Esmark Steel Group Manufacturing Facility Access Road Paint Manufacturing <u>Ace Hardware</u>

Northeast Region Southeast Region Northwest Region West Region Access Road

a Location

TABLES

Page 1 of 1 This document shall not be released or disclosed without written permission of U.S. EPA.

West and Northwest Region Container Label Summary Table Polychem Services Site Chicago Heights, Cook County, Illinois Table 3-1

	Labeled "Hazardous"	Labeled Labeled "Hamable"	Labeled "Flammable" and "Hazardous"	Labeled "Corrosive"	Labeled Labeled "Non-Hazardous"	Labeled "Non-Regulated Waste"	Labeled "Non- Hazardous Epoxy Resin"	Other	Unlabeled / Unknown
								(00
West Region	×	38	92	33	4	0	3	13	39
West Avert		25	,					r.C	ī
Northwest Region	30	25	2	25	6	9	68	77	4/7
LIOINA COLINGIO	3.0						•	01	213
Total	38	63	78	78	13	9	7.6	40	313
TMACT									

Chicago Heights, Cook County, Illinois Waste Sampling Summary Table Polychem Services Site Table 3-2

							Container	U.S. EPA	Heartland	TABLE TO THE TABLE
Field Sample ID	Sampling	Sample	Sample	Container	Container		Region	CID Drum	Polymer	
No.	Date		Туре	Type	Condition	Container Labeling	Location	Œ	Drum ID	Analytical Parameter(s)
PS-WL03-012512	1/25/12	Waste Liquid	Grab	55-gallon steel drum	Fair	"Flammable," "MEK," and "Methanol"	Northwest	A480	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TCL SVOCs
PS-WL03D- 012512	1/25/12	Waste Liquid	Grab	55-gallon steel drum	Fair	"Flammable," "MEK," and "Methanol"	Northwest	A480	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs
PS-WL04-012512	1/25/12	Waste Liquid	Grab	55-gallon steel drum	Fair	"Hazardous Waste" and "Flammable"	West	C014	737	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs
PS-WL05-012512	1/25/12	Waste Liquid	Grab	270-gallon tote	Fair	"Spent Scrubber Solution" and "Corrosive"	Northwest	AT23	None	Hd
PS-WL06-012512	1/25/12	Waste Liquid	Grab	55-gallon steel drum	Fair	"Toluene" and "Flammable"	East	B091	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs
PS-WL07-012612	1/26/12	Waste Liquid	Grab	270-gallon tote	Fair	"DMEA Sulfate Solution" and "Corrosive"	Northwest	AT10	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs
PS-WL08-012612	1/26/12	Waste Liquid	Grab	55-gallon steel drum	Poor - leaking	None	Northwest	None	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TCL SVOCs, TAL Metals, PCBs
PS-WL09-012612	1/26/12	Waste Liquid	Grab	270-gallon tote	Poor - cracks along edges and top	"DMEA Sulfate Solution" and "Corrosive"	West	AT97	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TCLP SVOCs
PS-WL11-012612	1/26/12	Waste Liquid	Grab	55-gallon steel drum	Poor - Leaking	"Hazardous Waste" and "Flammable"	West	C007	751	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TCL SVOCs
PS-WL12-012612	1/26/12	Waste Liquid	Grab	55-gallon steel drum	Poor - Leaking	"Flammable"	West	A040	677	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TCL SVOCs
PS-WL13-012612	1/26/12	Waste Liquid	Grab	55-gallon steel drum	Poor - Leaking	Poor - Leaking "Hazardous Waste" and "Flammable"	West	A086	164	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TCL SVOCs
PS-WS01-012512	1/25/12	Waste Solid	Grab	Cubic-yard fiber tote	Poor - open and leaking	None	West	None	None	pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs, TAL Metals
PS-WS02-012612	1/26/12	Waste Solid	Grab	55-gallon steel drum	Poor - open	None	Southeast	None	None	Flashpoint, pH, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs
PS-WS03-012612	1/26/12	Waste Solid	Grab	330-gallon tote	Poor - open and leaking	None	Southeast	None	None	ph, TCLP VOCs, TCLP SVOCs, TCL VOCs, TCL SVOCs
Notes:			2000							

CID = Criminal Investigation Division

Heartland Polymer = Heartland Polymer, Inc. DMEA = Dimethyl ethyl amine

ID = Identification

MEK = Methyl ethyl ketone

PCB = Polychlorinated No. = Number

SVOC = Semivolatile organic compound

TAL = Target Analyte List

TCLP = Toxicity Characteristic Leaching Procedure TCL = Target Compound List

U.S. EPA = United States Environmental Protection Agency

VOC = Volatile organic compound

Page 1 of 1

Surface Water and Soil Sampling Summary Table Chicago Heights, Cook County, Illinois Polychem Services Site Table 3-3

Date Matrix Sample 1 ype Sampling Location	Field Sample ID No.		Sample	E	Sompling Londing	Analyses
1/25/12Surface waterCompositePooled water emanating from drums in northwest1/26/12SoilCompositeDrainage ditch bordering Site to the west1/26/12SoilCompositeDrainage ditch bordering Site to the west1/26/12SoilGrabJoe Orr Woods, a Cook County Forest Preserve		Date	Matrix	Sample 1ype	Sampling Location	Z C Carrent Z
1/26/12SoilCompositeDrainage ditch bordering Site to the west1/26/12SoilCompositeDrainage ditch bordering Site to the west1/26/12SoilGrabJoe Orr Woods, a Cook County Forest Preserve	PS-W01-012512	1/25/12	Surface water	11	Pooled water emanating from drums in northwest	pH, TCL VOCs, TCL SVOCs, PAHs,
1/26/12SoilCompositeDrainage ditch bordering Site to the west21/26/12SoilCompositeDrainage ditch bordering Site to the west1/26/12SoilGrabJoe Orr Woods, a Cook County Forest Preserve					region to off-site storm sewer	TAL Metals
2 1/26/12 Soil Composite Drainage ditch bordering Site to the west 1/26/12 Soil Grab Joe Orr Woods, a Cook County Forest Preserve	PS-S01-012612	1/26/12		Composite	Drainage ditch bordering Site to the west	TCL VOCs, TCL SVOCs, TAL Metals
1/26/12 Soil Grab Joe Orr Woods, a Cook County Forest Preserve	PS-S01D-012612	1/26/12		Composite	Drainage ditch bordering Site to the west	TCL VOCs, TCL SVOCs, TAL Metals
	PS-S02-012612	1/26/12	Soil	Grab	Joe Orr Woods, a Cook County Forest Preserve	TCL VOCs, TCL SVOCs, TAL Metals

ID = Identification

PAH = Polycyclic aromatic hydrocarbon

SVOC = Semivolatile organic compound

TAL = Target Analyte List

TCL = Target Compound List VOC = Volatile organic compound

Table 4-1
Waste Liquid and Waste Solid Analytical Results Summary Table
Polychem Services Site
Chicago Heights, Cook County, Illinois

Transport of the state of the s	Laboratory Sample ID	1201631-02	1201631-04	1201631-06	1201631-01	1201631-10	1201631-17
	Matrix	Waste Liquid	Waste Liquid	Waste Liquid	Waste Liquid	Waste Liquid	Waste Liquid
•	Location ID	WL-03	WL-03	WL-04	WL-05	WL-06	WL-07
•	Sampling Date	1/25/2012	1/25/2012	1/25/2012	1/25/2012	1/25/2012	1/26/2012
	Field Sample ID	PS-WL03-012512	PS-WL03D-012512	PS-WL04-012512	PS-WL05-012512	PS-WL06-012512	PS-WL07-012612
Parameter 1	Regulatory Limit				Result		
Flashpoint (°F)	< 140	> 140	> 140	> 140	NA	- 99	> 140
pH (SU)	≤2 or≥ 12.5	7	5.37	7	5	7	13.1
TCLP VOCs (mg/L)							
2-Butanone	200	19	19	5 U	NA	10,000 U	0.2 U
Benzene	0.5	1 U	0.05 U	0.5 U	NA	1,000 U	0.02 U
TCL VOCs (mg/L or mg/kg)				•			
2-Butanone	NA	340	350	2,500 U	NA	5,000 U	2.5 U
4-Methyl-2-pentanone	ÄN	10 U	10 U	2,500 U	NA	5,000 U	2.5 U
Benzene	NA	10 U	10 U	200 U	NA	1,000 U	0.5 U
Ethylhenzene	ΨN	2,600	1,200	32,000	NA	400 U	8.2
Isopropylhenzene	Ϋ́Z	48	52	1,200	NA	1,000 U	0.86
Methyl acetate	ΥN	50 U	50 U	2,500 U	NA	5,000 U	4.3
Styrene	NA	10 U	10 U	200 U	NA	1,000 U	0.5 U
Toluene	NA	110	120	3,600	NA	810,000	3.3
Xylenes, total	NA	11,000	5,100	200,000	NA	1,200 U	55
TCL SVOCs (mg/L or mg/kg)							
1 I-Binhenvl		0.5 U	0.49 U	0.44 U	NA	0.041 U	0.046 U
Acetonhenone	ΑN	0.10	U 660.0	0.088 U	NA	0.0082 U	0.0092 U
Anthracene	\ \ \ \ \ \ \	0.5 U	0.49 U	0.44 U	NA	0.041 U	0.046 U
Phenanthrene	ΑN	0.5 U	0.49 U	0.44 U	NA	0.041 U	0.046 U
Phenol	Z V	0.5 U	0.49 U	0.44 U	NA	0.041 U	93
Pyrene	NA	0.5 U	0.49 U	0.44 U	NA	0.041 U	0.046 U
TAL Metals (mg/L or mg/kg)							
Aluminum	ΨZ	NA	NA	NA	NA	NA	NA
Barium	NA	NA	NA	NA	NA	NA	NA.
Calcium	₹Z	NA	NA	NA	NA	NA	NA
Chromium	ΑN	NA	NA	NA	NA	NA	NA
Loung	Ϋ́	NA	NA	NA	NA	NA	NA
Toppor	AN	NA	NA	NA	NA	NA	NA
I and	NA	AN	NA	NA	NA	NA	NA
Momentum	ΨN	N.A.	NA AN	NA	NA	NA	NA
Magnesium	VIV	NA	AN	AZ	NA	NA	NA
Milland	AIN	ΨN	NA	AN	NA	NA	NA
Nickel 8-3:	V.N.	AN	NA	NA	NA	NA	NA
Sodium	EN.	AIR	NA	VIV	NA	NA	NA
Zinc	NA	NA	INA	OK!	A 21.5		

Table 4-1
Waste Liquid and Waste Solid Analytical Results Summary Table
Polychem Services Site
Chicago Heights, Cook County, Illinois

	Laboratory Sample ID	1201628-04	1201631-20	1201628-08	1201628-06	1201628-10	1201631-08
	Matrix	Waste Liquid	Waste Liquid	Waste Liquid	Waste Liquid	Waste Liquid	Waste Solid
	Location ID	WL-08	MF-09	WL-11	WL-12	WL-13	WS-01
	Sampling Date	1/26/2012	1/26/2012	1/26/2012	1/26/2012	1/26/2012	1/25/2012
	Field Sample ID	PS-WL08-012612	PS-WL09-012612	PS-WL11-012612	PS-WL12-012612	PS-WL13-012612	PS-WS01-012512
Parameter 1	Regulatory Limit			Re	Result		
Flashpoint (°F)	< 140	> 140	> 140	84	108	120	NA
pH (SU)	≤2 or≥ 12.5	6.45	9.5	7	6.4	9	7.5
TCLP VOCs (mg/L)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
2-Butanone	200	1,000 U	0.2 U	800	5,000 U	5,000 U	0.2 U
Benzene	0.5	100 U	0.02 U	700	200 U	200 U	0.02 U
TCL VOCs (mg/L or mg/kg)						11 000 01	11.1.3
2-Butanone	NA	25 U	25 U	500 U	250 U	10,000 U	3.1.0
4-Methyl-2-pentanone	NA	25 U	25 U	1,400	250 U	10,000 U	5.I U
Benzene	NA	5.0	5 U	300	20 U	2,000 U	0.51
Ethylbenzene	NA	94	s U	36,000	12,000	3,500	100
Isopronylbenzene	NA	7.3	5.0	3,000	780	3,000	7.3
Methyl acetate	ĄZ	25 U	25 U	200 U	250 U	10,000 U	5.1 U
Styrene	ΑZ	13	5.0	100 U	S0 U	2,000 U	41
Toluene	AN	62	5 U	4,100	096	2,000 U	2.1
Xylenes, total	NA	330	15 U	160,000	54,000	14,000	420
TCL SVOCs (mg/L or mg/kg)							
1,1-Biphenyl	NA	310	0.043 U	0.043 U	0.5 U	0.49 U	34 U
Acetophenone	NA	96	0.0086 U	0.0086 U	670	2,200	098
Anthracene	AN	700	0.043 U	0.043 U	0.5 U	0.49 U	3.1 U
Phenanthrene	NA	590	0.043 U	0.043 U	0.5 U	0.49 U	3.1.0
Phenol	AN	160	0.043 U	1,000	0.5 U	0.49 U	16 U
Pyrene	NA	230	0.043 U	0.043 U	0.5 U	0.49 U	3.1 U
TAL Metals (mg/L or mg/kg							
Aluminum	NA	0.5 U	NA	NA	NA	NA	45
Barium	NA	0.25 U	NA	NA	NA	NA	3.00
Calcium	NA	69	NA	NA	NA	NA	780
Chromium	NA	0.25 U	NA	NA	NA	NA	0.92
Conner	NA	0.25 U	NA	NA	NA	NA	2.5
Iron	NA	40	NA	NA	NA	NA	320
Lead	AN	0.25 U	NA	NA	NA	NA	0.82
Magnesium	AN	10 N	NA	NA	NA	NA	81
Manganese	NA	0.25 U	NA	NA	NA	NA	5.0
Nickel	NA	0.25 U	NA	NA	NA	NA	0.51
Sodium	NA	24	NA	NA	NA	NA	49
	ATA.	(150	₹Z	- YZ	NA	Y Y	ر و

Table 4-1
Waste Liquid and Waste Solid Analytical Results Summary Table
Polychem Services Site
Chicago Heights, Cook County, Illinois

	I change Committee I	1201621 13	1301638-01	Notes:
	Laboratory Sample ID	1201021-	10-0701071	INOUES.
	Matrix	Waste Solid	Waste Solid	Shaded and bolded results exceed the hazardous waste regulatory limits in this 40 of the
	Location ID	WS-02	WS-03	Code of Federal Regulations, Part 261, Subpart C.
	Sampling Date	1/26/2012	1/26/2012	> = Greater than
	Field Sample ID	PS-WS02-012612	PS-WS03-012612	Less than or equal to
Parameter ¹	Regulatory Limit	Result	ult	S = Greater than or equal to
lashpoint (°F)	< 140	> 140	NA	°F - Degree Fahrenheit
pH (SU)	$\leq 2 \text{ or} \geq 12.5$	13.6	9	ID = Identification
rcl.P VOCs (mg/L)				mg/L = Milligram per liter
2-Butanone	200	0.2 U	0.2 U	mg/kg = Milligram per kilogram
Benzene	0.5	0.02 U	0.02 U	NA = Not analyzed or not applicable
ICL VOCs (mg/L or mg/kg)				mg/kg = milligrams per kilo; U = Non-detect
2-Butanone	ΥN	0.25 U	25 U	SVOC = Semi-volatile organic compound
4-Methyl-2-pentanone	NA	0.25 U	25 U	TCL = Target Compound List
Benzene	NA	0.05 U	5 U	TCLP = Toxicity Characteristic Leaching Procedure
enzene	NA	0.41	450	U = Not detected at listed reporting limit
Isopropylbenzene	NA	0.05 U	28	VOC = Volatile organic compound
Methyl acetate	NA	0.29	25 U	1 Only detected parameters listed
Styrene	NA	0.05 U	5 U	
Toluene	NA	0.05 U	13	-
Xylenes, total	NA	1.9	1,100	
rcl svocs (mg/L or mg/kg				
1,1-Biphenyl		3.1 U	0.44 U	
Acetophenone	NA	3.1 U	0.089 U	
Anthracene	NA	0.28 U	0.44 U	
Phenanthrene	NA	0.28 U	0.44 U	
Phenol	NA	1.5 U	0.44 U	
Pyrene	NA	0.28 U	0.44 U	
FAL Metals (mg/L or mg/kg)				
Aluminum	NA	NA	NA	
Barium	NA	NA	NA	
Calcium	NA	NA	NA	
Chromium	NA	NA	NA	
Copper	NA	NA	NA	
	NA	NA	NA	
	NA	NA	NA	
Magnesium	NA	NA	NA	
Manganese	NA	NA	NA	
Nickel	NA	NA	NA	
Sodium	NA	NA	NA	
	NA	NA	NA	=

Table 4-2 **Surface Water Analytical Results Summary Table Polychem Services Site** Chicago Heights, Cook County, Illinois

	Laboratory Sample ID	1201628-03
	Matrix	Surface Water
	Location ID	W-01
	Sampling Date	1/25/2012
	Field Sample ID	PS-W01-012512
Parameter ¹	Unit	Result
pH	SU	7.32
TCL VOCs		
Ethylbenzene	mg/L	0.013
Isopropylbenzene	mg/L	0.0015
Toluene	mg/L	0.0012
Xylenes, total	mg/L	0.07
TCL SVOCs		· · · · · · · · · · · · · · · · · · ·
Acetophenone	mg/L	0.0062
Anthracene	mg/L	0.0068
Phenanthrene	mg/L	0.0096
Phenol	mg/L	0.036
PAHs		
2-Methylnaphthalene	mg/L	0.0006
Anthracene	mg/L	0.008
Naphthalene	mg/L	0.00034
Phenanthrene	mg/L	0.0078
TAL Metals		
Aluminum	mg/L	18
Antimony	mg/L	0.0064
Arsenic	mg/L	0.013
Barium	mg/L	0.35
Cadmium	mg/L	0.0037
Calcium	mg/L	140
Chromium	mg/L	0.19
Cobalt	mg/L	0.0095
Copper	mg/L	0.14
Iron	mg/L	38
Lead	mg/L	0.17
Magnesium	mg/L	57
Manganese	mg/L	0.5
Nickel	mg/L	0.041
Potassium	mg/L	16
Sodium	mg/L	1,800
Vanadium	mg/L	0.053
Zinc	mg/L	2.5
Mercury	mg/L	0.00024

Notes:

ID = Identification

mg/L = Milligram per liter

PAH = Polycyclic aromatic hydrocarbon

SVOC = Semivolatile organic compound

Only detected parameters listed

SU = Standard unit

TAL = Target Analyte List

TCL = Target Compound List

VOC = Volatile organic compound

Soil Analytical Results Summary Table Chicago Heights, Cook County, Illinois Polychem Services Site Table 4-3

THE STATE OF THE S		1	Laboratory Sample ID	1201631-14	1201631-15	1201631-16
			Matrix	Soil	Soil	Soil
	To the same of the		Location ID	S-01	S-01	S-02
			Sampling Date	1/26/2012	1/26/2012	1/26/2012
	Regulatory I	ry Limit	Field Sample ID	PS-S01-012612	PS-S01D-012612	PS-S02-012612
Parameter ¹	TACO I/C-Ing	TACO I/C-Inh	Unit		Result	
TCL VOCs						
2-Butanone	NA	NA	mg/kg	0.02 J	0.016 U	0.017 U
Acetone	NA	100,000	mg/kg	0.068 J	0.047	0.13
TCL SVOCs						
Benzo(a)anthracene	8	NA	mg/kg	0.74	0.62	0.052 U
Benzo(a)pyrene	8.0	NA	mg/kg	0.95	0.76	0.052 U
Benzo(h)fluoranthene	8	NA	mg/kg	1.9	1.6	0.053
Benzo(k)fluoranthene	78	NA	mg/kg	9.0	0.5	0.052 U
Chrysene	780	NA	mg/kg	1.1	0.99	0.052 U
Fluoranthene	82,000	NA	mg/kg	1.8	1.8	0.052 U
Phenanthrene	NA	NA	mg/kg	99.0	0.7	0.052 U
Pyrene	61,000	NA	mg/kg	1.3	1.3	0.058
TAL Metals						
Aluminum	NA	NA	mg/kg	9,100	8,000	9,500
Antimony	820	NA	mg/kg	2.3	1.3	0.68 U
Arsenic	NA	1,200	mg/kg	7.2	6	7.6
Barium	140,000	910,000	mg/kg	110	85	98
Beryllium	4,100	2,100	mg/kg	0.57 U	0.43 U	0.61
Cadmium	2,000	2,800	mg/kg	2.3	1.1	0.41
Calcium	NA	NA	mg/kg	000,69	53,000	6,800
Chromium	6,100	420	mg/kg	28	21	15
Cobalt	120,000	NA	mg/kg	12	10	4.8
Copper	82,000	NA	mg/kg	210	89	19
Iron	NA	NA	mg/kg	24,000	23,000	21,000
Lead	800	NA	mg/kg	150	70	36
Magnesium	NA	NA	mg/kg	32,000	32,000	2,700
Manganese	41,000	91,000	mg/kg	380	400	160

Soil Analytical Results Summary Table Chicago Heights, Cook County, Illinois Polychem Services Site Table 4-3

			Laboratory Sample ID	1201631-14	1201631-15	1201631-16
			Matrix	Soil	Soil	Soil
			Location ID	S-01	S-01	S-02
		i. Pri	Sampling Date	1/26/2012	1/26/2012	1/26/2012
	Regulatory Li	ry Limit	Field Sample ID	PS-S01-012612	PS-S01D-012612	PS-S02-012612
Parameter ¹	TACO I/C-Ing	TACO I/C-Inh	Unit		Result	
Nickel	41,000	21,000	mg/kg	30	24	15
Potassium	ŊĄ	NA	mg/kg	1,400	1,200	1,900
Selenium	10,000	NA	mg/kg	1.5	1.4	1.7
Silver	10,000	NA	mg/kg	1.6	0.54 U	0.68 U
Sodium	NA	NA	mg/kg	2,200	1,300	32
Vanadium	14,000	NA	mg/kg	24	20	24
Zinc	610,000	NA	mg/kg	1,200	480	78
Mercury	610	16	mg/kg	0.18	0.33	0.062

Shaded and bolded results exceed the IEPA TACO I/C-Ing or TACO I/C-Inh regulatory limits.

ID = Identification

IEPA = Illinois Environmental Protection Agency

I/C-Ing = Industrial/Commercial Ingestion

I/C-Inh = Industrial/Commercial Inhalation

J = Estimated result

mg/kg = Milligram per kilogram

NA = Not applicable

SVOC = Semivolatile organic compound

TACO = Tiered Approach to Corrective Action

TAL = Target Analyte List

TCL = Target Compound List

U = Not detected at listed reporting limit

VOC = Volatile organic compound

l Only detected parameters listed

APPENDIX A PHOTOGRAPHIC DOCUMENTATION

Photograph No.: 1

Direction: Southeast Photographer: David Sena

Subject: Polychem Services chemical conversion facility and staged drums in northwest region

of the Site

Site: Polychem Services Site

Photograph No.: 2 Direction: South

Subject: Drums staged in west region of the Site

Date: 1/25/12

Date: 2/1/12

Photographer: Jeff Bryniarski

Photograph No.: 3 Direction: Northwest

Subject: Drums staged in northwest region of the Site

Date: 1/25/12

Date: 1/25/12

Photographer: Jeff Bryniarski

Site: Polychem Services Site

Photograph No.: 4

Direction: North **Photographer**: Jeff Bryniarski

Subject: Drums and totes staged in northeast region of the Site

Photograph No.: 5

Direction: Northeast **Photographer**: Jeff Bryniarski **Subject:** WESTON START conducting air monitoring in northeast region of the Site next to

drums

Site: Polychem Services Site

Photograph No.: 6
Direction: East

Subject: Containers staged in east region of the Site

Date: 1/25/12

Date: 1/25/12 ·

Photographer: Jeff Bryniarski

Photograph No.: 7

Direction: North Photographer: David Sena

Date: 1/26/12

Date: 1/2512

Subject: Damaged and cracked 270-gallon totes in northeast region of the Site

Site: Polychem Services Site

Photograph No.: 8

Direction: East Photographer: Jeff Bryniarski

Subject: Black resin spilled onto ground from open tote in southeast region of the Site

Photograph No.: 9 Date: 1/26/12

Direction: Southwest **Photographer**: Jon Colomb **Subject**: WESTON START collecting liquid waste sample PS-WL12-012612 from a drum in

the west region of the Site

Site: Polychem Services Site

Photograph No.: 10 Date: 1/26/12

Direction: Southwest **Photographer**: Jon Colomb **Subject**: WESTON START collecting liquid waste sample PS-WL08-012612 from a drum in

the northwest region of the Site

APPENDIX B LABORATORY ANALYTICAL AND DATA VALIDATION REPORTS

POLYCHEM SERVICES, INC. CHICAGO HEIGTS, ILLINOIS DATA VALIDATION REPORT

Date: February 8, 2012

Laboratory: ALS Environmental (ALS), Holland, Michigan

Laboratory Project #: 1201628

Data Validation Performed By: Lisa Graczyk, Weston Solutions, Inc. (WESTON) Superfund

Technical Assessment and Response Team (START)

Weston Analytical Work Order #/TDD #: 20405.016.001.1723.00/S05-0001-1201-012

This data validation report has been prepared by WESTON START under the START III Region V contract. This report documents the data validation for 4 waste liquid, 1 waste solid, 1 water, and trip blank samples collected for the Polychem Services, Inc. Site Assessment that were analyzed for the following parameters and U.S. Environmental Protection Agency (U.S. EPA) methods:

- Volatile Organic Compounds (VOC) by SW-846 Method 8260B
- Toxicity Characteristic Leaching Procedure (TCLP) VOCs by SW-846 Methods 1311 and 8260B
- Semivolatile Organic Carbons (SVOC) by SW-846 Method 8270C
- TCLP SVOCs by SW-846 Methods 1311 and 8270C
- Metals by SW-846 Methods 6020A, 7471A, and 7470A
- Ignitability by ASTM D93
- Corrosivity by SW-846 Methods 9040 and 9045

A level II data package was requested from ALS. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Superfund Organic Methods Data Review" dated June 2008 and "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review" dated January 2010. The Attachment contains the results summary sheets with the hand-written qualifiers applied during data validation.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 W. JACKSON BOULEVARD CHICAGO, IL 60604

FOCUSED SITE ASSESSMENT INSPECTION REPORT

MEMORANDUM TO FILE

INSTALLATION N	AME:	Polychem Services, In	c., LLC
U.S. EPA ID No.:		ILD 980 578 876	
LOCATION ADDRI	ESS:	374 E. Joe Orr Road Chicago Heights, IL 6	50411
NAICS CODES:		325211 (Plastics, Mat Manufacturing); 4246 and Allied Products N	690 (Other Chemical
DATE OF INSPECT	TION:	December 26, 2012	
EPA INSPECTÖR:		Michael Valentino	
PREPARED BY:	Michael Volentino		1-15-13
	Michael Valentino, Environmental Engin	neer	Date
REVIEWED BY:	Robertlan	Smeth	1/15/13
	Lorna M. Jereza, Ch	ief	Date

Compliance Section 1

RCRA Branch

Purpose of Inspection:

The purpose of the inspection was to observe site conditions and evaluate whether conditions have worsened since February 2012, when EPA Office of Superfund and its contractor, WESTON, Inc. provided oversight to an emergency removal action (ER) conducted by Polychem Services, Inc. ("Polychem") and its contractors. The February 2012 ER included over-packing 60 leaking and/or damaged drums and placing a berm (fabric absorbent socks) along the northwestern corner of the site.

Site History:

July 2007	Ші	nois	Envir	onme	ntal	Prote	ction.	Agency	(IEPA)	first ins	pects
•						4 - 1		т 😘			

Facility (then Heartland Polymers, Inc.).

August 2007 IEPA addresses violations of RCRA in Violation Notice Letter to

Heartland Polymers, Inc.

December 2007 IEPA rejects Heartland Polymer, Inc.'s Compliance Commitment

Agreement.

May 2008 IEPA inspects the facility, now operated by Polychem Services,

Inc. IEPA finds more than 500 drums and totes outside at the Facility and approximately 500 drums of usable solvent inside the

Facility.

December 2008 IEPA refers the case to EPA Region 5 for enforcement.

November 2009 EPA first inspects the Facility. Situated along the western,

northern and eastern sides of the Site were nearly 500 containers consisting of 55-gallon steel drums, totes and poly bags. Aisle space in many locations was not sufficient to allow for ease of human movement or for emergency equipment to be easily moved in and out, such as over-pack drums. At the time of the inspection,

the drums had been on-site for more than 180 days.

July 2010 IEPA inspects the Facility, and observes liquids running off-site to

a manhole in the street, leaking poly bags, open containers and evidence of historical spillage onto the Facility's blacktop.

August 2010 EPA inspects the Facility, and observes approximately 550 to 600

55-gallon steel drums staged on the blacktop throughout the facility, many of which were unlabeled, found to have illegible labels or were inaccessible or non-discernable. At least 110 drums had hazardous waste labels that were either dated May 12, 2009, or

left undated. There were also more than 200 totes on site on the

contain spent scrubber solution. October 2010 EPA issues a Request for Information under RCRA Section 3007 to Polychem Services, Inc. and Heartland Polymers, Inc. March 2011 EPA National Enforcement Investigations Center investigates the Facility and conducts sampling of containers. December 2011 Land and Chemicals Division (LCD) referred the Site to the Superfund Division (SFD) for investigation and potential removal action. EPA (SFD and LCD) inspect the Facility, and observed at least January 2012 130 drums of hazardous waste on the west side of the Site. EPA observed frozen liquids on the ground near these drums. EPA SFD conducted a Site Assessment under the Comprehensive January 2012 Environmental Response, Compensation and Liability Act. The Site Assessment discovered 671 containers on-site, of which 59 were leaking and 46 were open. February 2012 Polychem contractors performed an emergency response under EPA supervision, and over-packed 60 leaking drums and containers, secured lids on 17 other drums, secured eight open totes and stopped offsite releases of hazardous substances or pollutants in the northwest region of the Site by placing absorbent booms along the western fence line and near the area where drums were observed to be leaking in the northwest region of the Site. March 2012 EPA issues a Request for Information under RCRA Section 3007 to Polychem Services, Inc., Heartland Polymers, Inc., and JAS Environmental, Inc. EPA issues a RCRA 7003 Unilateral Administrative Order to September 2012

day of the inspection, the vast majority of which were believed to

Participants:

Tom Wiggins, Business Manager, Chemtech Services, Inc. (ph: 630-429-3640; email: twiggins@chemtechservicesinc.com) and Mark Knight, Principal, Arrow Consulting Group, LLC (ph: 219-808-8686; email: mjknight@arrow-cg.com) represented Polychem. Michael Valentino, RCRA Inspector, Land and Chemicals Division, and Ramon Mendoza, On-Scene Coordinator, Superfund Division, represented EPA Region 5. The

Polychem Services, Inc., Polychem Holdings, Inc., Heartland

Polymers, Inc., and Heartland Polymers Realty, Inc.

Chicago Heights Fire Department (CHFD) was represented by Fire Chief James Angell and Assistant Fire Chief Steve Kozlowski.

Site Description:

Polychem operates a medium-sized chemical conversion facility occupying a single building housed under approximately 25,000 square feet of roof and resting on approximately four acres of property in an industrial area of Chicago Heights, Illinois. The site is located approximately one and one-half miles east of I-394 (Bishop Ford Freeway) and one mile north of Route 30 (Lincoln Highway), and is set back to the south of Joe Orr Road.

Polychem recovers dimethyl ethyl amine (DMEA), dimethyl isopropyl amine (DMIPA) and triethylamine (TEA) from spent scrubber solutions from foundries under a tolling agreement managed by Chemtech Services, Inc. DMEA, TEA and DMIPA are used in foundry operations to cure phenolic urethane cold box binders (PUCB). The amine, which accelerates curing of the sand in the cold box, is vaporized in the PUCB sand cores and subsequently captured in a scrubber which utilizes an aqueous solution of a strong acid, typically H₂SO₄.

Spent amine scrubber solution containing DMEA, TEA and DMIPA are received in 250-gallon poly totes and processed first by introducing a strong acid in a continuous stirred tank reactor (CSTR). From the CSTR the DMEA vapors are distilled and condensed and then sent to a distillate receiving tank where they are subsequently packaged into 110-gallon steel vessels (Manchester tanks) and sold to Chemtech under a Multiple Release Purchase Order on a converted per-pound basis. TEA and DMIPA are sent to a holding vessel for an additional drying step prior to being packaged and sold to Chemtech. The process generates sodium sulfate salts and wastewater, both of which are nonhazardous.

Polychem presently employs six people. Hours of operation are 6:00 am to 4:00 pm, Monday through Friday.

Arrival and Pre-Meeting:

I arrived at the site at approximately 8:50 am CST on December 26, 2012. I waited in the parking lot to the south of the building as I awaited the arrival of OSC Mendoza and CHFD representatives. Fire Chief Angell and Asst. Fire Chief Kozlowski arrived within three minutes, followed shortly after by OSC Mendoza. We spoke briefly among ourselves before proceeding indoors where we were met by Messrs. Wiggins and Knight. Mr. Wiggins led us to a conference room on the 2nd floor.

We began the meeting at 9:10 am. Mr. Wiggins provided a brief overview of recent efforts to consolidate waste streams and to segregate Polychem waste inventory from Heartland Polymers, Inc. waste inventory.

Mr. Wiggins said amine recovery operations had since started again. He said that in calendar year 2012, he shipped off-site approximately 1.5 million pounds of nonhazardous wastewater. In the amine recovery process, sodium sulfate precipitates out at 87°F. The sodium sulfate consists of approximately 50% salt cake and 50% water. The water is skimmed off the top and out-hauled to Liquid Environmental Solutions.

Mr. Wiggins said that Polychem previously made solvent-based paints and that xylene was used to clean out reactors. Most of the hazardous waste streams on-site are solvents and resins with a low flash (< 140°F). Resins are off-spec materials left from prior site operations.

Materials on-site include resins (these are all legacy materials, according to Mr. Wiggins), nonhazardous materials from the recovery of amines (brine salts and wastewater) and scrubber solutions. Scrubber solutions received in totes from foundries are assigned a tracking number upon receipt for each tote. Each tote is then assigned a batch number for processing on-site. Spent sodium sulfate salt from the process (a nonhazardous by-product of the amine recovery process) is also assigned a batch number for each tote. This allows for the internal tracking of each tote and its associated time to be processed upon arrival at the site.

Mr. Wiggins, upon questioning, said that the materials presently in the stacker crane room are the responsibility of Polychem. He further stated that there are at most 40-50 drums in the stacker crane room, and he expects most will not be characterized as hazardous waste. If any of the materials in this room are deemed to be off-spec, Polychem agrees to include them in the Work Plan and to manage as hazardous waste if so characterized.

Mr. Wiggins said Polychem performed inventory of the contents of all indoor tanks. He provided an inventory, dated November 20, 2012, which included indoor tanks, outdoor tanks (tank farm along western edge of the site) and containers (totes, drums and pails) outdoors (segregated into distinct areas for Heartland materials and Polychem materials, the latter of which were moved into seven storage areas in the southeast, east, northeast and north-central portions of the site). (Attachment No. 1)

Mr. Wiggins and Mr. Knight presented a summary of four disposal options Polychem will include in the Work Plan to be submitted as required by the 7003 Unilateral Administrative Order. These options include: (i) bulk loads to a cement kiln (Essroc Italimenti in Logansport, Indiana); (ii) fuel blending and use as fuel; (iii) beneficial re-use downstream in lieu of commercial chemical product by Lonestar Truck Company to clean out tanker trucks; and (iv) beneficial re-use downstream in lieu of commercial chemical product by a paint company to clean out its reactor vessels and tanks. ¹

¹ The beneficial re-use options must be weighed by EPA in light of the ongoing speculative accumulation and storage of hazardous waste for greater than 90 days (since at least May 12, 2009 to December 26, 2012).

Polychem proposes to blend solvents in it reactor vessel and pipe to one of five 6000 gallon tanks. It will blend in 6000-gallon increments. It expects a 10% reduction in amine production due to needing the reactor vessels, but the reactor vessels allow pressure relief venting and are the safest place to blend the solvents according to Mr. Wiggins.² Polychem anticipates needing three months to completely remove all bulked solvents.

Polychem has taken a blend from approximately 50 totes and 30-40 drums.³ Polychem has done compatibility testing and run analyses for VOCs, SVOCs, total metals, flash point and pH on this composite. (Attachment No. 2) The composite consists of approximately 46% total xylene, by weight, and has a flash point of 84°F. Mr. Wiggins referred to the solvent blending/off-site disposal program as Polychem's "CT-23 Program."

Mr. Wiggins said that once approval to proceed is given, Polychem can process 30,000 gallons in three to four week cycles. Solvents would be blended using the reactor vessels under a nitrogen blanket and would be transferred to one of five 6000-gallon tanks, from which the solvents would be off-loaded to a tanker truck.

Mr. Wiggins said the one factor which could delay matters is getting the analyses completed. He expects all solvents and resins under the CT-23 Program can be removed off-site within two to three months.

Mr. Wiggins also said that cold weather is also part of the hold-up, as some materials are more viscous than others. He said the pour point of the solvent blend was -90°F.⁴

Chief Angell asked if there are any inherent dangers in Polychem's proposed solvent blending operations. Mr. Wiggins replied with five points: (i) none of the materials that will be included in the CT-23 Program are reactive; (ii) the blend will be a low flash mixture because it will consist of low flash components, and therefore Polychem will maintain a nitrogen blanket on all blend tanks and reactors. Mr. Wiggins said that Polychem is considering removing its now mothballed solvent still and on its footprint erecting a nitrogen tank. All blending of solvents to occur will take place under a nitrogen blanket because of the low flash characteristic and fire potential of the solvents to be blended. If Polychem does not install the nitrogen tank it will use nitrogen canisters (at is presently employs in its amine recovery reactors to provide a nitrogen blanket in the head space of those reactors). Polychem is speaking with both U.S. Gas and Air Products along these lines; (iii) all fans are equipped to exhaust solvent vapor leaks to roof vents;

² At the time of the site visit, Polychem was only processing in Reactors nos. 1 and 2. Reactor no. 1 is a 4800 gallon vessel which operates at 60 psi. Reactor no. 2 is an 1800 gallon vessel which also operates at 60 psi. Reactor no. 3 is a 400 gallon vessel which operates at 100 psi.

³ The composite sample was taken on November 15, 2012.

⁴ The solvent blend, as stated above, is about 46% total xylene by weight. The pour point for xylene is 0°F, which is significantly higher than that measured for the solvent blend.

⁵ Flash point below 140°F, therefore mixture will be a characteristic hazardous waste (D001).

(iv) all tanks and reactors will be grounded to reduce possibility of sparking; and (v) chemical fire extinguishers are placed throughout the plant.⁶

At this point that Chief Angell said that the fire department would use foam to fight a fire at the site, and that CHFD does have foam.

Mr. Wiggins said that one safety concern of Polychem was to move flammables closer to the center of the facility and further from the property line. On the east end of the site, Polychem has placed totes containing sodium sulfate salts and moved its solvent drums west of the salt totes. However, the Heartland materials, much of which consists of spent flammable solvents, remains within 50 feet of the west fence line, just north of the raw material outdoor tank farm.

Mr. Wiggins said that Polychem recovers about 200,000 pounds of amines annually, and is looking to increase production to 250,000-350,000 pounds per year.

Site Walk-Through and Observations:

We began the facility walk-through at approximately 10:15 am CST. Each of the participants identified above took part in the site walk-through.

During the course of the walk-through, I took thirty-seven (37) photographs on a Nikon Coolpix P4 digital camera, with 8.1 megapixel resolution. These photographs are contained in the attached photo log. They are true and representative of the conditions I observed at the installation on the date of the CEI. All photographs were taken between 10:27 am and 11:04 am CST. Descriptions of the photographs are provided directly below each in the attached Photo Log. (Attachment No. 3)

The site walk-through consisted of walking the perimeter of the site, beginning in the southeast corner and working counter clockwise around the site outdoors. We also went inside the production and processing building to tour the reactor vessels and the control room serving these, as well as the first floor where processed amines are metered through pumps into totes and canisters.

The attached photo log describes visual observations during the walk-through and the author refers the reader to this and the site summary findings below.

At the completion of the site walk-through we returned to the conference room at 11:10 am. The summary of findings incorporates key points raised during the close-out meeting.

⁶ During the site walk-through, CHFD confirmed that the type ABC fire extinguishers placed within the plant were compatible with the chemicals stored at the site.

⁷ OSC Mendoza also took photographs during the walk-through. After reviewing the attached photo log, Mr. Mendoza acknowledged that his photos and those of this report's author were similar enough in content to only attach one photo log to this site summary report.

Site Aerial Photo:

The following aerial photo does not reflect site conditions at the time of the December 26, 2012 site visit, but rather it is included here to provide reference points for the attached photographs and photo summary table.

Summary of Findings:

- Heartland waste and Polychem waste have been segregated. Heartland wastes are
 on the west side of the site, north of the raw material tank farm, and apart from
 Polychem waste and amine scrubber solutions.
- Drums formerly in the northwest corner of the site have been moved to either the east side (Polychem ownership) or joined with drums on the west side (Heartland ownership, according to Polychem).

- Amine sulfate salts (process residues from amine recovery) are lined up along the eastern fence line, serving as a buffer to Polychem's flammable drums which are now more centrally located on the east side of the site.
- Polychem has an internal tracking system that identifies each incoming tote of spent amine scrubber solution, and each tote is assigned a batch number (processed in one of two active reactors). By-products of water and sodium sulfate (salt) are separated: water is sent offsite as nonhazardous (about 1.5 million pounds in 2012), and sodium sulfate totes are tracked according to their incoming batch number.
- Amine recovery process is up and running. This is most evident by the reduced number of totes containing spent amine solutions in the north, northeast and east areas of the site.
- Current waste inventory includes outdoor and indoor tank volumes/contents. These materials, according to Mr. Wiggins, are the responsibility of Polychem.
- The stacker crane room contains almost exclusively product materials, and only about 40-50 drums in all. According to Mr. Wiggins, these belong to Polychem. In the event some of these drums turn out to be off-spec materials requiring disposal, Polychem will include then in the hazardous waste inventory to be managed as hazardous waste.
- Polychem will do in-field bucket tests (for compatibility) for all solvent blends.
- All tanks and reactors involved in solvent blending will be grounded and will take place under a nitrogen blanket to eliminate fire risk.
- The amine reactor vessels, where solvent blending will occur, are located on the 2nd floor of the process building, and the room is equipped with blow out walls to reduce the amount of damage in the event of an explosion.
- Polychem will propose four disposal options in the Work Plan. These include offsite disposal as hazardous waste as well as beneficial re-use in lieu of commercial chemical product.
- OSC Mendoza will draft an off-site contingency/response plan. He will send this to Craig Melodia (EPA ORC) who would then forward it to Polychem and Heartland through their attorneys. OSC Mendoza will share with this with the CHFD to ensure proper response for the community.
- Polychem has submitted its EPCRA Tier II form to CHFD, and agreed to send a copy to OSC Mendoza.
- We did not observe any leaking or damaged containers and totes during the site walk-through.
- CHFD gave recommendations to Mr. Wiggins regarding the number, type, location and accessibility of fire extinguishers. Type ABC would be appropriate for fighting chemical fires at Polychem. In some locations, current fire extinguishers need to be made more visible and/or elevated. CHFD said that more fire extinguishers are needed and must be placed within 50 feet of one another.
- No hazardous waste releases were observed off-site (beyond the fence line) during the course of the inspection.
- CHFD and Polychem confirmed that foam should be used by the Fire Department if they respond to a fire at the facility.

• Drums over-packed from the February 2012 CERCLA emergency response were still on-site and had not been shipped off-site for disposal.

Following our meeting with Messrs. Wiggins and Knight, I met briefly outside with Chief Angell, Asst. Chief Kozlowski and OSC Mendoza. We discussed the improvements made by Polychem since EPA's last site visit (February 2012) and recognized the ongoing fire threats posed by the facility.

We concurred that additional time should be given to Polychem to submit the Work Plan and accompanying documents required by the 7003 Unilateral Administrative Order, which were past due at the time of the December 26, 2012 site visit.

I left the site at approximately 11:35 am.

Attachments:

- 1. Inventory Areas (11/20/12)
- 2. Composite Solvent Blend Analysis (ALS Group USA, reported 12/3/12)
- 3. Photo Log December 26, 2012

Leaven to the first of the control o

ATTACHMENT NO. 1

- 사용하다는 사용님과 발표를 통한 사용을 다른 발표하여 <u>소설임자는 발표하는 </u> 사용을 하는 생각이 하는 사용을 하는 것이다. -

				TWANSA MATURITA	i ja 19 militari ke di di kecamatan ke di kecamatan Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn
					!
	•				
		•			
			,		·
					·
			•		
	•				
		•			
		•	·		
	•				
		-			
	-				

	٠					9			Drums
	Non Haz Mat	greater than 140F		Resin and Solvent Mixtures	Heartland Area	55 gallon 56 gallon			Drums
,	186/J28H	less than 140 F							
5 68 ST								14	Hearffand Polymer
Woman Court	MILL RICEAN								Suterior lots
It is a second of the second			ij	W	Outdoor Lank Harm	15,000	ss		TANK 261
		ş	NA/T		Outdoor Tank Harm	16,500	SS		TANK 251
		8,000	1,000			2,800	SS		WT-14
			W/T	: <u>3</u>		2,800			MT-11
			M/T	Sodium Suitate	Indoor	10,000	3500		TANK 411
		50.000		Sodium Suitate	Outdoor Tank Farm	4,000	SS	Sample	TANK 311
		1,000	hose	Trench & Dirty Rinse Solvent	Indoor-Mid Section	6,000	1500		TANK 212
		17.850 being tested	1 7 700	Trench & Dirty Rinse Solvent	Indoor-Mid Section	6,000	1500		TANK 211
		11 850 balne tested	W/-	Sodium Sulfate	Indoor-Mid Section	6,500	SS		TANK 215 (MIX)
			18/1 18/1	Neville LH Resin	Indoor-Mid Section	6,000			TANK 214 (MIX)
		24,000 being tested	3,000	Solvent Ribse	Indoor-Mid Section	6,000			TANK 213 (MIX)
			1,000 est	Clay-Lime Neville Settling	Indoor-Mid Section	6,000			TANK 300
			1,000 est	Clay-Lime Neville Settling	indoor-Mid Section	6,000			TANK 2014
			5,000 est	Clean Up water - Some VOM	Indoor-Mid Section	6,000			TANK 202
			2,000 est	Dirty Rinse Solvent	Indoor-Mid Section	6,000			TANK 201
			W/T		Indoor North East:	77			Corubber Tank
	-		: <u>*</u>		Indoor-South East	6,000			TANK DAT-O
	, J		* * * * * * * * * * * * * * * * * * *		indoor-South East	6,000			TANK 241-8
6	\$-\$	Buyana compression	NO THE	Trench Water	Indoor-South East	6,000			TANK 241-A
-		Raing tecter	a, our est	Caustic Soda	Indoor-South East	10,000	SS		TANK 148
NOO O St. State Deal	13 / YOU')0 000 h		DMEA Sulfate	Indoor-South East	10,000	52		TANK 142
	Oma	J,oco	M T	Phenol heal	Indoor-South East	10,000	53		TANK 141
•		A OFF	500		Indoor-North West	6,000			TANK 232-C
		Reing facted			Indoor-North West	6,000			TANK 232-8
		Reing tested	TO, MOO COL	Trench Water	Indoor-North West	6,000			TANK 232-A
		80 OO Being tested	10 pro est	M/T	Indoor-South West	6,000			TANK 231-C
		*	M/T	<u> </u>	Indoor-South West	6,000	ė		TANK 231-B
			NACT	N/7	Indoor-South West	6,000			TANK 231-A
			\$ A !T		Indoor-South West	9,000			TANK 222-8
				Lebon Marer	Indoor-South West	000,6			TANK 222-A
		28.000 Being tested	7 000 est		Indoor-South West	12,000			TANK 221-B
		Adjoint Grant	3,000 (esc)	Rinse Salvent	Indoor-South West	6,000			TANK 221-A
7	5/12	22 000 Being Tagted	1 000 (cm)		Indoor-South West	6,000			TANK 122-C
			: M	III HABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		6,000			TANK 122-A
all home at broadly made the R	J. W. J.	27,000 Heing tested	3,000 (est)	Tranch Water		8.000			
	THE /	20,000 haz	2,000 (est)	dirty caustic		9,000			TANK 121-A
MILLIO CONTOLIANAY YOU'V	ts > theracke		heal	50% Caustic Soda	Indoor-South West	OCT ST			TANK 108
55	-				Outdoor Tank Earn	19 150	ž		TANK 107
	•	254,280	32,600	AMS - STYTEMO	Outdoor Tank Farm	20,000	2		TANK 106
				M/T	Outdoor Tank Sarm	000,17			TANK 105
				M/T .	Outdoor Tank Farm	300,15			TANK 104
				SA/T	Outdoor Tank Carm	25,000			TANK 103
		10,000	1,000 - heal	Sociem Sulfate	Outdoor Tank Farm	25,000			TANK 102
		10,000	1,000 - heal	Sodium Suifate	Outdoor Tank Farm	25,000			TANK 101
		156,312 87	20,040		LOCATION	Ϋ́	_	# Totes	CONTAINER
	notes	Weight (lbs) Flash Point Toxicity	- 13	PRODUCT DESCRIPTION	CONTAINER	_	me/ Moc	Volume,	
			ALILNATIO ELEMINOBARA						

real

3

55 gal drum 55 gal drum	55 gai di din •	00 BB		ne collection .	E and Arrian		55 gai drum	Hand leg es	SS gal druit	Compartment	50 gai plastic drum	50 gal plastic drum	SS gal drum	55 gal drum	es eal drum	55 gai drum	55 gal drum	55 gai drum	55 gal drum	a to case	1 pal pal	T T T T T T T T T T T T T T T T T T T	5 va T Pa		Comparament "A" - chired to so a	Chine Di Viev	であるが、なるの			S and Pail	55 gai Drum		Pallets					3008	Area 3	i O CG2	Totes	Area 2	- Control of the Cont	Super Sacks		,
1 55 ga) dru 55 gal		1 55 gal dru 55 gal	1 55 gal dru 55 gal		5 55 gal dru 55 gal	2 55 gal dru 55 gal	4 55 gal dru 55 gal	S 25 85 dru 55 83	1 55 gal dru 55 gal	1 55 ea) dru 55 gal	2, 50 gai dru 50 gai	4 50 gal dru 50 gal	1 55 gal dru 55 gal	1 55 gal dru 55 gai	4 55 gai dru 55 gai	1. 55 gal dru 55 gal		1. 55 gal dru 55 gal	1 55 gal dru 55 gal	32 1 b bag 1 b	1 gal pall	1 1 gaijug 1 gai	3 5 gai f Pal 5 gal	10 Sgal F Pal Sgal	eu vo po r 19 5 gai F Pai 5 gai		Poly in Ca 250 gallon	Poly in Ca 250 gallon	Poly in Ca 250 gallon	175 Pail 5 gallon	3		Pallets 48 X 48		3,000 Poly in Ca 250 gation '	Palvin Ca 750 gallon			privin Ca 250 gallon		9,250 Poly In Ca 250 gallon Poly in Ca 250 gallon			12	Empty Carbon St 110 gallon	
Area 4	Area 4	Area 4	Area ¢	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	Afea 4	Area 4	Area 4	4 Elea	Alea 4	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	Area 4	j	Area 4	Area 4	Area 4	Area 4	Area 4		Area 5	Area 3	Area 3	Areas	200	Area 3	Area 3		Area 2 Area 2			Area 1	Area 1	Area 1
EthanoiAmine	IBMA	DIEthanol	Methyl Methacrylate	Butyl Acrylate	Diethylene Glycal	Glycerine	Methyl Isobutyl Ketone	Glycol Ether PNP	DiAcetone Alcohol	Bisomer HEMA Std	Higher Company of Process (Section)	Hydrocholoric Acid (20%)	Chaeca Car Carea	RED Inseed Oil	Linseed Fatty Acid (Whitford)	and the state of t	sturene / Xviene Monomer Mix	Junetox DT	Shrene	Liperox Ada	Silane	Organic Peroxide - Luperox 26	Boron Florine Ether catalyst	Organic Peroxide - Triginox	Organic Peroxide - Luperox		Resin		TSA SUIFAN SUIFAN IN A MANAGE	School C. Hotel	Solvent/Resin mixtures		New Pallets	Na Sulfate Water - High pH	Na Sulfate Water - Check Amines	Mg/Na Sulfate Ruise Water	Empty Totas	Olly Water	Oily Water		Resinant Solvent Mixtures	*#####################################		Gelled Ink Resin	For Tertiary Amine packaging Va	. For Reuse - Customer Scrubber Solution: Variable
, ,	H		. j	. 00	ນປ	N	4	:U1	ц	ь		2	<i>†</i> 2-	ا دا	د <u>ا</u> د		د. و	+	غمز	<u>.</u> ;	33 +	-4 F	t	u E	; ts		- to		20	٠, .	35/		, 6	1 12	12	4	ß	. ^. es			50th			16	3	riable Heals
55	55	U.	ነ ያ	40	2/3	110	220	275	32	i vi		110	200	5	220) }	55	55	55	55		<u>.</u> ,	→ ?	70	n 19	:	2,500	1,250	5,000	22,000	175	,		3,000	3,000	1,000		440	250		43,750	9			is is	als
420	410	400	8	, i.e.	7,000 1,000	3 800	1,630	2,130	1 400	450	į	1,100	2,000	400	400		440	440	440	440	3 T	10	ee i	700	600 600	700	19,500			220,000 Non Haz	1,313	151 288		27,000	ZEL THE MORE COO!/7	9,000 below 140 Haz	VOO 1 Non Haz	3,300 Notina.			393,750 Less than 14882	83,250 Less than 1/ Haz	FP21140 1001	_	24 000	•
																												82 4			CT-23 Program	CT-23 Program		Pallets for Drum shipments	12 Neutralize first	4 Strip DWEA first			2 7		7 CT-23	7 CT-23	<u></u>		7 Non Haz resin	4-5

remande allight franklig i helimpakki pitt – digit traktik spillig beskille andri filli filli fill traktik bet Tilli

250 gal rounds	Dack #3 - Area 8			55 gal Drums	Tote	Area 7	Tote	Arca 5	50 Lb Bags	Drum	Drum	Drum	Drum	Drum	50 Lb Bags	SO Lb Sags	50 Lb Bags	Super Sack	Total	Area 5	Bní
Plastic To: 250 gallons Plastic To: 330 gallons				200 Drums 55 gallon	22 Poly in Ca 250 gallon 50 Poly in Ca 250 gallon		Poly in Ca 250 gailon		2 pallets dags 30 lbs			1 Drum 55 gal	10 Orum 55 gal	8 Drum 55 gal	12 Bags 50 lbs	1 pallet Bags 50 lbs		r Sac	Poly in Ca 250 gallon		11galjug 1gal
Dock #3				Area 7	Area 7 Area 7		Area 6		j	≱ <u>*</u> 60 60 60 60 60 60 60 60 60 60 60 60 60	Area u	Areau	Areas	Area 5	Area 5	Area	Area	Area.5	Area 5		Area 4
MT round totes MT HD plastic totes		-		Resirt/so vent mixture	Na Sulfate Brine Cake Na Sulfate Water		WESUlate Gean up - Rinse Water			Carbon Beads	Saw Rean Off	Follogia College II nee		Minaral Chiefts		Par elicato	Osketine Acid	Pontservihaltoj	Na Sulfate Brine cakes	·	Amonia
14 7			/	200		*	39			80 1	∾ 1	N 1		5	3	3	40	s ,	. 87		٠.
•			\ includus	10,000	2,750 12,500		9,750			:	110	110	A }	250	550				3,828		;
			18 overpule drams	78,000	27,500 125,000		87,750			4,000	820	820	400	4.200	5 000 F	600	2.000	4,000	38,280 2,000		4
			2条5	782	Non Haz	•	Нах	7											Non Haz		
		(000)	* F-140	CI-23 Program	4		7 × W	\$	•										43		
			<u>:</u>														•				

ATTACHMENT NO. 2

		p. 14.11 (5.27)	the Architecture of the New York		The second second	M	
	п						
<i>V</i>	•						
			•	•			
					•		
	•			•			
		•					
						-	
						•	
							٠
						•	

Date: 03-Dec-12

Client:

Arrow Consulting Group, LLC

Project:

Polychem Services, Inc.

Sample ID:

Composited Solvent

Collection Date: 11/15/12

Work Order: 1211537

Lab ID: 1211537-01

Matrix: SOLVENT

Analyses	Result (Report Qual Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		SW74		Prep Date: 11/20/12	Analyst: LR
Mercury	ND	0.040	mg/Kg	ĭ	11/21/12 01:43 PM
METALS BY ICP-MS		SW693	20Á	Prep Date: 11/26/12	Analyst: CES
Arsenic	ND	0.28	mg/Kg	1	11/27/12 08:01 PM
Barium	ND	0.28	mg/Kg	1	11/27/12 08:01 PM
Cadmium	ND	0.11	mg/Kg	1	11/27/12 08:01 PM
Chromlum	3.1	0.28	mg/Kg	1	11/27/12 08:01 PM
Lead	ФИ	0.28	mg/Kg	1	11/27/12 08:01 PM
Selenium	ND	0.28	mg/Kg	1 .	11/27/12 08:01 PM
Silver	МD	0.28	mg/Kg	1	11/27/12 08:01 PM
SEMI-VOLATILE ORGANIC COMP	POLINDS	SW82	70	Prep Date: 11/27/12	Analyst: HL
1,1'-Biphenyl	ND ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2,4,5-Trichlorophenal	, ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2,4,6-Trichlorophenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2,4-Dichlorophenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2,4-Dimethylphenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2,4-Dinitrophenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2,4-Dinitrotoluene	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2.6-Dinitrotoluene	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2-Chloronaphthalene	, ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2-Chlorophenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2-Methylnaphthalene	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2-Methylphenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2-Nitroaniline	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
2-Nitrophenol	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
3.3'-Dichlorobenzidine	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
3-Nitroaniline	ND	4,600	-	100	11/27/12 01:23 PM
4,6-Dinitro-2-methylphenol	ND	4,600		100	11/27/12 01:23 PM
4-Bromophenyl phenyl ether	ND	4,600		100	11/27/12 01:23 PM
4-Chloro-3-methylphenol	ND	4,600		100	11/27/12 01:23 PM
4-Chloroaniline	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
4-Chlorophenyl phenyl ether	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
4-Methylphenol	ND	4,600		100	11/27/12 01:23 PM
4-Nitroaniline	. ND	4,600		100	11/27/12 01:23 PM
4-Nitrophenol	ND -	4,600		100	11/27/12 01:23 PM
Acenaphthene	ND	4,600		100	11/27/12 01:23 PM
Acenaphthylene	ND	4,600		100	11/27/12 01:23 PM
Acetophenone	ND	4,600	mg/Kg	100	11/27/12 01:23 PM
Anthracene	ND	4,600		100	11/27/12 01:23 PM

Note:

See Qualifiers page for a list of qualifiers and their definitions.

Date: 03-Dec-12

Client:

Arrow Consulting Group, LLC

Project:

Polychem Services, Inc.

Sample 1D:

Composited Solvent

Collection Date: 11/15/12

Work Order: 1211537

Lab ID: 1211537-01

Matrix: SOLVENT

analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzeo
Atrazine	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Benzaldehyde	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Benzo(a)anthracene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Benzo(a)pyrene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Benzo(b)fluoranthene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Benzo(g,h,i)perylene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Benzo(k)fluoranthene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Bis(2-chloroethoxy)methane	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Bis(2-chloroethyl)ether	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Bis(2-chloroisopropyl)ether	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Bis(2-ethylhexyl)phthafate	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Butyl benzyl phthalate	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Caprolactam	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Carbazole	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Chrysene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Dibenzo(a,h)anthracene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Dibenzofuran	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Diethyl phthalate	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Dimethyl phthalate	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Di-n-butyl phthalate	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Di-n-octyl phthalate	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Fluoranthene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Fluorene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Hexachlorobenzene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Hexachlorobutadiene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Hexachlorocyclopentadiene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Hexachloroethane	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Indeno(1,2,3-cd)pyrene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Isophorone	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Naphthalene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Nitrobenzene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
N-Nitrosodi-n-propylamine	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
N-Nitrosodiphenylamine	"" - ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Pentachlorophenol	ND:		4,600	mg/Kg	100	11/27/12 01:23 PM
Phenanthrene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Phenol	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Pyrene	ND		4,600	mg/Kg	100	11/27/12 01:23 PM
Surr. 2,4,6-Tribromophenol	0		35-125	%REC	100	11/27/12 01:23 PM
Surr: 2-Fluorobiphenyl	o		45-105	%REC	100	11/27/12 01:23 PM
Surr: 2-Fluorophenol	o		35-105	%REC	100	11/27/12 01:23 PM

See Qualifiers page for a list of qualifiers and their definitions. Note:

Date: 03-Dec-12

Client:

Arrow Consulting Group, LLC

Project:

Polychem Services, Inc.

Sample 1D:

Composited Solvent

Collection Date: 11/15/12

Work Order: 1211537

Lab ID: 1211537-01

Matrix: SOLVENT

Analyses	Result Q	Report ual Limit	Units	Dilution Factor	Date Analyzed	
Surr: 4-Terphenyl-d14	0	30-125	%REC	100	11/27/12 01:23 PM	
Surr: Nitrobenzene-d5	o	35-100	%REC	100	11/27/12 01:23 PM	
Surr: Phenol-d6	0	40-100	%REC	100	11/27/12 01:23 PM	
OLATILE ORGANIC COMPOUNDS		SW826	0		Analyst: BG	
1,1,1-Trichloroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,1,2,2-Tetrachloroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,1,2-Trichloroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,1,2-Trichlorotrifluoroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,1-Dichloroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,1-Dichloroethene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,2,4-Trichlorobenzene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,2-Dibromo-3-chloropropane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,2-Dibromoethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,2-Dichlorobenzene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,2-Dichloroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,2-Dichloropropane	· ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,3-Dichlorobenzene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
1,4-Dichlorobenzene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
2-Butanone	ND	5,000	mg/Kg	1E+06	11/20/12 10:41 PM	
2-Hexanone	ND	5,000	mg/Kg	1E+06	11/20/12 10:41 PM	
4-Methyl-2-pentanone	ND	5,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Acetone	ND	25,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Benzene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Bromodichloromethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Bromoform	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Bromemethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Carbon disulfide	ND	5,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Carbon tetrachloride	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Chlorobenzene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Chloroethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Chloroform	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Chloromethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
cis-1,2-Dichloroethene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
cis-1,3-Dichloropropene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Cyclohexane	ND:	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Dibromochloromethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Dichlorodiffuoromethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Ethylbenzene	99,000 \	5,000	mg/Kg	5E+06	11/21/12 09:42 PM	
Isopropylbenzene	6,100	1,000	mg/Kg	1E+06	11/20/12 10:41 PM	
Methyl acetate	ND	10,000	mg/Kg	1E+06	11/20/12 10:41 PM	

Note:

See Qualifiers page for a list of qualifiers and their definitions.

Date: 03-Dec-12

Client:

Arrow Consulting Group, LLC

Project:

Polychem Services, Inc.

Sample ID:

Note:

Collection Date: 11/15/12

Composited Solvent

Work Order: 1211537

Lab ID: 1211537-01

Matrix: SOLVENT

Analyses	Result Qu	Report ial Limit	Units	Dilution Factor	Date Analyzed
Methyl tert-butyl ether	ND	5,000	mg/Kg	1E+06	11/20/12 10:41 PM
Methylcyclohexane	ND	10,000	mg/Kg	1E+06	11/20/12 10:41 PM
Methylene chloride	ND	5,000	mg/Kg	1E+06	11/20/12 10:41 PM
Styrene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM
Tetrachlomethene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM
Toluene	59,000	1,000	mg/Kg	1E÷06	11/20/12 10:41 PM
trans-1,2-Dichloroethene	ND	1,000	mg/Kg	1E÷06	11/20/12 10:41 PM
trans-1,3-Dichloropropene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM
Trichloroethene	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM
Trichlorofluoromethane	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM
Vinyl chloride	ND	1,000	mg/Kg	1E+06	11/20/12 10:41 PM
Xylenes, Total	460,000	15,000	mg/Kg	5E+06	11/21/12 09:42 PM
Surr: 1.2-Dichloroethane-d4	103	70-130	%REC	1E+06	11/20/12 10:41 PM
Surr: 1,2-Dichloroethane-d4	103	70-130	%REC	5E+06	11/21/12 09:42 PM
Surr: 4-Bromofluorobenzene	97.2	70-130	%REC	5E+06	11/21/12 09:42 PM
Surr: 4-Bromofluorobenzene	104	70- 130	%REC	1E+06	11/20/12 10:41 PM
Surr: Dibromofluoromethane	96.2	70-130	%REC	5E+06	11/21/12 09:42 PM
Surr: Dibromofluoromethane	98.6	70-130	%REC	1E+06	11/20/12 10:41 PM
Surr: Toluene-d8	106	70-130	%REC	1E+06	11/20/12 10:41 PM
Surr: Toluene-d8	98.3	70-130	%REC	5E+06	11/21/12 09:42 PM
FLASHPOINT, P-M CLOSED-CUP	10 met 8/41 %	D93		·	Analyst: MB
Flashpoint, P-M Closed-cup	84:0		°F	1	11/26/12 10:30 AM
PH		SW90	45D		Analyst: JB
pH	5,25		s.u.	1	11/16/12 08:50 AM

ATTACHMENT NO. 3

PHOTO LOG –DECEMBER 26, 2012 EPA AND CHFD SITE VISIT POLYCHEM SERVICES, INC. – CHICAGO HEIGHTS, IL

Photo No.	DATE	TIME	PHOTOGRAPHER	ORIENTATION	DESCRIPTION
1	12/26/12	10:27 am	M. Valentino	NE	Outside southeast corner of production building. Solvent still and its secondary containment system. Still is no longer in use. Polychem is considering removing these structures and erecting a nitrogen tank on this footprint.
2	12/26/12	10:28 am	M. Valentino	N	Outside southeast corner of production building. Hot oil boiler.
3	12/26/12	10:28 am	M. Valentino	NW	Area 5. Outside production building's southeast side. Red drums contain heat transfer oil. These drums will be recycled and returned to vendor. Totes in background contain sodium sulfate (salt) cake. This salt cake is nonhazardous and will be disposed of at a solid waste landfill.
4	12/26/12	10:29 am	M. Valentino	Е	Areas 5 and 7. Totes in foreground and background contain nonhazardous sodium sulfate salt cake. Red-topped drums in center of photo are over-pack drums containing spent flammable materials. All of the drums in the photo belong to Polychem. These are segregated from Heartland's waste (drums shown in Photos 27-28). 200 drums located in Area 7 are part of Polychem's CT-23 Program.
5	12/26/12	10:29 am	M. Valentino	SE	Area 7 solvent drums (CT-23 Program) and totes containing sodium sulfate brine cake or sodium sulfate water (nonhazardous). This location includes 78 over-pack drums (60 from February 2012; 18 from December 2012).
6	12/26/12	10:30 am	M. Valentino	Е	Area 7. Sodium sulfate brine cake totes.
7	12/26/12	10:32 am	M. Valentino	NW	Area 4. Catalyst shed. Containers varying from one- gallon jugs and pails to 55-gallon drums. Three compartments, A, B and C store organic peroxide, hydrogen peroxide, linseed oil, phosphoric acid, hydrochloric acid and mixed solvents.
8	12/26/12	10:33 am	M. Valentino	Е	Area 3. Totes containing sodium sulfate waters with flash point < 140°F; awaiting analysis for amine levels. These totes should have hazardous waste labels because of the low flash contents.
9	12/26/12	10:34 am	M. Valentino	E	Area 3. Totes of sodium sulfate water with high pH. DOT placard UN2796 is Hazard Class 8 corrosive material.
10	12/26/12	10:34 am	M. Valentino	NW	Area 4 drums (L. of photo) for CT-23 Program; Area 2 totes (R. of photo) for CT-23 Program.
11	12/26/12	10:34 am	M. Valentino	W	Area 4 solvent drums (CT-23 Program). Amine product (DMEA, DMIPA, TEA) tankers in rear of photo.
12	12/26/12	10:35 am	M. Valentino	NW	Area 2 totes (resin and solvent mixtures) for CT-23 Program.
13	12/26/12	10:35 am	M. Valentino	N	Area 2 totes (resin and solvent mixtures) for CT-23 Program.

14	12/26/12	10:35 am	M. Valentino	NNW	Area 2 totes (resin and solvent mixtures) for CT-23 Program.
15	12/26/12	10:35 am	M. Valentino	NNW	Area 2 totes (resin and solvent mixtures) for CT-23 Program.
16	12/26/12	10:36 am	M. Valentino	NW	Area 2 totes (resin and solvent mixtures) for CT-23 Program.
17	12/26/12	10:39 am	M. Valentino	SSW	Area 4. Blue drums in foreground contain sodium sulfate salts from tank clean-out. Totes behind drums contain DMEA, DMIPA and TEA sulfates.
18	12/26/12	10:41 am	M. Valentino	N	Area 1. Empty 110-gallon Manchester tanks. These will be filled with recovered TEA from the amine recovery process.
19	12/26/12	10:41 am	M. Valentino	NW	Area 1. Wooden totes to far L. of photo contain gelled ink resin (nonhazardous); totes in center of photo contain scrubber solution (incoming) from customers; 110-gallon Manchester tanks to centerright of photo are empty and will be filled with recovered DMEA from the amine recovery process.
20	12/26/12	10:41 am	M. Valentino	SE	Area 4 DMEA, DMIPA and TEA sulfate totes, L. of photo; Area 6 magnesium sulfate clean-up rinse water totes, center-background of photo; amine product tankers to R. of photo.
21	12/26/12	10:42 am	M. Valentino	S	Tankers of amine (DMEA, DMIPA, TEA) product from amine recovery process.
22	12/26/12	10:44 am	M. Valentino	SW	East dock. Empty 250-gallon poly totes.
23	12/26/12	10:44 am	M. Valentino	S	North end of building. Dock #3. Totes marked with red and blue dots contain water pumped from product tank secondary containment area (nonhazardous). Circular 250-gallon totes in background are empty.
24	12/26/12	10:44 am	M. Valentino	sw	North end of building. Dock #3. Totes marked with red and blue dots, and center totes at ground level without red and blue dots, contain water pumped from raw material tank farm secondary containmen area (nonhazardous). Circular 250-gallon and 330-gallon totes in background are empty.
25	12/26/12	10:44 am	M. Valentino	NNW	Area 1. Fabric super sacks in wooden frames contain gelled ink resin (nonhazardous).
26	12/26/12	10:45 am	M. Valentino	NW	Far northwestern corner of facility. Drums stored here previously have been relocated on-site (to Areas 4 and 7 or to the west-central part of the facility where Heartland drums are stored).
27	12/26/12	10:45 am	M. Valentino	SW	West-central area, north of raw material tank farm. Heartland drums.
28	12/26/12	10:45 am	M. Valentino	SW	West-central area, north of raw material tank farm. Heartland drums. Close-up of Photo 27.
29	12/26/12	10:46 am	M. Valentino	SSW	Raw material tanks on west end of facility. Secondary containment had a small amount of standing liquid on the day of the December 26, 2012 inspection.
30	12/26/12	10:47 am	M. Valentino	SW	Raw material tanks on west end of facility. Tank 107 (styrene).
31	12/26/12	10:47 am	M. Valentino	sw	Raw material tanks on west end of facility. Tank 101 (xylene).

32	12/26/12	10:50 am	M. Valentino	E	1st level, east end of building. Amine packaging area. 110-gallon Manchester tank at fill station where recovered amines are metered into tanks atop load cells. This tank is being filled with recovered TEA.
33	12/26/12	10:52 am	M. Valentino	S	SE corner of building, 1 st level. Tote containing spent scrubber solution, to be pumped up to reactor room on 2 nd level.
34	12/26/12	10:52 am	M. Valentino	E	1 st level, south-central warehouse area. Bottom of tank no. T-213, a mix tank with a capacity of 6000 gallons.
35	12/26/12	10:53 am	M. Valentino	NE	1st level, south-central warehouse area. To the north of Photo 35. Tank no. T-215, a mix tank with a capacity of 6000 gallons.
36	12/26/12	11:04 am	M. Valentino	Е	Reactor room, SE corner of process building, 2 nd level. Top of Reactor No. 1.
37	12/26/12	11:04 am	M. Valentino	NE	Reactor room, SE corner of process building, 2 nd level. Top of Reactor No. 3.

рното 1

рното 2

рното 3

рното 4

РНОТО 5

рното 6

рното 7

рното 8

рното 9

РНОТО 10

рното 11

· 프램트웨어 프로젝트 - 프로젝트 스타트 레이트 - 네트트웨어 트웨이트 - 프로젝트 - 프로젝트

рното 12

рното 13

рното 14

РНОТО 15

РНОТО16

рното 17

рното 18

рното 19

рното 20

· 프레트 프로젝트 프로젝트 - 스마리 시민국의 현실적 - 리트리크를 보면 프로젝트 - 프로프트 프로젝트 - 트립트를 트로프 프로젝트 - 스마티를 트

рното 21

рното 22

рното 23

рното 24

рното 25

рното 26

рното 27

рното 28

рното 29

рното 30

рното 31

рното 32

рното 33

рното 34

рното 35

рното 36

рното 37