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IMPORTANCE The US Environmental Protection Agency is required to reexamine its National
Ambient Air Quality Standards (NAAQS) every 5 years, but evidence of mortality risk is lacking
at air pollution levels below the current daily NAAQS in unmonitored areas and for sensitive
subgroups.

OBJECTIVE To estimate the association between short-term exposures to ambient fine
particulate matter (PM2.5) and ozone, and at levels below the current daily NAAQS, and
mortality in the continental United States.

DESIGN, SETTING, AND PARTICIPANTS Case-crossover design and conditional logistic
regression to estimate the association between short-term exposures to PM2.5 and ozone
(mean of daily exposure on the same day of death and 1 day prior) and mortality in 2-pollutant
models. The study included the entire Medicare population from January 1, 2000, to
December 31, 2012, residing in 39 182 zip codes.

EXPOSURES Daily PM2.5 and ozone levels in a 1-km × 1-km grid were estimated using
published and validated air pollution prediction models based on land use, chemical transport
modeling, and satellite remote sensing data. From these gridded exposures, daily exposures
were calculated for every zip code in the United States. Warm-season ozone was defined as
ozone levels for the months April to September of each year.

MAIN OUTCOMES AND MEASURES All-cause mortality in the entire Medicare population from
2000 to 2012.

RESULTS During the study period, there were 22 433 862 million case days and 76 143 209
control days. Of all case and control days, 93.6% had PM2.5 levels below 25 μg/m3, during
which 95.2% of deaths occurred (21 353 817 of 22 433 862), and 91.1% of days had ozone
levels below 60 parts per billion, during which 93.4% of deaths occurred (20 955 387 of
22 433 862). The baseline daily mortality rates were 137.33 and 129.44 (per 1 million persons
at risk per day) for the entire year and for the warm season, respectively. Each short-term
increase of 10 μg/m3 in PM2.5 (adjusted by ozone) and 10 parts per billion (10−9) in
warm-season ozone (adjusted by PM2.5) were statistically significantly associated with a
relative increase of 1.05% (95% CI, 0.95%-1.15%) and 0.51% (95% CI, 0.41%-0.61%) in daily
mortality rate, respectively. Absolute risk differences in daily mortality rate were 1.42 (95% CI,
1.29-1.56) and 0.66 (95% CI, 0.53-0.78) per 1 million persons at risk per day. There was no
evidence of a threshold in the exposure-response relationship.

CONCLUSIONS AND RELEVANCE In the US Medicare population from 2000 to 2012,
short-term exposures to PM2.5 and warm-season ozone were significantly associated with
increased risk of mortality. This risk occurred at levels below current national air quality
standards, suggesting that these standards may need to be reevaluated.
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I n the United States, the Clean Air Act1 requires a review of
National Ambient Air Quality Standards (NAAQS) for fine
particulate matter (PM2.5) and ozone every 5 years.2 In 2012,

the annual and 24-hour NAAQS for PM2.5 were set to 12 μg/m3

and 35 μg/m3, respectively. With no annual standard for
ozone, the 8-hour NAAQS for ozone was set to 70 parts per bil-
lion (ppb). Currently, the review of these standards is ongo-
ing, with public comments expected in the fall of 2017.3

Several studies have provided evidence that short-term ex-
posures to PM2.5 and ozone were associated with mortality,4-8

but these studies primarily included large and well-
monitored metropolitan areas. While the US Environmental
Protection Agency (EPA) is considering more stringent NAAQS,
evidence is needed to clarify the association between mortal-
ity risk and exposure levels below the daily NAAQS and in ru-
ral and unmonitored areas.

The Clean Air Act1 also requires the US EPA to set stan-
dards to protect “sensitive subgroups.” To estimate the
health risk of short-term exposure to air pollution for spe-
cific subgroups (eg, underrepresented minorities and those
with low socioeconomic status, such as persons eligible for
Medicaid), a large population is necessary to achieve maxi-
mum accuracy and adequate statistical power.

A case-crossover study was conducted to examine all
deaths of Medicare participants in the continental United States
from 2000 throughout 2012 and estimate the mortality risk
associated with short-term exposures to PM2.5 and ozone in
the general population as well as in subgroups. The study was
designed to estimate the association between daily mortality
and air pollution at levels below current daily NAAQS to evalu-
ate the adequacy of the current air quality standards for PM2.5

and ozone.

Methods
This study was approved by the institutional review board at
the Harvard T.H. Chan School of Public Health. As a study of
previously collected administrative data, it was exempt from
informed consent requirements.

Study Population
Using claims data from the Centers for Medicare & Medicaid
Services, all deaths among all Medicare beneficiaries were iden-
tified during the period 2000 to 2012, providing enough power
to analyze the risk of mortality associated with PM2.5 and ozone
concentrations much lower than the current standards
(Table 1). For each beneficiary, information was extracted on
the date of death, age, sex, race, ethnicity, zip code of resi-
dence, and eligibility for Medicaid (a proxy for low income) to
assess the associations of mortality with PM2.5 and ozone con-
centrations in potentially vulnerable subgroups. Self-
reported information on race and ethnicity was obtained from
Medicare beneficiary files.

Outcome
The study outcome was all-cause mortality. Individuals
with a verified date of death between January 1, 2000, and

December 31, 2012, were included. Individuals with an
unverified date of death, or still living after December 31,
2012, were excluded.

Study Design
We estimated the association between short-term exposure
to PM2.5 (adjusted by ozone) and short-term exposure to
ozone (adjusted by PM2.5) and all-cause mortality using a
case-crossover design.9 Specifically, “case day” was defined
as the date of death. For the same person, we compared
daily air pollution exposure on the case day vs daily air pol-
lution exposure on “control days.” Control days were chosen
(1) on the same day of the week as the case day to control for
potential confounding effect by day of week; (2) before
and after the case day (bidirectional sampling) to con-
trol for time trend10,11; and (3) only in the same month
as the case day to control for seasonal and subseasonal
patterns.10,12 Individual-level covariates and zip code–level
covariates that did not vary day to day (eg, age, sex, race/
ethnicity, socioeconomic status, smoking, and other behav-
ioral risk factors) were not considered to be confounders
as they remain constant when comparing case days vs con-
trol days.

Environmental Data
Daily ambient levels of PM2.5 and ozone were estimated
from published and validated air pollution prediction
models.13,14 Combining monitoring data from the EPA,
satellite-based measurements, and other data sets, neural
networks were used to predict 24-hour PM2.5 and 8-hour
maximum ozone concentrations at each 1-km ×1-km grid in
the continental United States, including locations with no
monitoring sites. Cross-validation indicated good agree-
ment between predicted values and monitoring values
(R2 = 0.84 for PM2.5 and R2 = 0.76 for ozone) and at low con-
centrations (R2 = 0.85 when constraining to 24-hour PM2.5

<25 μg/m3 and R2 = 0.75 when constraining to daily 8-hour
maximum ozone <60 ppb). Details have been published
elsewhere.13,14 Warm season was defined to be from April 1
to September 30, which is the specific time window to
examine the association between ozone and mortality.

Key Points
Question What is the association between short-term exposure
to air pollution below current air quality standards and all-cause
mortality?

Finding In a case-crossover study of more than 22 million deaths,
each 10-μg/m3 daily increase in fine particulate matter and
10–parts-per-billion daily increase in warm-season ozone
exposures were associated with a statistically significant increase
of 1.42 and 0.66 deaths per 1 million persons at risk per day,
respectively.

Meaning Day-to-day changes in fine particulate matter and ozone
exposures were significantly associated with higher risk of
all-cause mortality at levels below current air quality standards,
suggesting that those standards may need to be reevaluated.
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Meteorological variables, including air and dew point tem-
peratures, were retrieved from North American Regional
Reanalysis data and estimated daily mean values were
determined for each 32-km × 32-km grid in the continental
United States.15

For each case day (date of death) and its control days, the
daily 24-hour PM2.5, 8-hour maximum ozone, and daily air and
dew point temperatures were assigned based on zip code of
residence of the individual (eAppendix 1 in the Supplement).
Because we estimated air pollution levels everywhere in the

continental United States, the number of zip codes included
in this study was 39 182, resulting in a 33% increase com-
pared with the number of zip codes with a centroid less than
50 km from a monitor (n = 26 115).

Statistical Analysis
The relative risk (RR) of all-cause mortality associated with
short-term exposures to PM2.5 (adjusted by ozone) and
warm-season ozone (adjusted by PM2.5) was estimated by
fitting a conditional logistic regression to all pairs of case
days and matched control days (eAppendix 2 in the
Supplement).9 The regression model included both pollut-
ants as main effects and natural splines of air and dew point
temperatures with 3 df to control for potential residual con-
founding by weather. For each case day, daily exposure to
air pollution was defined as the mean of the same day of
death (lag 0-day) and 1 day prior (lag 1-day), denoted as lag
01-day.5,16,17 Relative risk increase (RRI) was defined as
RR − 1. The absolute risk difference (ARD) of all-cause mor-
tality associated with air pollution was defined as
ARD = α × (RR − 1)/RR, where α denotes the baseline daily
mortality rate (eAppendix 3 in the Supplement).

The robustness of the analysis results was assessed with
respect to (1) choosing the df used for the confounding adjust-
ment for temperature, (2) using lag 01-day exposure as the ex-
posure metric, (3) the definition of warm season, and (4) using
only air pollution measurements from the nearest EPA moni-
toring sites. Splines on meteorological variables with 6 and 9
df yielded results with a difference of less than 5% of the stan-
dard error (eFigure 1 in the Supplement). The main analysis,
which used the lag 01-day exposure, yielded the lowest val-
ues of the Akaike Information Criteria values, indicating bet-
ter fit to the data (eTable in the Supplement). Different defi-
nitions of warm season yielded similar risk estimates
(eAppendix 4 in the Supplement), and using exposure mea-

Table 1. Baseline Characteristics of Study Population (2000-2012)

Baseline Characteristic Value
Case days, No. 22 433 862

Control days, No. 76 143 209

Among All Cases (n = 22 433 862), %

Age at death, y

≤69 10.38

70-74 13.37

75-84 38.48

≥85 37.78

Sex

Male 44.73

Female 55.27

Race/ethnicity

White 87.34

Black 8.87

Asian 1.03

Hispanic 1.51

Native American 0.31

Medicaid Eligibility (n = 22 433 862), %

Ineligible 77.36

Eligible 22.64

Table 2. Relative Risk Increase and Absolute Risk Difference of Daily Mortality Associated With Each 10-μg/m3 Increase in PM2.5

and Each 10-ppb Increase in Ozone

Air Pollutant Analysis

Relative Risk Increase, % (95% CI)
Absolute Risk Difference in Daily Mortality Rates,
No. per 1 Million Persons at Risk per Day (95% CI)a

PM2.5 Ozoneb PM2.5 Ozoneb

Main analysisc 1.05 (0.95-1.15) 0.51 (0.41-0.61) 1.42 (1.29-1.56) 0.66 (0.53-0.78)

Low-exposure analysisd 1.61 (1.48-1.74) 0.58 (0.46-0.70) 2.17 (2.00-2.34) 0.74 (0.59-0.90)

Single-pollutant analysise 1.18 (1.09-1.28) 0.55 (0.48-0.62) 1.61 (1.48-1.73) 0.71 (0.62-0.79)

Nearest monitors analysisf 0.83 (0.73-0.93) 0.35 (0.28-0.41) 1.13 (0.99-1.26) 0.45 (0.37-0.53)

Abbreviations: PM2.5, fine particulate matter; ppb, parts per billion.
a The daily baseline mortality rate was 137.33 per 1 million persons at risk per

day; the warm-season daily baseline mortality rate was 129.44 per 1 million
persons at risk per day.

b Ozone analyses included days from the warm season only (April 1 to
September 30).

c The main analysis used the mean of daily exposure on the same day of death
and 1 day prior (lag 01-day) as the exposure metric for both PM2.5 and ozone,
and controlled for natural splines of air and dew point temperatures with 3 df.
The main analysis considered the 2 pollutants jointly included into the
regression model and estimated the percentage increase in the daily mortality
rate associated with a 10-μg/m3 increase in PM2.5 exposure adjusted for ozone
and the percentage increase in daily mortality rate associated with a 10-ppb
increase in warm-season ozone exposure adjusted for PM2.5.

d The low-exposure analysis had the same model specifications as the
2-pollutant analysis and was constrained for days when PM2.5 was below
25 μg/m3 or ozone below 60 ppb.

e The single-pollutant analysis estimated the percentage increase in the daily
mortality rate associated with a 10-μg/m3 increase in PM2.5 exposure
without adjusting for ozone and the percentage increase in the daily
mortality rate associated with a 10-ppb increase in ozone exposure without
adjusting for PM2.5.

f PM2.5 and ozone monitoring data were retrieved from the US Environmental
Protection Agency Air Quality System, which provides the daily mean of PM2.5

and daily 8-hour maximum ozone levels at each monitoring site. Daily ozone
concentrations were averaged from April 1 to September 30. Individuals were
assigned to the PM2.5 and ozone levels from the nearest monitor site within
50 km. Those living 50 km from any monitoring site were excluded.
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surements from the nearest monitors resulted in attenuated,
but still significant, risk estimates (Table 2).

The subgroup analyses were conducted by sex (male
and female), race/ethnicity (white, nonwhite, and others),
age (≤69, 70-74, 75-84, and ≥85 years), eligibility for Medic-
aid, and population density (quartiles). We fitted separate
conditional logistic regressions to the data for each sub-
group and obtained subgroup-specific estimates of RR and
ARD. We implemented a 2-sample test for assessing statisti-
cally significant differences in the estimated RR and ARD
between categories within each subgroup (eg, female vs
male), based on the point estimate and standard error (se)
(eAppendix 5 in the Supplement):

The goal was to estimate mortality rate increases (both RRI
and ARD) at air pollution levels well below the current daily
NAAQS. The analysis was restricted to days with daily air pol-
lution concentrations below 25 μg/m3 for PM2.5 and 60 ppb for
ozone. We chose 25 μg/m3 and 60 ppb instead of the current
daily NAAQS (35 μg/m3 for daily PM2.5 and 70 ppb for 8-hour
maximum ozone) because levels of PM2.5 and ozone on most
of the days included in the analysis were already below the cur-
rent safety standards.

Exposure-response curves were estimated between PM2.5

or ozone and mortality by replacing linear terms for the 2 pol-
lutants with penalized splines for both PM2.5 and ozone.

All analyses were performed in R software version 3.3.2
(R Foundation). Computations were run on (1) the Odyssey clus-
ter supported by the Faculty of Arts and Sciences Division of
Science, Research Computing Group at Harvard University and
(2) the Research Computing Environment supported by the In-
stitute for Quantitative Social Science in the Faculty of Arts and
Sciences at Harvard University.

Results
During the study period, there were more than 22 million case
days (deaths) and more than 76 million control days (Table 1).
Of all case and control days, 93.6% had PM2.5 levels below
25 μg/m3, during which 95.2% of deaths occurred (21 353 817
of 22 433 862), and 91.1% of days had ozone levels below
60 ppb, during which 93.4% of deaths occurred (20 955 387 of
22 433 862). The baseline daily mortality rates were 137.33 and
129.44 (per 1 million persons at risk per day [per 1M per day])
for the entire year and for the warm season, respectively.
The mean time between case and control days was 12.55 days
(range 7-28 days), with minimal differences in air and dew point
temperatures between case and control days (0.003°C and
0.01°C, respectively). During the study period, the mean con-
centrations of PM2.5 and ozone were 11.6 μg/m3 and 37.8 ppb,
respectively. Figure 1 and Figure 2 show the daily PM2.5 and
ozone time series by state, respectively.

Each 10-μg/m3 and 10-ppb increase in the lag 01-day ex-
posure for PM2.5 and warm-season ozone was associated with

an RRI of 1.05% (95% CI, 0.95%-1.15%) and 0.51% (95% CI,
0.41%-0.61%) in the daily mortality rate. The ARDs were 1.42
(95% CI, 1.29-1.56) and 0.66 (95% CI, 0.53-0.78) per 1M per day.
These associations remained significant when examining days
below 25 μg/m3 for PM2.5 and below 60 ppb for ozone, with
larger effect size estimates for both PM2.5 and ozone (RRI: 1.61%
[95% CI, 1.48%-1.74%] and 0.58% [95% CI, 0.46%-0.70%]; ARD:
2.17 [95% CI, 2.00-2.34] and 0.74 [95% CI, 0.59-0.90] per 1M
per day, respectively) (Table 2). PM2.5 was associated with
higher mortality rate in some subgroups, including Medicaid-
eligible individuals (RRI: 1.49% [95% CI, 1.29%-1.70%]; ARD:
3.59 [95% CI, 3.11-4.08] per 1M per day; interaction: P < .001),
individuals older than 70 years (eg, for ≥85 years, RRI: 1.38%
[95% CI, 1.23%-1.54%]; ARD: 5.35 [95% CI, 4.75-5.95] per 1M
per day; interaction: P < .001), and females (RRI: 1.20% [95%
CI, 1.07%-1.33%]; ARD: 1.56 [95% CI, 1.39-1.72] per 1M per day;
interaction: P = .02) (Figure 3 and Figure 4). The effect esti-
mates for PM2.5 increased with age. The effect estimate for black
individuals was higher than that for white individuals (P = .001;
eFigure 2 in the Supplement). For ozone, similar patterns were
observed, but with less contrast between groups. No signifi-
cant differences were found in the short-term associations be-
tween air pollution exposure (PM2.5 and ozone) and mortal-
ity across areas with different population density levels
(Figure 3 and Figure 4). Effect estimates using different lags
of exposure are shown in eFigure 3 in the Supplement.

Figure 5 shows the estimated exposure-response curves
for PM2.5 and ozone. The slope was steeper at PM2.5

levels below 25 μg/m3 (P < .001), consistent with the
low-exposure analysis (Table 2). Both PM2.5 and ozone
exposure-responses were almost linear, with no indication
of a mortality risk threshold at very low concentrations.
eFigure 4 in the Supplement shows the exposure-response
curves for PM2.5 when restricted to just the warm season
and for ozone when not restricted to the warm season;
results were similar.

Discussion
In this large case-crossover study of all Medicare deaths
in the continental United States from 2000 to 2012, a
10-μg/m3 daily increase in PM2.5 and a 10-ppb daily increase
in warm-season ozone exposures were associated with a
statistically significant increase of 1.42 and 0.66 deaths per
1M per day, respectively. The risk of mortality remained sta-
tistically significant when restricting the analysis to days
with PM2.5 and ozone levels much lower than the current
daily NAAQS.18 This study included individuals living
in smaller cities, towns, and rural areas that were unmoni-
tored and thus excluded from previous time series studies.
There were no significant differences in the mortality risk
associated with air pollution among individuals living in
urban vs rural areas. Taken together, these results provide
evidence that short-term exposures to PM2.5 and ozone,
even at levels much lower than the current daily standards,
are associated with increased mortality, particularly for sus-
ceptible populations.

Z =
RRmale – RRfemale

√se(RRmale)2 + se(RRfemale)2
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Figure 1. Daily Mean PM2.5 Concentrations in the Continental United States, 2000-2012
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Daily mean fine particulate matter (PM2.5) concentrations were calculated and
plotted by state. The time-series plot at the bottom indicates the national daily
mean values across all locations. Boxplots show the distribution of daily PM2.5

levels for each state. The blue dashed line indicates the daily National Ambient
Air Quality Standards (NAAQS) for PM2.5 (35 μg/m3). The line across the box,

upper hinge, and lower hinge represent the median value, 75th percentile (Q3),
and 25th percentile (Q1), respectively. The upper whisker is located at the
smaller of the maximal value and Q3 + 1.5 × interquartile range; the lower
whisker is located at the larger of the minimal value and Q1 – 1.5 × interquartile
range. Any values that lie beyond the upper and lower whiskers are outliers.
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Figure 2. Daily 8-Hour Maximum Ozone Concentrations in the Continental United States, 2000-2012
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Daily mean 8-hour maximum ozone concentrations were calculated and plotted
by state. The time-series plot at the bottom indicates the national daily mean
values across all locations. Boxplots show the distribution of daily ozone levels
for each state. The blue dashed line indicates the daily National Ambient Air
Quality Standards (NAAQS) for ozone (70 parts per billion [ppb]). The line
across the box, upper hinge, and lower hinge represent the median value,

75th percentile (Q3), and 25th percentile (Q1), respectively. The upper whisker
is located at the smaller of the maximal value and Q3 + 1.5 × interquartile range;
the lower whisker is located at the larger of the minimal value and Q1 – 1.5 ×
interquartile range. Any values that lie beyond the upper and lower whiskers
are outliers.
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The Clean Air Act1 requires the administrator of the US EPA
to set NAAQS at levels that provide “protection for at-risk popu-
lations, with an adequate margin of safety.”19 In this study,
Medicaid-eligible individuals, females, and elderly individu-
als had higher mortality rate increases associated with PM2.5

than other groups. Previous studies have found similar re-
sults in some subgroups.20,21 Poverty, unhealthy lifestyle, poor
access to health care, and other factors may make some sub-
groups more vulnerable to air pollution. The exact mecha-
nism is worth exploring in future studies.

Figure 3. Relative Risk Increase and Absolute Risk Difference of Daily Mortality Associated With 10-μg/m3 Increase in Fine Particulate Matter (PM2.5)
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Relative Risk Increase in Mortality

per 10-μg/m3 Increase in PM2.5
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P Value
for Effect
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Sex

Relative Risk
Increase in
Mortality per
10-μg/m3 Increase
in PM2.5, % (95% CI)

Absolute Risk
Difference in
Mortality, No. per
1 Million at Risk
per Day (95% CI)

Female 1.20 (1.07-1.33) 1.56 (1.39-1.72)<.001a .02a

Male 0.86 (0.72-1.00) 1.24 (1.03-1.45)[Reference] [Reference]

Medicaid eligibility

Eligible 1.49 (1.29-1.70) 3.59 (3.11-4.08)<.001a <.001a

Noneligible 0.92 (0.81-1.03) 1.11 (0.98-1.24)[Reference] [Reference]

Medicaid eligibility, males

Eligible 1.32 (0.96-1.69) 3.37 (2.45-4.28).006 <.001a

Noneligible 0.77 (0.61-0.93) 1.03 (0.82-1.24)[Reference] [Reference]

Medicaid eligibility, females

Eligible 1.57 (1.32-1.82) 3.69 (3.12-4.26)<.001a <.001a

Overall 1.05 (0.95-1.15)  1.42 (1.29-1.56)  

Noneligible 1.06 (0.90-1.21) 1.17 (1.00-1.33)[Reference] [Reference]

Sex

Female 1.16 (1.02-1.30) 1.51 (1.33-1.70).002a .03a

Male 0.83 (0.67-0.99) 1.19 (0.97-1.42)[Reference] [Reference]

Medicaid eligibility

Eligible 1.58 (1.34-1.83) 4.49 (3.81-5.17)<.001a <.001a

Noneligible 0.88 (0.77-1.00) 1.07 (0.93-1.21)[Reference] [Reference]

Race/ethnicity

Nonwhite 1.27 (1.01-1.53) 1.69 (1.34-2.03) .07 .11
White 1.01 (0.91-1.12) 1.38 (1.24-1.52)[Reference] [Reference]

Age, y

70-74 0.75 (0.48-1.01) 0.57 (0.37-0.78) .35 .02a

≤69 0.55 (0.25-0.86) 0.27 (0.12-0.42)[Reference] [Reference]

75-84 0.96 (0.80-1.11) 1.46 (1.23-1.69).02a <.001a

≥85 1.38 (1.23-1.54) 5.35 (4.75-5.95)<.001a <.001a

Population density

Whites

Sex

Female 1.47 (1.12-1.82) 1.80 (1.37-2.22).01 .44
Male 1.03 (0.65-1.42) 1.52 (0.96-2.08)[Reference] [Reference]

Medicaid eligibility

Eligible 1.28 (0.90-1.66) 2.21 (1.56-2.85).94 .04a

Noneligible 1.26 (0.91-1.62) 1.40 (1.01-1.79)[Reference] [Reference]

Nonwhites

Medium low 0.97 (0.76-1.17) 1.31 (1.04-1.58).64 .56
Low 1.04 (0.81-1.27) 1.43 (1.12-1.74)[Reference] [Reference]

Medium high 1.03 (0.84-1.22) 1.39 (1.14-1.65).95 .86
High 1.13 (0.97-1.30) 1.54 (1.31-1.77).52 .57

For the main analysis, subgroup analyses used a 2-pollutant analysis (with both
PM2.5 and ozone), based on the mean of daily exposure on the same day of
death and 1 day prior (lag 01-day) as the exposure metric for PM2.5, and
controlled for natural splines of air and dew point temperatures (each with 3 df).
Vertical lines indicate effects for the entire study population. Subgroup analyses
were conducted for each subgroup (eg, male or female, white or nonwhite,
Medicare eligible or Medicare ineligible, age groups, and quartiles of population
density). For the main analysis and each subgroup, conditional logistic

regressions were run to obtain relative risk increases and calculated absolute
risk difference based on baseline mortality rates (eAppendix 2 in the
Supplement). Numbers in the figure represent point estimates, 95% CIs,
and P values for effect modifications. The reference groups were used when
assessing effect modification.
a Statistically significant effect estimate (at 5% level) compared with the

reference group.
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The current NAAQS for daily PM2.5 is 35 μg/m3. When
restricting the analysis to daily PM2.5 levels below 25 μg/m3,
the association between short-term PM2.5 exposure and
mortality remained but was elevated. The current daily

NAAQS for ozone is 70 ppb; when restricting the analysis to
daily warm-season ozone concentrations below 60 ppb, the
effect size also increased slightly. The exposure-response
curves revealed a similar pattern. These results indicate

Figure 4. Relative Risk Increase and Absolute Risk Difference of Daily Mortality Associated With 10-Parts-per-Billion (ppb) Increase in Ozone
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P Value
for Effect
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Sex

Relative Risk
Increase in
Mortality per
10-ppb Increase
in Ozone, %
(95% CI)

Absolute Risk
Difference in
Mortality, No. per
1 Million at Risk
per Day (95% CI)

Female 0.56 (0.43-0.69) 0.69 (0.53-0.85).23 .53
Male 0.44 (0.30-0.59) 0.61 (0.41-0.80)[Reference] [Reference]

Medicaid eligibility

Eligible 0.57 (0.36-0.77) 1.29 (0.83-1.76).53 .003a

Noneligible 0.49 (0.38-0.60) 0.56 (0.44-0.69)[Reference] [Reference]

Medicaid eligibility, males

Eligible 0.65 (0.28-1.02) 1.56 (0.67-2.45).24 .03a

Noneligible 0.40 (0.25-0.56) 0.51 (0.31-0.71)[Reference] [Reference]

Medicaid eligibility, females

Eligible 0.53 (0.28-0.77) 1.17 (0.63-1.72).75 .049a

Overall 0.51 (0.41-0.61) 0.66 (0.53-0.78)

Noneligible 0.58 (0.42-0.73) 0.60 (0.44-0.76)[Reference] [Reference]

Sex

Female 0.56 (0.42-0.70) 0.69 (0.52-0.87).24 .48
Male 0.44 (0.28-0.59) 0.60 (0.38-0.81)[Reference] [Reference]

Medicaid eligibility

Eligible 0.54 (0.29-0.78) 1.44 (0.79-2.09).78 .01a

Noneligible 0.50 (0.39-0.61) 0.58 (0.44-0.71)[Reference] [Reference]

Race/ethnicity

Nonwhite 0.54 (0.28-0.80) 0.69 (0.36-1.01).81 .85
White 0.51 (0.40-0.61) 0.65 (0.52-0.79)[Reference] [Reference]

Age, y

70-74 1.18 (0.73-1.63) 0.86 (0.53-1.19).16 .01a

≤69 0.69 (0.17-1.21) 0.33 (0.08-0.57)[Reference] [Reference]

75-84 1.30 (1.03-1.57) 1.87 (1.48-2.25).04a <.001a

≥85 1.83 (1.55-2.11) 6.54 (5.56-7.52)<.001a <.001a

Population density

Whites

Sex

Female 0.57 (0.22-0.92) 0.67 (0.26-1.08).79 .93
Male 0.50 (0.11-0.89) 0.70 (0.16-1.24)[Reference] [Reference]

Medicaid eligibility

Eligible 0.65 (0.27-1.03) 1.07 (0.44-1.69).42 .10
Noneligible 0.43 (0.08-0.78) 0.46 (0.09-0.83)[Reference] [Reference]

Nonwhites

Medium low 0.51 (0.31-0.70) 0.65 (0.40-0.90).72 .68
Low 0.56 (0.35-0.78) 0.73 (0.45-1.00)[Reference] [Reference]

Medium high 0.38 (0.20-0.57) 0.49 (0.26-0.72).22 .20
High 0.66 (0.48-0.85) 0.85 (0.62-1.09).49 .498

For the main analysis, subgroup analyses used a 2-pollutant analysis (with both
PM2.5 and ozone), based on the mean of daily exposure on the same day of
death and 1 day prior (lag 01-day) as the exposure metric for ozone, and
controlled for natural splines of air and dew point temperatures (each with 3 df).
Vertical lines indicate effects for the entire study population. Subgroup analyses
were conducted for each subgroup (eg, male or female, white or nonwhite,
Medicare eligible or Medicare ineligible, age groups, and quartiles of population
density). For the main analysis and each subgroup, conditional logistic
regressions were run to obtain relative risk increases, and calculated absolute

risk difference based on baseline mortality rates (eAppendix 2 in the
Supplement). For ozone, analyses were restricted to the warm season (April to
September). Numbers in the figure represent point estimates, 95% CIs,
and P values for effect modifications. The reference groups were used when
assessing effect modification.
a Statistically significant effect estimate (at 5% level) compared with the

reference group.
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that air pollution is associated with an increase in daily
mortality rates, even at levels well below the current
standards.

The exposure-response relationship between PM2.5

exposure and mortality was consistent with findings of pre-
vious studies. One study combined exposure-response
curves from 22 European cities and reported an almost lin-
ear relationship between PM2.5 and mortality.22 Another
multicity study reported a linear relationship down to
2-μg/m3 PM2.5.23 The present study found a similarly linear
exposure-response relationship below 15-μg/m3 PM2.5 and
a less steep slope above this level.

For ozone, the linear exposure-response curve with
no threshold described in this study is consistent with ear-
lier research. An almost linear exposure-response curve
for ozone was previously reported with no threshold or a
threshold at very low concentrations.24 A study from the
Netherlands also concluded that if an ozone threshold
exists, it does so at very low levels.25

Findings from this study are also consistent with
the literature regarding the observed effect sizes of both
PM2.5

5,8,16,26-28 and ozone.7,20,29,30 This study further dem-
onstrates that in more recent years, during which air
pollution concentrations have fallen, statistically significant
associations between mortality and exposures to PM2.5 and
ozone persisted.

The association of mortality and PM2.5 exposure is
supported by a large number of published experimental
studies in animals31-33 and in humans exposed to traffic air
pollution,34,35 diesel particles,36 and unfiltered urban air.37

Similarly, a review of toxicological studies and a recent panel
study found that ozone exposure was associated with mul-
tiple adverse health outcomes.38,39

Strengths
This study has several strengths. First, to our knowledge,
this is the largest analysis of daily air pollution exposure

and mortality to date, with approximately 4 times the
number of deaths included in a previous large study.5

Second, this study assessed daily exposures using
air pollution prediction models that provide accurate esti-
mates of daily levels of PM2.5 and ozone for most of the
United States, including previously unmonitored areas.
An analysis that relied only on exposure data from
monitoring stations was found to result in a downward
bias in estimates (Table 2). Third, the inclusion of more
than 22 million deaths from 2000 to 2012 from the
entire Medicare population provided large statistical
power to detect differences in mortality rates in potentially
vulnerable populations and to estimate mortality rates
at very low PM2.5 and ozone concentrations. Fourth,
this study estimated the air pollution–mortality association
well below the current daily NAAQS and in unmonitored
areas, and it did not identify significant differences in
the mortality rate increase between urban and rural
areas. Fifth, this study used a case-crossover design that
individually matched potential confounding factors by
month, year, and other time-invariant variables and con-
trolled for time-varying patterns, as demonstrated by the
minimal differences in meteorological variables between
case and control days.

Limitations
This study also has several limitations. First, the case-
crossover design does not allow estimation of mortality rate
increase associated with long-term exposure to air pollu-
tion. Long-term risks in the same study population have
been estimated elsewhere.40 Second, because this study
used residential zip code to ascertain exposure level rather
than exact home address or place of death, some measure-
ment error is expected. Third, the Medicare population pri-
marily consists of individuals older than 65 years, which
limits the generalizability of findings to younger popula-
tions. However, because more than two-thirds of deaths in

Figure 5. Estimated Exposure-Response Curves for Short-term Exposures to Fine Particulate Matter (PM2.5) and Ozone
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A 2-pollutant analysis with separate penalized splines on PM2.5 (A) and ozone
(B) was conducted to assess the percentage increase in daily mortality at
various pollution levels. Dashed lines indicate 95% CIs. The mean of daily

exposure on the same day of death and 1 day prior (lag 01-day) was used as
metrics of exposure to PM2.5 and ozone. Analysis for ozone was restricted to
the warm season (April to September). Ppb indicates parts per billion.

Research Original Investigation Association of Short-term Exposure to Air Pollution With Mortality in Older Adults

2454 JAMA December 26, 2017 Volume 318, Number 24 (Reprinted) jama.com

© 2017 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 07/01/2020

http://www.jama.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.17923


the United States occur in people older than 65 years of age,
and air pollution–related health risk rises with age, the
Medicare population in this study includes most cases of air
pollution–induced mortality. Fourth, Medicare files do not
report cause-specific mortality. Fifth, the most recent data
used in this study are nearly 5 years old, and it is uncertain
whether exposures and outcomes would be the same with
more current data.

Conclusions

In the US Medicare population from 2000 to 2012, short-
term exposures to PM2.5 and warm-season ozone were signifi-
cantly associated with increased risk of mortality. This risk oc-
curred at levels below current national air quality standards,
suggesting that these standards may need to be reevaluated.
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