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Background: Tumor mutational burden (TMB) measurements aid in identifying patients who are likely to benefit from
immunotherapy; however, there is empirical variability across panel assays and factors contributing to this variability
have not been comprehensively investigated. Identifying sources of variability can help facilitate comparability
across different panel assays, which may aid in broader adoption of panel assays and development of clinical
applications.
Materials and methods: Twenty-nine tumor samples and 10 human-derived cell lines were processed and distributed to 16
laboratories; each used their own bioinformatics pipelines to calculate TMB and compare to whole exome results.
Additionally, theoretical positive percent agreement (PPA) and negative percent agreement (NPA) of TMB were estimated.
The impact of filtering pathogenic and germline variants on TMB estimates was assessed. Calibration curves specific to
each panel assay were developed to facilitate translation of panel TMB values to whole exome sequencing (WES) TMB values.
Results: Panel sizes >667 Kb are necessary to maintain adequate PPA and NPA for calling TMB high versus TMB low
across the range of cut-offs used in practice. Failure to filter out pathogenic variants when estimating panel TMB
resulted in overestimating TMB relative to WES for all assays. Filtering out potential germline variants at >0%
population minor allele frequency resulted in the strongest correlation to WES TMB. Application of a calibration
approach derived from The Cancer Genome Atlas data, tailored to each panel assay, reduced the spread of panel
TMB values around the WES TMB as reflected in lower root mean squared error (RMSE) for 26/29 (90%) of the
clinical samples.
Conclusions: Estimation of TMB varies across different panels, with panel size, gene content, and bioinformatics
pipelines contributing to empirical variability. Statistical calibration can achieve more consistent results across panels
and allows for comparison of TMB values across various panel assays. To promote reproducibility and comparability
across assays, a software tool was developed and made publicly available.
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INTRODUCTION

The use of anti-programmed death-ligand 1 (PD-L1)/anti-
programmed cell death protein 1 (PD-1) therapies has risen
dramatically over the last few years, with an increasing
number of regulatory approvals in several cancer types.1
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Despite these successes, only a fraction of cancer patients
benefit from immune checkpoint blockade, which has led to
broader exploration of biomarkers to identify patient pop-
ulations more likely to respond to immunotherapy.2-4

Tumor mutational burden (TMB) is defined as the num-
ber of somatic mutations per megabase of interrogated
genomic sequence. There has been early success in using
TMB to predict responses to immune checkpoint inhibitors
for patients with melanoma and lung cancer, among
others.5-7 Importantly, the use of TMB as a biomarker is
tumor agnostic. Recently, data from KEYNOTE-158
(NCT02628067) supported the use of pembrolizumab for
the treatment of TMB-high adult and pediatric patients with
unresectable or metastatic solid tumors that had pro-
gressed after previous treatment. TMB high was set at
TMB �10 mut/Mb for patients’ formalin-fixed paraffin-
embedded (FFPE) tumor tissue samples tested with the
Foundation Medicine (Cambridge, MA) FoundationOne CDx
assay.8 The findings of this study led to the first United
States Food and Drug Administration (FDA) approval of
pembrolizumab using TMB high as a positive predictive
biomarker for patient selection in a tissue-agnostic setting.
The FoundationOne CDx assay is the first FDA-approved
companion diagnostic to measure TMB and to help iden-
tify patients who may be appropriate for treatment with
pembrolizumab, regardless of solid tumor type.

In clinical practice, next generation sequencing (NGS)
targeted gene panel assays are preferred over whole exome
sequencing (WES) approaches for TMB estimation due to
already relevant clinical use for identification of targetable
oncogenes, broader availability, quicker turnaround time,
and cost. To date, FoundationOne CDx is the only FDA-
approved panel assay that reports TMB, while the Memo-
rial Sloan Kettering Cancer Center MSK-IMPACT (Integrated
Mutation Profiling of Actionable Cancer Targets), Nan-
tHealth’s Omics Core test, and the PGDx elio� tissue
complete assay have received FDA 510(k) clearance.9

However, access to these regulated panel assays is not
ubiquitous, leading to the development of additional NGS
targeted gene panel assays by local and commercial
providers.

Several factors impact variation among panel assays
including sample input, tumor content, panel size, gene
content, quality control (QC), NGS platform, and bioinfor-
matics pipeline, which may influence TMB estimates and
lead to inconsistent TMB calculation and reporting.10

Although 10 mut/Mb is the cut-off for TMB-high designa-
tion with the FoundationOne CDx assay, other panels may
have different clinical cut-offs. Because of these inherent
differences, the standardization of clinical validation prac-
tices, harmonization of TMB assessment, and alignment
across TMB panel assays are critical steps to improve con-
sistency of results and comparability across panel assays,
and to promote confidence in the use of this biomarker. This
is a crucial time to seek harmonization in TMB measurement
and assess comparability across TMB assays to prevent
the inconsistencies seen in past biomarkers. For example,
the lack of alignment across PD-L1 immunohistochemistry
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assays, lack of comparability of panel assay results, and
different cut-offs defined for each drug have posed a sig-
nificant challenge for the implementation of PD-L1 expres-
sion testing.11-17

With the aim of facilitating harmonization and alignment
across tissue TMB assays, the Friends of Cancer Research
(Friends) TMB Harmonization Consortium was formed. The
TMB Consortium, which consists of several diagnostic
manufacturers, academics, pharmaceutical companies, the
National Cancer Institute (NCI), Frederick National Labora-
tory for Cancer Research, and the FDA, previously reported
results from the first phase of the project where the
theoretical variability across 11 commercial and academic
panel assays was described and consortium-endorsed rec-
ommendations were proposed for the analytical validation
of TMB assays.18 Moreover, the TMB Consortium partnered
with Quality in Pathology (QuIP) in Germany to complement
its approach and enrich its perspective on the variability in
TMB estimates across laboratories through a technical
comparability study.19

In this study, we set out to characterize the empirical
variability in TMB measurements across platforms using a
common set of cell lines and clinical samples tested across
16 panel assays from 16 participating laboratories. Further,
we aimed to elucidate how certain factors such as panel
size, gene content, and bioinformatics pipelines impact TMB
estimates, and to investigate the use of a calibration tool
based on The Cancer Genome Atlas (TCGA) data and human
tumor-derived cell lines that will facilitate comparability
across different panel assays. Based on these results, we
aim to provide data and guidance that will help improve the
consistency and reliability of panel tissue TMB estimation
across platforms and facilitate the use of this complex
biomarker in clinical decision making.

MATERIALS AND METHODS

Samples (clinical samples and cell lines)

Thirty-six FFPE clinical tumor samples and matched buffy
coat were acquired from iSpecimen (Lexington, MA) and
processed at a reference laboratory (MoCha Laboratory,
Frederick National Laboratory for Cancer Research, Freder-
ick, MD), where tumor tissue specimens were enriched by
histological macrodissection to the extent possible, with the
estimated tumor cell content in macrodissected specimens
ranging from 30% to 95% (Supplementary Table S1, avail-
able at https://doi.org/10.1016/j.annonc.2021.09.016). All
samples were categorized into the following broad tumor
types: bladder, colon, gastric, gastrointestinal stromal tumor
(GIST), and lung. Specific histologic diagnoses and de-
mographic data can be found in Supplementary Table S1,
available at https://doi.org/10.1016/j.annonc.2021.09.016.
Genomic DNA from tumor specimens was extracted using
AllPrep FFPE Nucleic acid Extraction kit and the QIAcube
automated platform (QIAGEN, Germantown, MD). Genomic
DNA from buffy coat specimens was extracted using the
QIAsymphony automated platform (QIAGEN). DNA was
quantitated using Qubit dsDNA BR assay kit (Thermo Fisher
https://doi.org/10.1016/j.annonc.2021.09.016 1627

https://doi.org/10.1016/j.annonc.2021.09.016
https://doi.org/10.1016/j.annonc.2021.09.016
https://doi.org/10.1016/j.annonc.2021.09.016
https://doi.org/10.1016/j.annonc.2021.09.016


Annals of Oncology D. M. Vega et al.
Scientific, Waltham, MA). After performing QC, seven GIST
samples were excluded from further analyses mostly due to
low DNA yield, poor DNA quality, and low depth of coverage
(Supplementary Table S2, available at https://doi.org/10.
1016/j.annonc.2021.09.016); thus, only 29 clinical samples
were evaluated in this study.

Ten (two breast, eight lung cancer) human-derived
matched tumor-normal cell lines were selected and ob-
tained from the American Type Culture Collection (ATCC)
(Supplementary Table S3, available at https://doi.org/10.
1016/j.annonc.2021.09.016) and processed at a reference
laboratory, SeraCare (now LGC Clinical Diagnostics Division).
Cell lines were grown in accordance with ATCC specifica-
tions with no more than five passages. DNA was extracted
from frozen cell pellets (80-100M cells) using the QIAGEN
Gentra Puregene Kit. Purified genomic DNA concentrations
were normalized to 50 ng/mL in 0.1x Tris-EDTA buffer as
measured by the Qubit dsDNA BR assay kit. Integrity of
purified genomic DNA was assessed by agarose gel elec-
trophoresis. All 10 matched cell line samples passed QC,
and thus were evaluated in this study.
Whole exome sequencing and TMB estimation

The reference laboratory carried out WES, where 50 ng of
genomic DNA was sheared to 150-180 bp using Covaris
LE220 sonicator (Covaris, Woburn, MA). Library preparation
was automated on a SciClone G3 liquid handling worksta-
tion using custom scripts (Supplementary Material, avail-
able at https://doi.org/10.1016/j.annonc.2021.09.016). A
NovaSeq 6000 (Illumina, San Diego, CA) was used with 2 �
150 bp paired-end (PE) sequencing mode. WES TMB was
calculated using the previously described uniform method
using two Novaseq S4 flowcells generating w400M PE 150-
bp reads on tumor andw135M reads on normal samples to
generate a median target coverage of >400� in tumor and
>200� in normal tissue.20 GATK-based Sentieon pipeline
(version v201808) was used to call somatic variants
(https://github.com/FNL-MoCha/nextgenseq_pipeline).
Gene panel assay sequencing and TMB estimation

Aliquoted DNA samples extracted from clinical samples and
cell lines were distributed to all 16 participating labora-
tories, and each used their own sequencing and bioinfor-
matics pipelines to estimate TMB from the genes
represented in their respective panel assays. Some of these
pipelines have been previously published (Table 1). Clinical
samples were run as singletons and cell lines were run in
duplicate or triplicate as available.
Panel assay size analysis

The simulated positive percent agreement (PPA) and
negative percent agreement (NPA) of each of the panel
assays (in silico) were calculated as a function of both the
size of the panel assay used for its calculation as well as the
respective TMB cut-off (Supplementary Material, available
at https://doi.org/10.1016/j.annonc.2021.09.016).
1628 https://doi.org/10.1016/j.annonc.2021.09.016
Panel gene content analysis

Ten laboratories volunteered their BED file formats to
anonymously evaluate the gene content of their panel as-
says. All panel data were lifted over to hg19 coordinates if
they were not already. The intervals in these panel assays
were intersected with the xgen-exome-research-panel-v2-
targets exome reference panel assay. TCGA mutations
from WES (in MAF format) were then overlayed on to the
panel assays. We explored the removal of variants flagged
as pathogenic as per the Catalogue of Somatic Mutations in
Cancer (COSMIC) version 88, as well as synonymous vari-
ants, to determine the impact of including or excluding
certain variants. TMB estimates per sample and per gene
were tabulated.

Germline analysis

Three laboratories that use a tumor-only approach for the
removal of germline variants volunteered to estimate the
TMB value of the 29 clinical samples using three specific
population minor allele frequency (pMAF) thresholds (0%,
0.5%, and 1%) to assess the impact that different popula-
tion pMAF thresholds have on TMB estimates. Each labo-
ratory used their own combination of population allele
databases, including some custom databases, but no addi-
tional methods for the removal of germline variants were
used (i.e. custom copy number-based germline prediction
methods). (Supplementary Material, available at https://
doi.org/10.1016/j.annonc.2021.09.016).

Calibration analysis

Statistical analyses were conducted to develop calibration
curves specific to each panel assay that would facilitate
translation of panel TMB values to WES TMB values. For
each panel assay, two potential calibration curves were
constructed. One curve modeled the association between
panel TMB and WES TMB based on in silico analysis of the
TCGA validation data as previously described.18 These WES
TMB values, which were previously calculated, are available
on Precision FDA (https://precision.fda.gov/). The second
curve modeled the association based on the “wet lab” re-
sults obtained on 10 human tumor cell lines newly gener-
ated and reported on in the current article. Parameter
estimates were then used to compute 95% prediction limits.
WES-calibrated TMB estimates and 95% intervals of un-
certainty were obtained by inverting the fitted regression
line and prediction limits. Supplementary Figure S1, avail-
able at https://doi.org/10.1016/j.annonc.2021.09.016, pro-
vides a pictorial representation of the calibration process.
Additional documentation describing details of the model
fit, calculation of the prediction limits, and method of
obtaining the WES-calibrated TMB estimates and intervals
of uncertainty can be found in Supplementary Material,
available at https://doi.org/10.1016/j.annonc.2021.09.016.

After fitting the calibration curves for each panel assay
according to the TCGA and cell line methods (training sets),
the calibration curves were applied to TMB measurements
generated by the panel assay on a completely independent
Volume 32 - Issue 12 - 2021
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Table 1. Characteristics of 16 participating diagnostic NGS panel assays

Factor type ACT AZ BWH Caris FMI ILLUM IPG JHU MSKCC NeoGenomics OmniSeq PGDx Q2 QIAGEN Thermo_OCA Thermo_OTMLA

Panel assay
characteristics
Name of
panel assay

ACTOncoþ AZ650 OncoPanel v3.1 SureSelectXT F1 CDx TSO500 TheraMap
Solid Tumor
(TSO500)

JHOP2 MSK-IMPACT NeoTYPE
Discovery
Profile for
Solid
Tumors

Ion AmpliSeq
Comprehensive
Cancer Panel

PGDx elio
tissue
complete

TSO500 QIAseq TMB
panel

Oncomine
Comprehensive
Assay Plus
(OCA Plus)

Oncomine
Tumor
Mutation
Load Assay
(OTMLA)

Number
of genes

440 649 447 592 324 523 523 432 468 372 409 505 523 486 517 409

TMB region
covered

1.1 Mb 1.65 Mb 1.94 Mb 1.40 Mb 0.8 Mb 1.33 Mb 1.27 Mb 1.14 Mb 1.14 Mb 0.935 Mb 1.17 Mb 1.3 Mb 1.2 Mb 1.33 Mb 1.06 Mb 1.2 Mb

Processing
Minimum
DNA input

40 ng 100 ng 50 ng 50 ng 50 ng 40 ng 40 ng 50 ng 150 ng 20 ng 30 ng 50 ng 40 ng 40 ng 20 ng 20 ng

Quantification
method

Fluorescence Fluorescence Fluorescence Electrophoresis Fluorescence Fluorescence Fluorescence Electrophoresis Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence Fluorescence

Technology
uses UMIs

No Yes No No Yes Yes Yes No No Yes No Yes Yes Yes No No

Deduplication No Yes, UMI
based

Yes, not
UMI based

Yes, not UMI
based

Yes, UMI
based

Yes, UMI
based

Yes, UMI
based

Yes, not
UMI based

Yes, not UMI
based

Yes, UMI
based

No Yes, UMI
based

Yes, UMI
based

Yes, UMI
based

No No

Sequencing
Seq platform Ion Torrent Illumina Illumina Illumina Illumina Illumina Illumina Illumina Illumina Illumina Ion Torrent Illumina Illumina Illumina Ion Torrent Ion Torrent
Library prep/
target
enrichment

Amplicon Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid Amplicon Amplicon Hybrid Hybrid Amplicon
(single
primer
extension)

Amplicon Amplicon

Sample-level
minimum
coverage
threshold

800� NA 30� 300� 250� 150� 300� 300� 50� 500� 125� 100� 50� 100� 500� 500�

Sample-level
avg coverage
for cell line
exercise

1400� 1060.5� 394� 750� 982� 549� 800� >400� 753� >500� 314� 1517� 100� 500� 2000� 1300�

Variant-level
minimum
coverage

20� 50� 50� 100� 100� 50� 50� 50� 20� 100� 20� Position-
specific
threshold.
Determined
by ML

150� 100� 60� 60�

Variant-level
minimum read
(ALT depth)

20 5 5 10 5 2a 3 3 8 10 4 6 2 4 10 10

Variant calling
Type of variant Non-

synonymous
and
synonymous

Non-
synonymous
and
synonymous

Non-
synonymous
only

Non-
synonymous
only

Non-
synonymous
and
synonymous

Non-
synonymous
and
synonymous

Non-
synonymous
and
synonymous

Non-
synonymous
and
synonymous

Non-
synonymous
only

Non-
synonymous
and
synonymous

Non-
synonymous
only

Non-
synonymous
and
synonymous

Non-
synonymous
and
synonymous

Non-
synonymous
only

Non-
synonymous
only

Non-
synonymous
only

Germline
variant
filtration
approach

Tumor only Normal
tissue

Tumor only Tumor only Tumor only Tumor only Tumor only Tumor only Normal
tissue

Tumor only Tumor only Tumor only Tumor only Tumor only Tumor only Tumor only

Removes
variants from
known cancer
genes

Yes No No No Yes Yes Yes Yes No No No Yes No Yes No No

Published
performance
characteristics

30,31 32 9,20,33,34 9,35-37 38 39-42

ACT, ACT Genomics; AZ, AstraZeneca; BWH, Brigham and Women’s Hospital; Caris, Caris Life Sciences; FMI, Foundation Medicine; ILLUM, Illumina; IPG, Intermountain Precision genomics; JHU, Johns Hopkins University; Mb, megabase; MSKCC,
Memorial Sloan Kettering Cancer Center; NGS, next generation sequencing; PGDx, Personal Genome Diagnostics; Q2, Q Squared Solutions; Thermo_OCA, Thermo Fisher Scientific Oncomine Comprehensive Assay; Thermo_OTMLA, Thermo Fisher
Scientific Oncomine Tumor Mutation Load Assay; UMI, Unique Molecular Identifier.
a Plus sample- and position-specific cut-off by likelihood ratio model.
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set of 29 clinical samples that were not used in any way to
develop the calibration curves (testing set). For each clinical
sample, the uncalibrated, TCGA-calibrated, and cell line-
calibrated panel TMB values were visually compared by
boxplots. Root mean squared error (RMSE), relative to the
observed WES value for each sample, was calculated on the
sample and on the panel assay level.

The calibration tool, tmbLab, is an open-source software
package written in the publicly available statistical software
R that was created as part of this study.21 This package,
vignettes, documentation, and associated source code have
been made freely available for public use at https://brb.nci.
nih.gov/tmbLab/. The ‘tmbLab’ package was applied for the
calibration analyses (Supplementary Methods, available at
https://doi.org/10.1016/j.annonc.2021.09.016). Output pro-
duced by the package includes calibration plots as well as
intercept, slope, and variance parameters associated with the
fitted calibration curves relating panel TMB to WES TMB.
Compliance with ethics guidelines

Institutional review board (IRB) approval of the study pro-
tocol was obtained by each laboratory before study
conduct. In all cases, the IRB determined this study is
exempt from IRB review because it does not meet the
definition of human subject research as defined in 45 CFR
46.102. Specifically, the investigators did not obtain infor-
mation or biospecimens through intervention or interaction
with individuals, and the DNA samples utilized by the
participating laboratories was de-identified.
RESULTS

Variability across panel assays of participating
laboratories

Sixteen targeted gene panel assays from academic and di-
agnostics laboratories participated in this study (Table 1).
Each panel assay had a unique combination of character-
istics that encompassed different sample processing re-
quirements and sequencing platforms and chemistries. Each
laboratory used their own analytical and bioinformatics
methodologies to estimate TMB, which were optimized to
their own panel assay specifications. If available, published
panel assay performance characteristics are reported
(Table 1). Size of the coding regions used to estimate TMB
ranged from 0.8 to 1.94 Mb; minimum DNA input ranged
from 20 to 150 ng and sample-level depth of coverage
ranged between 30 and 800� for the participating labora-
tories. Seventy-five percent (12/16) of panel assays used an
Illumina sequencing platform, while the others used the
Thermo Fisher Scientific Ion Torrent platform. Sixty-three
percent (10/16) used hybridization as a target enrichment
approach, while the remaining panel assays used an
amplicon-based approach.

The locally developed bioinformatics pipelines used in
this phase II study also varied. All 16 panel assays included
non-synonymous variants for TMB estimation, while 9 panel
assays (56%) also included synonymous variants. Two panel
1630 https://doi.org/10.1016/j.annonc.2021.09.016
assays used paired normal tissue to remove germline vari-
ants for TMB estimation, and the remaining 14 used their
own tumor-only approach that utilized a combination of
population frequency databases and proprietary methods
for germline variant removal (Table 1). The variability in
panel TMB values is described with boxplots in Figure 1 for
the 25 clinical samples with WES TMB values <20 mut/Mb
(Figure 1A and Supplementary Table S4), the 4 clinical
samples with WES TMB values >20 mut/Mb (Figure 1B),
and the 10 cell line samples (Figure 1C and Supplementary
Table S5). Overall, the empirical variability across panel
assays increased with increasing TMB value, which is
consistent with findings of our previous study.18 This trend
in variance is evidenced by the wider (vertically stretched)
boxplots proceeding from left to right within each figure
and by comparing Figure 1A to Figure 1B. We noted that in
clinical samples, WES TMB was occasionally lower than
many of the reported panel TMB values (e.g. TMB-38, TMB-
51, TMB-36), whereas in the cell lines, WES TMB was
sometimes higher than many of the reported panel TMB
values (e.g. NCI-H1437, NCI-H2009). Patient demographic
and clinical variables as well as some specimen character-
istics are also described via heatmaps below the boxplot
figures (Figure 1).

Impact of panel assay size on panel TMB estimates

We used an in silico approach to estimate the impact of
panel size on the PPA and NPA of TMB calling. At a TMB cut-
off of 10, all 16 panel assays evaluated have a theoretical
NPA of at least 95%, with a theoretical NPA falling <95% for
panel sizes under 667 Kb (Figure 2A). The theoretical PPA at a
TMB cut-off of 10 ranged from 87% to 92%, with a theo-
retical PPA falling <85% for panel sizes under 577 Kb. At a
TMB cut-off of 5, theoretical NPAs ranged from 87% to 91%,
while theoretical PPAs ranged from 86% to 92%, with larger
panel assays having higher theoretical PPA and NPA. At TMB
cut-offs of 15 and 20, theoretical NPAs ranged from 98% to
99%, while theoretical PPAs ranged from 88% to 92%.

While actual panel performance reflects many factors,
including depth of sequencing and accuracy of mutation
calling, we observed a substantial acceleration of decrease
in PPA of panels at critical intersections of small panel sizes
and low TMB cut-offs (Figure 2A). These findings support
the hypothesis that small panels are insufficient to maintain
adequate PPA and NPA for calling TMB high versus TMB low
across the range of cut-offs for positivity likely to be used in
practice.

Impact of panel assay gene content on panel TMB
estimates

Failure to filter out pathogenic variants in panel TMB esti-
mates results in overestimation of TMB relative to WES for
all panel assays investigated (Figure 2B). In this in silico
analysis, removing known pathogenic cancer gene muta-
tions, as identified in COSMIC, showed a closer approxi-
mation to WES TMB. When synonymous variants are
additionally filtered, thereby keeping only non-synonymous
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variants to estimate TMB, only a minimal effect is observed
on panel TMB estimates as approximations to WES TMB.
However, it was evident that removing synonymous variants
also widened the boxplot, thus signaling greater variability
across panel TMB estimates when the number of variants
was reduced. Variability in this context was also associated
with panel assay size. Boxplot width was the smallest for
panel 2, which also corresponded to the largest panel assay
(1.5 Mb). In contrast, panel 7, with the smallest panel assay
(0.8 Mb), exhibited the greatest boxplot width.

Impact of germline variant filtering on panel TMB
estimates

The tumor-only approach utilized by 14 out of 16 panel
assays included the identification of common variants in a
single or a combination of population-based genotyping
databases (Supplementary Table S6, available at https://doi.
org/10.1016/j.annonc.2021.09.016). Filtering out potential
germline variant calls, defined as >0% of the pMAF, pro-
vides the strongest correlation to WES TMB independent of
the panel assay utilized (Figure 2C). In some instances, use
of 0% pMAF could even lead to underestimation of panel
TMB. Conversely, setting the germline variant allele fre-
quency filter to >0.5% pMAF significantly overestimates
panel TMB compared to WES TMB and this effect is even
more pronounced when the filter is raised to >1% pMAF.
Notably, three of the clinical samples evaluated were from
1632 https://doi.org/10.1016/j.annonc.2021.09.016
patients of African descent (TMB-34, TMB-40, TMB-43) and
were observed to have panel TMB values that were grossly
overestimated by the majority of platforms, especially if
0.5% or 1% pMAF thresholds were used for the removal of
germline variants.

Calibration tool

The range of fitted calibration curve slopes across the panel
assays was 0.868-1.647 when TCGA data were used as the
calibration reference, and 0.551-1.142 when the cell line
data were used as the reference (Supplementary Tables S7
and S8, available at https://doi.org/10.1016/j.annonc.
2021.09.016). The TCGA- and cell line-derived calibration
results are depicted in Figure 3 for samples with WES TMB
values between 5 and 15. The boxplots of all 29 clinical
samples are included in Supplementary Figure S2, available
at https://doi.org/10.1016/j.annonc.2021.09.016. In gen-
eral, the TCGA calibration approach tends to yield boxplots
that are compressed and/or closer to the WES TMB value,
when compared to uncalibrated TMB values. Numerically
this is demonstrated by the lower RMSE (Supplementary
Table S9, available at https://doi.org/10.1016/j.annonc.
2021.09.016); in particular, the RMSE for the TCGA-
calibrated TMB values as compared to the uncalibrated
TMB values is equal or lower in 26/29 (90%) clinical samples
(Supplementary Table S9, available at https://doi.org/10.
1016/j.annonc.2021.09.016). In contrast, the cell line
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calibration approach does not yield less variable/less biased
boxplots or lower RMSE than uncalibrated TMB values
(Figure 3, Supplementary Figure S2 and Table S9, available
at https://doi.org/10.1016/j.annonc.2021.09.016). RMSE
was also calculated on the panel assay level and shows that
RMSE may increase or decrease on the panel assay level
(Supplementary Table S10, available at https://doi.org/10.
1016/j.annonc.2021.09.016).
DISCUSSION

In an environment where diverse NGS assays will be avail-
able, to confidently use TMB estimation in clinical decision
making, sources of measurement variability must be un-
derstood and controlled for when interpreting results. In
this large collaboration-driven study, we describe the
empirical variability in TMB estimation across 16 different
panel assays applied to a common set of FFPE clinical tumor
samples and to human tumor-derived cell lines. Addition-
ally, we developed a publicly available calibration tool to
align TMB estimates using different panel assays.

A certain degree of variability in the estimation of TMB
on clinical samples across panel assays was expected,
similar to our in silico assessment.18 Factors such as panel
assay content, sequencing platforms, and bioinformatics
pipelines were expected to contribute to variability. Since
standardization of these variables is impractical, we utilized
publicly available samples to quantitatively characterize the
empirical variability in panel TMB estimation and provide
the opportunity to achieve more consistent results through
calibration.
Volume 32 - Issue 12 - 2021
Our results agree with previous reports showing that a
sufficiently sized panel is required to maintain reasonable
PPA of panel TMB measurements.22-26 There is a small but
consistent association between panel assay size and the
PPA and NPA, regardless of the TMB cut-off. However, we
also found relatively marginal gains in assay performance
above a certain threshold of panel size.

In addition to size alone, gene content is also a key factor.
We show that filtering out known cancer gene mutations,
as identified in COSMIC, significantly improved the accuracy
of panel TMB estimates relative to WES TMB for all of the
panel assays. Another approach is to remove synonymous
alterations and count only non-synonymous variants when
estimating TMB; seven participating laboratories did so in
our study. However, this did not significantly affect accuracy
of TMB estimates in the clinical samples (perhaps related to
few silent alterations in the gene regions tested by each
panel assay).23,27

Another issue in TMB estimation is the impact of tumor-
only sequencing, which can lead to inadvertent inclusion of
germline variants. Inclusion of germline variants within 1%
pMAF as part of a tumor-only germline variant removal
approach resulted in significant overestimation of panel
TMB, which has also been observed by Parikh et al.28

Population databases are commonly used by various
panel assays, and here we showed that the most stringent
filtering approach, using a filter of >0% pMAF, offers the
closest approximation to WES TMB compared to other
pMAF values (0.5% or 1%). Additionally, TMB values for
patients of African descent within our clinical samples were
overestimated. Analysis using more than one population
https://doi.org/10.1016/j.annonc.2021.09.016 1633
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database may help to reduce biases, especially as databases
may vary with their representation of different racial an-
cestries.29 Overall, it is important to accurately filter
germline variants using available bioinformatics methods.
Additionally, the use of FFPE specimens may have an impact
on TMB estimation by generating false positives due to
artifacts created during the fixation process. These factors
must be considered and assessed during assay develop-
ment, including development of the bioinformatics pipeline
to reduce potential false positives. Clinically, if the TMB
value of a cancer is close to a predetermined threshold that
would make it eligible for treatment, the variability added
by the suboptimal removal of germline variants could
translate to potential overtreatment of patients and un-
necessary exposure to immune-related adverse events.
Patient-matched normal samples are not always available to
identify a patient’s germline variants for filtration. Thus, it is
important to accurately filter germline variants using avail-
able bioinformatics methods.

Beyond characterizing and quantifying factors that can
impact variability in panel TMB estimates, we also built a
tool to promote alignment and optimize the functionality of
TMB as a clinical biomarker.

Our calibration tool aims to improve clinical consistency
and interpretability and is a free and open-source software.
Ideally, a calibration tool could be used for regulatory pur-
poses to permit different tests to align to common treat-
ment recommendations, resulting in expanded patient
access and reduced variability in oncology care. Application
of the calibration tool using TCGA data as a reference does
not account for differences in wet-lab procedures across
panel assays. We attempted to use human tumor-derived
cell lines as a reference material; however, there were
insufficient cell lines with matched normal cell lines and
calibration using the 10 cell lines in this study did
not meaningfully reduce variability (Figure 3). See
Supplementary Table S11 for considerations for the use of
different sources as reference material. More generally, the
calibration tool reduced the overall variability across labo-
ratories, but calibration did not improve concordance be-
tween panel TMB and WES TMB for every lab. Further work
is needed to optimize the calibration tool for this purpose.
Our findings should be interpreted considering several
limitations, including the heterogeneity of tumor specimens
acquired and inclusion of a few tumors for which immu-
notherapies are less relevant (i.e. GIST cancers) as well as
use of samples with high tumor purity (�30%) which may
not represent all samples acquired in the clinical setting.

Despite these limitations, our tool effectively demon-
strates that calibration of panel TMB values can be achieved
to an extent that supports development and utilization of
TMB applications across platforms. While use of each TMB
platform will likely be optimized to specific drug indications,
there is value in considering the harmonization and stan-
dardization principles we present here. Based on our find-
ings, we strongly encourage diagnostics developers to
conduct their own calibration analyses and compare their
1634 https://doi.org/10.1016/j.annonc.2021.09.016
panel assays to others in order to achieve optimal repro-
ducibility and improve assay utility in the clinic. Clinicians
can use findings from this study to contextualize a single
TMB output. Clinically, if the TMB value of a cancer is close to
a predetermined threshold that would make a patient
eligible for treatment, being able to recognize variability of
individual panel-level TMB values could help avoid potential
over- or undertreatment of patients or unnecessary expo-
sure to immune-related adverse events. In addition to direct
clinical care, calibration may facilitate synthesizing panel
TMB data across studies for translational research and
enable increased scale and power of studies to examine TMB
along with other predictors of response to immunotherapy.
Conclusion

The TMB Harmonization Project leveraged the expertise and
insight of 16 different diagnostic laboratories to objectively
evaluate the empirical variability across panel TMB values
and to propose best practices for panel TMB alignment. Our
work demonstrates that the utilization of a calibration tool
based on a universal reference standard derived from TCGA
data can enhance comparability of TMB across different
panel assays. Use of different NGS platforms for TMB testing
will necessitate a combinatorial approach, including
consensus guidelines and availability of a universal reference
standard, in order to maintain a satisfactory level of con-
sistency in the measurement and clinical application of this
complex biomarker. Availability of reference material anno-
tated with analytical and associated clinical truth would be
of value to assay development efforts. Our results provide
proof of principle that this level of alignment is achievable
and will support the consistent assessment, adoption, and
application of TMB to optimally guide immunotherapy de-
cisions. We hope that this process can serve as a model for
future biomarker technologies and alignment efforts.
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