	competitive.	
4. Little	response	in	transportation	(and	fuel)	demand	to	changes	in	fuel	cost,	because	

the	majority	of	vehicle	cost	is	the	value-of-time	to	the	driver.	
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Figure	4.	Change	in	total	biomass	consumption	in	the	Switchgrass	Ethanol	Scenario	
relative	to	the	Baseline.	

	

Figure	5.	Change	in	purpose	grown	biomass	production	in	the	switchgrass	scenario	
relative	to	the	Baseline.	
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Figure	6.	Change	in	residue	biomass	production	in	the	switchgrass	scenario	relative	
to	the	baseline.	Annualized	values	for	both	numerator	(biomass)	and	denominator	
(biofuel)	are	summed	from	2020-2050.		(Note	the	small	scale	on	the	Y-axis,	indicating	
essentially	no	change.)	

	

Table	12.	Changes	in	liquid	fuel	production	(EJ)	in	the	U.S.	following	an	increase	in	
cellulosic	ethanol	production	from	0.23	to	0.40	EJ.	

Technology	 2020	 2025	 2030	 2035	 2040	 2045	 2050	
FT	biofuels	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	
biodiesel	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	
cellulosic	ethanol	 0.17	 0.17	 0.17	 0.17	 0.17	 0.17	 0.17	
coal	to	liquids	 0.00	 0.00	 -0.01	 -0.01	 -0.02	 -0.02	 -0.03	
corn	ethanol	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	
gas	to	liquids	 0.00	 0.00	 -0.01	 -0.01	 -0.02	 -0.02	 -0.02	
oil	refining	 -0.20	 -0.17	 -0.16	 -0.15	 -0.15	 -0.14	 -0.13	
TOTAL		 -0.03	 -0.01	 -0.01	 -0.01	 -0.01	 -0.01	 -0.01	
	

4.1.3. Changes in land allocation and LUC emissions 
In	the	switchgrass	ethanol	scenario,	forestry,	grassland,	and	pastureland	were	converted	to	
grow	switchgrass	in	the	U.S.	(Figure	7).	As	a	result,	carbon	sequestration	by	the	biomass	
sector	increases	relative	to	the	baseline	scenario,	but	these	are	dominated	by	the	reduced	
sequestration	by	the	forestry	and	pasture	sectors	(Figure	8).	

Note	that	when	expanding	land	for	agriculture,	GCAM	distributes	the	area	changes	over	the	
prior	time-step,	thus	to	properly	count	all	emissions	associated	with	the	projected	LUC	
requires	counting	LUC	emissions	from	2016-2050	rather	than	merely	from	2020-2050.	
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(Since	the	first	biofuel	shock	is	in	2020,	there	should	be	no	LUC	emissions	prior	to	that	
year.)	

Figure	7.	Change	in	land	allocation	by	land-use	type	for	the	USA	and	rest	of	world	in	
2020,	the	year	of	the	initial	shock.	

	

Figure	8.	Cumulative	LUC	emissions	intensity	(g	CO2e	MJ-1)	for	the	USA	and	rest	of	
world.	

	

4.1.4. Changes in refined fuel production 
Figure	9	shows	changes	in	refined	liquid	production	in	the	U.S.	in	the	switchgrass	scenario.	
The	increase	in	cellulosic	ethanol	is	nearly	perfectly	compensated	by	decreases	in	coal-	and	
gas-to-liquids	and	conventional	oil	refining.	This	nearly	1:1	replacement	is	based	on	GCAM’s	
default	elasticities	of	fuel	supply	and	demand	and	would	change	under	other	assumptions.	
Also,	GCAM	is	quite	optimistic	about	CTL	and	GTL	production,	so	it	counts	greater	CO2	
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reductions	than	would	be	the	case	if	more	lower-carbon-intensity	crude	was	offset	by	
biofuels.	

Carbon	accounting	for	bioenergy	in	GCAM	includes	counting	the	uptake	of	CO2	into	plant	
carbon—for	bioenergy	crops	only,	not	for	food	crops—and	then	counting	all	combustion	
CO2	from	biofuels.	Since	there’s	a	nearly	perfect	replacement	of	liquid	fossil	fuels	by	biofuels	
in	GCAM,	the	additional	plant	growth	(net	of	LUC	emissions)	results	in	additional	
sequestration	that	is	not	offset	by	additional	combustion:	the	total	CO2	from	liquid	fuel	
combustion	is	largely	unchanged.	

Figure	9.	Modeled	change	from	baseline	refined	fuel	production	in	the	U.S.	in	the	
switchgrass	ethanol	scenario.	Production	of	other	biofuels	were	constrained	to	
baseline	levels	and	prevented	from	responding	to	changes	in	cellulosic	ethanol	
production.	
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Figure	10.	Carbon	intensity	from	GCAM	and	other	studies	(taken	from	Wise,	Hodson	
et	al.	2015)	

	

4.2. Corn	stover	ethanol	

4.2.1. Carbon intensity 
The	carbon	intensity	of	stover	ethanol	production	for	an	increase	from	0.23	to	0.40	EJ	per	
year	of	cellulosic	ethanol	production	was	-2.2	g	CO2e	MJ-1	for	LUC-only	and	-2.4	g	CO2e	MJ-1	
for	RFS-style	CI	calculations	(Figure	11).		

Figure	11.	Estimated	of	carbon	intensity	of	stover	ethanol,	disaggregated	by	source.	
The	“RFS-style”	CI	calculation	includes	all	the	emission	source	categories	shown.	
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4.2.2. Corn stover production 
Although	we	cannot	directly	control	the	quantity	or	type	of	residues	produced,	we	were	
able	to	force	the	increased	biomass	to	be	sourced	from	residues,	and	primarily	from	corn	
stover,	as	depicted	in	Figure	12.	To	accomplish	this,	we	constrained	U.S.	switchgrass	
production	to	the	baseline	level,	in	addition	to	the	changes	described	earlier	for	the	
baseline.	

As	seen	in	Figure	12,	approximately	80%	of	the	supply	response	to	increased	cellulosic	
ethanol	production	is	sourced	from	corn	stover,	with	most	of	the	remainder	coming	from	
forestry	and	wheat	residues.	Considering	that	all	biomass	is	fungible	in	GCAM,	this	result	
would	be	consistent	with	producing	all	cellulosic	ethanol	from	corn	stover,	with	80%	of	the	
feedstock	coming	from	additional	stover	collection	(above	the	baseline),	with	the	remaining	
20%	diverted	from	other	uses	and	replaced	predominantly	by	wheat	and	forestry	residue.	

Figure	12.	Change	in	residue	production	in	the	stover	ethanol	scenario	relative	to	the	
baseline.	

	

Residue	collection	removes	nutrients	that	must	be	replaced	or	a	yield	reduction	may	occur	
(Nelson,	Walsh	et	al.	2004;	Kenney,	Blanco-Canqui	et	al.	2013).	A	loss	of	yield	would	result	
in	some	incremental	land-use	change	if	total	grain	output	were	maintained.	GCAM	does	not	
presently	account	for	this	potential	nutrient	loss	or	yield	reduction.	Since	crop	yields	are	
unchanged	between	the	baseline	and	corn	stover	ethanol	scenario,	the	harvesting	of	stover	
in	GCAM	incurs	no	land-use	change	and	no	increased	fertilizer	emissions.	Including	this	
dynamic	would	somewhat	increase	the	CI	of	stover	ethanol.	

4.2.3. Land allocation 
As	shown	in	Figure	13,	decreasing	corn	stover	ethanol	production	results	in	relatively	small	
changes	in	land	allocation,	compared	to	those	projected	for	switchgrass	ethanol.	



	
	

17	
	

Figure	13.	Change	in	land	allocation	in	2020	for	corn	stover	ethanol.	

	

5. Monte	Carlo	simulation	

An	estimate	of	LUC	emissions	from	biofuel	production	is	subject	to	a	broad	array	of	
assumptions	in	a	model	as	complex	as	GCAM.	We	ran	a	Monte	Carlo	simulation	by	applying	
random	values	drawn	from	distributions	to	sets	of	related	values	in	GCAM’s	input	files.	

5.1. Stochastic	parameters	

5.1.1. Parameter distributions 
In	the	GCAM-MCS	framework,	a	“parameter”	is	a	name	associated	with	a	set	of	input	values	
identified	in	one	of	GCAM’s	input	XML	files.		Distributions	are	applied	to	all	of	the	values	
returned,	either	individually	(i.e.,	independent)	or	together	as	a	set	(i.e.,	perfectly	
correlated).	In	addition,	correlations	between	0	and	1	can	be	defined	among	sets	of	
parameter	values.		

Table	13	lists	the	parameters	treated	stochastically	in	this	analysis,	along	with	the	
distributions	assigned.	The	parameters	fall	broadly	into	three	categories:	(i)	logit	exponents	
that	influence	the	substitutability	between	different	land	cover	types	in	response	to	a	
biofuel	shock,	(ii)	the	soil	and	biomass	carbon	density	of	various	land	cover	types,	and	(iii)	
the	income	and	price	elasticity	of	food	crops	and	meat.	Allowing	for	greater	income	and	
price	elasticity	of	food	demand	has	the	effect	of	reducing	LUC	emissions	by	virtue	of	
reducing	consumption	of	land-intensive	food,	particularly	meat.		
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Table	13.	Parameter	distributions.	Draws	from	the	given	distributions	were	
multiplied	by	the	GCAM	default	values	to	produce	values	for	each	trial,	except	for	
food	crop	price	elasticity,	which	is	zero	by	default—in	this	case,	the	drawn	values	
were	added	instead.	The	“nodes”	column	indicates	the	number	of	distinct	numerical	
values	in	the	XML	files	that	comprise	each	variable.	

Parameter	name	 Distribution	 Definition	 Nodes	
Forest-logit-exp	 Triangle(0.75,	1.0,	1.25)	 Managed	vs	unmanaged	forest	 283	
Crop-logit-exp	 Triangle(0.75,	1.0,	1.25)	 Substitution	among	crops	 283	
Grass-shrub-logit-exp	 Triangle(0.75,	1.0,	1.25)	 Grass	vs	shrubland		 283	
Pasture-logit-exp	 Triangle(0.75,	1.0,	1.25)	 Managed	vs	unmanaged	pasture	 283	
Forest-grass-crop-logit-exp	 Triangle(0.75,	1.0,	1.25)	 Forest	vs	grassland	vs	cropland	 283	
Crop-biomass-c	 Triangle(0.7,	1.0,	1.3)	 All	crops	biomass	carbon	 3636	
Crop-soil-c	 Triangle(0.7,	1.0,	1.3)	 All	crops	soil	carbon	 3636	
Mgd-forest-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Managed	forest	biomass	carbon	 566	
Mgd-forest-soil-c	 Triangle(0.7,	1.0,	1.3)	 Managed	forest	soil	carbon	 566	
Unmgd-forest-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	forest	biomass	carbon	 283	
Unmgd-forest-soil-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	forest	soil	carbon	 283	
Other-arable-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Other	arable	land	biomass	carbon	 283	
Other-arable-soil-c	 Triangle(0.7,	1.0,	1.3)	 Other	arable	land	soil	carbon	 283	
Shrub-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	shrubland	biomass	carbon	 283	
Shrub-soil-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	shrubland	soil	carbon	 283	
Grass-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	grassland	biomass	carbon	 283	
Grass-soil-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	grassland	soil	carbon	 283	
Mgd-pasture-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Managed	pasture	biomass	carbon	 283	
Mgd-pasture-soil-c	 Triangle(0.7,	1.0,	1.3)	 Managed	pasture	soil	carbon	 283	
Unmgd-pasture-biomass-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	pasture	biomass	carbon	 283	
Unmgd-pasture-soil-c	 Triangle(0.7,	1.0,	1.3)	 Unmanaged	pasture	soil	carbon	 283	
Crop-productivity	 Triangle(0.7,	1.0,	1.3)	 Agricultural	productivity	(yield,	%/year)	 66,222	
Food-crop-price-elast	 Triangle(-0.2,	0,	0)*	 Price	elasticity	of	food	crop	demand	 558	
Meat-price-elast	 Triangle(0.8,	1.0,	1.2)	 Price	elasticity	of	meat	demand	 558	
Food-crop-income-elast	 Triangle(0.8,	1.0,	1.2)	 Income	elasticity	of	food	crop	demand	 558	
Meat-income-elast	 Triangle(0.6,	1.0,	1.4)	 Income	elasticity	of	meat	demand	 558	
*	Random	values	were	added	rather	than	multiplied	since	default	values	are	zero	everywhere.	

5.2. Results	

5.2.1. Carbon intensity 
The	following	figures	depict	the	frequency	distribution	of	results	from	Monte	Carlo	
simulations	(MCS)	for	the	two	biofuels.		
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Note	that	the	distributions	shown	here	do	not	constitute	predictions	about	the	mostly	
likely	CI	values,	nor	does	the	95%	central	interval	offer	bounds	on	possible	CI	values.	
Rather,	the	MCS	results	should	be	treated	as	a	sensitivity	analysis	of	one	particular	
model	(GCAM)	configured	the	way	described	herein,	with	a	particular	set	of	
distributions	applied	to	a	subjectively	chosen	set	of	parameters.	The	bounds	give	us	a	
sense	of	the	range	of	results	that	can	be	produced	by	this	model	under	alternative	
“reasonable”	parameterizations.	

Figure	14.	Frequency	distribution	of	the	carbon	intensity	of	stover	ethanol	(LUC	only)	

	

Figure	15.	Frequency	distribution	of	the	carbon	intensity	of	stover	ethanol	(RFS-
style)	
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Figure	16.	Frequency	distribution	of	the	carbon	intensity	of	switchgrass	ethanol	(LUC	
only)	

	

Figure	17.	Frequency	distribution	of	the	carbon	intensity	of	switchgrass	ethanol	(RFS-
style)	
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Figure	18.	Frequency	distribution	of	the	carbon	intensity	of	stover	and	switchgrass	
ethanol,	LUC-only	and	RFS-style.	

	

5.2.2. Contribution to variance 
The	following	figures	depict	the	contribution	of	each	parameter	that	was	treated	as	
uncertain	in	the	analysis	to	a	specific	model	output.		

Note	that	these	results	should	be	treated	as	indicative	only:	to	produce	a	stable	
analysis	of	contribution	to	variance	would	require	at	least	5000	trials,	thus	for	the	
baseline	and	two	biofuel	shocks	would	require	an	additional	12,000	runs	of	GCAM.	

As	shown,	key	uncertain	parameters	for	stover	ethanol	include	soil	and	biomass	carbon	in	
unmanaged	forest	and	unmanaged	pasture;	logit	exponents	controlling	ease	of	substitution	
among	crops	and	among	forest,	grassland,	and	crops.		Smaller	contributors	include	crop	
productivity	(changes	to	yield	over	time)	and	soil	carbon	for	crops	and	grassland.	For	
switchgrass,	the	same	parameters	comprise	the	most	important,	but	the	ordering	is	slightly	
different.	switchgrass	ethanol	CI	shows	a	small	but	non-trivial	dependence	on	the	elasticity	
of	meat	demand	to	changes	in	income.	
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Figure	19.	Contribution	of	uncertain	parameters	to	variance	in	stover	ethanol	CI	(LUC	
only).	

	

Figure	20.	Contribution	of	uncertain	parameters	to	variance	in	stover	ethanol	CI	
(RFS-style)	
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Figure	21.	Contribution	of	uncertain	parameters	to	variance	in	switchgrass	ethanol	CI	
(LUC	only).	

	

Figure	22.	Contribution	of	uncertain	parameters	to	variance	in	switchgrass	ethanol	CI	
(RFS-style).	
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