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Abstract 

 
The high stocking density, stress, unhygienic conditions, lack of sunlight, and breeding practices typical of 
industrial poultry and egg production systems may facilitate the emergence and spread of diseases, including 
highly pathogenic avian influenza viruses with public health implications such as H5N1. 
 

Introduction 

 
In nature, the influenza virus has likely existed for millions of years as a harmless, intestinal, waterborne 
infection of waterfowl, particularly ducks.1 All strains are thought to originate as mild, low-grade, low-
pathogenicity avian influenza (LPAI) viruses, but H5 and H7 strains have the potential to become virulent, high-
grade HPAI—highly pathogenic avian influenza—“fowl plague” viruses.2 
 
Influenza viruses are normally benign in waterfowl, but strains that are able to infect land-based birds may 
become more dangerous to humans, as viral mutations naturally selected to be better adapted to terrestrial 
species may be better suited for airborne spread. For influenza to mutate into a highly pathogenic strain, the 
virus also needs to be able to overwhelm host defenses while retaining efficient transmissibility. Unlike the 
conditions typical of commercial intensive farm animal production facilities, in nature, animals are not 
overcrowded and confined at unnatural densities, and virulence is presumably constrained since spread is 
dependent on the host remaining mobile enough to infect others.3 
 
In 1989, an avian influenza virus infected horses in China, killed 20% of a herd, and then lost its virulence.4 
Overcrowded mink fur farms have also suffered influenza outbreaks, but the viruses caused only localized 
outbreaks before dying out.4 Such epidemics tend to be self-limited,5 presumably since the population is 
restricted in size and not rapidly replenished with new hosts. Under overcrowded unhygienic conditions with 
frequent restocking, though, natural biological checks and balances on virulence may no longer apply.3 
 

Low to High Pathogenicity 

 
Avian influenza viruses only tend to “heat up,” in the words of Dutch virologist Albert Osterhaus, “when they 
pass from wild birds to poultry.”6 The World Organisation for Animal Health (OIE) and the Food and 
Agriculture Organization of the United Nations (FAO) agree that it has been “prove[n]”7 that once certain LPAI 
viruses gain access to poultry facilities, they can “progressively gain pathogenicity in domestic birds through a 
series of infection cycles until they become HPAI.”8 According to researchers with the U.S. Department of 
Agriculture (USDA), “high density confinement rearing methods” typical of industrial poultry production 
systems give avian influenza “a unique chance to adapt to the new species.”9 Industry trade journal World 
Poultry listed some factors that make intensive poultry facilities such “ideal”10 “breeding grounds for disease”11: 
“inadequate ventilation, high stocking density, poor litter conditions, poor hygiene, high ammonia level, 
concurrent diseases and secondary infections.”12 Indeed, an avian virology textbook states: “Viral infections can 
move fastest through groups of birds maintained in closed, crowded, unsanitary conditions.”10 There has never 
been a recorded transformation of a mild strain to a highly pathogenic flu virus in any backyard or free-ranging 
chicken flock.13 
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Stocking Density 

 
One factor allowing for an increase in the virulence of avian influenza is the high stocking density of intensive 
poultry and egg production facilities. According to anthropologist Wendy Orent, “H5N1 has evolved great 
virulence among chickens only because of the conditions under which the animals are kept—crammed together 
in cages, packed into giant warehouses. H5N1 was originally a mild virus found in migrating ducks; if it killed 
its host immediately, it too would die. But when its next host’s beak is just an inch away, the virus can evolve to 
kill quickly and still survive.”14 In a typical commercial poultry production facility with tens, if not hundreds, of 
thousands of intensively confined and overcrowded susceptible hosts, large viral loads can rapidly cycle from 
one bird to the next, enabling the virus to accumulate adaptive mutations. 
 
In industrial broiler chicken systems, 20,000 to 30,000 day-old chicks15 are placed on the floor atop coarse wood 
shavings or other litter material in an otherwise barren shed. As they grow, the crowding intensifies. According 
to the standard reference manual for intensive chicken production, “Under standard commercial conditions 
chickens weighing 4.5 to 6 lbs have little more than a half a square foot of living space per bird in the last two 
weeks of their 42-47 days of life.”16 As one researcher reported, “it looks as though there is white carpet in the 
sheds—when the birds are fully grown you couldn’t put your hand between the birds, if a bird fell down it 
would be lucky to stand up again because of the crush of the others.”17 “Obviously,” Louisiana State University 
veterinary scientists write, under these conditions “the potential for a disastrous epidemic is very high.”15 
 
The majority of egg-laying hens in the world are confined in battery cages,18 barren, wire enclosures, and 
stocked at such densities that each hen is typically allotted less floor space than a standard letter-sized piece of 
paper.19 Research has found that a hen needs an average of approximately 1,880 cm2 (291 in2) of space to flap 
her wings, 1,270 cm2 (197 in2) to turn around, and 475 cm2 (74 in2) to stand freely.20 Currently, U.S. commercial 
battery-cage facilities allow each bird an average of approximately 430 cm2 (67 in2).19 With up to ten hens per 
cage and thousands of cages stacked vertically in multiple tiers, industrial egg production facilities can average 
more than 100,000 chickens per shed.21 
 
The Royal Geographical Society notes: “Massive demand for chicken has led to factory (battery) farming which 
provides ideal conditions for viruses to spread orally and via excreta which inevitably contaminates food in the 
cramped conditions that most birds are kept in.”22 
 
Europe is moving away from this level of intensification, for both chickens raised for meat and egg-laying hens. 
In 2005, the European Commission proposed legislation to impose a maximum stocking density for broiler 
chickens throughout Europe.23 In sharp contrast to the U.S. standard commercial “half a square foot of living 
space per bird,” certain organic standards in the United Kingdom already reportedly require a minimum of 16 m2 
(170 ft2) per bird.24 For the health and welfare of egg-laying hens, the European Parliament voted to ban 
conventional battery-cage systems entirely by 2012.25 
 
In a joint consultation, the World Health Organization (WHO), the FAO, and the OIE noted that the sheer 
number of intense contacts between birds with increasing flock density serves to spread and amplify disease 
agents like avian influenza.26 This is supported by research showing that increasing stocking densities of 
chickens result in an increased burden of infectious disease agents,27 a relationship also found in other species. 
 
In the influenza pandemic of 1918, during which an estimated 50 million people died, a U.S. Army regiment 
whose barracks allowed only approximately 4.2 m2 (45 ft2) per soldier reportedly had a flu incidence more than 
ten times that of a regiment afforded about 7.25 m2 (78 ft2) per person.28 In pigs, respiratory diseases29 such as 
chronic pleuritis and pneumonia have reportedly been strongly correlated to increased crowding of pigs per 
pen30 and per building,31 corresponding to increased levels of bacteria cultured in the air.30 Similar studies on 
influenza in commercial pig operations have come to the same conclusion: An increased density of pigs per pen, 
pigs per operation, and pigs per municipality all have been shown to be associated with increased risk of swine 
flu infection.29 Researchers blame the increased risk in part on diminished air volume per animal, increasing the 
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concentration of infectious particles and thereby facilitating aerosol spread.29 Dorothy H. Crawford, a professor 
of clinical microbiology at the University of Edinburgh concluded that “overcrowded farms are a hotbed of 
genetic mixing for flu viruses.”32 
 
Richard Webby’s research team at St. Jude’s Hospital reportedly considers increased poultry density a “big 
factor” in the rise of highly pathogenic viruses. The “more hosts in close confinements,” the more easily the 
virus can mutate into a form capable of infecting humans and eventually spreading throughout the human 
population.33 
 

Virus Survival and Spread 

 
After passing through an industrial, confined animal production facility, virus may continue to survive. 
Depending on the ambient conditions, influenza may endure in wet manure for weeks.34 During this time, the 
virus may spread on footwear, clothing, tires, trucks, cages, crates, insects, rodents, or even via the wind, 
expelled outwards by ventilation fans inside poultry sheds. 
 
Spatial analyses of the spread of H5N1 in Asia found that outbreaks corresponded to areas with the greatest 
numbers of chickens per square mile. Whether within a shed, on a farm, or across a region, “outbreaks of avian 
influenza correspond to where [poultry] population density is very high,”35 determined Shigeru Omi, the WHO’s 
regional director for the Western Pacific. 
 

Stressors 

 
Frederick A. Murphy, Dean Emeritus of the School of Veterinary Medicine at the University of California, 
Davis, has noted how intensification in farm animal production practices “often allow[s] pathogens to enter the 
food chain at its source and to flourish, largely because of stress-related factors.”36 The physiological stress 
created by crowded confinement can have a profound impact on immunity,37 predisposing animals to infection.29 
Diminished immune function reduces protective responses to vaccinations. “As vaccinal immunity is 
compromised by factors such as…immunosuppressive stress,” writes Richard Witter, a leading38 USDA expert 
on chicken vaccines, “mutant clones have an increased opportunity to selectively multiply and to be seeded in 
the environment.”39 Studies exposing birds to stressful housing conditions provide “solid evidence in support of 
the concept that stress impairs adaptive immunity in chicken.”40 
 
Chickens placed in overcrowded enclosures develop, over time, “increased adrenal weight,” a swelling growth 
of the glands that produce stress hormones like adrenaline, while, at the same time, experiencing “regression of 
lymphatic organs,” a shriveling of the organs of the immune system.41 This is thought to demonstrate a 
metabolic trade-off in which energies invested in host defense are diverted by the stress response, which can 
result in “extensive immunosuppression.”42 
 
Leading meat industry consultant Temple Grandin, an animal science professor at Colorado State University, 
described the stresses of battery-cage life in an address to the National Institute of Animal Agriculture: “When I 
visited a large egg layer operation and saw old hens that had reached the end of their productive life, I was 
horrified. Egg layers bred for maximum egg production…were nervous wrecks that had beaten off half their 
feathers by constant flapping against the cage.”43 Referring to egg industry practices in general, Grandin 
reportedly noted, “It’s a case of bad becoming normal.”44 
 
In battery cages, laying hens are unable to engage in most of their natural behaviors, including nesting, perching, 
dustbathing, scratching, foraging, exercising, running, jumping, flying, stretching, wing-flapping, and freely 
walking, which can lead to frustration and additional stress. Overcrowding may impose a social stress that has 
been shown for nearly 30 years to weaken resistance to viral infection45 and, more recently, a multitude of other 
disease challenges.41 One industry specialist wrote in World Poultry that it is “proven that high stress levels, like 
the ones modern management practices provoke,” lead to a reduced immune response.46 
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Other sources of stress for many birds raised for meat are the mutilations performed on them without anesthesia 
or analgesia; their combs, spurs, claws, and toes or portions of toes can be cut off to limit the damage of stress-
induced aggression or for identification purposes.27 Egg-laying birds also undergo mutilations without pain 
relief. Typically, U.S. laying hens, when chicks, are “beak-trimmed”—parts of their beaks are sliced off with a 
hot blade, an acutely painful47 procedure shown to impair their ability to grasp and swallow feed.48 Already 
banned in some European countries as unnecessary,49 the procedure is viewed by some poultry scientists as 
“stop-gap measures masking basic inadequacies in environment or management.”50 
 
A National Defense University Policy Paper on agricultural bioterrorism specifically cited mutilations, in 
addition to crowding, as factors that increase stress levels to a point at which the resultant immunosuppression 
may play a part in making U.S. animal agriculture vulnerable to terrorist attack.51 Ian Duncan, Emeritus Chair in 
Animal Welfare at the University of Guelph, has been outspoken about the animal and human health 
implications of these stressful practices: “All these ‘elective surgeries’ involve pain, perhaps chronic pain. No 
anesthetic is ever given to the birds. These mutilations are crude solutions to the problems created by modern 
methods of raising chickens and turkeys.”52 
 
According to William E. Donaldson, the former head of the Department of Poultry Science at North Carolina 
State University: 
 

[Newborn turkey chicks] are squeezed, thrown down a slide onto a treadmill, someone picks them up 
and pulls the snood off their heads, clips three toes off each foot, debeaks them, puts them on another 
conveyer belt that delivers them to another carousel where they get a power injection, usually of an 
antibiotic, that whacks them in the back of their necks. Essentially, they have been through major 
surgery. They have been traumatized.53 

 
Research performed at the University of Arkansas’ Center of Excellence for Poultry Science suggests that the 
cumulative effect of multiple stressors throughout turkey production results in conditions like “turkey 
osteomyelitis complex” (TOC), where decreased resistance to infection leads to a bacterial invasion into the 
bone, causing the formation of abscessed pockets of pus throughout the birds’ skeletons. USDA researchers 
blame TOC on “stress-induced immunosuppression” in turkeys who “respond to the stressors of modern poultry 
production in a detrimental manner.”54 The stress of catching and transport alone has been shown to induce the 
disease.55 
 

Unhygienic Conditions 

 
The tens to hundreds of thousands of animals reared in a single, intensive confinement production building 
produce an extraordinary amount of waste. Since avian influenza viruses may survive in wet manure for weeks, 
these unhygienic conditions pose significant risk. 
 
A 25,000-bird broiler chicken flock produces more than 1 tonne (1,000 kg or 2,205 lbs) of droppings every 
day.56 According to the USDA, 1 g (0.035 oz) of manure (approximately the weight of a paper clip) from an 
infected chicken can contain “enough virus to infect 1 million birds.”57 
 
Due primarily to genetic selection for fast growth and the strain such unnatural weight gain takes on their 
bodies, a majority of commercially farmed birds suffer from crippling leg disorders and gait abnormalities.58,59 
The birds are bred for such size that their legs may become so weak that they cannot support the weight of their 
bodies, leading to more time resting on the floor in the litter, which may increase fecal contamination of the 
carcass.60 Grandin writes: “Today’s poultry chicken has been bred to grow so rapidly that its legs can collapse 
under the weight of its ballooning body. It’s awful.”61 
 
By six weeks old, chickens raised for meat have reached market weight. Unnaturally heavy and experiencing 
such stress on their hips and legs, they spend more than three-quarters of their time lying in their own waste.62 
By the time they are slaughtered, all of their carcasses show evidence of gross fecal contamination.60 This is one 
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reason why poultry products are such prime carriers of food-borne illness,63 especially since, unlike with cows 
and pigs, the skin can be eaten with the meat.64 
 
After a broiler chicken shed has been depopulated, the building may not be cleaned before a new flock is 
introduced, in which case hatchling chicks are placed directly on the tons of feces that have already been layered 
down. Veterinary experts have been critical of this practice. As specified in the journal of the OIE, fecal waste 
should be removed from the shed before adding a new flock.65 The FAO agrees.66 Placing day-old chicks in 
sheds contaminated with “built-up” litter is said to expose the birds to “a wide range of poultry pathogens.”67 
Indeed, millions of Americans are sickened by Campylobacter infection each year,63 and the Advisory 
Committee on the Microbiological Safety of Food reported that the most significant source of Campylobacter 
infection in chickens is “the environment of the industrial broiler house.”68 The poultry industry suspects that 
“general farm hygiene could reduce the numbers [of Campylobacter bacteria on carcasses] by around 40%.” A 
“zero tolerance” policy is impractical, the industry emphasizes, “because it is impossible to achieve at 
reasonable cost….”69 
 
In a specially commissioned feature on preventing disease to celebrate Poultry International’s 40-year 
publishing history, the trade magazine noted: “Replacing used litter between flocks is a standard practice 
worldwide, but it will not gain acceptance in the United States.” The investment would evidently not be worth 
the return. “[U]nless federal regulations force drastic changes,” the article concluded, “nothing spectacular 
should be expected.”70 

 

Contaminated Air 

 
Feces decomposition generates several irritating chemicals, including hydrogen sulfide, methane, and 
ammonia,71 which “in a poultry house is nauseating to the caretaker, irritates the eyes, and affects the chickens,” 
states one poultry science textbook.16 Given the extreme stocking density of intensive production facilities, the 
litter can get so saturated with excrement that birds may develop sores or ammonia burns on their skin, known 
as breast blisters, hock burns, and footpad dermatitis, all of which have become significantly more common and 
serious over the last 30 years.27 
 
Studies have shown that high levels of ammonia also increase the severity of respiratory disorders, such as 
pneumonia,72 in part by directly damaging the respiratory tract, predisposing birds to infection.73 A large-scale 
study of millions of birds from nearly 100 commercial farms across multiple countries found that ammonia 
levels increased the excretion of the stress hormone corticosteroid,74 a potent immune depressant. 
 
Ammonia may also directly suppress the immune system. The gas gets absorbed into the birds’ bloodstreams, 
where it may interfere with the action of individual white blood immune cells.75 Although airborne aerosol 
spread of H5N1 avian influenza virus remains relatively inefficient, even among birds,76 the ammonia damage 
associated with intensive poultry production may facilitate the virus acquiring so-called pneumotropic, or “lung-
seeking,” behavior.77 
 
In sum, high concentrations of birds in a typical shed lead to high concentrations of aerial pollutants, which 
subsequently result in increased respiratory disease challenge to the birds’ immune systems.27 In addition to 
fecal material, the airborne dust in such facilities has been found to contain bacteria, bacterial toxins, viruses, 
molds, nasal discharge, feather and skin debris, feed particles, and insect parts.71 Poultry confinement buildings 
can average 7 million bacteria floating in every cubic meter (1.3 yd3) of air.71 These dust particles clog the birds’ 
lungs, overwhelming the lungs’ clearance mechanisms. Researchers demonstrated decades ago that exposing a 
chick to a normally harmless strain of E. coli in an environment clouded with dust or ammonia can cause 
disease.78 The very air birds breathe in intensive confinement may predispose them to infection with influenza. 
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Lack of Sunlight 

 
Approximately 0.9 million tonnes (0.9 billion kg or 2 billion lbs) of poultry litter, including feces, are fed to 
U.S. cattle each year,79 and much of the rest is spread upon cropland as fertilizer. The open air, combined with 
the sanitizing rays of the sun, rapidly dries the manure and kills the fecal micro-organisms.71 In contrast, human 
pathogens like Salmonella80 and Campylobacter81 and viruses like H5N1 can thrive in the moist litter found 
inside dimly lit poultry sheds. 
 
Transmission experiments with chickens reveal that the spread of H5N1 is predominantly via the fecal-oral 
route rather than in respiratory droplets. H5N1 can survive in wet feces for weeks but is inactivated as soon as 
the feces dry out in ambient temperatures.82 As such, the spread of avian influenza viruses like H5N1 are 
expected to be relatively inefficient in outdoor, free-range settings. 
 
In countries like Thailand, the combination of tropical heat and crowded confinement necessitates “evaporative 
cooling” in poultry sheds, which uses large fans and a water mist to cool down the birds during the hot season.83 
Although this practice reduces heat stress, the high level of humidity ensures that the litter is moist, which may 
facilitate the spread of pathogens like avian influenza. Though so-called “evap houses” increase flock survival, 
they may also increase virus survival. 
 
From an avian virology textbook: 
 

Birds that are housed indoors year-round should be considered more susceptible to infectious diseases,” 
an avian virus textbook reads, “because of decreased air quality, the accumulation of pathogens in a 
restricted environment, and the lack of exposure to sunlight. These factors function collectively to 
decrease a bird’s natural resistance to disease.10 

 
The absence of adequate ventilation and direct sunlight common in intensive confinement settings is a 
combination that may facilitate the spread of influenza virus. During the pandemic of 1918, Boston hospitals 
filled beyond capacity. A tent hospital was set up in nearby Brookline. Though exposing ailing patients to the 
chilly New England autumn was reportedly condemned by Bostonians as “barbarous and cruel,” the fresh breeze 
and sunshine seemed to afford the overflow patients far better odds of survival than those inside the 
overcrowded, poorly ventilated hospitals.84 Perhaps the best-studied illustration of the danger of crowded, 
enclosed spaces in human medicine was a commercial airline flight in 1977 that was grounded on the tarmac for 
more than four hours due to a mechanical failure while a young woman lay prostrate in the back of the cabin 
feverishly coughing with the flu. Within three days, nearly three out of four passengers fell ill with her virus.85 
 
A study of the 1957-58 pandemic also demonstrated the potentially therapeutic role of sunlight. Ultraviolet (UV) 
rays, which damage genetic material,86 have been used in tuberculosis (TB) wards to kill off some of the TB 
germs coughed into the air. To see if influenza could be killed in the same way, researchers compared influenza 
rates in patients in TB-infected buildings with UV lights to patients in TB-infected buildings without UV lights 
during the mid-1950s pandemic. In the rooms without UV lights, 19% of patients got the flu, while only 2% of 
those in rooms with UV lights became infected, a statistically significant difference.87 This suggests that sunlight 
may help sanitize influenza virus from the air and highlights the increased risk of crowding poultry indoors. For 
flocks raised outdoors, according to the FAO, the natural UV rays of the sun may “destroy any residual virus.”88 
 
Despite the evidence that sunlight has an effective disinfectant quality and that adequate ventilation contributes 
to reduced risk of viral infection, the commercial poultry industry has not yet incorporated these two important, 
health-related components into common practice. Because increased light encourages greater activity by the 
chickens, as one poultry industry journal describes, “birds burn energy on activity rather than on growth and 
development.” Natural lighting has a negative impact on “feed conversion,”89 meaning the animals expend 
energy on moving rather than gaining weight to more quickly reach market size. According to trade publication 
Broiler Industry, “It is obvious that the light supplied by sunshine during the day and normal darkness at night is 
the most inferior of any lighting program.”90 
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Genetic Selection for Production Traits 

 
Breeding for such traits as greater breast muscle in birds raised for meat or increased rates of lay in egg-laying 
hens has contributed to diminished immune competence among modern poultry, which in turn has led to greater 
susceptibility to illness, infection, and mortality. Given the intensive genetic selection for productivity over 
immune functionality, almost all modern commercial chickens may be compromised in a way that would 
facilitate wild waterfowl viruses taking hold. “[D]omestic poultry have been bred to be plump and succulent 
rather than disease-resistant,” Bryan Eaton, a senior virologist at the Australian Animal Health Laboratory, 
reportedly points out. “[T]hey’re sitting ducks, so to speak, for their wild cousins’ viruses.”91 Researchers 
corroborate, finding that broiler chickens selected for accelerated growth suffer from weakened immunity, 
which increases mortality by making them more susceptible to a variety of infectious diseases.92 
 
Today’s commercially reared chickens are significantly different than their predecessors. Red Junglefowl, 
ancestors to the modern-day chicken, laid only about 25 eggs a year,93 while today’s laying hens produce more 
than ten times that number,94 leading to increasing problems with uterine prolapse95 and poor skeletal bone mass 
that can contribute to broken bones due to critical weakening, as skeletal calcium is mobilized to form shells for 
the eggs.96 It took approximately four and one-half months for chicken ancestors to reach about 1 kg (2.2 lbs);97 
in the 1950s, poultry industry manipulation resulted in chickens exceeding 2 kg (4.4 lbs) in less than three 
months. Today, due mostly to selective breeding (in addition to growth-promoting drugs), chickens may reach 
2.4 kg (5.4 lb)98 in an average of 45 days.52 According to the National Chicken Council, an industry trade group, 
every year, producers are able to reach target weight at least one-half day earlier.98 
 
Such intense genetic selection for productivity has jeopardized the health and welfare of poultry. Mortality rates 
of broiler chickens, for example, are up to seven times that of chickens not bred for fast growth. Ongoing efforts 
to increase breast-meat yield, for example, have created a higher propensity for musculoskeletal problems, 
metabolic disease, immunodeficiency, and male infertility, in part, perhaps, because the extra protein going to 
breast muscle production comes at the expense of internal organ development.99 
 
Researchers conclude, “It appears that broilers with faster growth rate are under physiological and 
immunological stress that makes them more sensitive to infectious diseases….”100 This has been shown for both 
viral101 and bacterial102 pathogens. In one study, broiler chickens were intentionally infected with E. coli, and 
around 40% of the fast-growing, heavier birds died, compared to 8-20% mortality for slower-growing breeds. 
The scientists commented, “These results indicate that rapid growth rate substantially reduces broiler 
viability….”103 
 
Studies with turkeys reveal the same findings. Lighter and slower-growing turkey breeds have better immune 
performance than those used for conventional, commercial production104 and are thereby more resistant to 
stress105 and disease.106 Researchers have observed that in natural outbreaks of disease like fowl cholera,107 
turkeys bred for increased egg production and those selected for increased body weight had significantly higher 
mortality rates.108 Slower-growing, lighter breeds of turkeys also have greater adaptability to the stresses 
associated with production, such as overcrowding.109 USDA researchers at the University of Arkansas went so 
far as to suggest in a 2005 paper in Poultry Science that “fast growth in modern turkey lines” may result in stress 
responses “incompatible with the severe stressors that sometimes occur during commercial poultry 
production.”105 
 
Selection for productivity has been so intense that commercial turkeys, like broiler chickens, can barely support 
their own weight. A staff editor of the leading U.S. livestock feed industry publication writes that “turkeys have 
been bred to grow faster and heavier but their skeletons haven’t kept pace, which causes ‘cowboy legs.’ 
Commonly, the turkeys have problems standing…and fall and are trampled on or seek refuge under feeders, 
leading to bruises and downgradings as well as culled or killed birds.”110 One group of researchers concluded, 
“We consider that birds might have been bred to grow so fast that they are on the verge of structural 
collapse.”111 
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Many do collapse and spend much of their time lying in their own waste. Similar to broiler chickens, most 
turkeys in commercial production are overcrowded in warehouse-like sheds, and the majority112 suffer from 
ulcerative contact dermatitis, from breast blisters to bed sore-like hock burns.113 These painful lesions add to the 
stress that may impair overall immune performance. USDA researchers conclude: “Selection of poultry for fast 
growth rate is often accompanied by a reduction in specific immune responses or increased disease 
susceptibility.”106 
 
Breeders have tried selecting for antibody response directly, but poultry scientists have found that those with the 
best antibody responses consistently had significantly lower weights at all ages.114 Research dating back 30 
years shows that chickens bred to be disease-resistant have lower body weight and produce smaller eggs.115 
Indeed, studies suggest that immune defects may actually enhance poultry performance.105 
 

Resource Allocation Theory 

 
The relationship between reduced immunity with maximized productivity may best be explained by the 
“resource allocation theory.” There is only a certain amount of energy, protein, and other nutrients entering an 
animal’s system at any one time. Those resources can go to build muscle or produce eggs, for example, or to 
host defense. Cows in the dairy industry have been bred to “redirect resources from the maintenance of an 
adequate immune system to milk production in order to maintain advantages in milk yield,” reads one dairy 
science textbook,116 indicating a trade-off between production traits and immunocompetence.117 
 
Studies show that slower-growing chicken breeds have larger118 and better developed119 antibody-producing 
immune organs. Instead of being bred to transfer the bulk of resources to build breast meat while neglecting 
other needs, these slower-growing breeds presumably had sufficient resources to foster a more functional 
antibody response system.118 Antibodies are critically important for vaccine effectiveness, particularly in 
animals like commercial broiler chickens who are killed around six weeks of age and do not have time to 
acquire a set of their own immune memories. “Those animals which are intensively reared and slaughtered 
young,” notes one agricultural microbiologist, “will have the greatest potential for carrying pathogens.”120 
 
The maintenance of an effective immune system is metabolically very costly. The macrophage immune cells 
burn through almost as much energy as maximally functioning heart muscle.121 Antibodies are made out of 
protein. When the body produces thousands of antibodies per second, there is less protein available for growth. 
Studies show that chickens capable of mounting a decent antibody response have lower weight and lower weight 
gain than chickens with suboptimal antibody production.122 
 
Germ-free chicks raised in germ-free environments grow faster than chickens in unsanitary environments.123 
Even minute exposures to the normal microbial flora of the gut are enough of an immune stimulus to 
significantly reduce growth rates.121 Though there’s no tissue damage and no evidence of disease, simply the 
normal day-to-day functioning of the immune system diverts energy from maximal growth,123 which explains 
why germ-free chickens in a sanitary laboratory environment can be dosed with antibiotics without any change 
in growth rates, whereas commercially confined chickens fed antibiotics demonstrate an apparent spurt in 
growth.124 Even relatively insignificant challenges to the immune system can significantly affect growth. Simple 
vaccinations can result in a 21% decline in daily weight gain for farm animals and increase protein demands as 
much as 30%,125 demonstrating the inverse balance between growth and immunity. 
 
The poultry industry could breed for improved immunity over productivity even though it has “been shown to 
result in decreased BW [body weight],”106 but admits that “disease resistance will not be selected for if the cost 
in a loss of genetic improvements in other traits is too great.”126 According to Gerard Albers, former Director of 
R&D of Nutreco’s Breeding Research Center, “decisions in the poultry industry are largely and increasingly 
driven by economic considerations but the psychological impact of flock morbidity and mortality on the farmer 
cannot be ignored. Mortality rates above a certain psychological threshold are unacceptable.” Nevertheless, 
Albers is not optimistic that breeding for “increased livability” will take precedence over selection for “more 
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profitable” traits.127 The same attitude has also been expressed in the egg industry. In an article titled “Industrial 
Perspective on Problems and Issues Associated with Poultry Breeding,” laying hen breeding corporations assert 
that “[e]gg production per hen housed will continue to be the single most important trait under selection.”128 
 
In Europe, breeding programs are under evaluation. The European Commission’s Scientific Committee on 
Animal Health and Animal Welfare’s broiler chicken report stated that its “most important recommendation” 
was that “[b]reeders should give a considerably higher priority to health variables in the breeding index, if 
necessary at the expense of the selection pressure for growth and feed conversion.”27 Conversely, in the United 
States, growth rates continue to be pushed faster every year.129 In World Poultry, Soledad Urrutia, editor of 
Avicultura Profesional, wrote “Mathematically, it is evident that the present rate of improvement in growth 
cannot be continued for more than a couple of decades, or the industry will be faced with a bird that virtually 
explodes upon hatching.”46 
 

Lack of Genetic Diversity 

 
As of 2000, more than 95% of birds raised globally were provided by four turkey breeding companies, five egg-
laying chicken breeders, and five broiler breeder companies.126 A single pedigreed cockerel can potentially give 
rise to 2 million broiler chickens.126 
 
Mass consolidation has positive and negative aspects. Selection decisions can be propagated across the entire 
world in a matter of years so, for example, if the industry elected to prioritize selection for stronger immunity, 
virtually the entire global flock could be replaced with the improved disease-resistant variety in three or four 
years. However, even greater emphasis on production traits with detrimental effects on immunity would be 
distributed at the same speed.126 Another significant downside to diminishing the breeding pool is the increasing 
genetic uniformity of poultry, which alone may increase the susceptibility of the global flock to disease.51 
 
According to the FAO, 740 farm animal breeds have gone extinct,130 and breeds continue to disappear at a rate 
of one or two each week. More than 1,000 breeds—one out of four of all farm animal varieties—are presently 
facing extinction.131 The greatest threat to farm animal diversity, according to the FAO, is the export of high-
producing breeding stock from industrialized to developing countries that dilutes, or completely displaces, local 
native breeds.132 
 
This erosion of biodiversity may have serious human public health consequences. The American Association of 
Swine Veterinarians has explained why the genetic bottlenecking created by narrowly focused breeding schemes 
may be a main reason for the mounting concern over human zoonotic diseases. “As genetic improvement falls 
into the hands of fewer companies and the trend towards intense multiplication of a limited range of genotypes 
(monoculture, cloning) develops, there is mounting concern that large populations may have increasingly 
uniform vulnerability to particular pathogens.”133 
 
This risk is faced by any type of agricultural mono-cropping and was clearly illustrated by the challenges faced 
by the U.S. corn industry in the early 1970s. At that time, the industry had developed “Tcms” corn, a highly 
profitable strain adapted for large-scale farming. After 85% of the nation’s seed corn acreage was covered with 
the new variety, the industry realized that the Tcms strain was particularly susceptible to a rare form of leaf 
blight fungus that then wiped out areas of the U.S. Corn Belt.134 
 
Biodiversity is biosecurity. Even the most virulent of diseases typically do not kill all infected individuals, in 
part due to natural, inborn genetic variability. In the wild, natural selection takes advantage of this variation to 
pass disease-resistant qualities to the next generation.135 The diversity in nature tends to ensure that some 
individuals will survive future diseases and challenges. Artificial selection for production qualities undermines 
this important ability by inbreeding unnaturally elevated egg production and fleshiness over fitness, as well as 
by reducing the genetic diversity that can act as resistance insurance against present and unforeseen threats of 
disease.136 
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Acquired Immunodeficiency Syndromes 

 
The overcrowded, stressful, unsanitary conditions inherent to intensive poultry production may not only directly 
increase the risk and spread of avian influenza infection, but may predispose the birds to infections with 
immunosuppressive viruses that could further compromise their already dysfunctional immune systems. The 
relationship between immune-weakening poultry viruses and avian influenza was first proposed by University 
of Hong Kong zoologist Frederick Leung and later expanded upon by anthropologist and agroecologist Ronald 
Nigh.137 Leung noted a speculative correlation between Hong Kong chicken farms that had suffered outbreaks of 
an immunodeficiency virus known as infectious bursal disease virus in 1996 and the subsequent initial outburst 
of H5N1 approximately six months later in 1997.138 
 
The bursa is a specialized avian organ responsible primarily for the development of a bird’s immune system.139 
Human antibody-producing “B-cells” were named after this organ.140 Just as HIV in humans replicates in white 
blood cells called T-helper cells, leading to their destruction and the body’s subsequent immunodeficiency, the 
infectious bursal disease (IBD) virus in birds infects B-cells, crippling the immune system and leaving survivors 
immunosuppressed for life.141 With a “severely impaired”142 ability to produce antibodies, surviving birds 
respond poorly to vaccinations27 and are susceptible to a wide variety of viral, bacterial, and parasitic diseases.143 
 
Beginning in the 1980s, two decades after the IBD virus was identified,143 dramatically greater numbers of 
chickens suffering from various respiratory infections were found in the United States. Vaccines were no longer 
as effective.139 Investigators discovered that a new hypervirulent strain had arisen in the most concentrated 
poultry production area in the world,144 the Delmarva Peninsula,145 incorporating corners of Delaware, 
Maryland, and Virginia. Due in part to a “high concentration of poultry in close proximity,”146 the Delaware 
variant,147 as it was called, soon extended far beyond the region. Evidence exists that the IBD virus of domestic 
chickens has been detected in Emperor penguins in the Antarctic, considered an example of industrial animal 
agriculture’s “pathogen pollution” to the farthest reaches of the globe.148 
 
Since the 1960s,149 there has also been a dramatic increase in the virulence of another viral affliction—Marek’s 
disease (MD), first described a century ago.150 Besides tumors in the skin, muscles (meat), nerves, and 
abdominal organs of chickens, the Marek’s disease herpes virus also causes immunosuppression.141 
 
A major 2005 scientific review described the evolution of virulence: 
 

Poultry production up to the mid 1900s mainly comprised backyard farming with very low population 
densities of birds…with low growth rates and low egg production. In this environment, MD was not 
considered as a major disease even though outbreaks of MD were reported in different parts of the 
world. However, since the 1960s there have been major changes in poultry production practices. Today 
poultry production has become a major global industry operating in very high population densities under 
highly intensive management conditions aimed at higher rates of growth and productivity….Until about 
1960, when the poultry production was not on an intensive scale, both the virus and the hosts were able 
to achieve a state of balanced co-existence. However, the transformation of the poultry industry into the 
intensive production practices from the early 1960s saw a shift in this balance greatly in favor of the 
virus. The continuous availability of large populations of genetically susceptible naïve hosts, usually in 
an overcrowded environment, enabled the virus to spread rapidly, encouraging their rapid evolution 
towards greater virulence. This was evident when huge MD outbreaks swept through poultry flocks in 
the 1960s, wiping out large populations all around the world.151 

 
The first wave of evolution in the late-1950s shifted the virus from “mMDV” (mild Marek’s disease virus) to 
“vMDV” (virulent Marek’s disease virus). Due in part to continued and escalating industrial practices, “vMDV” 
became “vvMDV,” and presently the world is dealing with “vv+MDV.”151 
 
Other immunosuppressant viruses include chicken infectious anemia virus (CIAV) and a virus that causes 
hemorrhagic enteritis in turkeys.143 CIAV was first described in 1979 and has since spread throughout the world 
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to become ubiquitous in egg- and meat-type chickens worldwide.152 CIAV destroys immune precursor cells, 
undermining the immune system before it can even develop.153 Immunosuppression associated with CIAV is 
considered to be a factor in “many of the disease problems in flocks raised under the high-density conditions of 
modern poultry production.”154 
 
These immunodeficiency viruses can interact with each other to synergistically further predispose the global 
chicken flock to infection. CIAV infection, for example, can boost the virulence of Marek’s virus, and co-
infection between IBD virus and CIAV can result in an even more profound vulnerability to additional 
infectious disease agents.152 A poultry scientist with Tyson Foods described the U.S. poultry industry as being 
“in a constant battle with immunosuppressive diseases,”145 and a 2005 World Poultry “Global Disease Update” 
reported that “[t]he deleterious effects of infections which suppress the immune systems are underrated in many 
parts of the world.”147 
 
The unhygienic conditions under which birds are raised in commercial poultry operations conspire to spread 
these viruses. “The transformation in the poultry farming practices into a highly intensive industry has 
enormously changed the poultry house environment,” read one Marek’s disease review. Infection with Marek’s 
disease occurs when a chicken inhales infected dust in a poultry shed saturated with virus flaking directly off the 
chickens’ skin.151 The emergence of new strains of IBD virus has also been blamed in part on “improper 
cleaning and disinfection.”139 One reason why the industry may not clean and disinfect sheds more frequently is 
that they want young breeding chickens to get infected with viruses like CIAV early, in hopes that they will 
clear the infection before egg laying leads to progeny with “poorer performance.”145 Immunodeficiency diseases 
like Marek’s cost the poultry industry more than $1 billion annually,151 but improving sanitation may be costlier. 
One animal science textbook explains that “compromise inevitably must be struck because animal agriculture is 
a business, and providing the best environment possible may be unprofitable.”155 
 
None of these viruses affect humans directly, but with the threat of avian influenza, anything that leads to 
immune suppression in chickens may now be an issue of human public health importance. The same factory 
farming conditions that likely facilitated the emergence of killer viruses like H5N13 have led and continue to 
lead to the emergence and spread of immunodeficiency viruses that may in turn facilitate the emergence of 
future highly pathogenic strains with human pandemic potential. 
 

Conclusion 

 
Genetic selection for productivity and the stressful, overcrowded, and unhygienic confinement of animals in 
industrial poultry production systems facilitate immune suppression in birds already bred with weakened 
immunity, offering viruses like avian influenza ample opportunities for spread, amplification, and mutation. 
Placing genetically un-diverse birds into these kinds of unsanitary environments with inadequate ventilation and 
sunlight exposure is believed to provide a ripe “breeding ground” for the emergence and spread of such diseases 
as virulent avian influenza—diseases with human public health implications. 
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