

NOx Ozone Transport Federal Implementation Plan: Treatment of Paper Mill Boilers

OMB E.O. 12866 Meeting February 27, 2023

Background

- EPA acts when states fail to set adequate limits for interstate transport of pollution that causes non-attainment areas
- Rule sets NOx limits (precursor to ozone formation) for power plants and manufacturing sources including fossil fuel fired paper mill boilers for first time
- Covers 23 States: AR, CA, IL, IN, KY, LA, MD, MI, MN, MS, MO, NV, NJ, NY, OH, OK, PA, TX, UT, VA, WV, WI, WY;
 14 states with paper mills (red)
- Upwind states that "significantly impact" downwind states with non-attainment areas

Overview/Context for Paper Boilers and Ozone Transport NOx FIP

- AF&PA filed comments on June 21
- Supplemental information provided in September from NCASI/AF&PA in response to EPA questions

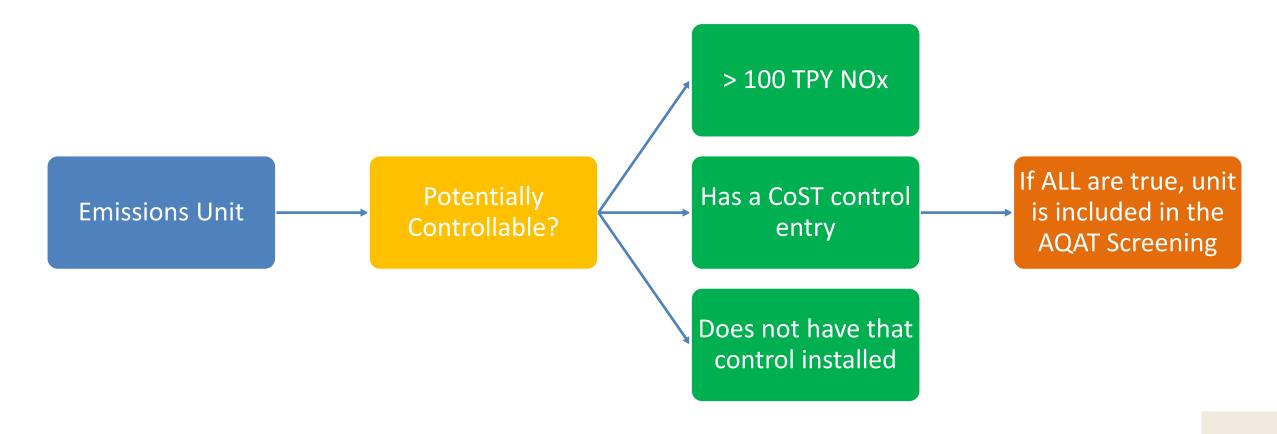
- Pulp and Paper has achieved 50% NOx reduction from 2000
- Boiler MACT resulted in cleaner fuels in pulp and paper boilers:
 - 125 coal boilers in 2010 and now less than 20 in our industry

Reassessment of Paper Boiler in NOx FIP: Bottom-line

- Paper boilers are <u>not</u> an "impactful industry" (<u>not</u> meet Steps 1 or 2)
 - Barely "met" criteria for inclusion as "Tier II" industry (11 areas when threshold is 10); last source category included
 - Errors in EPA analysis: misclassifications of units
 - Fall below "impactful" criteria 9 areas @ >0.01 ppb contribution
 - If account for boilers that are shut down, then only 8 areas
- Not cost effective to control paper boilers (not meet Steps 3 or 4):
 - 5X above the EPA threshold for inclusion (\$7,500 vs \$38,000/ton)
 - Expected controls are infeasible never used on paper boilers
 - Very costly (~\$650 million) to meet 3X higher than EPA estimates
 - Small NOx emissions for paper mills 25% less emissions than EPA

EPA's Statutory Discretion for NOX FIP

Legal Standard	Discretionary Factors
 Contribute significant amounts to downwind receptors/air quality and cost-effective controls: not overcontrol; S. Ct. 2014 EPA v. EME Homer City Generation 	 What is "significant" contributor – impactful sector, amount of NOx and location of emissions Not "over control" (only necessary reductions) per Homer City Consider costs and effectiveness to narrow scope of
• Interpretation of <i>Wisconsin v. EPA</i> from DC Circuit (938 F 3d 303) also relevant to upwind vs downwind emission reduction contributions per	rule, EPA set threshold/cutoff for cost effective in proposal
the Good Neighbor Provisions.	 Choice of which sources to make reductions including mobile sources per section 177 and 172 Allow time for states to act before FIP


Information Provided EPA on Proposal Rule

- Industry surveyed members on existing NOx controls, NOx levels, fuels used, controls in place, etc. – major effort in short time
- Inventory adjustments/improvements duplicates, misclassification of units, or not power boilers
- Modeling discrepancies replicated analysis with correct data using EPA's Air Quality Assessment Tool (AQAT)

Non-EGU Screening Inventory Development of Baseline Emissions Unit List

Specific Inventory Adjustments – Removed from EPA Baseline

Ultimate Analysis – 11 units removed from the baseline

- Six units are Recovery Furnaces, not boilers
- Three units burning biomass so should be excluded
- One unit has controls already so no "controllable" emissions
- One unit not in the 2017 NEI

- In addition, many boilers have less than 100 TPY NO_x
 - Alternative analysis shows even less impact

Analysis Provided to EPA in September 2022: Not impactful

State	Oxone Non-Attainment Receptor Location	Non-EGU EPA Screening Document (ppb)	With NCASI Adjusted Inventory (ppb)	With Adjusted Inventory + Remove Units with <100 TPY NOx (ppb)
IL	Chicago/Alsip	0.0352	0.0323	0.0317
IL	Chicago/Northbrook	0.0425	0.0396	0.0389
TX	Galveston	0.0430	0.0408	0.0382
CT	Greenwich	0.0279	0.0149	0.0148
TX	Houston/Aldine	0.0147	0.0142	0.0128
WI	<mark>Kenosha</mark>	0.0102	<mark>0.0077</mark>	<mark>0.0076</mark>
CT	New Haven	0.0349	0.0214	0.0213
PA	Philly-Bristol	0.0135	0.0107	0.0106
WI	Racine	0.0098	0.0073	0.0072
WI	Sheboygan	0.0133	0.0097	0.0097
CT	Stratford	0.0328	0.0195	0.0193
CT	Westport	0.0256	0.0156	0.0155
	Receptor Count >0.01	11	9	9
	Max Receptor	0.0430	0.0379	0.0322

Pulp and Paper Boiler NOx Control Challenges

- NOx limits are likely to force application of Selective Catalytic Reduction (SCR) on coal boilers and some gas boilers
 - Pulp and paper boilers have not implemented SCR
 - Need to reheat stack gas to make work
 - Regional Haze four factor analyses and historical RACT/BACT analyses have shown SCR is <u>not</u> reasonable
- Implementation of Selective Non-Catalytic Reduction (SNCR) on solid fuel boilers does not achieve a high control efficiency
 - Boilers swing with production and steam demand
- Disbenefits ammonia slip, GHG increases, CO increase with NOx reductions

Cost Analysis Showing Not Cost Effective

AF&PA Survey and Analysis

- Reviewed available data from NCASI, NEI, and other sources to build boiler list
- Excluded small units, biomass units, recovery boilers
- Identified 48 of 100 fossil fuel boilers that need controls (SCR or LNB/FGR) based on lb/MMBtu
 - EPA only identified 25 boilers
- Reduced NOx to 80% of the proposed emission limit not by % control (as EPA assumed)
- Three times the cost! \$98 M vs \$30 M annually

	Fossil boilers	Controlled boilers	Method	NOx tons reduced	Annual cost
EPA Analysis	69	25	CoST and NEI	3,305	\$30 million
AF&PA Analysis	99	47	Cost Manual and updated inventory	2,588	\$98 million

Cost Ineffectiveness: Detailed Analysis

- EPA used CoST to estimate effectiveness better approach is to use EPA's Control Cost Manual
- AF&PA estimated costs for 250 MMBtu/hr coal and gas units
- Controls are <u>not</u> cost effective \$38K/ton vs \$7,500/ton threshold
 - 10x higher than EPA estimated

	Capital Cost per unit	Annual Cost per unit	Total Capital Cost	Total Annual OS cost	\$/ton
EPA Analysis	CoST	CoST	CoST	\$30 million	\$3,807
AF&PA Analysis - coal SCR	\$28 million	\$2.6 million			
AF&PA Analysis - gas SCR	\$10 million	\$2.1 million			
AF&PA Analysis - LNB/FGR	\$4.7 million	\$1.1 million	\$700 million	\$98 million	\$37,900

Cost Effectiveness Comparison - Extended

- Even alternative scopes of coverage, boiler controls are <u>not</u> cost effective
- Limiting to larger boilers or certain fuels still exceeds EPA's cost effectiveness threshold (and still are not "impactful" to downwind areas)

Scenario	# of Boilers with control cost	# Mills with control cost	Ozone Season tons NOx reduced	Ozone Season Operating Cost	Ozone Season Annual Cost	Ozone Season \$/ton
Proposed Rule	47	32	2,588	\$ 45,000,000	\$ 98,000,000	\$ 37,900
250 MMBtu and						
up	22	19	1,956	\$ 27,500,000	\$ 63,000,000	\$ 32,400
Just gas boilers	36	26	1,546	\$ 29,500,000	\$ 55,600,000	\$ 36,000
Just coal boilers	10	8	1,011	\$ 144000,000	\$ 40,000,000	\$ 40,000
Just coal 250						
MMBtu and up	6	6	953	\$ 11,500,000	\$ 32,000,000	\$ 33,700

Wrap- Up/Summary

- Analysis shows, paper boilers do <u>not</u> meet criteria of significant impact on downwind ozone non-attainment areas as part of Step I analysis
- Nor do paper mill boilers meet EPA's criteria for cost effectiveness as part of Step III analysis – exceed by a factor of five!

Exclude paper boilers from Tier II of final rule

If Ten Closed Units are also removed from Baseline: Further support for not being "impactful"

- No NOx reductions will come from these units some even demolished or mill closed
- Ten (10) Units or Facilities Shutdown:
 - Paperworks Industries Inc Unit ID 65400113
 - International Paper Unit ID 80386613
 - WestRock CP LLC Unit ID 80642113
 - Wausau Paper Towel & Tissue, LLC Unit ID 4023413

APPENDIX:

- Domtar Paper Company, LLC Unit ID 35469313
- Resolute Forest Products Unit ID 16713213
- Wisconsin Rapids Paper Unit ID 125447913, Unit ID 125447213
- Georgia Pacific Consumer Products Unit ID 30874113
- Green Bay Packaging Inc Unit ID 30879813
- Flambeau River Papers LLC Unit ID 65185213

Additional Analysis – Excluded closed units as well

State	Receptor	EPA Non-EGU Screening Document (ppb)	With Adjusted NCASI Inventory (no closed units) (ppb)	With Adjusted Inventory + Remove Units with <100 TPY NOx (ppb)
IL	Chicago/Alsip	0.0352	0.0259	0.0248
IL	Chicago/Northbrook	0.0425	0.0312	0.0298
TX	Galveston	0.0430	0.0379	0.0322
СТ	Greenwich	0.0279	0.0230	0.0227
TX	Houston/Aldine	0.0147	0.0135	0.0106
WI	Kenosha	0.0102	0.0069	<mark>0.0066</mark>
СТ	New Haven	0.0349	0.0281	0.0275
PA	Philly-Bristol	0.0135	<mark>0.00998</mark>	<mark>0.00950</mark>
WI	Racine	0.0098	0.0065	0.0062
WI	Sheboygan	0.0133	0.0086	0.0083
СТ	Stratford	0.0328	0.0265	0.0259
СТ	Westport	0.0256	0.0207	0.0202
	Receptor Count >0.01	11	8	8
	Max Receptor	0.0430	0.0379	0.0322