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Effects of automatic emergency braking systems on pedestrian crash risk 
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A B S T R A C T

Objective: Automatic emergency braking (AEB) that detects pedestrians has great potential to reduce pedestrian 
crashes. The objective of this study was to examine its effects on real-world police-reported crashes. 
Methods: Two methods were used to assess the effects of pedestrian-detecting AEB on pedestrian crash risk. 
Vehicles with and without the system were examined on models where it was an optional feature. Poisson 
regression was used to estimate the effects of AEB on pedestrian crash rates per insured vehicle year, and quasi- 
induced exposure using logistic regression compared involvement in pedestrian crashes to a system-irrelevant 
crash type. 
Results: AEB with pedestrian detection was associated with significant reductions of 25%–27% in pedestrian 
crash risk and 29%–30% in pedestrian injury crash risk. However, there was not evidence that that the system 
was effective in dark conditions without street lighting, at speed limits of 50 mph or greater, or while the AEB- 
equipped vehicle was turning. 
Conclusions: Pedestrian-detecting AEB is reducing pedestrian crashes, but its effectiveness could be even greater. 
For the system to make meaningful reductions in pedestrian fatalities, it is crucial for it to work well in dark and 
high-speed conditions. Other proven interventions to reduce pedestrian crashes under challenging circumstances, 
such as improved headlights and roadway-based countermeasures, should continue to be implemented in 
conjunction with use of AEB to prevent pedestrian crashes most effectively.   

1. Introduction

Pedestrian deaths have risen alarmingly in the United States over the
past decade. The 51% rise in pedestrian fatalities since 2009 resulted in 
6,205 pedestrians losing their lives in 2019, making up 17% of all traffic 
fatalities. In that same year, approximately 76,000 additional pedes
trians sustained nonfatal injuries in crashes with motor vehicles (In
surance Institute for Highway Safety [IIHS], 2021). Efforts to make 
travel safe have increasingly focused on preventing pedestrian crashes, 
injuries, and fatalities. 

Pedestrian detection systems, which typically warn a driver when 
they are at risk of striking a pedestrian in front of their vehicle and apply 
the brakes if the driver does not respond, are a promising vehicle-based 
countermeasure for reducing pedestrian crashes. Some studies have 
predicted the potential of these systems by examining the proportion of 
pedestrian crashes that systems could possibly mitigate. Haus et al. 
(2019), for example, estimated automatic emergency braking (AEB) that 
detects pedestrians could potentially reduce U.S. pedestrian fatality risk 
by 84%–87% and serious injury risk by 83%–87% when optimally 
designed. Others have estimated a range of potential effects depending 

on assumptions regarding system specifications and crash scenarios 
addressed (Edwards et al., 2014; Hamdane et al., 2015; Jermakian & 
Zuby, 2011; Rosén et al., 2010; Yanagisawa et al., 2017). Pedestrian AEB 
first entered the U.S. market on the model year 2011 Volvo S60, and by 
model year 2021 it was a standard feature on 62% of new vehicle series. 

Evaluations of the real-world effects of pedestrian detection systems 
are beginning to suggest they are delivering on this potential and 
reducing crashes. However, thus far studies have been limited to indi
vidual automakers and have not always reported robust effects. Wake
man et al. (2019) investigated the effects of Subaru’s AEB system with 
pedestrian detection on rates of crashes where an insurance claim was 
filed to cover injury to a third party but no accompanying third-party 
vehicle damage claim was filed, which often signifies a pedestrian 
crash. Subaru’s system was associated with a significant 35% reduction 
in U.S. pedestrian-related claim rates. Isaksson-Hellman and Lindman 
(2019) reported that car-to-pedestrian insurance claim rates were 21% 
lower among Volvos with AEB that detects pedestrians than those 
without in Sweden, but the number of crashes included was small and 
confidence intervals were wide. American studies of Toyota (Spicer, 
Vahabaghaie, Murakhovsky, Bahouth, et al., 2021) and General Motors 
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(Leslie et al., 2021) vehicles also found that pedestrian crash prevention 
systems were associated with reductions in pedestrian crash risk, 
although effects were not statistically significant. 

For pedestrian detection systems to successfully prevent pedestrian 
fatalities, they need to work under the conditions where deaths 
commonly occur. Low light and high speed are key risk factors in 
pedestrian deaths (Kim et al., 2010; Sullivan & Flannagan, 2002; Tefft, 
2013). Less than half of all U.S. pedestrian crashes in 2019 occurred in 
the dark, but more than three-quarters of pedestrian fatalities were 
under dark conditions with 35% of deaths occurring in the dark without 
overhead street lighting. Similarly, 22% of all pedestrian crashes in 2019 
with known speed limits occurred on roads with speed limits of 40–45 
mph and 10% at 50 mph or greater, but over 60% of deaths were at 
speed limits of 40 mph or greater (IIHS, 2021). These conditions also 
represent where the largest increases in fatalities have occurred since 
reaching their low point in 2009. Hu and Cicchino (2018) reported that 
from 2009 to 2016, pedestrian fatalities increased by 20% in daylight 
and by 56% in the dark, and increases were also larger on higher-speed 
arterial roads (67%) and on interstates and freeways (49%) than on 
lower-speed collectors and local roads (9%). Yet, tests of pedestrian AEB 
systems have demonstrated that they can struggle to perform well in the 
dark (American Automobile Association [AAA], 2019; IIHS, 2022), and 
owner manuals often note that systems are not designed to activate at 
higher speeds. Testing has also shown difficulty with other common but 
less deadly pedestrian crash scenarios, such as when a vehicle is turning 
(AAA, 2019). 

The goal of this study was to examine the effects of AEB systems with 
pedestrian detection on pedestrian crashes while including a larger 
range of vehicle models than previous work. A second objective was to 
investigate pedestrian AEB crash effects by light condition, speed limit, 
and the driver’s maneuver prior to the crash (turning vs. not), to assess 
real-world performance under conditions that systems have struggled 
with in testing or that are strongly associated with fatality risk. These 
estimates could be used to establish the effects of current implementa
tions of pedestrian-detecting AEB more robustly and also identify op
portunities for improvement. 

2. Methods 

The effects of AEB with pedestrian detection on pedestrian crashes 
were investigated using two methodologies. Effects on pedestrian crash 
rates per insured vehicle year were examined using Poisson regression 
while controlling for driver and vehicle risk factors. Quasi-induced 
exposure, where involvement in system-relevant crashes is compared 
with involvement in crashes unaffected by the system of interest as an 
exposure measure, is another method that has been used to study the 
effects of crash avoidance systems (e.g., Fildes et al., 2015; Keall et al., 
2017; Leslie et al., 2021). While previous analyses of crash avoidance 
system effects from IIHS have examined rates of relevant crashes per 
insured vehicle year (e.g., Cicchino, 2017), the quasi-induced exposure 
method was introduced in the current study because it could better ac
count for exposure to characteristics important to pedestrian crashes 
(light condition, speed limit, vehicle maneuver prior to the crash) that 
cannot be derived when using insured vehicle years as a measure of 
exposure. Quasi-induced exposure was used to evaluate the effects of 
AEB with pedestrian detection while accounting for driver, vehicle, and 
environmental risk factors, as well as to examine effects by crash char
acteristics. Additional analyses examined the effects of AEB on pedes
trian injury severity among crashes that occur. 

2.1. Vehicle feature data 

The Highway Loss Data Institute (HLDI) collected data on the pres
ence of AEB with pedestrian detection by make, series, model year, and 
trim for model year 2017–2020 vehicles. Study vehicles included series 
where AEB was an optional feature, its presence or absence could be 

determined by trim, and trim was discernable by the Vehicle Informa
tion Number (VIN). Other vehicle feature data came from Nissan, who 
provided information on the presence of pedestrian crash prevention 
linked to unique VINs on the model year 2017–2018 Rogue. The pop
ulation of study vehicles consisted of 79 make/series/model year com
binations from Acura, Buick, Cadillac, Chevrolet, GMC, Honda, 
Hyundai, Kia, Mazda, Mitsubishi, Nissan, and Subaru (Table A1, 
Appendix). 

IIHS headlight ratings were used as a covariate in the analyses. 
Headlights are rated good, acceptable, marginal, or poor based on 
measurements of the visibility illuminance of high and low beams, with 
penalties for excessive glare. Vehicles can receive extra credit if they 
have high beam assist, which automatically switches between high and 
low beams in the dark based on the presence of other vehicles, if the high 
beams provide more visibility than the low beams on one or more test 
scenarios. Ratings were adjusted to include only the visibility and high 
beam assist components and exclude the glare component because 
excess glare would not be expected to increase pedestrian crash risk, and 
were linked to vehicles by make, series, model year, and trim. The worst 
rating was used if multiple headlight types were available. 

2.2. Crash data 

Police-reported crash databases were obtained from 18 states during 
2017–2020 that included full or partial VINs so that study vehicles could 
be identified. The involvement of pedestrians, maximum injury severity 
to a pedestrian in the crash, driver age, driver gender, light condition, 
speed limit, vehicle maneuver prior to the crash, and vehicle point of 
impact were derived from the state datasets and coded into a common 
format. Pedestrian crash involvements where the vehicle was backing 
were excluded from analyses. Variables for speed limit, vehicle ma
neuver, or point of impact were unavailable in six states for all or some 
years (Table A2, Appendix), and data from state/year combinations 
without these variables were excluded in analyses where the variables 
were used. 

2.3. Insured driver data 

Data on the number of days vehicles were insured was provided by 
HLDI. Crash rates using these data are expressed as crashes per insured 
vehicle year, where one insured vehicle year is the equivalent to two 
vehicles insured for six months each or a single vehicle insured for one 
year, etc. Insured driver data included the state, age, and gender of the 
rated driver on the insurance policy, and were matched to the crash data 
by vehicle, state, calendar year, driver age group, and driver gender. 

2.4. Analyses 

2.4.1. Rates per insured vehicle year 
Poisson regression was used to evaluate the effects of AEB with 

pedestrian detection on pedestrian crash rates per insured vehicle year, 
with the log of insured vehicle years included as an offset term. Separate 
models were constructed for all pedestrian crashes, crashes where a 
pedestrian was injured, and crashes where a pedestrian sustained a 
serious or fatal injury (K or A on the KABCO scale). Models included 
covariates for state, calendar year, driver age group (< 25, 25–64, 65+, 
unknown), driver gender (male, female, unknown), and IIHS headlight 
visibility rating (good, acceptable, marginal, poor). An additional co
variate coded for the combination of vehicle make/model/model year, 
to prevent confounding of AEB effects with other design differences 
between vehicles. Pearson scale parameters were estimated within the 
Poisson models to test and adjust for potential overdispersion. 

2.4.2. Quasi-induced exposure 
Crashes in which the target vehicle was struck in the rear in a rear- 

end crash were used as the nonsensitive crash type in quasi-induced 
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exposure analyses. Control crashes should be unaffected by the driver 
assistance systems on study vehicles and selected randomly from the 
population, with their frequency increasing commensurately with 
exposure. Rear-end-struck involvements have been validated as having 
closer to a linear relationship with distance driven than other candidate 
crash types (Keall & Newstead, 2009) and are commonly used as the 
control crash type in quasi-induced exposure studies of crash avoidance 
system effects (Dean & Riexinger, 2022; Fildes et al., 2013; Lie et al., 
2006), including of AEB (Fildes et al., 2015; Leslie et al., 2021; Rizzi 
et al., 2014). Although rear-end-struck crash involvements are not 
directly acted upon by crash avoidance systems, it is possible that AEB 
could increase the frequency of being struck in the rear if it caused 
sudden hard braking. This would lead to overestimation of the benefits 
of AEB if it occurred in the current sample. However, the rear-end-struck 
rate per insured vehicle year was lower among study vehicles with AEB 
(11.9 per 1,000 insured vehicle years) than among those without it (14.7 
per 1,000 insured vehicle years), which indicates this issue was not 
pervasive. In a Poisson regression of rear-end-struck rates per insured 
vehicle year using the same covariates as the primary analysis, rates 
were 4% lower among vehicles with AEB than without (RR, 0.96; 95% 
CI, 0.92–1.01, p = 0.12). 

Quasi-induced exposure analyses were performed on logistic 
regression models, which examined the effects of AEB with pedestrian 
detection on the odds that a crash involved a pedestrian as opposed to a 
rear-struck involvement. Three models were constructed for each level 
of pedestrian injury severity (all severities, any injury, serious/fatal 
injury). In addition to the covariates used in Poisson regression models, 
the quasi-induced exposure analyses introduced other covariates where 
exposure per insured vehicle year could not be calculated: light condi
tion (daylight, dark and lighted/dawn/dusk, dark and not lighted), 
speed limit (≤ 25 mph, 30–35 mph, 40–45 mph, 50 + mph), and vehicle 
maneuver prior to the crash (turning vs. not turning). Dark and lighted 
conditions refer to those where there is no natural light, but the area is 

illuminated by artificial overhead light. Crashes with dark and not 
lighted conditions have no overhead lighting present where the crash 
occurred. These analyses were limited to states with variables for speed 
limit, vehicle maneuver, and vehicle point of impact (to identify rear- 
end-struck involvements). 

The distribution of key covariates among pedestrian crash-involved 
study vehicles with and without AEB is summarized in Table 1. 
Drivers of crash-involved vehicles with AEB were more often age 65 +
and less likely to be under 25, and their vehicles were less likely to have 
poor-rated headlights. Compared with non-AEB vehicles, pedestrian 
crashes involving vehicles with AEB occurred more often in recent study 
years, in dark and not lighted conditions, and while the vehicle was 
turning. 

2.4.3. System effects by crash characteristics 
Quasi-induced exposure was also used to investigate the effects of the 

system on pedestrian crashes by crash characteristics. Three separate 
logistic regression models were constructed to examine the effects of 
AEB by the crash characteristics of interest: light condition, speed limit, 
and vehicle maneuver. Each model included the same covariates as prior 
logistic regression models, plus interaction terms between the charac
teristic of interest and driver age, driver gender, state, calendar year, 
IIHS headlight rating, and the additional crash characteristic variables 
that were not the focus of the model among light condition, speed limit, 
and vehicle maneuver. The interaction between the crash circumstance 
of interest and AEB was used to estimate the effects of AEB at each level 
of the characteristic and to compare differences in effects between 
levels. 

2.4.4. Odds of serious injury or fatality in a crash 
An additional logistic regression model examined the effects of AEB 

on injury severity by examining the odds that a pedestrian crash resulted 
in a serious or fatal pedestrian injury, controlling for state, calendar 

Table 1 
Descriptive statistics of key driver, vehicle, and environmental covariates among study vehicles with and without AEB.  

Characteristic Value Percent of vehicles involved in pedestrian crashes 

AEB 
(n = 454) 

No AEB 
(n = 1,029) 

Driver gender Male 48 52  
Female 47 43  
Unknown 4 6 

Driver age < 25 9 13  
25–64 64 67  
65+ 22 14  
Unknown 4 6 

IIHS headlight visibility rating Good 7 0  
Acceptable 48 35  
Marginal 30 19  
Poor 15 46 

Calendar year 2017 8 13  
2018 27 28  
2019 49 43  
2020 17 16  

Among states included in quasi-induced exposure analysis   
AEB 
(n = 193) 

No AEB 
(n = 453) 

Light condition Daylight 61 58  
Dark-lighted/dawn/dusk 24 32  
Dark-not lighted 15 10 

Speed limit (mph) ≤ 25 34 34  
30–35 34 38  
40–45 21 21  
50+ 11 7 

Vehicle maneuver Turning 37 26  
Not turning 63 74  
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year, driver age group, driver gender, IIHS headlight visibility ratings, 
make/model/model year, light condition, speed limit, and vehicle ma
neuver. This model excluded states without variables for speed limit or 
vehicle maneuver, but since rear-end-struck involvements were not 
included as an exposure measure, it did not exclude states that were 
missing point of impact. 

In all analyses, vehicle make/model/model year combinations 
involved in no pedestrian crashes of the severity examined were 
removed, as were vehicles involved in no crashes resulting in serious or 
fatal pedestrian injuries in models examining the odds of a serious/fatal 
injury in a pedestrian crash. Sparse levels of other covariates were 
combined in some analyses. Model parameters were exponentiated and 
interpreted as rate ratios (RRs) from Poisson regression models and odds 
ratios (ORs) from logistic regression models, and percent changes in 
these rates and odds associated with AEB were expressed by 

100(exp(x) − 1), where x is the parameter estimate for AEB. 

3. Results 

There were 1,483 pedestrian crashes, 1,381 pedestrian injury 
crashes, and 266 pedestrian serious injury or fatal crashes involving 
study vehicles across the 18 states. Pedestrian crash rates per insured 
vehicle year were lower among vehicles with AEB than those without at 
each severity level, and this pattern held for most vehicle makes 
(Table 2). 

Poisson regression model results for the effects of AEB with pedes
trian detection on pedestrian crash rates per insured vehicle year are 
presented in Table 3. AEB was associated with reductions of 27% in 
pedestrian crash rates of all severities (RR, 0.73; 95% CI, 0.62–0.86, p =
0.0002), 30% in pedestrian injury crash rates (RR, 0.70; 95% CI, 

Table 2 
Pedestrian crash rates, injury crash rates, and serious or fatal crash rates per insured vehicle year by make and equipment with AEB with pedestrian detection.  

Make System Pedestrian crashes Pedestrian injury crashes Pedestrian serious/fatal injury crashes   

Crashes Rate 
(x100,000) 

Crashes Rate 
(x100,000) 

Crashes Rate 
(x100,000) 

Acura AEB 1 10.5 1 10.5 0 0.0  
No AEB 7 25.7 7 25.7 2 7.3 

Buick AEB 0 0 0 0 0 0  
No AEB 1 37.0 1 37.0 0 0 

Cadillac AEB 25 41.0 23 37.8 3 4.9  
No AEB 11 26.6 11 26.6 2 4.8 

Chevrolet AEB 1 15.6 1 15.6 1 15.6  
No AEB 1 16.9 1 16.9 0 0.0 

GMC AEB 1 6.4 0 0.0 0 0.0  
No AEB 17 41.9 16 39.5 2 4.9 

Honda AEB 224 27.1 210 25.4 39 4.9  
No AEB 415 47.0 386 43.7 62 7.1 

Hyundai AEB 7 45.3 7 45.3 3 21.9  
No AEB 34 55.9 29 47.7 7 14.0 

Kia AEB 3 18.1 3 18.1 2 15.8  
No AEB 62 57.4 56 51.8 17 16.2 

Mazda AEB 1 10.0 0 0 0 0  
No AEB 3 41.1 3 43.9 0 0 

Mitsubishi AEB 1 109.1 1 109.1 0 0.0  
No AEB 5 99.3 5 99.3 1 21.5 

Nissan AEB 36 54.5 32 48.4 5 7.6  
No AEB 250 61.5 233 57.3 42 10.3 

Subaru AEB 154 17.9 140 16.2 28 3.3  
No AEB 223 25.2 215 24.3 50 5.8 

All AEB 454 24.0 418 22.1 81 4.4  
No AEB 1,029 41.6 963 38.9 185 7.7  
Total 1,483 34.0 1,381 31.7 266 6.3 

Note: Because vehicle make/model/model year combinations were dropped from an analysis if they were involved in no pedestrian crashes of the severity examined, 
insured vehicle years vary slightly by injury severity. 

Table 3 
Poisson regression model results of pedestrian crash rates per insured vehicle year, by severity.   

Rate ratio (95% confidence interval) 

Parameter Pedestrian crashes 
(n = 1,483) 

Pedestrian injury crashes 
(n = 1,381) 

Pedestrian serious and fatal injury crashes 
(n = 266) 

AEB with pedestrian detection 0.73 (0.62, 0.86) 0.70 (0.60, 0.83) 0.79 (0.57, 1.09) 
Male driver (vs. female) 1.45 (1.28, 1.64) 1.46 (1.29, 1.65) 1.60 (1.25, 2.03) 
Unknown driver gender (vs. female) 0.81 (0.51, 1.31) 0.70 (0.43, 1.14) 0.60 (0.20, 1.85) 
Driver age < 25 (vs. 25–64) 2.04 (1.69, 2.47) 2.06 (1.70, 2.50) 2.12 (1.48, 3.05) 
Driver age 65+ (vs. 25–64) 0.83 (0.71, 0.99) 0.87 (0.74, 1.03) 0.85 (0.62, 1.18) 
Driver age unknown (vs. 25–64) 1.20 (0.76, 1.90) 1.24 (0.77, 2.00) 0.95 (0.31, 2.85) 
Good headlight visibility rating (vs. poor) 0.74 (0.43, 1.28) 0.80 (0.46, 1.38) 0.96 (0.36, 2.55) 
Acceptable headlight visibility rating (vs. poor) 0.78 (0.49, 1.26) 0.80 (0.50, 1.30) 0.69 (0.28, 1.72) 
Marginal headlight visibility rating (vs. poor) 0.88 (0.57, 1.34) 0.87 (0.56, 1.33) 1.22 (0.53, 2.80) 
2018 (vs. 2017) 0.91 (0.73, 1.13) 0.92 (0.75, 1.14) 1.04 (0.66, 1.66) 
2019 (vs. 2017) 0.90 (0.72, 1.11) 0.91 (0.73, 1.12) 1.12 (0.71, 1.76) 
2020 (vs. 2017) 0.66 (0.51, 0.87) 0.63 (0.48, 0.83) 0.88 (0.51, 1.51) 

Note: Effects for state and make/model/model year combination not shown. 
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0.60–0.83, p < 0.0001), and 21% in pedestrian serious/fatal injury crash 
rates (RR, 0.79; 95% CI, 0.57–1.09, p = 0.14); reductions were signifi
cant for pedestrian crashes of all severities and injury crashes. Pearson 
scale parameters ranged from 0.96 to 1.37. 

Quasi-induced exposure analyses were limited to states with vari
ables for speed limit, vehicle maneuver, and vehicle point of impact, so 
fewer pedestrian crashes were included. A total of 646 pedestrian 
crashes of all severities, 577 pedestrian injury crashes, and 130 pedes
trian serious/fatal injury crashes occurred in states meeting the inclu
sion criteria, and 32,050 study vehicles were involved in the 
nonsensitive crash type of rear-end struck. Table 4 presents the results of 
logistic regression models examining the effects of AEB on the odds that 
a crash involved a pedestrian in comparison to being rear-end struck. In 
these analyses, pedestrian crash prevention was associated with signif
icant reductions of 25% in the odds that a crash involved a pedestrian 
(OR, 0.75; 95% CI, 0.59–0.95, p = 0.02) and 29% in the odds that a crash 
involved an injured pedestrian (OR, 0.71; 95% CI, 0.55–0.91, p =

0.008). AEB was not associated with a change in the odds that a crash 
involved a seriously or fatally injured pedestrian (OR, 0.97; 95% CI, 
0.60–1.56, p = 0.90). 

Logistic regression was used to investigate the odds that a pedestrian 
crash that occurred involved a serious or fatal pedestrian injury 
(Table 5). Controlling for driver, vehicle, and environmental factors, 
AEB was not associated with a significant change in pedestrian injury 
severity (OR, 1.09; 95% CI, 0.59–2.00, p = 0.79). 

Of the 646 pedestrian crashes of all severities included in quasi- 
induced exposure analyses, 59% occurred during daylight, 4% during 
dawn or dusk, 26% during dark and lighted conditions, and 11% during 
dark and not lighted conditions; 34% were on roads with speed limits of 
25 mph or lower, 37% with speed limits of 30–35 mph, 21% with speed 
limits of 40–45 mph, and 8% with speed limits of 50 mph or higher; and 
the driver of the subject vehicle was turning in 30%. The vehicle was 
proceeding straight in most crashes where it was not turning (in 60% of 
the 646 pedestrian crashes), and in the remaining crashes the vehicle 
was coded as making another maneuver (e.g., slowing, stopping, nego
tiating a curve) or the precrash maneuver was unknown. 

AEB with pedestrian detection was associated with different effects 
by crash characteristics (Fig. 1). In pedestrian crashes occurring during 
daylight (OR, 0.68; 95% CI, 0.51–0.91, p = 0.01) or during dawn, dusk, 
or dark and lighted conditions (OR, 0.67; 95% CI, 0.44–1.01, p = 0.06), 
it was associated with reductions in the odds of a pedestrian crash of 
32% and 33%, respectively, but there was no reduction during dark and 
not lighted conditions (OR, 1.32; 95% CI, 0.75–2.33, p = 0.33). The 
effect during dark and not lighted conditions was significantly different 
from effects during daylight (p = 0.03) and dawn, dusk, or dark and 
lighted conditions (p = 0.048). 

There was a 32% reduction in the odds that a crash was with a 
pedestrian associated with AEB at speed limits of 25 mph or less (OR, 
0.68; 95% CI, 0.45–1.02, p = 0.06), a 34% reduction at speed limits of 
30–35 mph (OR, 0.66; 95% CI, 0.46–0.95, p = 0.02), a 22% reduction at 
speed limits of 40–45 mph (OR, 0.78; 95% CI, 0.55–1.19, p = 0.25), and 
no reduction at speed limits of 50 mph or greater (OR, 1.32; 95% CI, 
0.70–2.50, p = 0.40), although effects at lower speed limits did not differ 
significantly from 50 + mph (25 mph or less vs. 50 + mph: p = 0.08, 
30–35 vs. 50 + mph: p = 0.06, 40–45 vs. 50 + mph: p = 0.16). Finally, 
AEB was associated with a 34% reduction in the odds of a pedestrian 
crash when a vehicle was not turning prior to the crash (OR, 0.66; 95% 
CI, 0.51–0.87, p = 0.003), but no reduction when it was turning (OR, 
1.10; 95% CI, 0.71–1.68, p = 0.67); these effects were significantly 
different from each other (p = 0.04). 

Table 4 
Logistic regression model results of quasi-induced exposure analyses examining the odds a crash involved a pedestrian, by severity.   

Odds ratio (95% confidence interval) 

Parameter Pedestrian crashes 
(n = 646) 

Pedestrian injury crashes 
(n = 577) 

Pedestrian serious and fatal injury crashes 
(n = 130) 

AEB with pedestrian detection 0.75 (0.59, 0.95) 0.71 (0.55, 0.91) 0.97 (0.60, 1.56) 
Male driver (vs. female) 1.32 (1.11, 1.58) 1.26 (1.05, 1.52) 1.51 (1.04, 2.19) 
Unknown driver gender (vs. female) 1.54 (0.69, 3.44) 1.16 (0.46, 2.90) 2.61 (0.47, 14.59) 
Driver age < 25 (vs. 25–64) 1.19 (0.90, 1.58) 1.25 (0.93, 1.69) 1.25 (0.71, 2.19) 
Driver age 65+ (vs. 25–64) 1.70 (1.34, 2.14) 1.81 (1.42, 2.31) 1.68 (1.03, 2.75) 
Driver age unknown (vs. 25–64) 10.15 (4.52, 22.80) 10.19 (4.12, 25.17) 4.74 (0.76, 29.61) 
Good headlight visibility rating (vs. poor) 0.77 (0.36, 1.67) 0.92 (0.41, 2.11) 1.52 (0.39, 5.93) 
Acceptable headlight visibility rating (vs. poor) 0.72 (0.37, 1.40) 0.76 (0.38, 1.54) 0.74 (0.18, 3.00) 
Marginal headlight visibility rating (vs. poor) 0.98 (0.54, 1.76) 0.96 (0.52, 1.78) 1.55 (0.44, 5.48) 
2018 (vs. 2017) 1.19 (0.86, 1.67) 1.15 (0.82, 1.62) 1.35 (0.63, 2.87) 
2019 (vs. 2017) 1.25 (0.90, 1.73) 1.19 (0.85, 1.67) 1.56 (0.74, 3.25) 
2020 (vs. 2017) 1.53 (1.05, 2.23) 1.36 (0.92, 2.02) 2.49 (1.09, 5.67) 
Dark-lighted/dawn/dusk (vs. daylight) 2.59 (2.13, 3.15) 2.60 (2.11, 3.19) 3.83 (2.56, 5.74) 
Dark-not lighted (vs. daylight) 6.44 (4.80, 8.65) 6.35 (4.64, 8.70) 11.42 (6.95, 18.76) 
Speed limit 30–35 mph (vs. ≤ 25) 0.24 (0.20, 0.30) 0.23 (0.19, 0.29) 0.40 (0.24, 0.68) 
Speed limit 40–45 mph (vs. ≤ 25) 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 0.22 (0.12, 0.38) 
Speed limit 50 + mph (vs. ≤ 25) 0.04 (0.03, 0.06) 0.04 (0.03, 0.06) 0.16 (0.09, 0.30) 
Turning (vs. not turning) 8.94 (7.26, 11.00) 9.30 (7.47, 11.58) 4.04 (2.39, 6.81) 

Note: Effects for state and make/model/model year combination not shown. 

Table 5 
Logistic regression analysis of the odds that a pedestrian in a crash sustained a 
serious or fatal injury (n = 649 pedestrian crashes).  

Parameter Odds ratio 
(95% confidence interval) 

AEB with pedestrian detection 1.09 (0.59, 2.00) 
Male driver (vs. female) 0.93 (0.58, 1.50) 
Unknown driver gender (vs. female) 3.85 (0.40, 37.10) 
Driver age < 25 (vs. 25–64) 1.32 (0.63, 2.78) 
Driver age 65+ (vs. 25–64) 1.08 (0.58, 2.02) 
Driver age unknown (vs. 25–64) 0.23 (0.02, 2.23) 
Good headlight visibility rating (vs. poor) 1.75 (0.26, 11.57) 
Acceptable headlight visibility rating (vs. poor) 0.28 (0.04, 1.79) 
Marginal headlight visibility rating (vs. poor) 0.86 (0.17, 4.34) 
2018 (vs. 2017) 1.45 (0.60, 3.48) 
2019 (vs. 2017) 1.44 (0.61, 3.41) 
2020 (vs. 2017) 2.14 (0.77, 5.92) 
Dark-lighted/dawn/dusk (vs. daylight) 1.95 (1.17, 3.27) 
Dark-not lighted (vs. daylight) 2.23 (1.10, 4.52) 
Speed limit 30–35 mph (vs. ≤ 25) 1.58 (0.86, 2.87) 
Speed limit 40–45 mph (vs. ≤ 25) 2.31 (1.18, 4.52) 
Speed limit 50 + mph (vs. ≤ 25) 6.45 (2.74, 15.20) 
Turning (vs. not turning) 0.55 (0.31, 0.97) 

Note: Effects for state and make/model/model year combination not shown. 
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The analyses of the effects of pedestrian AEB on pedestrian crash 
rates and severity presented in Tables 3–5 were repeated excluding 
pedestrian crashes occurring in dark and not lighted conditions, at speed 
limits of 50 mph or greater, and where the subject vehicle was turning. 
Results are summarized in Table 6. In Poisson regression models, AEB 
with pedestrian detection was associated with significant reductions of 
49% in rates of all pedestrian crashes (RR, 0.51; 95% CI, 0.38–0.68, p <
0.0001), 50% in rates of pedestrian injury crashes (RR, 0.50; 95% CI, 
0.36–0.68, p < 0.0001), and 52% in rates of pedestrian serious or fatal 
injury crashes (RR, 0.48; 95% CI, 0.24–0.96, p = 0.04) per insured 
vehicle year. Pearson scale parameters ranged from 1.11 to 1.18 in these 
models, indicating minimal overdispersion. Quasi-induced exposure 
analyses revealed the odds of a pedestrian crash of any severity were 
45% lower (OR, 0.55; 95% CI, 0.40–0.76, p = 0.0003), odds of a 
pedestrian injury crash were 47% lower (OR, 0.53; 95% CI, 0.38–0.75, p 
= 0.0003), and odds of a serious or fatal pedestrian crash were 44% 
lower (OR, 0.56; 95% CI, 0.28–1.13, p = 0.11) among vehicles with AEB. 
The odds of a pedestrian crash that occurred resulting in serious or fatal 
pedestrian injuries were 40% lower among vehicles with AEB (OR, 0.60; 
95% CI, 0.22–1.65, p = 0.32), but this was not statistically significant. 

4. Discussion 

AEB with pedestrian detection is preventing crashes. This study 
demonstrates that AEB is associated with reductions of 25%–27% in the 
risk of a pedestrian crash and 29%–30% in the risk of a pedestrian injury 
crash. If these estimates were applied to the approximately 82,000 pe
destrians that sustained nonfatal or fatal injuries in motor vehicle 
crashes in the United States in 2019, more than 23,000 could have been 
prevented if all vehicles had pedestrian-detecting AEB. But its effec
tiveness could be even greater. There is not evidence that the system is 
preventing pedestrian crashes under dark conditions without street 
lighting, at speed limits of 50 mph or greater, or when the equipped 
vehicle is turning. Effectiveness estimates increased in crashes without 
these challenging characteristics, with reductions of 45%–49% in the 
risk of a pedestrian crash and 47%–50% in the risk of a pedestrian injury 
crash associated with the system. 

Improving AEB to address high-speed and dark, unlighted conditions 
is especially important for addressing pedestrian deaths. Estimates of the 
potential of pedestrian detection have cautioned that its effectiveness in 
preventing fatalities would be hampered if it could not function in 
darkness and at high speeds (Jermakian & Zuby, 2011; Rosén, 2013). 

Fig. 1. Effects of AEB with pedestrian detection on the odds a crash involved a pedestrian, by light condition, speed limit, and vehicle maneuver prior to the crash (n 
= 646 pedestrian crashes). 

Table 6 
Effects of AEB with pedestrian detection on pedestrian crash involvement rates per insured vehicle year (Poisson regression), the odds that a crash involved a 
pedestrian (logistic regression), and the odds of a pedestrian crash resulting in a serious or fatal pedestrian injury (logistic regression), limited to crashes without dark 
and unlighted conditions, at speed limits < 50 mph, and where the subject vehicle was not turning.  

Outcome and analysis Pedestrian crash severity Rate ratio 
(95% confidence interval) 

Pedestrian crash involvement rate per insured vehicle year (Poisson regression) All crashes (n = 391) 0.51 (0.38, 0.68) 
Injury crashes (n = 357) 0.50 (0.36, 0.68) 
Serious and fatal injury crashes (n = 74) 0.48 (0.24, 0.96)    

Odds ratio 
(95% confidence interval) 

Odds a crash involved a pedestrian (quasi-induced exposure, logistic regression) All crashes (n = 361) 0.55 (0.40, 0.76) 
Injury crashes (n = 328) 0.53 (0.38, 0.75) 
Serious and fatal injury crashes (n = 73) 0.56 (0.28, 1.13) 

Odds of a pedestrian crash resulting in a serious or fatal pedestrian injury (logistic regression) (n = 351) 0.60 (0.22, 1.65)  
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Consistent with those predictions, the quasi-induced exposure analysis 
in this study, which was better able to control for how driving exposure 
under difficult conditions may differ between vehicles with and without 
AEB, suggests that pedestrian detection is not having a meaningful effect 
on crashes resulting in serious or fatal pedestrian injuries. Because 
darkness and high speeds often co-occur in pedestrian crashes, both will 
need to be addressed for AEB to substantially reduce pedestrian fatal
ities. Rural roads, which tend to have higher speeds than urban roads 
(De Leonardis et al., 2018), are also more likely to lack street lighting 
(Lutkevich et al., 2012), and pedestrian crashes in the dark are more 
likely to occur on roads with higher speed limits (Sullivan & Flannagan, 
2007). A total of 18% of U.S. pedestrian deaths in 2019 were in dark and 
not lighted conditions on roads with speed limits of 50 mph or greater, 
and nearly half (48%) occurred under either condition (IIHS, 2021). 

Fatal pedestrian crashes do not frequently involve turning vehicles, 
but this crash type is common when considering pedestrian crashes of all 
severities. Over a third of U.S. police-reported pedestrian crashes in 
2019 involved a vehicle that was turning (IIHS, 2021). The lack of 
effectiveness of AEB with pedestrian detection in turning scenarios is 
similar to what has been reported for AEB addressing vehicle-to-vehicle 
crashes. Cicchino and Zuby (2019) found that vehicles with AEB are 
more likely than vehicles without the system to be turning when they are 
the striking vehicle in a rear-end crash, suggesting that the system is not 
as effective at preventing rear-end crashes with turning configurations 
as other rear-end crash types, and Spicer, Vahabaghaie, Murakhovsky, 
Lawrence, et al. (2021) estimated that vehicle-to-vehicle AEB is less 
effective at intersections. These systems may not be designed to activate 
under turning scenarios because it is difficult to judge if drivers are 
unable to avoid a crash while they are providing steering input. It is 
important to balance increased functionality with avoiding unnecessary 
activations, which could reduce trust in the systems and potentially lead 
drivers to deactivate them (Kidd & Reagan, 2019; Lee & See, 2004; 
Parasuraman & Riley, 1997). But because turning is a more common 
configuration in pedestrian crashes than in the rear-end crashes that 
vehicle-to-vehicle AEB is designed to address, improving performance 
while turning would have a comparatively larger impact for pedestrian- 
detecting AEB. 

AEB could potentially mitigate the severity of a pedestrian crash by 
lowering the striking vehicle’s speed even if the crash is not avoided 
entirely. The system did not reduce the odds that a pedestrian crash 
resulted in a serious or fatal injury in this study, which suggests that 
crashes that do occur involving vehicles with AEB are not less severe. 
This may be because the severity distribution in the crashes that remain 
skews upwards due to AEB’s greater effectiveness in preventing the 
lower-speed and lighted crashes that are less likely to result in serious 
injuries. Furthermore, because pedestrians are at risk of sustaining 
serious injuries even at nonextreme speeds (e.g., Tefft [2013] estimated 
the average risk of a pedestrian sustaining an injury on the Abbreviated 
Injury Scale of 4 or more is 50% at an impact speed of 33 mph, 75% at 41 
mph, and 90% at 48 mph), AEB may not slow a vehicle traveling at a 
high speed enough to prevent a serious pedestrian injury even when it 
does activate. AEB was associated with a reduction in the odds that a 
pedestrian crash resulted in a fatal or serious injury when crashes at high 
speed limits and under dark and not lighted conditions were excluded, 
albeit with a wide confidence interval. 

A strength of this study was the convergent findings resulting from 
both analysis approaches for the effects of AEB on pedestrian crashes of 
all severities and with injuries. Equipment with AEB was identified by 
trim level on most study vehicles, and more expensive trims may differ 
from the base trim in where and how they are driven. Some of these 
differences were accounted for by controlling for known environmental 
risk factors in pedestrian crashes. Quasi-induced exposure potentially 
addressed more differences in exposure between these groups than 
comparing crash rates per insured vehicle year, although the method
ology is not a perfect surrogate for observed exposure (Keall & News
tead, 2009). Some characteristics of rear-end crashes, such as their 

propensity to occur during turning maneuvers, differ from the envi
ronmental conditions under which pedestrian crashes more commonly 
occur. Higher-speed crashes are less likely to include a vehicle that was 
clearly not at fault (Jiang & Lyles, 2007), which potentially reduces the 
randomness of the rear-end-struck control crash sample at higher speed 
limits. 

There were not enough fatalities in the crash sample to directly 
examine system effects on them. Speed limit was used as a proxy for 
vehicle speeds, but actual vehicle speeds were unknown. Pedestrian 
crashes are underreported in police-reported data, especially among 
crashes not involving injury (Medury et al., 2019; Sciortino et al., 2005). 
It is evident the data used in the current study were subject to under
reporting by how few noninjury crashes were included. It is unknown if 
or how this biased results, but there is not reason to think that under
reporting would vary by the striking vehicle’s AEB status. Pedestrian 
crash rates were lower among vehicles with AEB for most, but not all 
manufacturers, and future research with sufficient crash data avail
ability can investigate how system characteristics correspond with 
effects. 

Another limitation is that AEB and high beam assist were often 
packaged together on study vehicles. More than 70% of crash-involved 
study vehicles with AEB had high beam assist, while most crash- 
involved study vehicles without AEB did not have it equipped. Leslie 
et al. (2021) found that high beam assist was associated with a 26% 
reduction in the risk of nighttime crashes with animals, pedestrians, or 
cyclists. High beam assist is factored into the IIHS headlight visibility 
ratings that were a covariate in the analyses, but the presence of this 
technology specifically could not be controlled for because of its 
collinearity with AEB. High beam assist would not affect the benefits for 
AEB seen during daylight and did not boost system effects in dark and 
not lighted conditions. It could have inflated effects in dark and lighted 
conditions, however. Because locations with street lighting are less often 
rural, they are also where drivers are less likely to choose to use high 
beams (Reagan et al., 2017) and so are the conditions where high beam 
assist potentially has the most opportunity to impact nighttime crashes. 

4.1. Conclusions 

AEB with pedestrian detection appears to be effective in preventing 
crashes, but it could be even more effective if it operated well in low- 
light conditions, at high speeds, and in turning configurations. As sys
tems improve to address a wider range of crash scenarios, other coun
termeasures to prevent crashes in these circumstances should continue 
to be implemented. Nighttime pedestrian crashes can be reduced with 
improved vehicle headlights (Brumbelow, 2021; Leslie et al., 2021) and 
increased use of roadway lighting (Elvik, 1995; Rea et al., 2009). 
Intersection improvements like leading pedestrian intervals and left- 
turn traffic calming can be implemented to prevent pedestrian crashes 
involving turning vehicles (Fayish & Gross, 2010; Hu & Cicchino, 
2020a). Countermeasures such as automated speed enforcement, low
ered speed limits, and traffic-calming roadway designs are associated 
with lower vehicle speeds (Hawkins & Hallmark, 2020; Hu & Cicchino, 
2020b; Hu & McCartt, 2016), and could result in conditions where AEB 
is more likely to function well. AEB with pedestrian detection is a 
promising tool with the potential to considerably reduce pedestrian 
crashes as it becomes more widely adopted in the vehicle fleet, and it 
should operate in conjunction with other proven interventions to have 
the most substantial impact on pedestrian safety. 
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