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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the 
United States and around the world also support major projects or research programs. HEI has 
funded more than 340 research projects in North America, Europe, Asia, and Latin America, the 
results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, 
diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in 
more than 260 comprehensive reports published by HEI, as well as in more than 1,000 articles in 
the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. For this study, a special panel — HEI’s Low-Exposure Epidemiology 
Studies Oversight Panel — has worked with the Research Committee in project selection and 
oversight. The Review Committee, which has no role in selecting or overseeing studies, works 
with staff to evaluate and interpret the results of funded studies and related research. For this 
study, a special review panel — HEI’s Low-Exposure Epidemiology Studies Review Panel — is 
fulfilling this role.

All project results and accompanying comments by the Review Committee (or, in this case, the 
Low-Exposure Epidemiology Studies Review Panel) are widely disseminated through HEI’s 
website (www.healtheffects.org), printed reports, newsletters and other publications, annual 
conferences, and presentations to legislative bodies and public agencies.
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Research Report 200, Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of 
Ambient Air Pollution: Phase 1, presents a research project funded by the Health Effects Institute 
and conducted by Dr. Francesca Dominici, of Harvard T.H. Chan School of Public Health, Boston, 
Massachusetts, and her colleagues. The report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Low-Exposure Epidemiology Studies 
Review Panel’s comments on the study.

The Investigators’ Report, prepared by Dominici and colleagues, describes the 
scientific background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Low-Exposure Epidemiology 
Studies Review Panel with the assistance of HEI staff, places the study in a broader 
scientific context, points out its strengths and limitations, and discusses remaining 
uncertainties and implications of the study’s findings for public health and future 
research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report was first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments were then evaluated by members of the Low-
Exposure Epidemiology Studies Review Panel, an independent panel of distinguished scientists 
who have no involvement in selecting or overseeing HEI studies. During the review process, the 
investigators had an opportunity to exchange comments with the Review Panel and, as necessary, 
to revise their report. The Commentary reflects the information provided in the final version of 
the report.
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HEI’s Program to Assess Adverse Health Effects of Long-
Term Exposure to Low Levels of Ambient Air Pollution

INTRODUCTION

Levels of ambient air pollution have declined signifi-
cantly over the last decades in North America, Europe,
and in other developed regions. Despite the decreasing
levels of air pollution, recent epidemiological studies re-
port associations between adverse health effects and
exposure to air pollution. These studies have found
associations between exposure to fine particulate mat-
ter, that is, particulate matter ≤2.5 µm in aerodynamic
diameter (PM2.5*), and mor tality at levels below

current ambient air quality standards (e.g., Beelen et al.
2014; Crouse et al. 2012; Hales et al. 2012) (Preface
Figure 1). In order to improve the science and inform
future regulation, it is important to confirm whether as-
sociations with adverse health effects continue to be
observed as levels of air pollution have declined. It is
also important to better understand the shape of the
exposure–response function at those low levels. 

The growing scientific evidence for effects at levels
below current air quality standards and the large overall
estimates of the air pollution-attributable burden of

* A list of abbreviations and other terms appears at the end of this volume.

Preface Figure 1. Shape of the concentration–response function for mortality associated with fine particulate matter in a Canadian Cohort.
(Courtesy R. Burnett). NAAQS = National Ambient Air Quality Standard; WHO AQG = World Health Organization Air Quality Guidelines.
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disease, as well as the interest in reducing greenhouse
gases, suggest that more stringent air quality standards
and guidelines may be considered in the future. For
these reasons, there is a need for additional investiga-
tion to improve our understanding of exposure–
response function(s) for mortality and morbidity at
low levels of PM2.5, ozone (O3), and other ambient
air pollutants. Such studies would inform risk asses-
sors and policy makers regarding exposure–response
functions at levels of ambient air pollution currently
prevalent in North America, Western Europe, and
other high-income regions of the world.

In 2014, HEI issued RFA 14-3, Assessing Health Ef-
fects of Long-Term Exposure to Low Levels of Ambient
Air Pollution, to solicit studies to address these impor-
tant questions. The main goals of the RFA were to: 

1. Fund studies to assess health effects of long-term
exposure to low levels of ambient air pollution,
including all-cause and cause-specific mortality
and morbidity. Such studies should analyze and
evaluate exposure–response function(s) for
PM2.5 and other pollutants at levels currently
prevalent in North America, Western Europe,
and other high-income regions. The studies may
also address related questions about health
effects at low levels of ambient air pollution. 

2. Develop statistical and other methodology
required for, and specifically suited to, con-
ducting such research including, but not limited
to, evaluation and correction of exposure mea-
surement error.

Applicants were asked to pay particular attention
to having sufficiently large cohor ts and statistical
power to detect associations should they exist, having
the ability to test various potential confounders of any
associations, and developing exposure-assessment
approaches and statistical methodology that would
enable a robust examination of the associations. 

Specifically, applicants were asked to propose stud-
ies to: 

1. Compare and contrast alternative analytic
models and accompanying uncer tainty. For
example , compare threshold against non-
threshold models, linear against nonlinear
models, and parametric against nonparametric

models, to characterize the exposure–response
function(s) at low levels of ambient air pollution.

2. Explore possible variability in estimates of risk at
low pollutant concentrations among popula-
tions, and identify possible contributing factors.
Such factors could include age, smoking, socio-
economic position, health status, and access to
medical care, as well as differences in air pollu-
tion sources and time–activity patterns.

3. Develop and evaluate exposure-assessment
methods suitable to estimate exposure to low
levels of air pollution at various spatial and tem-
poral scales in large study populations, including
people who reside in areas not covered by rou-
tine ground-level monitoring.

4. Develop, evaluate, and apply statistical methods
to quantify and correct for exposure measure-
ment error in risk estimates and in characteriza-
tion of exposure–response relationships.

5. Develop and validate approaches to assess the
effects of co-occurring pollutants on any health
effect associations at low ambient concentrations.

6. Develop and validate indirect approaches to
correct risk estimates for the effects of impor-
tant potential confounding variables, such as
smoking, in the absence of such data at the indi-
vidual level.

7. Improve techniques for record linkage and
methods for disclosure protection for optimal
use of large administrative databases in air pollu-
tion and health research.

STUDY SELECTION 

HEI established an independent Low-Exposure Ep-
idemiology Studies Oversight Panel — consisting of
outside experts and HEI Research Committee mem-
bers — to prepare RFA 14-3 and review all applica-
tions submitted in response (see Contributors page).
Members of HEI’s Research Committees with any
conflict of interest were recused from all discussions
and from the decision-making process. The HEI Re-
search Committee reviewed the Panel’s recommen-
dations and recommended three studies for funding
to HEI’s Board of Directors, which approved funding
in 2015. 
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This Preface summarizes the three studies, HEI’s
oversight process, and the review process for the Phase
1 reports.

OVERVIEW OF THE HEI LOW-EXPOSURE 
EPIDEMIOLOGY STUDIES

After a rigorous selection process, HEI funded three
teams, led by Michael Brauer at The University of Brit-
ish Columbia, Canada, Francesca Dominici at the Har-
vard T.H. Chan School of Public Health, United States,
and Bert Brunekreef at the University of Utrecht, the
Netherlands, to investigate health effects of exposure
to low levels of air pollution in very large populations in
Canada, the United States, and Europe, respectively

(see Preface Table and Preface Figure 2). The studies in-
cluded large population cohorts (with detailed individ-
ual information about potential confounders for all
subjects or for subsets of cohorts), as well as large ad-
ministrative databases with greater statistical power (al-
beit with less individual information about potential
confounders). Additionally, the three teams employed
satellite data and ground-level pollutant measurements,
used high-quality exposure-assessment models at high
spatial resolutions, and set out to develop and apply
novel statistical methods.

The three studies are expected to inform the scien-
tific community and the risk assessors and policy mak-
ers regarding exposure–response functions at levels of
ambient air pollution currently prevalent in Nor th

Preface Table. HEI's Program to Assess Adverse Health Effects of Long-Term Exposure to Low Levels of 
Ambient Air Pollution

Investigator
(Institution) Study Title Phase 1 Report 

Phase 2 
(Final) 
Report 

Expected

Brauer, Michael 
(The University of 
British Columbia, 
Canada)

Mortality–Air Pollution 
Associations in Low Exposure 
Environments (MAPLE) 

Brauer M, Brook JR, Christidis T, 
Chu Y, Crouse DL, Erickson A, 
et al. 2019. Mortality–Air Pollution 
Associations in Low-Exposure 
Environments (MAPLE): Phase 1. 
Research Report 203. Boston, 
MA:Health Effects Institute.

Summer 
2020

Brunekreef, Bert 
(Utrecht University, 
the Netherlands)

Mortality and Morbidity Effects 
of Long-Term Exposure to 
Low-Level PM2.5, Black Carbon, 
NO2 and O3: An Analysis of 
European Cohorts

None Fall 2020

Dominici, Francesca 
(Harvard University, 
T.H. Chan School
of Public Health, 
U.S.A.)

Assessing Adverse Health 
Effects of Long-Term Exposure 
to Low Levels of Ambient 
Pollution

Dominici F, Schwartz J, Di Q, Braun 
D, Choirat C, Zanobetti A. 2019. 
Assessing Adverse Health Effects 
of Long-Term Exposure to Low 
Levels of Ambient Air Pollution: 
Phase 1. Research Report 200. 
Boston, MA:Health Effects Institute.

Summer 
2020
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America, Western Europe, and other developed re-
gions. The full sets of analyses are expected to be com-
pleted in 2020, as discussed in the following sections. 

CANADIAN STUDY (MICHAEL BRAUER ET AL.)

Brauer and colleagues are assessing the relationship
between nonaccidental mortality and long-term expo-
sure to low concentrations of PM2.5 in four large
population-based cohorts, including a careful character-
ization of the shape of the exposure–response function.
The investigators are using Canadian census data and
have access to a nationally representative population of
approximately 9 million Canadians (ages 25–90 yr)
(Preface Figure 2). The Canadian team is developing hy-
brid models primarily using satellite data, as well as
chemical transport models, land-use variables, and rou-
tinely collected monitoring data for PM2.5. They are
also estimating ambient concentrations for nitrogen di-
oxide (NO2) and O3 for Canada and the United States
during the period 1981–2016. Additionally, they will be
validating satellite data against ground-based monitors
in Canada as part of the SPARTAN network (Snider et
al. 2015).

The exposure models are applied to estimate effects
of air pollution exposure on all-cause and cause-specific
mortality in four Canadian cohorts: 

1. About 2.5 million respondents who completed the
1991 census long form of the Canadian Census
Health & Environment Cohorts (CanCHEC), 

2. About 3 million respondents who completed the
1996 CanCHEC census long-form, 

3. About 3 million respondents who completed the
2001 CanCHEC census long-form, and 

4. About 540,000 respondents who participated in
the Canadian Community Health Survey (CCHS)
between 2001 and 2012, and reported individual-
level risk factors, including smoking. 

EUROPEAN STUDY (BERT BRUNEKREEF ET AL.)

Brunekreef and colleagues are basing their study on
the European Study of Cohorts for Air Pollution Effects
(ESCAPE), which started about a decade ago; its results
have been published widely (e.g., Beelen et al. 2014). In
the current HEI-funded study, the investigators are ana-
lyzing pooled data from 10 ESCAPE cohorts (instead of

Preface Figure 2. Geographical areas and populations covered by HEI’s research program to assess adverse health effects of long-term
exposure to low levels of ambient air pollution.
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the cohort-specific approach they used previously). In
addition, they are using data from six large administra-
tive cohorts to yield a total study population of approx-
imately 28 million Europeans (Preface Figure 2). They
are developing hybrid, Europe-wide and location-spe-
cific exposure models that utilize land-use information,
dispersion modeling, satellite data, ESCAPE monitoring
data, and routinely collected monitoring data for PM2.5,
NO2, O3, and black carbon at high spatial resolution
(residential address level; such detailed information is
very difficult to obtain in the United States). 

Brunekreef and colleagues are investigating the fol-
lowing health outcomes: all-cause and cause-specific
mortality, incidence of coronary and cerebrovascular
events, and lung cancer incidence. The incorporation of
ESCAPE cohorts with individual covariate information
as well as very large administrative cohorts (albeit with
less detailed information) will provide new insights in
the merits of both approaches. 

UNITED STATES STUDY (FRANCESCA 
DOMINICI ET AL.)

Dominici and colleagues are evaluating Medicare and
Medicaid data for a study population of approximately
61 million Americans (Preface Figure 2). They are de-
veloping high spatial resolution (1 km2-grid) hybrid ex-
posure models that incorporate satellite data, chemical
transport models, land-use and weather variables, and
routinely collected monitoring data for NO2, O3, and
PM2.5 and its components, for the continental United
States during the period 2000–2012. Exposure models
will be applied to estimate adverse health effects of air
pollution in three cohorts: 

1. Medicare enrollees (28.6 million elderly enrollees
per year, 2000–2012);

2. Medicaid enrollees (28 million enrollees per year,
2010–2012); and

3. Medicare Current Beneficiary Survey enrollees
(nationally representative sample of approximately
15,000 enrollees per year with rich individual-level
risk factor information, including smoking).

Dominici and colleagues are analyzing the following
health outcomes: time to death, time to hospitalization
by cause, and disease progression (time to rehospital-
ization). They are developing and applying new causal

inference methods to estimate exposure–response
functions to adjust for confounding and exposure mea-
surement error. Additionally, they are developing tools
for reproducible research including approaches for data
sharing, record linkage, and statistical software. 

STUDY OVERSIGHT 

HEI’s independent Low-Exposure Epidemiology
Studies Oversight Panel continues to provide advice
and feedback on the study design, analytical plans, and
study progress throughout the duration of the research
program. 

Given the substantial challenges in conducting a sys-
tematic analysis to assess health effects of long-term ex-
posure to low levels of ambient air pollution, HEI has
worked actively (and continues to do so) with the study
teams to coordinate their efforts and ensure the maxi-
mum degree of comparable epidemiological results at
the end of this research effort. To this end, HEI has reg-
ularly held investigator workshops and site visits, among
other activities. In addition, the studies are subject to
HEI’s special Quality Assurance procedures, which in-
clude an audit by an independent audit team (see
www.healtheffects.org/research/quality-assurance). 

REVIEW OF PHASE 1 AND PHASE 2 (FINAL) 
REPORTS

To inform the ongoing review of the U.S. National
Ambient Air Quality Standards (NAAQS) for PM2.5
and O3 starting in 2018, HEI requested Phase 1 reports
from the investigators based on the research com-
pleted during the first two years of the Canadian and
U.S. studies. Thus, the Phase 1 reports by Drs. Brauer
and Dominici provide summaries of results to date, in-
cluding those published in journal articles.

As is common for major research programs, HEI
convened a Low-Exposure Epidemiology Studies Re-
view Panel to independently review the Phase 1 re-
ports by Drs. Brauer and Dominici. The Panel consists
of seven exper ts in epidemiology, exposure assess-
ment, and biostatistics (see Contributors page). Com-
mentaries by the Review Panel accompany the Phase 1
reports. The Panel will also review the final reports of
the three studies.
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The Phase 1 Research Reports provide an opportu-
nity to present the results from the first two years of re-
search in one place and to present the Review Panel’s
Commentaries, which review the results and evaluate
the studies’ strengths and weaknesses. The three stud-
ies commenced in spring 2016 and are expected to be
completed in summer 2020, with final reports pub-
lished during 2021. 
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H E I  S TAT E M E N T

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Francesca
Dominici at the Harvard T.H. Chan School of Public Health, Boston, Massachusetts, and colleagues. Research Report 200 contains both the
detailed Investigators’ Report and a Commentary on the study prepared by HEI’s Low-Exposure Epidemiology Studies Review Panel.

 1

What This Study Adds
• This study is part of an HEI program to 

address questions regarding potential 
associations between air pollution 
exposure and health outcomes at low 
ambient air pollution levels, particularly at 
levels below the current U.S. national air 
quality standards.

• Dominici and colleagues developed 
hybrid, U.S.-wide models using machine 
learning to estimate outdoor fine particle 
(particulate matter ≤ 2.5 µm in 
aerodynamic diameter, or PM2.5) and 
ozone (O3) concentrations at 1 km × 1 km 
grids, by combining monitoring, satellite, 
transport modeling output, and other data.

• They obtained Medicare data for 61 million 
Americans, ages 65 years and older, who 
enrolled between 2000 and 2012. Using 
both cohort and case–crossover designs, 
they analyzed the association between 
long-term and short-term outdoor PM2.5 
and O3 exposures and mortality.

• The investigators report positive associ-
ations between nonaccidental, all-cause 
mortality and PM2.5 and O3 at low 
concentrations, including below the U.S. 
National Ambient Air Quality Standards 
(annual 12 µg/m3 for PM2.5 and 8-hour 
70 ppb for O3).

• These associations were robust to most 
adjustments for potential confounding by a 
number of lifestyle and behavioral factors 
in the cohort analyses. Sensitivity 
analyses did not meaningfully impact the 
findings of association.

• HEI’s Low-Exposure Epidemiology 
Studies Review Panel noted, however, 
that several important issues still need to 
be addressed by the investigators 
regarding these results during the 
remainder of this project. In particular, the 
potential for confounding by time and the 
complexities introduced by the use of 
different spatial scales for the exposure 
and health data need to be explored in 
more detail, and the causal inference 
methods need to be more fully applied.

• The Panel concluded that Dominici and 
colleagues have conducted an extensive 
and innovative set of initial analyses in 
these extraordinarily large air pollution and 
health data sets. While initial conclusions 
may be drawn from these analyses, the 
Panel awaits the further analyses that are 
underway before reaching full conclusions 
on the air pollution and public health 
implications of this important research.

Assessing Adverse Health Effects of Long-Term Exposure to 
Low Levels of Ambient Air Pollution: Phase 1

INTRODUCTION

The levels of most ambient air pollutants have
declined significantly in the United States during
the last few decades. Recent epidemiological

studies, however, have suggested an association
between exposure to ambient levels of air pollution
— even below the current U.S. National Ambient
Air Quality Standards (NAAQS) — and adverse
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health effects. In view of the importance of such
research findings, the Health Effects Institute in
2014 issued a request for applications (RFA 14-3)
seeking to fund research to assess the health effects
of long-term exposure to low levels, particularly
below the NAAQS, of ambient air pollution and to
develop improved statistical methods for con-
ducting such research. HEI funded three studies
under this program; each study used state-of-the-art
exposure methods and very large cohorts. The
studies were based in the United States, Canada,
and Europe, thus providing a comprehensive cross-
section of high-income countries where ambient
levels are generally low. 

The low-exposure-level studies are scheduled to
be completed in 2020. In 2018, in order to inform
the ongoing review of the NAAQS for fine particles
(PM2.5) and ozone (O3), HEI requested Phase 1
reports from the U.S. (Francesca Dominici) and
Canadian (Michael Brauer) investigators. HEI’s
formed a special panel, the Low-Exposure Epidemi-
ology Studies Review Panel, to evaluate the studies’
methods, results, conclusions, and their strengths
and weaknesses. This Statement focuses on the
study by Dr. Francesca Dominici, from the Harvard
T.H. Chan School of Public Health, Boston, Massa-
chusetts, and her colleagues, titled, “Assessing
Adverse Health Effects of Long-Term Exposure to
Low Levels of Ambient Air Pollution.”

APPROACH

Aims: The aims of the Dominici study were to (1)
develop hybrid, high-resolution, exposure-predic-
tion models to estimate long-term exposures to
PM2.5 and O3 levels for the continental United
States; (2) develop and apply causal inference
methods; (3) estimate all-cause mortality associated
with exposure to ambient air pollution for all U.S.
Medicare enrollees between 2000 and 2012 using a
cohort (long-term) and a case–crossover (short-
term) design; and (4) develop tools for data sharing,
record linkage, and statistical software. 

Data and Methods: Dominici and colleagues de-
veloped hybrid air pollution concentration models
for the contiguous United States for the period 2000
to 2012, using data from a variety of sources, includ-
ing satellite data, chemical transport models, land-
use and weather variables, and routinely collected
air monitoring data from the U.S. Environmental
Protection Agency (EPA). 

With this large amount of data and using mul-
tiple approaches and input variables, the investiga-
tors developed a hybrid model to estimate daily
PM2.5 and O3 concentrations at 1 km × 1 km grids
across the continental United States. Complex
atmospheric processes were addressed using a
neural network that modeled nonlinearity and
interactions. The neural network was trained using
data covering the study period, and the predictions
were validated against 10% of the EPA air monitors
left out of the model. A similar approach was used
to estimate and validate a model to predict O3 con-
centrations during the warm months (April through
September) of each study year.

Health data were obtained from the Centers for
Medicare and Medicaid Services for all Medicare
enrollees for the years 2000 to 2012, which repre-
sents more than 96% of the U.S. population 65
years of age and older (see Statement Table). The
study obtained records for all Medicare enrollees
(~61 million), with 460 million person-years of
follow-up and 23 million deaths. They also obtained
covariate information from the Medicare Current
Beneficiary Survey (MCBS; ~57,000 people), an
annual phone survey of a nationally representative
sample of Medicare beneficiaries, with information
on more than 150 individual-level risk factors,
including smoking and body mass index.

Using the Medicare data and cohort and case–
crossover designs, they investigated the association
between exposure to PM2.5 and O3 and all-cause
mortality in two-pollutant analyses, including sepa-
rate analyses for low pollutant concentrations. For
the cohort study, they performed survival analyses
using the Andersen-Gill method, a variant of the tra-
ditional Cox proportional hazards model that incor-
porates spatiotemporal features by allowing for
variation in covariates from year to year. The investi-
gators developed concentration–response curves by
fitting a log-linear model with thin-plate splines for
both pollutants while controlling for important indi-
vidual and ecological variables, including socioeco-
nomic status and race. For the case–crossover study,
the case day was defined as the date of death, with
exposure defined as the mean of the ambient concen-
tration on that day and the day before; this was com-
pared to exposure on three predefined control days.
They fitted a conditional logistic regression to all
pairs of case and matched control days, thus estimat-
ing the relative risk of all-cause mortality associated
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with short-term exposure to PM2.5 and O3. They
also performed subanalyses to explore the health
effects at lower levels of exposure. 

To assess whether any subgroups within the
cohort study were at higher or lower risk of mortality
associated with either long-term or short-term air
pollution exposure, the investigators fitted the same
statistical models to certain population subgroups
(e.g., male vs. female and white vs. black). To explore
the robustness of the results from the cohort analysis,
they performed sensitivity analyses and compared
any changes in risk estimates with differences in
confounder adjustment and estimation approaches.
Finally, since Medicare data do not include informa-
tion on many important individual-level covariates,
the investigators utilized data from the Medicare
Current Beneficiary Statement to examine how the
lack of adjustment for these risk factors could have
affected the risk estimates for the Medicare cohort. 

RESULTS

Dominici and colleagues report overall good per-
formance of the models for estimating PM2.5 and O3
concentrations, with overall R2 values of 0.84 and
0.80, respectively. For PM2.5, the average annual
concentration was 11.0 µg/m3 during the study
period, 2000–2012. Performance of the model
varied between different geographical regions and
seasons; the highest PM2.5 concentrations were

predicted to be in California and the eastern and
southeastern United States, and model performance
was better in the eastern and central United States
than in the western part of the country. And, the
PM2.5 model performed best during the summer.
For O3, the average of 8-hour daily concentrations
during the warm season was 46.3 ppb during the
study period. O3 concentrations were highest in the
Mountain region and in California and lower in the
eastern states. The average concentrations of PM2.5
decreased during the study period, but O3 concen-
trations remained more or less the same. Annual
PM2.5 and warm-season O3 concentrations were
only weakly correlated.

The 2000–2012 cohort of Medicare beneficiaries
provided a very large population for studying asso-
ciation with long-term effects of exposure to
ambient air pollution. In two-pollutant analyses of
long-term effects, Dominici and colleagues report a
7.3% higher risk of all-cause mortality for each
10-µg/m3 increase in annual average PM2.5 concen-
trations and a 1.1% higher risk of mortality for each
10-ppb increase in average O3 concentrations in the
warm season. At low concentrations — less than
12 µg/m3 PM2.5 and less than 50 ppb O3 — the risk
was 13.6% for PM2.5 and 1.0% for O3 for each
10-µg/m3 and 10-ppb increase in concentrations,
respectively. The concentration–response relation-
ships from the two-pollutant models showed almost

Statement Table. Key Features of the Dominici et al. Study

Overall
Medicare study population 60.9 million

MCBS study population 57,200

Study period 2000–2012

Case–Control Study
Follow-up period 460.3 million person-years 

Deaths 22.6 million

PM2.5 average concentration 11.0 µg/m3

O3 average concentration 46.3 ppb

Case–Crossover Study
Case days 22.4 million

Control days 76.1 million

PM2.5 average concentration 11.6 µg/m3

O3 average concentration 37.8 ppb
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linear curves, with no suggestion of a threshold
down to 5 µg/m3 PM2.5 and 30 ppb O3.

In subgroup analyses for long-term PM2.5 expo-
sure, the investigators found larger estimates of
effect among males and among Hispanics, Asians,
and particularly African Americans, compared with
whites. Individuals with low socioeconomic status,
as indicated by eligibility for Medicaid, appear to
have a slightly higher risk per unit of PM2.5 expo-
sure. For long-term O3 exposure, the subgroup anal-
ysis showed that the effect estimates were higher for
Medicaid-eligible enrollees and slightly higher for
whites, but these analyses also produced puzzling
hazard ratios of less than 1 for certain subgroups,
including Hispanics and Asians, and particularly
for Native Americans, than the overall population.  

For short-term exposures, the investigators observed
a 1.05% greater risk of mortality in two-pollutant
models for a 10-µg/m3 increase in PM2.5 concentra-
tions and a 0.51% greater risk for a 10-ppb increase
in 8-hour warm-season O3 concentration. (Pollutant
levels were averaged over the current and previous
day.) At low concentrations (below 25 µg/m3 of
PM2.5 and below 60 ppb of O3), the associations re-
mained elevated for both pollutants (1.61% for PM2.5
and 0.58% for O3). The concentration–response
curves showed the relative risk increasing sharply
for both pollutants at a relatively low concentration
and then leveling out at higher concentrations. The
investigators observed evidence of effect modifica-
tion for several variables, including a higher PM2.5–
mortality risk for females than for males. 

INTERPRETATION OF RESULTS 

In its independent review of the study, HEI’s
Low-Exposure Epidemiology Studies Review Panel
noted that the report by Dominici and colleagues
summarizes an impressive amount of work com-
pleted in the first part of this HEI project. Particularly
strong aspects of this work include the extremely
large, national cohort, with high-resolution exposure
assessment and development and application of
state-of-the-art statistical techniques. The Panel also
noted that additional research, including further
development of causal methods that would prop-
erly allow for the complexities in the design of the
studies and nature of the data, is currently ongoing.

Exposure Assessment: The use of large, diverse,
and existing data sets to generate estimates of PM2.5
and O3 concentrations on a 1 km × 1 km national
grid for the entire continental United States

(~8 million km2) is impressive, and allowed the
investigators to estimate concentrations in areas
where air monitors are sparse. However, as with any
exposure assessment, it is critical to consider the
potential for exposure prediction errors. 

Despite steps to correct for regional and composi-
tional differences, both geographical and temporal
variability in the errors of the concentration esti-
mates persisted in the final estimates for PM2.5 and
O3. The exposure model was trained by leaving out
10% of EPA air quality monitors. But because these
monitors are generally located in areas with high
population density, it is possible that the model is
prone to larger error in areas with lower population
density — which generally have lower PM2.5 con-
centrations and therefore are of greater interest in
the context of this study. And, based on earlier work
by the researchers that provides the basis for the
exposure models used in these studies, it appears
that the model may systematically underpredict con-
centrations for unexplained reasons. The nature,
sources, size, and potential impact of the potential
errors discussed here are important to understand
and deserve attention in future analyses.

Long-Term Health Effects, Cohort Study: Using
the massive database of all Medicare recipients
during 2000 to 2012, and combining it with the
equally large exposure predictions, Dominici and
colleagues have performed a study with extraordi-
nary statistical power to investigate the association
between all-cause mortality and long-term exposure
to a range of PM2.5 and O3 levels. That they observed
an association between annual average concentra-
tions and mortality at higher concentrations was not
the new finding of this research, but the findings at
low levels, particularly at levels below the current
NAAQS, are novel and potentially important. 

The greatest challenge to the internal validity of
this study, as for all observational studies, is the
potential for confounding, which can bias the
results. To address such concerns, the investigators
performed numerous analyses with some 20 covari-
ates. They also utilized findings from a smaller
Medicare cohort that had a much richer set of
potential confounding variables to assess the likely
impact of having only a limited number of covari-
ates in the main cohort analysis. In addition, to
allow for the effects of time-dependent covariates
known to vary from year to year, they utilized a
variant of the classic Cox proportional hazards
model, the Andersen-Gill formulation. 
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However, this is a complex study. Health and per-
sonal characteristics are available for individuals,
but ambient air pollutant exposure is estimated at
the ZIP code level (averaged from the 1 km × 1 km
spatial scale of the prediction model). Additionally,
the ZIP code scale is the smallest spatial unit at
which individual residential and other covariate
information is available. These factors, coupled
with confounders that can act at the level of the
individual, the community, or the regional environ-
ment, result in a complex hybrid model. These
issues pose important challenges for the next phase
of the work planned by the investigators, and the
causal inference methods under development will
need to focus on these challenges. 

Based on the current results, the Panel offers the
following comments most relevant to the cohort
analyses. 

The investigators performed various analyses to
explore the potential impact of confounding; how-
ever, the Panel noted several areas with a potential
for residual confounding in the cohort study. For
example, some results from the subgroup analyses
are puzzling, particularly the dramatically higher
effect of PM2.5 exposure in African Americans and
the negative (protective) effects of exposure to O3
for Native Americans, Hispanics, and Asians. 

Although the investigators have used the
Andersen-Gill formulation to better model time-
dependent variables, the Panel’s biggest concern
relates to the problem of potential for temporal con-
founding, with both overall nonaccidental mortality
and PM2.5 levels declining steadily over the period
of the study, 2000–2012. Because this is an open
cohort (new individuals enter the cohort as they
enroll for Medicare), age — which is controlled in
the analyses — is not necessarily strongly correlated
with calendar time. As a result, confounding could
occur because of the contributions of both age and
calendar time. The Panel believes that without
accounting for confounding by time, the findings of
the long-term exposure study should be viewed
with caution.

The Panel also has concerns about the impact of
the likely exposure misclassification and con-
founding related to the hybrid nature of the study,
but appreciates that exposure measurement error
correction methodology for spatially varying pollut-
ants and methods to address confounding in such a
complex study setting are still in their infancy. Addi-
tionally, the Panel notes that data on individual

health-related behaviors, such as smoking, diet, and
exercise, do not capture the full extent of variability
in the behaviors, such as geographical variability.
Finally, the presence of other pollutants — such as
NO2 — may also confound the associations between
PM2.5 and O3 and mortality.

Another important issue in interpretation of these
results is related to the very large population studied
here, and consequently the very high apparent preci-
sion of the results (i.e., the very small confidence
intervals). Because the impact of bias and model mis-
specification is not reflected in standard uncertainty
measures, one should be cautious about over-inter-
preting the narrow confidence intervals. The Panel’s
comments and concerns about the potential impacts
of bias and of unmeasured confounding should be
viewed in this broader context. 

Short-Term Health Effects, Case-Crossover
Study: The second study in this report uses a case–
crossover design — a variant of the time-series
design — to evaluate short-term effects of low-level
air pollution in the Medicare population. One advan-
tage this study design has over the long-term design
is that it is based on variation in exposure and mor-
tality experienced by an individual over short
periods of time (days, rather than years). Therefore,
only confounding factors that vary over short periods
of time, such as weather, are of potential concern,
rather than the much larger array of potential con-
founders that either do not vary with time or have
long-term trends. On the other hand, by design, time-
series analyses only address the immediate impact of
air pollution on mortality rather than the pollutants’
role in the development of chronic morbidity and
subsequent mortality.

Dominici and colleagues report a relative risk in-
crease of 1.05% and 0.51% in daily mortality rate for
each 10-µg/m3 increase in PM2.5 and 10-ppb increase
in O3, respectively. The concentration–response
analyses for PM2.5 and O3 suggest a nonlinear rela-
tionship, with a steeper slope at low concentrations
and flattening at higher concentrations. They have
also investigated effect modifications for a range of
variables. For example, they report that the mortality
effect of short-term exposure to PM2.5 is greater in
women than in men, in contrast to the finding in the
cohort study. The effects in other subgroup analyses
were generally not significant, except for Medicaid
eligibility. Also, NO2 — another time-varying co-
variate — was not included in these analyses. 
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Causal Modeling: There is increasing interest in
research on casual inference methods because of the
challenges in accounting for confounding in the
preceding analyses of observational data, and Domi-
nici and colleagues are devoting significant effort
to the development and extension of two such
methods. 

In the first method, the investigators have devel-
oped a generalized-propensity-score approach for
confounding adjustment along with a regression
calibration method to address exposure measure-
ment error in health models.  In the second
approach, they have developed a new Bayesian
causal approach, known as local exposure–response
confounding adjustment, to estimate exposure–
response curves accounting for differential effects
of confounders at different levels of exposure. Both
of these approaches serve as potentially useful
starting points, and the Panel notes that current
applications do not address the concerns raised
about the long-term and short-term studies — in
particular, concerns about residual confounding
and impacts of the complex hybrid nature of the
study designs — and so it looks forward to the full
development and applications of these methods to
the health analyses. 

Sharing of Models and Data: Dominici and col-
leagues have made a special effort to make available
their data, workflows, and analyses, and have
posted these at a secure high-performance com-
puting cluster with the objective of developing an
open science research data platform. Additionally,
the codes and software tools are publicly available
from another depository. The investigators’ work in
these areas will continue. The Panel finds these
efforts praiseworthy and encourages the Dominici
team to continue sharing the unique resources they
have developed.

CONCLUSIONS

Using very large air pollution model and health
data sets, Dominici and colleagues have reported
initial results using two types of analysis — a cohort
analysis of long-term exposures and a case–
crossover analysis of short-term exposures. They
and found positive associations of both PM2.5 and
O3 with all-cause mortality, with associations
extending to concentrations below the current
NAAQS and with little evidence of a threshold. The
investigators also conducted a range of sensitivity
analyses and controlled for many confounders;
these did not meaningfully change the initial find-
ings of associations. These initial analyses are thor-
ough and comprehensive, and make a valuable
contribution to the literature.

As extensive as these analyses are, as noted by
the Panel and by the investigators, there are several
key questions that need to be investigated further
before firmer conclusions can be drawn. Particu-
larly important among these are (1) issues around
the potential for confounding by time trends and
other variables, including other pollutants such as
NO2, and geographical patterns in exposure and
health status; (2) impact of the different spatial scales
of the variables in both the long-term and short-term
analyses, and the resulting complex quasi-ecological
(hybrid) nature of the models, with the potential for
exposure misclassification and residual con-
founding; and (3) extension of their work by the
development, testing, and application of causal
inference methods in the full study population. 

Dominici and colleagues have performed a set of
extensive and creative analyses in the largest air
pollution and health databases to date. While initial
conclusions may be drawn from these first analyses,
the Panel will wait for the planned extensive further
analyses to be completed before reaching full con-
clusions on the air pollution and public health
implications of this important research.
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ABSTRACT

Introduction. This report provides a summary of major
findings and key conclusions supported by a Health
Effects Institute grant aimed at “Assessing Adverse Health
Effects of Long-Term Exposure to Low Levels of Ambient
Pollution.” Our study was designed to advance four crit-
ical areas of inquiry and methods development.

Methods. First, our work focused on predicting short-
and long-term exposures to ambient PM2.5* mass (particu-
late matter ≤ 2.5µm in aerodynamic diameter) and ozone
(O3) at high spatial resolution (1 km × 1 km) for the conti-
nental United States during the period 2000–2012 and
linking these predictions to health data. Second, we devel-
oped new causal inference methods for exposure–
response (ER) that account for exposure error and adjust
for measured confounders. We applied these methods to
data from the New England region. Third, we applied

standard regression methods using Medicare claims data to
estimate health effects that are associated with short- and
long-term exposure to low levels of ambient air pollution.
We conducted sensitivity analyses to assess potential con-
founding bias due to lack of extensive information on
behavioral risk factors in the Medicare population using
the Medicare Current Beneficiary Survey (MCBS) (nation-
ally representative sample of approximately 15,000 Medi-
care enrollees per year), which includes abundant data on
individual-level risk factors including smoking. Finally,
we have begun developing tools for reproducible research
— including approaches for data sharing, record linkage,
and statistical software.

Results. Our HEI-funded work has supported an exten-
sive portfolio of analysis and the development of statistical
methods that can be used to robustly understand the
health effects of long- and short-term exposure to low
levels of ambient air pollution. This report provides a
high-level overview of statistical methods, data analysis,
and key findings, as grouped into the following four areas:
(1) Exposure assessment and data access; (2) Epidemiolog-
ical studies of ambient exposures to air pollution at low
levels; (3) Methodological contributions in causal infer-
ence; and (4) Open science research data platform.

Conclusion. Our body of work, advanced by HEI, lends
extensive evidence that short- and long-term exposure to
PM2.5 and O3 is harmful to human health, increasing the
risks of hospitalization and death, even at levels that are well
below the National Ambient Air Quality Standards
(NAAQS).

This Investigators’ Report is one part of Health Effects Institute Research Re-
port 200, which also includes a Commentary by the Institute’s Low-Exposure
Epidemiology Studies Review Panel and an HEI Statement about the re-
search project. Correspondence concerning the Investigators’ Report may be ad-
dressed to Dr. Francesca Dominici, Harvard T.H. Chan School of Public Health,
677 Huntington Ave., Boston, MA 02115; e-mail: fdominic@hsph.harvard.edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83467701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of this volume.
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INTRODUCTION

In late 2014, HEI issued a Request for Applications (RFA
14-3) seeking proposals to assess health effects of long-
term exposure to low levels of ambient air pollution with
particular attention to (a) sufficient size and statistical
power to detect associations if they exist, (b) the ability to
test different potential confounders of these associations,
and (c) a variety of approaches to exposure assessment and
statistical analysis to enable a robust examination of the
associations.

Levels of ambient air pollution have declined signifi-
cantly over the last decades in North America, Europe, and
in other developed regions. Nonetheless, epidemiological
studies continue to report associations of adverse health
effects with air pollution even at these lower levels, and
recently some studies have found associations at levels
below current ambient air quality standards (e.g., Crouse et
al. 2012; Hales et al. 2012; Shi et al. 2016). In order to
inform future risk assessment and regulation, HEI com-
mitted funding to examine whether associations with
adverse effects continue to be observed as levels of air pol-
lution decline further and what the shape of the ER func-
tion is at those low levels, both major uncertainties in
current air quality standards decision making.

As air pollution levels continue to decrease and regula-
tory actions become more costly, the quantification of the
public health benefits of cleaner air will be subject to an
increased level of scrutiny. Epidemiological analyses of
claims data have provided strong evidence of air pollu-
tion’s adverse health effects, mostly using data from urban
areas (Carey et al. 2013; Crouse et al. 2015; Krewski et al.
2009; Ostro et al. 2015; Turner et al. 2016). Yet, significant
gaps in knowledge remain, particularly with regard to the
health effects of long-term exposure to lower levels of air
pollution, and no large study to date has investigated the
health effects of long-term air pollution in areas with
sparse monitoring (Aim 1).

The estimation of health effects associated with long-
term exposure to low levels of air pollution presents key
methodological challenges, including: (1) the estimation of
an ER within a traditional regression framework does not
have a causal interpretation and can be highly sensitive to
model choice for both the shape of the ER and the adjust-
ment for confounding; (2) health effects estimation at low
exposure levels might be affected by a different set of
confounders than at high exposure levels; (3) information
on individual-level potential confounders is limited in the
administrative data; (4) estimation of the ER must account
for potentially larger exposure error at lower exposure
levels; (5) identification of effect modifiers is challenged
by the large number of possibilities that cannot all be

tested individually; and (6) causal estimation of ER in the
context of multiple pollutants is virtually nonexistent in
the literature. A rigorous treatment of all these statistical
challenges, under a unifying causal inference framework,
is necessary to investigate the health risks associated with
low pollution levels and to inform regulatory policy (Aim
2). Additionally, little is known about health effects at low
pollution levels, not only on mortality and morbidity out-
comes, but also on disease progression in populations
thought to be highly susceptible to air pollution — such as
low-income adults (Aim 3). Finally, methods for data
sharing and reproducibility in air pollution epidemiology
are of paramount importance, yet the scientific community
lacks tools to make this possible (Aim 4).

This report provides a summary of major findings and
key conclusions supported by our HEI-funded project.

STUDY AIMS

To overcome these challenges, our team structured our
work around four specific aims:

Aim 1: Exposure Prediction and Data Linkage. Inves -
tigate the health effects of long-term air pollution in areas
with sparse monitoring. Apply and extend already devel-
oped and evaluated hybrid prediction models that use sat-
ellite, land use, emissions, ground monitoring, and
weather data in conjunction with chemical transport
models to estimate long-term exposures to low levels of
ambient PM2.5 mass and components, as well as the gas-
eous air pollutants O3 and nitrogen dioxide (NO2), at high
spatial resolution (1 km × 1 km) for the continental United
States during the period 2000–2012. Link these predic-
tions to the health data. See Figure 1.

Aim 2: Causal Inference Methods for Exposure–
Response. Develop a new framework in Bayesian
causal inference to estimate the whole ER that is robust to
model misspecification for confounding and accounts for
exposure error. Specifically, we aimed to develop methods
to: (1) estimate a nonlinear ER, while accounting for expo-
sure error; (2) adjust for measured and unmeasured con-
founders; (3) adjust for confounding in the context of
multiple exposures; and (4) detect effect modification
when the multiplicity of possible modifiers precludes
testing of each one individually. See Figure 2.

Aim 3: Evidence on Adverse Health Effects. Apply meth-
ods developed in Aim 2 to estimate health effects associ-
ated with long-term exposure to low levels of ambient air
pollution for three dynamic U.S. cohorts: Medicare
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Figure 1. Overview of Aim 1 showing the type, source, and purpose of national data sets used in our prediction models and the corresponding exposure
metrics being assessed. (U.S. EPA = U.S. Environmental Protection Agency, NASA = National Aeronautics and Space Administration, NGA = National Geo-
spatial-Intelligence Agency, NOAA = National Oceanic and Atmospheric Administration.)

Figure 2. Overview of Aim 2 showing causal inference methods for exposure–response analysis. Causal ER defined as a sequence of hypothetical 
experiments. 
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enrollees (28.6 million enrollees [≥65 years] per year,
2000–2012); Medicaid enrollees (28 million enrollees per
year, including 12 million children and 7 million people
with disabilities, 2010–2012); and MCBS enrollees
(nationally representative sample of approximately 15,000
enrollees per year with abundant data on individual-level
risk factors, including smoking linked to Medicare claims).
We aimed to examine the following health outcomes (time
is measured from Medicare enrollment): (1) time to hospi-
talization by cause; (2) disease progression (time to rehos-
pitalization); and (3) time to death. See Figure 3.

Aim 4: Tools for Data Access and Reproducibility.
Develop tools for reproducible research including

approaches for data sharing, record linkage, and statistical
software. Figure 4 provides a visual representation of the
connection across the proposed aims.

METHODS AND STUDY DESIGN

In Aim 1, we addressed Research Objective #3 of the
RFA (“Develop and evaluate exposure assessment
methods suitable to estimate exposure to low levels of air
pollution at various spatial and temporal scales in large
study populations, including populations that reside in
areas not covered by routine ground-level monitoring”).
We assembled and linked a wealth of data sources from
satellite and ground monitoring data and applied, com-
pared, and validated prediction models to estimate long-
term average levels of PM2.5, PM2.5 species, NO2, and O3
in a 1 km × 1 km grid for the continental United States. In
this aim, we also refined previously developed methods to
align gridded exposure to ZIP-code-level exposure
including the propagation of the exposure error from grid
to ZIP code (location code used by the U.S. Postal Service).
We then linked the exposure, health, and confounder data
at the ZIP code level (see Figure 1).

In Aim 2, we developed new methods to address
Research Objectives #1, 4, 5, and 6 of the RFA (“1. Com-
pare and contrast alternative models and their uncertainty,
e.g., threshold/nonthreshold, linear/nonlinear, and para-
metric/nonparametric, to characterize the ER function(s) at
low levels of ambient air pollution. 4. Develop, evaluate,
and apply statistical methods to quantify and correct for
exposure measurement error in risk estimates and in char-
acterization of ER relationships. 5. Develop and validate
approaches to assess the impacts of co-occurring pollut-
ants on health effect associations at low ambient concentra-
tions. 6. Develop and validate indirect approaches to correct
risk estimates for the effects of important potential con-
founding variables, such as smoking, in the absence of such
data at the individual level.”) We developed several new

statistical methods for causal inference to estimate the whole
ER function. The new methods were designed to overcome
several important challenges in the estimation of health
effects associated with low-level exposure (see Figure 2).

In Aim 3, we addressed Research Objective #2 of the
RFA (“Explore possible variability in effect estimates at
low levels among populations, and identify possible con-
tributing factors. Such factors may include age, socioeco-
nomic position, health status, and access to medical care,
as well as differences in air pollution sources and time–
activity patterns”), providing national evidence on the
causal effects of low-level exposure on several outcomes in
children, adults with low-income, and adults 65 years and
older (see Figure 3).

In Aim 4, we addressed Research Objective #7 of the
RFA (“Improve techniques for record linkage and methods
for disclosure protection for optimal use of large adminis-
trative databases in air pollution and health research”),
developing new tools for data access and reproducibility,
including statistical software to implement the methods
developed in Aim 2 and specific instructions on how to
reproduce our analyses (see Figure 4).

This project was approved by the Institutional Review
Board of the Harvard T.H. Chan School of Public Health.

STATISTICAL METHODS AND DATA ANALYSIS

Our HEI-funded work comprises an extensive portfolio
of analysis and the development of robust statistical
methods that can be used to understand the health effects
of long- and short-term exposure to low levels of ambient
air pollution. In this section, we provide a high-level over-
view of this work, as grouped into the following four areas:
(1) Exposure assessment and data access; (2) Epidemiolog-
ical studies of ambient exposures to air pollution at low
levels; and (3) Methodological contributions in causal
inference; and (4) Open science research data platform.

EXPOSURE ASSESSMENT AND DATA ACCESS

PREDICTING AIR POLLUTION: A FLEXIBLE R 
PACKAGE*

There is strong evidence that ambient exposure to PM2.5
increases risk of mortality and hospitalization. Large-scale
epidemiological studies on the health effects of PM2.5

* A paper describing development of this method (Sabath et al. 2018) was
first presented at the 5th IEEE International Conference on Data Science and
Advanced Analytics, 1-4 October 2018 and can be found at
arXiv:1805.11534v2 [stat.ML].
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Figure 3. Overview of Aim 3 to provide national evidence on the causal effects of low-level exposure on several outcomes in children, people with disabil-
ities, pregnant women, adults with low-income, and adults 65 years and older.

Figure 4. Overview of Aim 4 to develop new tools for data access and reproducibility, including statistical software to implement the methods developed
in Aim 2 and specific instructions on how to reproduce our analyses.
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provide the necessary evidence base for lowering the
safety standards and informing regulatory policy. How-
ever, ambient monitors of PM2.5 (as well as monitors for
other pollutants) are sparsely located across the United
States, and therefore studies based only on the levels of
PM2.5 measured from the monitors would inevitably
exclude large parts of the population. One approach to
resolving this issue has been developing models to predict
local PM2.5, NO2, and O3 based on satellite, meteorolog-
ical, and land-use data. This process typically involves
developing a prediction model that relies on large amounts
of input data and is highly computationally intensive to
predict levels of air pollution in unmonitored areas.

Various groups have developed air pollution modeling
platforms, with the goal of using information that is available
in locations with and without monitors to predict ground
level PM2.5. A key component used in many of the devel-
oped models is satellite-based aerosol optical depth
(AOD), a measure of visibility that is associated with levels

of particulate matter in the atmosphere. However, these mea-
surements represent particulate matter present in the entire
atmospheric column and can’t provide a reliable proxy to
ground level pollution (Wang et al. 2017). Information from
satellite, meteorological and land-use sources is then used to
attempt to estimate the levels of PM2.5 at surface.

To account for complex atmospheric mechanisms, Di
and colleagues (2016; 2017b) used a neural network for its
capacity to model nonlinearity and interactions. They
employed convolutional layers, which aggregate neigh-
boring information, into a neural network to account for
spatial and temporal autocorrelation. We implemented
this prediction model to generate daily predictions for the
continental United States from 2000 to 2012 for PM2.5 and
O3 and tested the performance of the model with monitors
left out of the original group (see Figure 5). The model
developed by Di and colleagues (2016) relied heavily on
data from PM2.5 monitors to generate predictions of PM2.5.
They took a data intensive approach, using information

Figure 5. Distribution of pollution monitors and of predictions taken from the model by Di and colleagues (2016). Reprinted with permission from Di et
al 2016. Copyright (2016) American Chemical Society.
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about AOD from the moderate resolution imaging spectrora-
diometer (MODIS) satellite, surface reflectance data, esti-
mates of both ground level PM2.5 and total levels of aerosols
distributed throughout the whole atmospheric column from
the Goddard Earth Observing System (GEOS-Chem), meteo-
rological data from the North American Regional Reanalysis
project, indices of aerosols that could potentially absorb
PM2.5, and land-use information such as elevation, road
density, vegetation coverage, and population density that
can serve as reasonable proxies for emissions as well as help
capture small scale variations in PM levels.

One key form of data with universal coverage used to
help model PM concentrations and other pollutants is the
results of chemical transport models (CTMs). CTMs are
computationally intensive atmospheric models that model
material flows and chemical reactions within the atmo-
sphere. When combined with measurements of AOD, these
have been shown to provide more accurate measurements
of PM2.5 (Pafka 2015; Wang et al. 2017). Multiple
approaches also bring in land-use data to further refine the
predictions (Di et al. 2016; Wang et al. 2017). These pieces
of information were combined using either standard
linear-based statistical models or more complex machine
learning methods in order to generate predictions. These
are typically able to generate predictions at a 1 km × 1 km
scale for large regions, such as the continental United
States and the whole of North America (Wang et al. 2017).

This model has been applied in health research to deter-
mine the effects of low level PM2.5. By incorporating these
predictions, this research was able to analyze data from
underrepresented populations and demonstrate a connec-
tion between increased mortality and PM exposure even at
low levels (Di et al. 2017a, c).

A unifying factor among all modeling approaches for
estimating exposure prediction — including the model
used by Di and colleagues — is that they are both data and
computationally intensive. In our work, we used data that
took up 30 TBs of disk storage in unprocessed form. The
inputs for the PM2.5 model came from a variety of sources
including atmospheric imaging primarily from National
Aeronautics and Space Administration (NASA) satellites,
meteorological results of chemical-transport model simu-
lations, geographical information, and information on land
usage (such as measurements of road density). For
example, inputs for the model by Di and colleagues (2016)
are shown in Table 1. Di and colleagues developed their soft-
ware toolkit in Matlab. It is also worth noting that, because
our model was optimized to maximize R2 with existing mon-
itoring stations, it raises the possibility of overfitting for
monitored areas, and this model training process could also
make our model less accurate in unmonitored, primarily

rural, areas. In order to eliminate the impact of potential
overfitting, we trained our models using cross-validation. To
address the issue of the model being potentially less accurate
in unmonitored areas, we estimated, as a sensitivity analysis,
the distribution of population as a function of the distance to
the nearest monitoring site and found that 72.9% and 75.1%
of the U.S. population lives within 20 km of PM2.5 moni-
toring sites and O3 monitoring sites, respectively. As a sub-
stantial proportion of the U.S. population is located near
monitors, our prediction model, which is trained on moni-
toring stations, would provide accurate estimates for a large
proportion of the population.

We have developed a flexible R package called airpred
(Sabath et al. 2018) (https://github.com/NSAPH/airpred)
that allows environmental health researchers to design and
train spatio–temporal models capable of predicting multiple
pollutants, including PM2.5. We utilized the R statistical lan-
guage together with H2O, an open source big data platform,
to achieve both performance and scalability when used in
conjunction with cloud or cluster computing systems.

Table 1. Data Sources and Resolutions Used in 
the Di Modela

Input Typeb Sourcesc
Spatial

Resolution

Meteorological data Reanalysis 0.5° × 0.625°
AOD MAIACUS 1 km × 1 km

Surface reflectance MOD09A1 500 m × 500 m

CTMs GEOS-Chem
CMAQ

12 k × 12 k

Absorbing aerosols OMAERUVd
OMAEROe

0.25° × 0.25° 

Vegetation MOD13A2 1 km × 1 km

Other land use NLCD 30 m × 30 m

a Di et al. 2016.

b AOD = aerosol optical depth; CTM = chemical transport model.

c MAIACUS (Multi-Angle Implementation of Atmospheric Correction with 
U.S. data) is a new algorithm to retrieve aerosol optical depth data from a 
satellite. MOD09A1 is the product name of surface reflectance data from 
a satellite. GEOS-Chem and CMAQ are chemical transport models. 
OMAERUVd and OMAEROe are two algorithms for retrieving aerosol 
composition data. OMAERUVd is a near-ultraviolet algorithm, which 
retrieves ultraviolet aerosol index, and OMAEROe uses a 
multiwavelength aerosol algorithm, whose outputs include aerosol 
indexes at the visible and ultraviolet ranges. MOD13A2 is the data 
product name of normalized difference vegetation index. NLCD (National 
Land Cover Database) provides land cover for the entire study area at 
30 m × 30 m resolution.
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With airpred, we ported and extended the Matlab work-
flow to the open-source R statistical software (R Develop-
ment Core Team 2011), while explicitly relying on the H2O
“big data” software stack, which is known to perform well
on laptops as well as on large computer systems, facili-
tating the use of parallel algorithms and cluster and cloud
deployment options to speed processing. The target audi-
ence for the package primarily consists of environmental
epidemiology researchers and environmental scientists.
As R is a common programming language used in these
two fields, we chose to implement the prediction platform
in the form of an R package. In addition to user familiarity,
R also has the advantage of having a large ecosystem of
packages available, allowing for the use of systems devel-
oped by others rather than needing to develop many utili-
ties ourselves. Additionally, by developing in R, we can
potentially release our package on CRAN, a repository of
publicly available R packages that can be accessed via
built in functions in R. All CRAN R packages are open
source as well, which would allow us to ensure that all
code used is publicly available. It was crucial to develop a
platform that allows for flexibility, as both the model
inputs and the statistical models themselves are frequently
changing. Given this, we chose to design a system that
would allow users to easily change these elements without
making any alterations to the back-end code of the
package.

Further, it was important to ensure readability and ease
of use for any script utilizing the developed package.
Therefore, the number of arguments passed directly to
functions was minimized, and the package was designed
to include only a small number of clearly named functions
that users would need to call in order to implement the full
workflow. Airpred can be used to replicate the exposure
prediction modeling that provides the air pollution expo-
sure estimates used in the work by Di and colleagues
(2017a,c), but users can also specify different types of
neural networks, with different parameters, or even per-
form ensemble modeling.

When modeling PM2.5 and other pollutants, we must
take into account technical limitations at every step of the
process. Moving large quantities of data through memory,
let alone feeding them into machine learning (e.g., neural
networks) or other modeling systems, can quickly run into
system limits. Because of this, it is important to take into
account not just the methodology of developing prediction
models, but the entire workflow, and to treat all work
around it as a single prediction platform. The airpred
package implements a single prediction platform for mod-
eling air pollution exposure data. It provides a generic
framework to (1) process and assemble raw data sets from a

variety of sources; (2) train a deep learning model on the
assembled data sets; and (3) generate predictions at the
requested spatio–temporal scale. The developed R package
is flexible and can be applied to any pollutant. Our R code
relies on wrappers to the deep learning algorithms devel-
oped in the H2O (www.h2o.ai/) open-source software for
big data analysis and machine learning at scale.

IMPROVING DATA ACCESS — CREATING AN OPEN 
SCIENCE RESEARCH DATA PLATFORM

Once we developed the model for estimating exposures
to predict PM2.5 and O3 for every 1 km × 1 km grid in the
United States (Sabath et al. 2018), we then needed to
address data access issues in order to enable investigators
to link our curated exposure data to confounder data and
health data (from Medicaid and Medicare). Particularly
because scientific evidence of harmful effects of air pollu-
tion is being subjected to unprecedented scrutiny (Domi-
nici et al. 2014; Samet 2011; Zigler and Dominici 2014),
data access and reproducibility are central to current
debates on how studies can constitute the scientific base to
support regulatory decisions.

To address the need for greater data access and repro-
ducibility, and to achieve Aim 1 and Aim 4 of the project,
we posted our data, workflows, and analyses to a secure
high-performance computing cluster with the objective of
developing an open science research data platform
(https://osf.io/2cg6v/). Our research data platform con-
tains three distinct but complementary parts:(1) nonhealth
data (exposure and confounders); (2) health data (Medi-
care and Medicaid); and (3) analyses, where data from (1)
and (2) are merged and statistical tools are used to address
the scientific questions of Aim 3.

Exposure data for PM2.5 and O3 are available at the daily
and annual levels at different levels of spatial aggregation
(grid, ZIP code, ZIP code tabulation area, county), with dif-
ferent aggregation methods. In Figure 6, we show the
PM2.5 predictions from Di and colleagues (2016) for New
England in the year 2000 aggregated from 1 km × 1 km
grids to the ZIP code level, using (a) area-weighting, (b)
population-weighting, and (c) inverse-distance weighting.
To promote the dissemination of our results, we created
several external-facing interfaces that provide interactive
visualization of PM2.5 and O3 (e.g., http://arcg.is/1zTS8S).
It is important to note that, in order to evaluate the limita-
tions of the data set we used to estimate exposure, we also
included in the estimation data from the nearest moni-
toring sites. While the health effect estimates using air pol-
lution data from proximal monitoring sites were lower
than our estimated exposure data, they were still statisti-
cally significant. Further, a paper by Wu and colleagues
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(2019) deploys novel methods to address the issue of error
in air pollution exposure assignment in the context of
causal inference. This approach utilizes several different
methods to adjust for confounding in causal inference
(inverse probability treatment weighting [IPTW] using
generalized propensity scores [GPS], GPS matching, and
GPS stratification). Using this approach we showed that
when adjusting for exposure error, the causal effect of
exposure to moderate levels of PM2.5 (8 < PM2.5 <10
µg/m3) causes a 2.8% (95% confidence interval [CI],
0.6%–3.6%) increase in all-cause mortality compared with
low exposure (PM2.5 < 8µg/m3).

To ensure the reproducibility of our workflow, we devel-
oped software codes and packages that allow investigators
to link the already curated exposure and confounder data
to Medicare and Medicaid claims data. For investigators
who own or wish to purchase their own Medicare and
Medicaid claims data, we can provide the exact code that
we used to link this claims data to the nonhealth data and
that we are using to conduct our own analyses of Medicare
and Medicaid data. It allows other investigators to repro-
duce our analyses, replicate our findings, and conduct
new analyses. It also guarantees the reproducibility of our
own epidemiological analyses that use Medicare and Med-
icaid claims data to understand the health impacts of envi-
ronmental exposures. The research data platform is an

asset in increasing the scientific rigor of air pollution epi-
demiological studies by potentially reducing inconsis-
tency of results across studies.

Our code and software tools are under version control.
They are hosted on the GitHub social-coding software plat-
form (National Studies on Air Pollution and Health;
https://github.com/NSAPH/airpred), and we rely on the
open science framework (https://osf.io/2cg6v/) to provide
a searchable web interface to our data and code resources.

It should be noted that the scale of the research data
platform in terms of computation and storage resources
allows us to undertake studies on the whole Medicare pop-
ulation, such as two studies described in articles we
recently published in the New England Journal of Medi-
cine (Di et al. 2017c) and in the Journal of the American
Medical Association (Di et al. 2017a), described later in
this report. These two huge studies are reproducible: they
rely entirely on publicly available data, which are listed in
Table 2. In a recent commentary in Science, Cosier (2018)
pointed to the importance of our work for promoting open,
reproducible evidence that can be used to inform public
policy.

Figure 6. PM2.5 predictions for New England in 2000 from the study by Di and colleagues (2016). Predictions were aggregated from 1 km × 1 km grids to
the ZIP code level using (A) area weighting, (B) population weighting, and (C) inverse-distance weighting.
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EPIDEMIOLOGICAL STUDIES OF AMBIENT 
EXPOSURES TO AIR POLLUTION AT LOW 
LEVELS

LONG-TERM EXPOSURE TO AIR POLLUTION AND 
MORTALITY IN THE MEDICARE POPULATION*

There is strong evidence that long-term exposure to air
pollution leads to increased mortality. Several studies sug-
gest that long-term exposure to PM2.5 results in reduced
life expectancy; the National Ambient Air Quality Stan-
dard is based on such studies. Evidence for mortality
resulting from long-term exposure to O3 is more uncertain,
though some studies do suggest reduced survival. How-
ever, most air pollution studies have been conducted in
urban populations — with higher pollution levels — and

evidence is quite limited for any health effects below the
standards.

A nationwide cohort study was conducted using all
Medicare beneficiaries from 2000 to 2012. Long-term
exposure estimates for daily levels of PM2.5 and O3 were
developed using hybrid prediction models. We found evi-
dence for statistically significant adverse effects of PM2.5
and O3 exposures at concentrations below current national
standards. This effect was greater for self-identified racial
minorities and people with low income.

Data and Methods

Mortality among Medicare Beneficiaries. Information
about Medicare participants was obtained from the Centers
for Medicare and Medicaid Services (CMS) to create a
cohort of over 61 million subjects, with a total of over
460 million person-years of follow up. This was an open
cohort, where each Medicare subject was followed from
the beginning of their first full year of eligibility (age
65 years) during the recruitment period (2000–2012). The
outcome of interest was all-cause mortality, and survival

Table 2. Data Sourcesa,b

Source Data Set Website

NOAA Reanalysis meteorological data http://www.noaa.gov/

NASA

MAIAC AOD data

https://www.nasa.gov/
Surface reflectance data

NDVI data

OMI Aerosol Index Data

U.S. Geological Survey Global terrain elevation data https://lta.cr.usgs.gov/

U.S. Census Bureau Road density, population count, and area https://www.census.gov/

MRLC National Land Cover Dataset https://www.mrlc.gov/

GEOS-Chem Simulation outputs http://acmg.seas.harvard.edu/geos/

U.S. EPA AQS monitoring data (PM2.5 and O3) https://www.epa.gov/aqs

CMS
Medicare denominator files

https://www.cms.gov/
Medicare Current Beneficiary Survey

CDC BMI, smoking rate https://www.cdc.gov/

Dartmouth Atlas of Health Care Demographics of the Medicare population http://www.dartmouthatlas.org/

a A detailed list and software codes are available at https://osf.io/j6hw8/.

b AOD = aerosol optical depth; AQS = air quality system; BMI = body mass index; CDC = Centers for Disease Control and Prevention; CMS = Center for 
Medicare and Medicaid Services; GEOS-Chem = Goddard Earth Observing System chemical transport model; MAIAC = Multi-angle implementation of 
atmospheric correction; MRLC = Multi-Resolution Land Characteristics Consortium; NASA = National Aeronautics and Space Administration; NDVI = 
Normalized Difference Vegetation Index; NOAA = National Oceanic and Atmospheric Association; OMI = ozone monitoring instrument; U.S. EPA = United 
States Environmental Protection Agency. 

* The following is a summary of an article published in the New England
Journal of Medicine by Di and colleagues (2017c). A copy of this article,
along with a supplementary appendix, is available in Additional Materials
on the HEI website, with permission of the publisher.
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time was measured from the year subjects entered the
cohort until the year of their death (Figure 3).

PM2.5 and O3 Exposure Assessment. Long-term expo-
sure estimates were developed using estimated daily
levels of PM2.5 and O3 at 1 km × 1 km resolution for the
continental United States during the period 2000–2012
using hybrid prediction models that use satellite, land use,
emissions, ground monitoring, and weather data in con-
junction with chemical transport models (see Di et al.
2017c, Figure 1). Annual PM and warm season O3 levels
were assigned to each person in the cohort for each cal-
endar year of their inclusion.

Statistical Analysis

Survival analyses were conducted using a variant of the
Cox Proportional Hazards Model, known as the Andersen
Gill Model (AG) (Andersen and Gill 1982), which allows
for the inclusion of covariates that change from year to
year.* The results from this model were used to estimate
the hazard ratio associated with a 10-µg/m3 increase in
PM2.5 and a 10-ppb increase in O3 exposure. In addition, a
surface was fitted to describe the combined and poten-
tially synergistic effects of both PM2.5 and O3 on mortality
using a log-linear model with a thin-plate spline. To inves-
tigate the effects of lower exposures, separate analyses
were conducted that included only person-years with
PM2.5 exposures lower than 12µg/m3 and O3 exposures
lower than 50 ppb (“low-exposure analyses”). A series of
subgroup analyses was also conducted to consider the
potential interaction of pollutants with key covariates.

Covariate Information

A total of 20 covariates were included in the study,
including individual-level covariates, county-level
variables, ZIP-code-level variables, three hospital service
area–level variables, meteorological variables, and one
dummy variable (see Di et al. 2017c, Table 1 and supple-
mentary appendix). Table 3 in this report summarizes the
characteristics of the cohort with respect to all of these
covariates and provides average levels to which each
covariate was exposed in both high and low pollutant
regions (for additional information, see supplementary
appendix for Di et al. 2017c in Additional Materials on the
HEI website). Some of the covariate information was
obtained from the MCBS and the Behavioral Risk Factor
Surveillance System.

Results

The Medicare cohort, with more than 61 million individ-
uals and more than 22 million deaths, had excellent power
to estimate the risk of death from air pollution over a range of
exposure levels, including those below the current NAAQS
(Figure 7). In two-pollutant analyses, a 10-µg/m3 increase in
PM2.5 was found to be associated with a 7.3% (95% CI,
7.1%–7.5%) increase in mortality for a given ZIP code, and a
10-ppb increase in O3 concentration was associated with a
1.1% increase (95% CI, 1.0%–1.2%) (Table 4). When the
analysis was restricted to person-years with exposure to
PM2.5 of less than 12 µg/m3 and O3 of less than 50 ppb, the
same increases in PM2.5 and O3 were associated with
increases in the risk of death of 13.6% (95% CI, 13.1%–
14.1%) and 1.0% (95% CI, 0.9%–1.1%), respectively.

The subgroup analyses described effect modification for
a range of variables (see Di et al. 2017c, Figure 2). Specifi-
cally, we found an increase in mortality from exposure to
PM2.5 among male, black, Asian, and Hispanic subgroups.
Stratification by Medicaid eligibility (a measure of socio-
economic status) showed a slightly higher estimated risk
from PM2.5 exposure than in the general population. The
effect of O3 exposure on mortality was higher among
whites and those eligible for Medicaid, but the risk was
also below 1 for certain racial subgroups, suggesting non-
linear interaction effects.

Discussion

Using an open cohort of all Medicare participants repre-
senting more than 96% of the population of older adults in
the United States, our survival analysis demonstrated
associations between mortality and long-term exposure to
PM2.5 and O3, even at levels below the NAAQS for PM2.5
and O3. Black and Hispanic individuals had a higher risk
of death associated with exposure to PM2.5 than other sub-
groups. These findings suggest that lowering the annual
NAAQS for PM2.5 will produce important public health
benefits overall, especially among self-identified racial
minorities and people with low income.

Robustness of Risk Estimates. Mortality is influenced
by individual-level behavioral risk factors, such as
smoking and income, but these data are not included in
Medicare claims. To explore the potential impact of such
factors, we analyzed the MCBS subsample. The results
revealed that the lack of such information did not lead to
biased results (see supplementary appendix for Di et al.
2017c in Additional Materials on the HEI website). Our
results were also robust to choice of statistical method; we
obtained similar risk estimates when individual and

* Note that the use of the AG model is not explicitly discussed in the paper
published by Di et al. 2017c.
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Table 3. Baseline Characteristics of the Entire Cohort

Variablea Entire Cohort

O3 Concentrationb PM2.5 Concentrationb

≥ 50 ppb < 50 ppb ≥12 µg/m3 <12 µg/m3

Number of individuals 60,925,443 14,405,094 46,520,349 28,145,493 32,779,950

Number of deaths 22,567,924 5,097,796 17,470,128 10,659,036 11,908,888

Total person-yearsc 460,310,521 106,478,685 353,831,836 212,628,154 247,682,367

Median follow-up years 7 7 7 7 7

Air Pollutantsd

Average O3 (ppb) 46.3 52.8 44.4 48.0 45.3

Average PM2.5 (µg/m3) 11.0 10.9 11.0 13.3 9.6

Individual Covariatesd

Male (%) 44.0 44.3 43.8 43.1 44.7

White (%) 85.4 86.6 85.1 82.0 88.4

Black (%) 8.7 7.2 9.2 12.0 5.9

Asian (%) 1.8 1.8 1.8 2.1 1.6

Hispanic (%) 1.9 2.0 1.9 1.9 1.9

Native American (%) 0.3 0.6 0.3 0.1 0.6

Medicaid Eligible (%) 16.5 15.3 16.8 17.8 15.3

Age at entry 70.1 69.7 70.2 70.1 70.0

Ecological Variablesd

BMI (kg/m2) 28.2 27.9 28.4 28.0 28.4

Ever smoker (%) 46.0 44.9 46.2 45.8 46.0

Hispanic population (%) 9.5 13.4 8.4 8.4 10.0

Black population (%) 8.8 7.2 9.3 13.3 6.3

Median household incomee 47.4 51.0 46.4 47.3 47.4

Median value of housinge 160.5 175.8 156.3 161.7 159.8

Below poverty level (%) 12.2 11.4 12.4 12.5 12.0

Below high school education (%) 32.3 30.7 32.7 35.3 30.6

Of owner occupied housing (%) 71.5 71.3 71.6 68.6 73.2

Population density (individual/km2) 3.2 0.7 3.8 4.8 2.2

With LDL-C test (%) 92.2 92.0 92.2 92.2 92.2

With hemoglobin A1c test (%) 94.8 94.6 94.8 94.8 94.8

With ≥1 ambulatory visit (%) 91.7 92.2 91.6 91.7 91.7

Meteorological Variablesd

Temperature (°C) 14.0 14.9 13.8 14.5 13.7

Relative humidity (%) 71.1 60.8 73.9 73.7 69.6

a BMI = body mass index; LDL-C = Low-density lipoprotein-cholesterol.

b We calculated these summary statistics separately for individuals residing in ZIP codes with average O3 levels below and above 50 ppb and with PM2.5 
levels below and above 12 µg/m3. The value 12 µg/m3 was chosen as the current annual National Ambient Air Quality Standard (NAAQS).

c Total person-years of follow-up in the cohort from 2000 to 2012. 

d Average values for air pollution levels, ecological variables, and meteorological variables were computed by averaging values over all ZIP codes from 2000 
to 2012.

e Numbers are presented in U.S. dollars (thousands).

Data from Di et al. 2017c.
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ecological covariates were excluded from the main anal-
ysis, the age of entry was categorized more finely, the esti-
mation procedure was varied (generalized estimating
equation [GEE] vs. mixed effects), or a different statistical
software was used (R vs. SAS).

Health Effects below NAAQS. Our analyses found a
significant association between PM2.5 exposure and mor-
tality at concentrations below 12 µg/m3, with a steeper

slope below that level (Figure 7); this suggests that the
health benefit from per unit decreases in PM2.5 levels is
larger for PM2.5 concentrations below the current annual
NAAQS than for those above that level. Similar steeper
concentration–response curves at low concentrations have
been observed in previous studies. Significantly, our anal-
yses (down to about 5 µg/m3) do not provide evidence for a
threshold value — the concentration below which PM2.5
exposure does not impact mortality.

Figure 7. Concentration–response function of the joint effects of exposure to PM2.5 and O3 on all-cause mortality. (Reprinted with permission from Di et
al. 2017c, © 2017 Massachusetts Medical Society.)

Table 4. Risk of Death Associated with a 10-µg/m3 Increase in PM2.5 or 10-ppb Increase in O3 Exposurea,b

Model
PM2.5

HR (95% CI)
O3

HR (95% CI)

Two-pollutant analysis

Main analysis 1.073 (1.071–1.075) 1.011 (1.010–1.012)

Low-exposure analysis 1.136 (1.131–1.141) 1.010 (1.009–1.011)

Nearest-monitor analysisc 1.061 (1.059–1.063) 1.001 (1.000–1.002)

Single-pollutant analysisd 1.084 (1.081–1.086) 1.023 (1.022–1.024)
a Reprinted with permission from Di et al. 2017c, © 2017 Massachusetts Medical Society.

b Hazard ratios (95% confidence intervals) for a 10-µg/m3 increase in PM2.5 and a 10-ppb increase in O3 exposure.

c Daily average PM2.5 and daily O3 monitoring data were retrieved from the U.S. EPA Air Quality System (AQS). Daily O3 concentrations were averaged 
from April 1 to September 30 to compute warm-season averages. Individuals were assigned to PM2.5 and O3 levels from the nearest monitoring site within 
50 kilometers. If there was more than one monitoring site, the nearest one was chosen. Individuals who lived ≥ 50 kilometers away from any monitoring 
site were excluded. 

d For the single-pollutant analysis, model specifications were the same as in the main analysis, except that O3 was not included in the model when 
estimating the main effect of PM2.5 and vice versa.
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The O3 standard in the United States is 70 ppb (daily max-
imum 8-hour average); there is no annual or seasonal stan-
dard. Our analyses, based on annual summer average O3
concentrations, found an association with O3 levels, lending
support for the establishment of a seasonal or annual O3
standard. We observed larger effect sizes for longer-term O3
exposure, even in locations where O3 concentrations never
exceed 70 ppb. The concentration–response curve for O3,
using a two-pollutant model, was linear. Finally, the longer-
term all-cause mortality results from this study and similar
results from other studies (Turner et al. 2016), suggest that
the current O3 NAAQS — based only on acute effects from
daily respiratory mortality — may underestimate the total
health burden of effects from O3 exposure.

Subgroup Analyses. Given the very large sample size,
this study afforded an estimation of mortality risk associ-
ated with long-term exposure to PM2.5 and O3 among pre-
defined subgroups, such as racial minorities and
disadvantaged subgroups. We found that the estimated
effect size was larger among male, black, and Medicaid-
eligible individuals. To determine whether the effect mod-
ifications by race and by Medicaid status were indepen-
dent, we estimated effects in a subgroup of Medicaid-
eligible whites and in a subgroup of Medicaid-ineligible
blacks. We found that blacks not eligible for Medicaid con-
tinued to have higher PM2.5 associated mortality.

Finally, the PM2.5 health effect exhibited an urban–rural
difference, which may be due to compositional differences
(see Table S3 in the supplementary appendix for Di et al.
2017c available in Additional Materials on the HEI
website).

Consistency with Previous Results. The 7.3% increase
in risk of all-cause mortality observed in this study for
each 10-µg/m3 increase in PM2.5 exposure is within the
range of the 13% to 14% increase reported in the Harvard
Six Cities Study (Dockery et al. 1993), its extended follow-
up study (Krewski et al. 2000), and in other studies. An
increased (13.6%) risk for mortality was observed at lower
PM2.5 concentrations, as reported in the Canadian Com-
munity Health Cohort (see Di et al. 2017c for references).

A 10-ppb change in O3 exposure was associated with a
1.1% increase in the risk of all-cause mortality; this result
is close to the 2% increase in all-cause mortality reported
by other investigators. This study provides substantial
additional evidence that long-term O3 exposure is associ-
ated with a shortened lifespan.

Limitations. Although our exposure models had very
good out-of-sample predictive power, like all epidemiology
studies of this nature, we cannot fully rule out exposure

assessment error issues. Such errors can attenuate the
effect estimates in air pollution studies (Spiegelman 2016).

The potential for measured and unmeasured con-
founding bias is an intrinsic concern for all observational
studies on air pollution and health. In order to mitigate
these concerns, we estimated the low-exposure effects
using two distinctly different study designs: (1) the AG
model (Andersen and Gill 1982) for estimating the effect of
long-term exposure to air pollution on mortality, as
described in the study by Di and colleagues (2017c); and
(2) a case–crossover study model for estimating the effects
of short-term exposure to air pollution and mortality (see
next section). These two study designs are subject to dif-
ferent types of both measured and unmeasured con-
founding bias, which we discuss in further detail in the
Conclusions section of this report.

We have examined the effects of only two pollutants in
this study. Our reasons were that these are both critical cri-
teria pollutants and that their national standards —
NAAQS — are currently scheduled for revision. We
recently developed ensemble exposure assessment models
for both PM2.5 and NO2 and updated our O3 model; we
expect to include these results in the HEI final report.

Some of the results presented in Figure 2 of the article
by Di and colleagues (2017c) for effect modification are
puzzling. For example, the protective effect observed for
Native Americans, Hispanics, and Asians does not seem
biologically based, nor is there an explanation for the dif-
ference in hazard ratios for males and females. Given the
limits of the regression model for confounding, it is not
possible to discern whether these differences may be
attributable to model misspecification and/or confounding
bias. For these and other reasons, we are developing new
methods for causal inference that will give us greater con-
fidence in the results. We plan to apply these new methods
to analyze the data so that we may better understand the
true effects of ambient air pollution.

ASSOCIATION OF SHORT-TERM EXPOSURE TO AIR 
POLLUTION WITH MORTALITY IN OLDER ADULTS*

Introduction

The evidence for the health effects of short-term expo-
sure to PM2.5 and O3 is provided by many studies, though
these studies have primarily been conducted in popula-
tions living in large, well-monitored urban areas, with rel-
atively high levels of pollutants. The study we describe

* The following is a summary of an article published in the Journal of the
American Medical Association by Di and colleagues (2017a), which may be
viewed at https://jamanetwork.com/journals/jama/fullarticle/2667069 (open
access; courtesy of JAMA).
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below was designed to study the health effects of exposure
to PM2.5 and O3 that included groups living in unmoni-
tored, rural areas. We also sought to shed light on short-
term health risks among specific subgroups (e.g., under-
represented minorities and those with low socioeconomic
status, such as persons eligible for Medicaid).

We have conducted a case–crossover study to investi-
gate all deaths among Medicaid enrollees in the United
States during the years 2000 to 2012; our goal was to esti-
mate mortality risk associated with short-term exposures
to PM2.5 and O3 in the general population and in specific
subgroups. We also wanted to estimate the association
between daily mortality and exposure levels below the
current NAAQS.

Methods

Population, Health and Covariate Data. All  dea ths
among all Medicare beneficiaries were abstracted from
Medicare claims data for the period 2000 to 2012 along
with identifying data, relevant covariates, and the date of
death. Individuals with an unverified date of death or still
living after December 31, 2012, were excluded. A total of
22,433,862 deaths were identified.

Since confounders are, by definition, correlated with
exposure, the only covariates included in the model were
those which co-vary with daily air pollution levels. These
included air and dew point temperatures along with the
alternate air pollutant (O3 in the case of PM2.5 and PM2.5 in
the case of O3).

Individual-level and ZIP-code-level covariates that
could exhibit little or no change over the course of a month
(e.g., age, sex, race/ethnicity, socioeconomic status,
smoking, and other behavioral risk factors) were not con-
sidered to be potential confounders. However, because
these variables may be relevant as effect modifiers, we
abstracted age, sex, race, ethnicity, and eligibility for Med-
icaid from the Medicare and Medicaid records to assess
the associations of mortality with PM2.5 and O3 concentra-
tions in potentially vulnerable subgroups.

Exposure: Ambient PM2.5 and O3 at the ZIP Code Level.

Daily ambient levels of PM2.5 (24-hour average) and O3 (8-
hour maximum in warm season) for all United States at the
ZIP code level were estimated using the methods
described above. For each subject, ambient concentrations
were determined for the “case day,” defined as the date of
death, and its control days at the ZIP code of residence. For
the same person, 3 or 4 control days were chosen and
included in the analyses.

Analysis. By fitting a conditional logistic regression to
all pairs of case days and matched control days, we esti-
mated the relative risk (RR) of all-cause mortality associ-
ated with short-term PM2.5 and O3 exposure (pollutant
levels were adjusted for each other). Potential for residual
weather-related confounding was controlled by using nat-
ural splines of air and dew point temperatures with three
degrees of freedom. For each case day, daily exposure to
air pollution was defined as the mean of the same day of
death (lag 0-day) and 1 day prior (lag 01-day). Relative risk
increase (RRI) was defined as RR − 1.

We performed subgroup analyses by sex, race, or eth-
nicity (white, nonwhite, and others), age brackets (≤69, 70–
74, 75–84, and ≥85 years), eligibility for Medicaid, and pop-
ulation density at residence (in quartiles). We fitted separate
conditional logistic regressions to the data for each sub-
group and obtained subgroup-specific estimates of RR and
absolute risk difference. Subgroups were compared using a
two-sample test for assessing statistically significant differ-
ences in the estimated RR between categories. 

In order to focus on effects below the current standards,
subanalyses were conducted with cases restricted to those
occurring on days with daily air pollution concentrations
below 25 µg/m3 for PM2.5 and 60 ppb for O3. This reduced
the total number of cases to 20,955,387, a 6.6% decrease.
ER curves were estimated between PM2.5 or O3 and mor-
tality by replacing linear terms for the two pollutants with
penalized splines for both PM2.5 and O3.

Results

These analyses included more than 22 million days
with deaths and more than 76 million control days among
Medicare enrollees. We found an increase in the daily risk
of mortality of 1.05% (95% CI, 0.95%–1.15%) for a 10-µg/m3

increase in PM2.5 and 0.51% (95% CI, 0.41%–0.61%) for a
10-ppb increase in O3 among older Americans in the two-
pollutant model (Table 5). These associations remained
significant when examining days below 25 µg/m3 for
PM2.5 and below 60 ppb for O3, but with larger effect size
estimates, particularly for both PM2.5 and O3 (RRI:1.61%
[95% CI, 1.48%–1.74%] and 0.58% [95% CI, 0.46%–
0.70%] respectively).

The estimated ER relationships are shown in Figure 8 as
the RRI associated with a 10-µg/m3 increase in PM2.5 or a
10-ppb increase in O3. Note that the increase in RRI rises
sharply for both pollutants at a relatively low concentra-
tion — consistent with low-exposure analysis — and then
levels out. Importantly, neither curve indicates a threshold
for mortality at low concentrations.

In subgroup analyses, significant effect modification
was observed for some key covariates (Di et al. 2017a, Fig-
ures 3 and 4). Thus, higher mortality was observed among
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Table 5. Relative Risk Increase of Daily Mortality Associated with Each 10-μg/m3 Increase in PM2.5 or Each 10-ppb 
Increase in O3

a

Model

Relative Risk Increase% (95% CI)

PM2.5 O3
b

Two-pollutant analysis

Main analysisc 1.05 (0.95–1.15) 0.51 (0.41 –0.61)

Low-exposured 1.61 (1.48–1.74) 0.58 (0.46–0.70)

Nearest monitorse 0.83 (0.73–0.93) 0.35 (0.28–0.41)

Single-pollutantf 1.18 (1.09–1.28) 0.55 (0.48–0.62)

PM2.5 = fine particulate matter; ppb = parts per billion

a Adapted with permission from Di et al. 2017a, © 2017 American Medical Association. All rights reserved.

b O3 analyses included days from the warm season only (April 1 to September 30).

c The main analysis used the mean of daily exposure on the same day of death and 1 day prior (lag 01-day) as the exposure metric for both PM2.5 and O3, and 
controlled for natural splines of air and dew point temperatures with 3 df. The main analysis considered the two pollutants jointly included in the 
regression model and estimated the percentage increase in the daily mortality rate associated with a 10-µg/m3 increase in PM2.5 exposure adjusted for O3 
and the percentage increase in daily mortality rate associated with a 10-ppb increase in warm-season O3 exposure adjusted for PM2.5. 

d The low-exposure analysis had the same model specifications as the two-pollutant analysis and was constrained for days when PM2.5 was below 25 µg/m3 
or O3 was below 60 ppb.

e PM2.5 and O3 monitoring data were retrieved from the U.S. Environmental Protection Agency Air Quality System, which provides the daily mean of PM2.5 
and daily 8-hour maximum O3 levels at each monitoring site. Daily O3 concentrations were averaged from April 1 to September 30. Individuals were 
assigned to the PM2.5 and O3 levels from the nearest monitor site within 50 km. Those living ≥ 50 km from any monitoring site were excluded. 

f The single-pollutant analysis estimated the percentage increase in the daily mortality rate associated with a 10-µg/m3 increase in PM2.5 exposure without 
adjusting for O3 and the percentage increase in the daily mortality rate associated with a 10-ppb increase in O3 exposure without adjusting for PM2.5.

Figure 8. Estimated exposure–response curves for short-term exposures to PM2.5 and O3 (Di et al. 2017a). A two-pollutant analysis with separate penal-
ized splines on PM2.5 (A) and ozone (B) was conducted to assess the percentage increase in daily mortality at various pollution levels. Dashed lines indi-
cate 95% CIs. The mean of daily exposure on the same day of death and 1 day prior (lag 01-day) were used as metrics of exposure to PM2.5 and ozone.
Analysis for ozone was restricted to the warm season (April to September). (ppb = parts per billion.) (Reprinted with permission from Di et al. 2017a,
© 2017 American Medical Association. All rights reserved.)
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those eligible for Medicaid (RRI: 1.49% [95% CI, 1.29%–
1.70%] P < 0.001), those older than 70 years (e.g., for
≥85 years, RRI: 1.38% [95% CI, 1.23%–1.54%, interaction:
P < 0.001), and among females (RRI: 1.20% [95% CI,
1.07%–1.33%], interaction: P = 0.02). The effect estimates
for PM2.5 increased with age and were higher for black
individuals than for white individuals (P = 0.001). Similar
patterns were observed for O3, but with less contrast
between groups.

Discussion and Conclusion

In this large case–crossover study of all Medicare-recip-
ient deaths between 2000 and 2012, both PM2.5 and warm-
season O3 exposures were associated with statistically sig-
nificant increases in mortality. When the analyses were
restricted to days with PM2.5 and O3 levels lower than the
current daily NAAQS levels, the risk of mortality remained
statistically significant. Since Medicaid represents a
national cohort, it included people living in smaller cities
and rural areas that were unmonitored and thus excluded
from previous time-series studies; we observed no differ-
ence in mortality risks among urban versus rural residents.
This study provides evidence that short-term exposures to
PM2.5 and O3 are associated with increased all-cause mor-
tality, even at levels well below the current daily standards.
Certain groups — such as older people, females, and those
with lower income — are at an elevated risk.

The results of our study are consistent with the results
of a large number of previous studies, conducted on
cohorts in both the United States and Europe. Our results
showing health effects after exposure to levels below the
current NAAQS standards are significant, as are the results
showing higher increases in mortality rates in certain sub-
groups — such as Medicaid-eligible individuals, females,
and older individuals.

The strengths of this study are that it is based on the
largest cohort among all time-series studies of PM2.5 and
O3 exposure and health effects; it used state-of-the-art
daily exposure assessment techniques for both monitored
and unmonitored areas; it had sufficient statistical power
to analyze mortality among potentially vulnerable sub-
groups; and, finally, that it used the case–crossover design,
which controls for many confounding factors. Limitations
of the study include that the Medicare population com-
prises individuals 65 years and older, Medicare files do
not have information on cause-specific mortality, and
there may be some exposure assessment error because
exposure was estimated by residential ZIP code and not
the exact location of death.

In conclusion, we report that daily PM2.5 and warm
season O3 levels are associated with a risk of increased

mortality, and this risk was observed at levels below the
current standards for the two pollutants.

EXAMINING CAUSAL INFERENCE BETWEEN AIR 
POLLUTION AND MORTALITY IN THE CONTEXT OF 
AN ERROR-PRONE EXPOSURE*

Observational studies to estimate the effects of exposure
are well-known to be susceptible to sources of bias,
particularly exposure measurement error and con-
founding. We have developed a new approach for esti-
mating causal effects in the presence of exposure error;
confounding is adjusted using a GPS. Monitoring data,
assumed to be error free, were used as validation data. We
then employed a regression calibration (RC)-based adjust-
ment for continuous data for exposure (error prone) and
combined it with GPS, thereby adjusting for confounding
(RC-GPS). After transforming the corrected continuous
exposure into a categorical exposure, we conducted the
outcome analysis. We also considered confounding adjust-
ment in the context of GPS subclassification, IPTW, and
matching. We found that in simulations with varying
degrees of exposure error and confounding bias, as com-
pared with standard approaches that rely on the error-
prone exposure, RC-GPS eliminates bias from exposure
error and confounding.

To test this approach, we estimated the causal effect of
long-term exposure to PM2.5 on mortality in New England
states for the period from 2000 to 2012 by applying RC-
GPS to a rich data platform. We included 2,202 ZIP codes
in the main study, covered by 217,660 1 km × 1 km grid
cells with yearly mortality rates, yearly PM2.5 averages
estimated from a spatio–temporal model (error-prone
exposure), and several potential confounders. For internal
validation, we included a subset of 83 1 km × 1 km grid
cells within 75 ZIP codes from the main study with error-
free yearly PM2.5 exposure data obtained from monitor sta-
tions. Under assumptions of noninterference and weak
unconfoundedness, we found that exposure to moderate
levels of PM2.5 (8 < PM2.5 < 10 µg/m3) causes a 2.8% (95%
CI, 0.6%–3.6%) increase in all-cause mortality compared
with low exposure (PM2.5 < 8 µg/m3). (See Wu et al. 2019
for additional details.)

We were also interested in exploring the relationship
between the grid of estimated ambient concentration and
individual exposures. In this report, we have used ZIP-code-
level ambient concentration as a proxy for actual individual
exposure. To investigate this, we further downscaled our

* A full description of this study was published in the Annals of Applied
Statistics (Wu et al. 2019).
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updated PM2.5 model, from 1 km × km to 100 m × 100 m,
with additional downscaling of land-use variables. The
refined 100-m2 predictions are quite close to the indi-
vidual-level exposure estimation that uses the subject’s
home address. Unfortunately, the Medicare data include
only the participant’s residential ZIP code.

ADDRESSING LOCAL CONFOUNDING IN EXPOSURE–
RESPONSE ESTIMATION*

To address the issue of confounding, we have developed
a Bayesian framework for the estimation of a causal ER
curve. This framework, called local ER confounding
adjustment (LERCA), allows for different confounders and
different strengths of confounding at different exposure
levels. It also takes into account model uncertainty
regarding confounders’ selection and the shape of ER
curve. Finally, LERCA enables systematic evaluation of the
observed covariates’ confounding importance at different
exposure levels.

Using simulation studies, we compared LERCA with
several state-of-the-art causal inference approaches for ER
estimation. In addition, we applied this method to health,
weather, demographic, and pollution data for 5,362 ZIP
codes during the years 2011 to 2013. (An R package is
available at https://github.com/gpapadog/LERCA.)

The LERCA approach to flexible estimation of the ER
curve in observational studies is innovative because:

• Within a potential outcome framework, it casts the for-
mulation of the ER (and several randomized experi-
ments have been mimicked across exposure levels);

• The experimental configuration is informed by the
data;

• It allows for different sets of covariates and confound-
ers at different exposure levels (as is the case with our
data example);

• It allows for varying confounding across different lev-
els of the exposure;

• It increases efficiency by performing local covariate
selection especially at low exposure levels;

• In the posterior inference on the whole ER curve, it
propagates model uncertainty for the experiment con-
figuration and covariate selection; and

• It provides important scientific guidance in terms of
which covariates are confounders at different expo-
sure levels.

In addition to its application to the estimation of the
health effects of air pollution, the LERCA framework pro-
vides a data-driven approach that is applicable to many reg-
ulatory settings addressing the safety of potentially harmful
substances. The method could be routinely used to assess
health effects of low-level exposures to such pollutants as
lead, environmental contaminants, radiation, and pesticides.

DISCUSSION AND CONCLUSIONS

KEY CONTRIBUTIONS

Our body of work advanced by HEI lends extensive evi-
dence that short- and long-term exposure to PM2.5 and O3
is harmful to human health, increasing the risks of hospi-
talization and death, even at levels that are well below the
NAAQS. Specifically, our HEI-funded work has enabled
the following scientific contributions:

1. We have conducted the largest study to date on long-
term exposure to PM2.5 and O3 (a prospective cohort
with a time-varying exposure) for the entire Medicare
population, with an assessment of the risk of mor-
tality at exposure levels that are always below the
NAAQS for yearly average (Di et al. 2017c).

2. We have completed the largest study to date on short-
term exposure to PM2.5 and O3 (a case–crossover
study) for the entire Medicare population, with an
assessment of the risk of mortality at exposure levels
that are always below the NAAQS for yearly average
(Di et al. 2017a).

3. We have advanced the development of an artificial
neural network (Di et al. 2017a) and open source R
package (Sabath et al. 2018) to estimate daily expo-
sures to PM2.5 and O3 for 11 million 1 km × 1 km
grids for the continental United States.

4. We have developed new methods for causal inference to
propagate the error in the exposure predictions into the
health effects estimation using GPSs (Wu et al. 2019).

5. We have developed new methods for causal inference
to estimate a causal ER function allowing a different
set of confounders at different levels of exposure
(https://arxiv.org/abs/1806.00928).

STRENGTHS

There are several factors that contribute to the strengths
of this work:

Nation-Wide Analyses at an Unprecedented Scale.   We
conducted two nation-wide cohort studies (Di et al. 2017a,
2017c), allowing us to examine the health effects of air

* A full description of this study will be available in an article by Papado-
georgou and Dominici, submitted for publication.
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pollution exposure at a scope, scale, and level of speci-
ficity beyond any previous studies. Our studies, which
included claims data from the entire U.S. Medicare popu-
lation from 2000–2012, included over 460 million person-
years of follow up. Health data were linked to highly
defined air pollution exposure predictions (PM2.5 and O3)
for every 1 km × 1 km scale within the United States,
allowing our team to examine the long- and short-term
effects of air pollution exposure from a unique and unprec-
edented perspective.

Two Different Study Designs. Each of our nationwide
studies uses different study designs. Di and colleagues
(2017c) used a prospective cohort design, allowing us to link
PM2.5 and O3 exposure data to health outcomes and mor-
tality data derived from Medicare claims (from 2000–2012).
In Di and colleagues (2017a), we used a case–crossover
design to examine all deaths of Medicare participants in
the continental United States from 2000–2012 and to esti-
mate the mortality risk associated with short-term expo-
sures to PM2.5 and O3 in the general population as well as
in subgroups. Although we used two different study
designs, both studies provided consistent evidence of a sig-
nificant increase in mortality risks as levels of PM2.5 and O3
exposure increase, even at levels well below the NAAQS.

Numerous Sensitivity Analyses. Because  Medicare
claims do not include individual-level data on behavioral
risk factors (such as smoking and income), which could
impact mortality and thus be important confounders, we
conducted multiple sensitivity analyses to assess potential
confounding bias. Specifically, we used the MCBS (a
nationally representative sample of approximately 15,000
Medicare enrollees per year with high-quality data on
individual level risk factors, including smoking) to ana-
lyze the influence of potential confounding factors (i.e.,
age of entry in Medicare; body mass index; current
smoking status; smoking history; income). We found that
these additional individual-level variables, which were
available to only part of the Medicare population, had
little effect on the mortality and hospitalization risks of
exposure to PM2.5 for the entire Medicare population. In
addition, we found that our results are robust regardless of
the statistical methods used, obtaining similar risk esti-
mates when we: (a) excluded individual and ecological
covariates from the main analysis (Additional Materials,
Table S2, available on the HEI website); (b) finely catego-
rized age at entry (3- and 4-year rather than the 5-year cat-
egories used in the main analysis [see Di et al. 2017c,
Figure S3]) (c) varied the estimation procedure (GEE vs.
mixed effects) (Additional Materials, Di et al. 2017c, Table
S3 and S4); and (d) used different statistical software (R vs.
SAS) (see Di et al. 2017c Tables S3 and S4). Finally, we

found that our results were consistent with other results
published in the literature (see Di et al. 2017c, Figure S6).

In addition, we conducted sensitivity analyses of our air
pollution prediction model, obtaining PM2.5 and O3 con-
centration data from the U.S. EPA Air Quality System
(AQS) and matching it to each individual, based on the
nearest monitoring site within a distance of 50 kilometers
(see Additional Materials, section S.1 of the supplemen-
tary appendix for details).

Development of New Methods for Causal Inference. In
order to address significant methodological gaps limiting
the current environmental epidemiological literature, we
developed two novel methods. First, we developed a new
approach to comprehensively assess the causal impact of
exposure error overall by estimating causal effects when
the exposure is measured with error and the confounding
adjustment is performed via a GPS. Using categorical GPS
is a critical advancement over the more commonly used
binary propensity score confounding adjustment
approaches. Second, we developed a Bayesian framework
to estimate a causal ER curve called LERCA to account for:
(a) different confounders and different strengths of con-
founding at the different exposure levels; and (b) model
uncertainty regarding the selection of confounders and the
shape of the ER curve. Also, LERCA provides a principled
way of assessing the observed covariates’ confounding
importance at different exposure levels.

Serious Effort to Develop Open Source Software and In-
crease Reproducibility and Transparency. Through
our HEI-funded work, we have made enormous strides in
advancing a framework and a set of tools needed to sup-
port greater data access, transparency, and reproducible
research through an open science research data platform.
To ensure the reproducibility of our workflow, we devel-
oped software codes and packages that allow investigators
to link the already curated exposure and confounder data
to Medicare and Medicaid claims data. For investigators
who own or wish to purchase their own Medicare and
Medicaid claims data, we can provide the exact code that
we have used to link this claims data to the nonhealth data
that we are using to conduct our own analyses of Medicare
and Medicaid data. It allows other investigators to repro-
duce our analyses, replicate our findings, and conduct
new analyses. It also guarantees the reproducibility of our
own epidemiological analyses that use Medicare and Med-
icaid claims data to understand the health impacts of envi-
ronmental exposures. Ultimately, the research data
platform we have developed is an asset in increasing the
scientific rigor of air pollution epidemiological studies by
potentially reducing inconsistency of results across
studies.
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LIMITATIONS

Measured and Unmeasured Confounding Bias

The possibility of measured and unmeasured con-
founding bias is real in all observational studies on air pol-
lution and health. To mitigate the potential impacts of
measured and unmeasured confounding bias, we pur-
posely estimated the health effects of low exposure to
PM2.5 and O3 on mortality using two very distinct study
designs: (1) using the AG model for estimating the effect of
long-term exposure to air pollution on mortality (Di et al.
2017c); (2) using a case–crossover study for estimating the
effect of short-term exposure to air pollution and mortality
(Di et al. 2017a). These two study designs are subject to dif-
ferent types of both measured and unmeasured con-
founding bias. In the AG model we need to worry about
unmeasured time trends and measured and unmeasured
confounders that vary spatially. On the other hand, the
case–crossover study is not subject to confounding bias by
time trends nor by spatially varying covariates because it
exploits the day-to-day variation in air pollution and mor-
tality within each location (ZIP code) and because it lever-
ages matching methods. Conducting both of these studies
in parallel was an enormous undertaking. It was a serious
attempt to see if we could obtain consistent results when
analyzing the data in two completely different ways,
knowing that each study would be subject to different
sources of bias.

In fact, when applied to the same data, these two study
designs, which use two totally different statistical analyses,
both reported statistically significant associations,
including at low levels of exposure. This increases our
level of confidence that, overall, short- and long-term
exposures to air pollution are both harmful to human
health. The AG model, although less than perfect, has the
following features compared with a standard Cox model:
(1) The Medicare cohort is a dynamic cohort where new
enrollees enter into the cohort every year. In the AG model,
follow-up years are defined as the number of years since
one participant enters the Medicare program until he or
she dies or the study ends (in 2012). (2) To account for the
dynamic nature of the cohort, the AG model formulation
has the advantage of creating different strata of the popula-
tion for each follow-up time. In other words, in the AG
model, we control for follow up by design. This formula-
tion is similar to a log-linear Poisson model with follow up
included as a factor term in the model, except it is param-
etrized differently; the risks for each follow-up year are
proportional in the Poisson model, but not in the AG
model. However, we do have multiple calendar years of
entry and, although related, follow-up year is not identical

to calendar year. The AG formulation captures the effects
of air pollution from both spatial and temporal variations.
The model estimates a single coefficient for both PM2.5
and O3 by combining information across all strata. The
overall estimate is therefore a combination of contribu-
tions that could potentially be vulnerable to confounding
by time trends and others that are not. (3) Extensive sets of
measured spatial confounders are available in the data
sets; however, most temporal confounders are unmeasured
and thus impossible to adjust for by direct inclusion into
the AG model. Inclusion of a year as a linear term to adjust
for unmeasured confounding bias due to the time trends in
the AG model is inadequate as it will eliminate all the tem-
poral variation in the data and result in an over adjust-
ment. Since PM2.5 declined between 2000 and 2012, and
in addition, the trend has high collinearity with year, it is
extremely hard to disentangle the effect of PM2.5 from time
trends based on the current methodology. It is also the
reason that we are currently conducting sensitivity anal-
yses using newly developed causal inference approaches.

We are currently conducting sensitivity analyses and
have made enormous progress toward increasing the com-
putational efficiency of fitting statistical models for the
continental United States population. As detailed later in
our planned analyses, we are developing an approach to
reanalyze the same data used in our earlier study (Di et al
2017c), but with two important modifications: (1) we
adjust for measured confounding bias using a causal infer-
ence approach using a GPS model; and (2) we adjust for
unmeasured confounding bias, such as time trend, by
including time into the GPS model. The results of these
sensitivity analyses will be presented at the end of the
study period and in the final HEI report.

Need for Further Application of New Causal Inference 
Methods in National Epidemiological Studies

The development of new methods for causal inference
in the context of these massive data sets whose data vary in
space and time is a highly complex endeavor. In this report
we described two of our studies — by Wu et al. (2019) and
Papadogeorgou and Dominici (unpublished results) — that
used new methods. We examined the methods’ theoretical
properties, tested them in simulation studies, and applied
them to a subset of the entire U.S. Medicare data set, spe-
cifically focusing on the New England region. However,
we recognize that these methods have not yet been devel-
oped in the context of the same study designs as those
used in our earlier studies (Di et al. 2017a,c). Indeed, we
are working on extensions to allow us to apply these
methods to the exact same study designs as those used in
our previous national cohort studies. We will continue to
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develop these causal inference methods further for spatio–
temporal data and to scale up the computations for the
continental United States.

Need for Formal Propagation of the Exposure Error in 
Health Effects Estimation

These two national studies do not account for a formal
propagation of the exposure error into the health effects
estimation. Addressing exposure error is a key priority,
and we have attempted to address this issue in three ways:
(1) validate the accuracy of our predictions; (2) conduct
extensive sensitivity analyses that use only data observed
from the monitors; and (3) develop new statistical methods
that are purposely designed to propagate the error associ-
ated with the prediction of air pollution exposure into the
estimation of causal effects of air pollution in health. As
detailed in Wu and colleagues (2019), this is a complex
problem. The complexity of this task is due to the fact that,
in the context of causal inference methods, error in the
exposure will affect the regression coefficient measuring
the health risks of air pollution exposure (as in any mea-
surement error model), but it will also affect the propen-
sity score model used in the causal inference analysis. In
the study by Wu and colleagues (2019), we have detailed
an innovative and well-validated approach to overcome
these challenges. Although our work so far is limited to the
setting where the exposure is categorical and has only
been applied to the New England region, we are working
on extending it to the continuous setting and applying the
approach to the continental United States.

Mobility Bias

Both of these national epidemiological studies are
potentially impacted by mobility bias and we are working
towards a better understanding this issue. We have found
that approximately 21% of Medicare recipients changed
residential ZIP code at least once between 2000 and 2012.
It could thus be possible that older people who are healthy
are more likely to move to more rural, less polluted areas;
or that older people with health problems may tend to
move into cities to have better access to medical care.
Since we update exposure level for each participant every
year, their moving will not affect our exposure assessment.
We are conducting analyses of long-term effects of PM2.5
on mortality separately among the movers and the non-
movers. So far, we have been able to link exposure data to
10,679,150 movers and 52,746,548 nonmovers (unpub-
lished results).

NEXT STEPS

Update the Exposure Estimation for PM, O3, and NO2 to 
2016

We have updated our PM2.5 exposure assessment to
2016 using an advanced modeling strategy. For the new
model, we fit an ensemble model using a generalized addi-
tive model accounting for geographic differences to com-
bine PM2.5 estimates from three separate machine learning
models; neural network, random forest, and gradient
boosting. The three machine learning models complement
each other; combining them using a generalized additive
model provides an overall better model fit. Predictor vari-
ables in the three models included satellite data, meteoro-
logical variables, land-use variables, elevation, simulation
outputs from chemical transport models, reanalysis data
sets, and other data sources. Using the ensemble model,
we predicted daily PM2.5 from 2000 to 2016 at every 1 km
× 1 km grid cell in the continental United States. Model
training results for daily predictions from 2000 to 2016
indicated good model performance with a 10-fold cross-
validated R2 of 0.86. For annual estimates, the cross-
validated R2 was 0.89. The final model demonstrated good
performance up to 100 µg/m3. This work is completed, and
a manuscript has been submitted to Environment Interna-
tional. A similar approach is being implemented for O3.

In addition to PM2.5 exposure estimates, we also esti-
mated daily NO2 concentrations from 2000 to 2016 in a
similar ensemble model-based approach. Similarly, an en-
semble model was fit using a generalized additive model
to combine estimates from three machine-learning models;
neural network, random forest, and gradient boosting, to
obtain overall estimates of daily NO2 concentrations. Pre-
dictor variables of the three machine-learning NO2 models
included NO2 column concentrations from the satellite,
land-use variables, meteorological variables, and other
data sources. Using the ensemble model, we predicted
daily NO2 at 1 km × 1 km grid cells in the continental
United States. The mean 10-fold cross-validated R2 was
0.77, ranging from 0.67 to 0.79. The spatial R2 (R2 between
monitored and predicted annual averages) was between
0.75 to 0.83, with a mean spatial R2 of 0.82, indicating a
good model performance at the annual level (unpublished
results).

To summarize, compared with the existing model, our
new ensemble PM2.5 model performed noticeably better at
the annual level. The existing model underestimated PM2.5
concentrations at high concentrations. Our new ensemble
model does improve model performance at high concentra-
tions of PM2.5. Furthermore, it is worth high-lighting that by
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using the two new ensemble models we were able to esti-
mate the uncertainty in the predictions (monthly standard
deviation of the difference between daily monitored value
and daily predicted value).

Applying New Causal Inference Methods to Same Data 
Used to Complete Prospective National Medicare Cohort 
Study

We are working on conducting causal inference analyses
of the same data (for all the United States) and same study
design as in Di and colleagues (2017c). Within this work,
we are comparing various state-of-the-art approaches for
causal inference to adjust for measured confounding. More
specifically, we are comparing approaches using GPS
models (IPTW, matching, doubly robust approaches) as
well as nonparametric doubly robust approaches. In addi-
tion to adjusting for measured confounding, we are also
exploring various approaches to adjust for unmeasured
confounding by including time as a covariate in the GPS
model. These planned analyses would more robustly
explore methods to adjust for measured and unmeasured
confounders by applying the innovative causal inference
methods our group has been developing for Medicare data
of the continental United States. In addition to our
national Medicare cohort studies, we have begun applying
new causal methods to Medicaid data from 2010 to 2011.
Our first project using this cohort is to determine the short-
term effects of PM2.5 exposure on cardiovascular disease
outcomes in this population. This is a new data set for our
group to work with. We are using this first project to
understand the challenges in analyzing such a complex
data set, which includes varying amounts of data avail-
ability by state and differing eligibility criteria by state.
Our first manuscript using this data is almost complete
and will be presented at the next HEI meeting.

Discovering Heterogenous Groups under a Causal 
Inference Framework

We are developing causal inference methods for the de
novo discovery of vulnerable subgroups and the estima-
tion of air pollution effects within subgroups. Traditional
air pollution health studies that seek to identify effect
modifiers first select a priori a rather small set of these
potential modifiers to test (either at the individual or area
level) and then either (1) fit a regression model with one
term for the exposure main effect and an additional inter-
action term between the exposure and each individual
potential effect modifier, or (2) fit separate regression
models stratified by the levels of a single potential modi-
fier at a time. Recent studies have attempted to reduce the
number of regression models by first identifying patterns

across multiple modifiers, employing factor analytic tech-
niques, and subsequently testing for potential modifica-
tion by these composite factors (Achilleos et al. 2017;
Kioumourtzoglou et al. 2016). Nonetheless, the current
approaches have many limitations:

1. The potential effect modifiers to be tested are selected
a priori, leading to the possibility of omitting key fac-
tors of vulnerability.

2. Inclusion of an interaction term in a regression model
does not permit assessment of higher-order interac-
tions (i.e., when a vulnerable subgroup is character-
ized by co-occurrence of multiple factors, which is
likely among low income populations).

3. Although factor analytic and clustering approaches
(Hastie et al. 2009; James et al. 2000) try to address
this limitation, they are unsupervised approaches
(i.e., one must first classify the population into sub-
groups and separately assess whether the risk varies
by these previously identified subgroups). Thus,
these approaches do not allow subgroup discovery
based on the outcome and could potentially mask the
characteristics of the truly vulnerable subgroups for
the specific outcome of interest.

4. Previous techniques require solely continuous or cat-
egorical variables as inputs, which is not always the
case when multiple modifiers are being evaluated.

5. The current epidemiological literature lacks state-of-
the-art approaches to: (a) test for heterogeneity of air
pollution effects across subgroups in a way that does
not rely on strong parametric assumptions; (b) quan-
tify the evidence of heterogeneity in a way that is not
affected by residual or unmeasured confounding bias;
(c) eliminate the multiple comparison problem; and
(d) allow both continuous and categorical potential
modifiers simultaneously as inputs. The new
methods that we are developing are designed to over-
come these limitations.

As part of our planned analyses, which are also summa-
rized in a paper by Lee and colleagues (In press. https://
arxiv.org/pdf/ 1802.06710.pdf), we developed a new
approach for causal inference to discover de novo sub-
groups of the population that experience causal effects of
air pollution on mortality that are statistically significantly
higher or lower than the population average. The methods
developed in this paper try to overcome the limitations of
model misspecification, described as a limitation of Di and
colleagues (2017c). More specifically, in this new
approach for causal inference we split data into two sub-
samples, a training and a test sample: (a) in the training
sample we use matching to eliminate measured con-
founding bias and consider a data-driven search for de
novo discovery of subgroups that could have exposure
effects that differ from the population mean; and then
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(b) using the test sample, we quantify evidence of effect
modification among the subgroups with nonparametric
randomization-based tests. Because we first match and
then test for effect modification using a nonparametric
approach, we argue that this modeling design is more rig-
orous and less susceptible to false positive results for effect
modification that could be driven by residual confounding
bias. Via simulation studies and theoretical arguments, we
demonstrate that since we discover the subgroups in the
training set, hypothesis testing on the test set can focus on
these subgroups only, thus substantially increasing the sta-
tistical power of the test. We have applied our method to
the data from 1,612,414 Medicare beneficiaries in the New
England region of the United States for the period 2000 to
2006. We find that low-income seniors 81–85 years and
seniors over 85 years have statistically significant higher
causal effects of exposure to PM2.5 on 5-year mortality
rates compared to the population mean. Scaling up this
approach to the continental United States is challenging,
but we intend to tackle this challenge as a primary goal of
our planned analysis. The novel methods that we are
developing, which will be generalizable and applicable to
other analyses, will allow a granular joint identification of
several potential effect modifiers.

Spatial Confounding and Analysis of Geographic Regions

In our completed work to date, we did not use geo-
graphic groups since we were interested in the overall
effect of air pollution at the national level. However, it
would be helpful for future analyses to study regional dif-
ferences of the health effects of ambient air pollution. Such
analyses could address residual confounding by geog-
raphy. Further, it would be valuable to consider alternate
geographic groupings to account for confounding (e.g.,
geographic areas that map more closely with patterning of
disease rates in the United States, such as the so-called
stroke belt in the southeastern United States).

IMPLICATIONS OF FINDINGS

Several critical factors position the scientific commu-
nity at an unprecedented moment to accelerate scientific
discovery and inform data-driven environmental and
public health strategies. These factors include: incredible
technological advances in how we collect data (from satel-

lites, sensors, power plants, and electronic medical
records); nearly unlimited computational power; and the
development of new statistical methods that allow data to
be analyzed in an unbiased, highly principled way to
assess causality. However, in order to fully leverage these
advancements to understand the impacts of long-term
exposure to low levels of air pollution, we needed to
address several existing gaps. Through our HEI-funded
work, our team has fundamentally advanced the paradigm
for scientific inquiry by: (a) developing a flexible R
package called airpred (Sabath et al. 2018) that enables
environmental health researchers to design and train
spatio–temporal air pollution exposure models capable of
predicting multiple pollutants, including PM2.5; (b) devel-
oping new causal inference methods designed to account
for exposure error and to improve ER estimation in order
to account for differential confounding at different expo-
sure levels. Together, these tools stand to significantly
increase scientific rigor and advance evidence on the
causal impacts of exposures to low levels of ambient pollu-
tion at a level or robustness not previously possible. The
findings generated from our HEI-funded study have been,
and will continue to be, impactful to the scientific commu-
nity, policy makers, and the public.
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HEI’s Low-Exposure Epidemiology Studies Review Panel

Research Report 200, Assessing Adverse Health Effects of Long-Term Exposure to Low 
Levels of Ambient Air Pollution: Phase 1, F. Dominici et al.

INTRODUCTION

This Commentary was prepared by the HEI Low-
Exposure Epidemiology Studies Review Panel for the
study “Assessing Adverse Health Effects of Long-Term
Exposure to Low Levels of Ambient Pollution.” This spe-
cial Panel was convened to review HEI-funded studies on
the health effects of exposure to low levels of ambient air
pollution. The Commentary includes the scientific and
regulatory background for the research, the Panel’s evalua-
tion of the Phase 1 report from the investigator team led by
Dr. Francesca Dominici, and the Panel’s conclusions. It is
intended to aid the sponsors of HEI and the public by high-
lighting both the strengths and limitations of the study and
by placing the Investigators’ Report into scientific and reg-
ulatory perspective.

SCIENTIFIC AND REGULATORY BACKGROUND

The setting of ambient air quality standards — at levels
considered adequate to protect public health — is a central
component of programs designed to reduce air pollution
and improve public health under the U.S. Clean Air Act
(U.S. CAA*) and similar measures in Europe and around
the world. Although the process for setting such standards
varies, they all contain several common components: 

• Identifying, reviewing, and synthesizing the scientific
evidence on sources, exposures, and health effects of
air pollution; 

• Conducting risk and policy assessments to estimate
what public health effects are likely to be seen at dif-
ferent levels of the standard; 

• Identifying and setting standards based on scenarios
considered in the risk analysis; 

• Air quality monitoring to identify geographical areas
that do not meet the standards; and, 

• Implementing air quality control interventions to
reduce ambient air concentrations to meet the stan-
dards. 

SETTING NATIONAL AMBIENT AIR QUALITY 
STANDARDS UNDER THE U.S. CAA

The U.S. CAA requires that in setting the National
Ambient Air Quality Standards (NAAQS), the U.S. Envi-
ronmental Protection Agency (U.S. EPA) Administrator
review all available science and set the NAAQS for all
major (“criteria”) pollutants (including ozone [O3], partic-
ulate matter [PM], and nitrogen dioxide [NO2]) at a level
“requisite to protect the public health with an adequate
margin of safety.” In practice, since 2008 that review has
had two principal steps:

1. Synthesis and evaluation of all new scientific evidence
since the previous review in what is now called an
Integrated Science Assessment. This document
reviews the broad range of exposure, dosimetry, toxi-
cology, mechanism, clinical research, and epidemiology
evidence. It then — according to a predetermined set of
criteria (U.S. EPA 2015) — draws on all lines of evi-
dence to make a determination of whether the expo-
sure is causal, likely to be causal, or suggestive for a
series of health outcomes.

2. Assessment of the risks based on that science is then
conducted in a Risk and Policy Assessment. This fur-
ther analysis draws on the Integrated Science Assess-
ment to identify the strongest evidence — most often
from human clinical and epidemiological studies —
of the lowest concentration levels at which health
effects are observed, the likely implications of such
levels for health across the population, and the degree
to which the newest evidence suggests that there are
effects observed below the then-current NAAQS for a
particular pollutant. 

Dr. Francesca Dominici’s 4-year study, “Assessing Adverse Health Effects of
Long-Term Exposure to Low Levels of Ambient Pollution,” began in March
1, 2016. The Phase 1 draft Investigators’ Report from Dominici and col-
leagues was received for review in October 2018. A revised report, received
in February 2019, was accepted for publication in March 2019. During the
review process, HEI’s Low-Exposure Epidemiology Studies Review Panel
and the investigators had the opportunity to exchange comments and to
clarify issues in both the Investigators’ Report and the Review Panel’s Com-
mentary. As the principal investigator of this study, Dr. Francesca Dominici,
who is a member of the HEI Research Committee, was not involved in its
selection for funding or in the oversight process.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.

* A list of abbreviations and other terms appears at the end of this volume.
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The Risk and Policy Assessment also examines the
uncertainties around estimates of health impact and
the shape of the concentration–response curve, espe-
cially at levels near and below the then-current
NAAQS. Although a range of possible shapes of the
concentration–response curves has been considered,
including whether there is a threshold at a level
below which effects are not likely, the U.S. EPA’s con-
clusions in these reviews thus far have not found evi-
dence of a threshold (although studies to date have
not always had the power to detect one) (U.S. EPA
2004, 2013). Also, although the standard is set,
according to statute, to protect public health with an
adequate margin of safety, it has been generally
understood that there are likely additional health
effects below the NAAQS, although their presence
and magnitude are more uncertain.

Both of these documents are subjected to extensive
public comments and reviewed by the Clean Air Scientific
Advisory Committee (CASAC), which was established
under the U.S. CAA. CASAC is charged with peer-
reviewing the documents — which includes providing
guidance to the Administrator on the strength and uncer-
tainties in the science and advising on alternative sce-
narios for retaining or changing the NAAQS. 

EVOLUTION OF THE NAAQS

The reviews of the criteria pollutants have been ongoing
for nearly 50 years, since the passage of the Clean Air Act
Amendments of 1970. As the science has evolved, each
subsequent review has examined the strength of the evi-
dence for retaining or tightening the NAAQS. Although
the process has frequently resulted in a decision to retain
the then-current NAAQS, the NAAQS of both O3 and fine
PM (particulate matter ≤2.5 µm in aerodynamic diameter,
or PM2.5) have seen substantial revisions, especially over
the last 20 years:

O3 Starting in 1997, the NAAQS was converted from a
1-hour maximum standard to a standard averaged over
8 hours. In 1997, the NAAQS was set at 80 ppb; subsequently
in 2008 it was lowered to 75 ppb, and then in 2015 to 70 ppb.
Although there was epidemiological evidence of effects at or
near these levels, the changes relied heavily on a series of
carefully conducted human controlled-exposure studies.

PM2.5 In 1997, based on dosimetric and biological infor-
mation suggesting that fine particles less than or equal to
2.5 µg in diameter (PM2.5) were a more appropriate indi-
cator than PM10, the U.S. EPA for the first time proposed
and established a NAAQS for PM2.5. It set the annual

standard at 15 µg/m3 in part as a result of the new long-term
cohort evidence of association of PM2.5 with adverse health
effects (Dockery et al., 1993; Pope 1995) That was subse-
quently further reviewed in 2006 with no change and again
in 2012, when the NAAQS, based on additional epidemio-
logical evidence, was reduced to 12 µg/m3 (U.S. EPA 2016).

IMPACT OF THE NAAQS 

With the establishment of these standards, a host of
national and regional regulatory actions began to reduce
emissions from electric power plants, factories, motor
vehicles, and other sources. As a result, there has been a
steady and marked decline in ambient concentrations, so
that much of the United States now attains the NAAQS
(see, for example, the trend in PM2.5 concentrations in the
Commentary Figure.) 

ADVENT OF RECENT STUDIES OBSERVING 
ASSOCIATIONS BELOW THE NAAQS

As the data on levels of PM2.5 improved over the course
of the first decade of this century, new studies began to
emerge starting in 2012 (e.g., in Canada and New Zealand)
suggesting that associations of PM2.5 and mortality could
be observed down to levels well below the NAAQS of
12 µg/m3 (Crouse et al. 2012; Hales et al. 2012). These
studies found robust associations, with some evidence of
even steeper slopes of effect at the lowest levels, findings
which, if replicated in other populations and by other
investigators, could change the basis for future determina-
tions of the levels at which to set the NAAQS and other air
quality standards. 

At the same time, they posed several questions, for
example:

• Would the results be robust to the application of a
range of alternative analytic models and their uncer-
tainty?

• Could other important determinants of population
health, such as age, socioeconomic position, health
status, and access to medical care, as well as differ-
ences in air pollution sources and time–activity pat-
terns, modify or confound the associations seen? 

• Would the results change if risk estimates corrected
for the effects of important potential confounding
variables, such as smoking, in the absence of such data
at the individual level?

• What might be the effects of co-occurring pollutants
on health effect associations at low ambient concen-
trations?
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As described in the Preface in this volume, the advent of
these studies and the desire to address these important
questions formed the basis for HEI’s decision in 2014 to
issue a Request for Applications (RFA 14-3), which sought
and ultimately supported this study by Dr. Dominici and
colleagues and two other studies that make up HEI’s pro-
gram to Assess Adverse Health Effects of Long-Term Expo-
sure to Low Levels of Ambient Air Pollution.

The Dominici research project encompasses a number of
goals, which are addressed in nationwide exposure assess-
ment and health impact studies, and causal modeling.
Undergirding these studies is an effort to make the methods
and data from this project available to the scientific commu-
nity. The following evaluation is based on the initial results
of the study described in the Phase 1 Investigators’ Report.

SUMMARY OF THE STUDY

SPECIFIC AIMS

The full Dominici project, a four-year study funded by
HEI, which began in 2016, has an expansive set of aims;
however, for the purposes of this Phase 1 report, a subset of
their overall aims is summarized as follows.

Aim 1: Exposure Prediction and Data Linkage Estimate
long-term exposures to low levels of ambient PM2.5 mass
and the gaseous air pollutant O3 by employing and
extending hybrid prediction models that use satellite,
land-use, emissions, ground-monitoring, and weather

data, in conjunction with chemical transport models, at a
high spatial resolution (1 km × 1 km) for the continental
United States. 

Aim 2: Causal Inference Methods for Exposure–Response
Develop a new framework in Bayesian causal inference to
estimate the concentration–response function that is
robust to model misspecification for confounding and
accounts for exposure error. 

Aim 3: Evidence on Adverse Health Effects   Estimate
mortality associated with exposure to ambient air pollu-
tion for all U.S. Medicare enrollees between 2000 and 2012
(61 million adults, 65 years of age and older) and a repre-
sentative subsample of Medicare participants with
detailed personal information from the Medicare Current
Beneficiary Survey (MCBS) (57,200 adults), using a cohort
(long-term) and a case–crossover (short-term) design. 

Aim 4: Tools for Data Access and Reproducibility Devel-
op approaches and tools for data sharing, record linkage,
and statistical software. 

This commentary focuses in more detail on Aims 1 and
3, comprising initial results from the exposure and health
effects research that have been published in peer-reviewed
journals (Di et al. 2017a, 2017c; the latter can be found in
Additional Materials on the HEI website). Aims 2 and 4
(causal modeling and more advanced statistical analyses
and data access) are discussed briefly here as this research
is still in its initial stages; the Panel does offer some

Commentary Figure. Trends in PM2.5 concentration from 2000 to 2018 (seasonally weighted annual average) as monitored by the U.S. EPA (data from
U.S. EPA; www.epa.gov/air-trends/particulate-matter-pm25-trends).
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comments on this research, with suggestions for the con-
duct of these further analyses.

EXPOSURE AND HEALTH EFFECTS STUDIES

Data and Methods

The investigators amassed very large amounts of data from
many different sources and used them for their analysis.

Ambient Air Pollution Concentrations Since the empha-
sis in this study was to study the entire older U.S. popula-
tion — including people living in rural, low ambient air
pollution concentration areas — the investigators devel-
oped air pollution concentration models for the 48
contiguous states, relying on research that they had com-
pleted before the current study began. They estimated am-
bient PM2.5 concentrations for the period 2000 to 2012
using the following sources of data for their exposure mod-
el (for details, see Di et al. 2016):

1. Air monitoring data were obtained from the U.S. EPA
Air Quality System (AQS), used in both model
building and for cross-validation. 

2. Aerosol optical depth (AOD) data were obtained from
the moderate resolution imaging spectroradiometer
(MODIS).

3. Surface reflectance data were also obtained from
MODIS (MOD09A1).

4. Chemical transport model outputs were derived from
the widely used GEOS-Chem model, which employs
meteorological inputs and emission inventories to
simulate atmospheric components. Total PM2.5 was
defined as the sum of nitrate, sulfate and ammonium
ions and elemental carbon, organic carbon, sea salt
aerosol, and dust aerosol. In addition to producing
ground-level PM2.5 estimates, the GEOS-Chem model
is also useful for calibrating AOD because, being a
three-dimensional model, it simulates vertical distri-
bution of aerosols.

5. Meteorological data were obtained from the North
American Regional Reanalysis project; the variables
used included air temperature, accumulated total pre-
cipitation, downward shortwave radiation flux, accu-
mulated total evaporation, planetary boundary layer
height, low cloud area fraction, precipitable water for
the entire atmosphere, pressure, specific humidity at
2 meters, visibility, wind speed, medium cloud area
fraction, high cloud area fraction, and surface reflec-
tance.

6. Aerosol index data were taken from the absorbing
aerosol index measured by the ozone monitoring

instrument (OMI), onboard the Aura satellite. These
data are used to correct for the presence of other
absorbing aerosols in the air (such as those from bio-
mass burning and desert dust).

7. Land-use terms were obtained as previously
described by Kloog and colleagues (2012). These
terms represent emissions and can help inform small
spatial scale variations; land-use data incorporate a
variety of variables (such as population and road den-
sities, emissions inventory, elevation, percentage
urban, etc.).

8. In the regression models, the investigators also used
regional and dummy variables to account for regional
and temporal variability due to differences in meteo-
rology and aerosol composition. 

For estimating O3 concentrations, the investigators used
the same information for their models as listed for PM2.5,
supplemented by the following sources of data (see Di et
al. 2017b):

1. Satellite-based O3 measurements obtained from the
OMI onboard the Aura satellite and used to calculate
vertical distribution of O3 levels. 

2. Ozone vertical profile obtained through using an
approach similar to that used for modeling PM2.5. The
GEOS-Chem model was used to estimate O3 levels at
different layers, and a scaling factor was used to cali-
brate satellite-based estimates to ground level O3.

3. Ozone precursors (such as nitrogen oxides [NOx],
carbon monoxide, methane, and volatile organic com-
pounds (VOCs), were estimated by the inclusion of
AQS daily measurements of sulfur dioxide, NO2,
NOx, and VOCs into the O3 model, followed by the
use of distance–decay functions from air quality mon-
itors and other approaches.

With this large amount of data and using multiple
approaches and input variables, the investigators devel-
oped a hybrid model to estimate daily PM2.5 and O3 levels
at a 1 km × 1 km grid level. Complex atmospheric pro-
cesses were addressed using a neural network that mod-
eled nonlinearity and interactions. Spatial correlation was
addressed using convolutional layers in the neural net-
work, which aggregate nearby information and can simu-
late autocorrelation. The neural network was trained for
the study period for the United States and tested against
10% left-out monitors. They then used the neural network
to produce daily PM2.5 levels (Di et al. 2016). Essentially
the same approach was used to estimate and validate a
model to predict daily O3 concentrations during warm
months (April 1 to September 30) (Di et al. 2017b).
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Health Outcomes and Analyses Health data for this study
were obtained from the Centers for Medicare and Medicaid
Services (CMS), after applying through the Research Data
Assistance Center (ResDAC) (www.resdac.org). The investi-
gators obtained information on all Medicare beneficiaries
for the years 2000 through 2012, which represents more
than 96% of the U.S. population 65 years of age or older.
This is an open cohort where individuals enter when they
enroll in Medicare at or after age 65 and stay until death.
Individuals with an unverified date of death were
excluded. For each beneficiary, the following data were
extracted: the date of death (if applicable), age at year of
Medicare entry, calendar year of entry, sex, race, ethnicity,
ZIP code of residence, and Medicaid eligibility (a proxy for
low socioeconomic status (SES); note that these individ-
uals were eligible for both Medicare and Medicaid). Thus,
all deaths among Medicare recipients during 2000 to 2012
were captured. In all, the cohort had about 61 million per-
sons, with 460 million person-years of follow-up and 23
million deaths.

Medicare data contain little information about individual-
level covariates. Therefore, the investigators also obtained
data from the MCBS, which is an annual phone survey of a
nationally representative sample of Medicare beneficiaries
and contains information on more than 150 potential indi-
vidual confounders, including data on individual risk fac-
tors (e.g., smoking, body mass index [BMI], and income).
Information on a sample of more than 57,000 enrollees was
obtained for the period 2000 through 2012. Dominici and
colleagues also analyzed data for a cohort of ~32,000 bene-
ficiaries from the MCBS-Medicare database, which links
data from MCBS interviews with Medicare claims data,
and also contains information on confounders (see Di et al
2017c, Supplementary Appendix, Section 5, found in
Additional Materials on the HEI website; and Makar et al.
2017). The Commentary Table is a summary of the poten-
tial confounders that were used during this study. 

The investigators used both cohort and case–crossover
designs to analyze the association between exposure to
PM2.5 and O3 and all-cause mortality in the Medicare
cohort from 2000 to 2012. For the cohort study, they per-
formed survival analyses using the Andersen-Gill (AG)
method (Andersen and Gill 1982), a variant of the tradi-
tional Cox proportional hazards model that incorporates
spatiotemporal features by allowing for covariates to vary
from year to year. They estimated hazard ratios associated
with a 10-µg/m3 increase in PM2.5 and a 10-ppb increase in
O3 exposure using this model in two-pollutant analyses. 

The investigators developed concentration–response
curves for air pollution levels and mortality by fitting a
log-linear model with thin-plate splines of both pollutants

while controlling for all individual and ecological vari-
ables that they had used in their main analyses (details in
Di et al. 2017c, Supplementary Appendix, Section 7,
found in Additional Materials). In view of the objective of
this research, they explored the health effects at lower
ambient concentrations by conducting separate analyses
that included only person-years with PM2.5 exposures
lower than 12 µg/m3 and O3 exposures lower than 50 ppb. 

To assess if any subgroups within the Medicare cohort
were at higher or lower risk of mortality associated with air
pollution, the investigators fitted the same Cox model as
above for certain subgroups (e.g., male vs. female, white
vs. black, and Medicaid eligible vs. Medicaid ineligible).
To explore the robustness of the results, they performed
sensitivity analyses and compared any changes in risk esti-
mates with differences in confounder adjustment and esti-
mation approaches. Finally, since Medicare data do not
include information on many important individual-level
covariates, the investigators utilized data from the MCBS.
Using individual-level data (such as smoking status, BMI,
and income) and data on many other covariates from the
MCBS, they examined how the lack of adjustment for these
risk factors could have affected the risk estimated for the
Medicare cohort (Di et al. 2017c, Supplementary Appendix,
Section 5, found in Additional Materials ).

For the case–crossover study, the case day was defined
as the date of death; the daily exposure to air pollution for
the case day was defined as the mean of the ambient con-
centration on that day and the day before (i.e., mean of lag
0-day and lag −1-day). For each person, they compared
daily air pollution concentration on the case day versus
daily air pollution exposure on control days, which were
chosen (1) on the same day of the week as the case day, to
control for potential confounding effect by day of week;
(2) before and after the case day to control for time trend;
and (3) in the same month as the case day to control for
seasonal and subseasonal patterns. They fitted a condi-
tional logistic regression to all pairs of case and matched
control days, thus estimating the relative risk of all-cause
mortality associated with short-term PM2.5 and O3 expo-
sure (Di et al. 2017a). 

The investigators controlled for potential residual con-
founding by weather-related factors by using natural
splines of air and dew point temperatures with 3 degrees
of freedom. For subgroup analyses, the investigators used
information on sex, race, or ethnicity (white, nonwhite,
and others), age categories (≤ 69, 70–74, 75–84, and ≥85
years), eligibility for Medicaid, and population density at
residence (in quartiles). Subgroup-specific estimates of rel-
ative risk and absolute risk difference were obtained by fit-
ting separate conditional logistical regression models to
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Commentary Table. Characteristics of Potential Confounders and Variablesa 

Potential Confounder /
Model Covariate

Variable 
Level

Variable 
Type

Data 
Sourceb

Age Individual Categorical (5-year) Medicare
Age at entry

Race Individual Binary and 
continuous (% 
of population)

Medicare and
U.S. Census, ACSWhite

Black 
Asian
Hispanic)
Native American

Sex Individual Binary Medicare
Sex

Smoking Ecological (county to ZIP code) Proportion BRFSS (2000–2012)
Ever smoker (%)

Obesity Ecological (county to ZIP code) Continuous BRFSS (2000–2012)
BMI

Diet n/a n/a n/a
Not included

Exercise n/a n/a n/a
Not included

Socioeconomic status — individual level Individual Binary Medicaid Statistical 
Information SystemMedicaid eligibility

Socioeconomic status — community level Ecological (ZIP code) Continuous U.S. Census, ACS
Median household income
Median value of housing
% owner occupied
% below poverty level (age >65)
% below high school education (age >65)
Population density

Access to health care Ecological (ZIP code) Continuous Dartmouth Atlas of 
Health Care% with LDL-C

% with HgbA1c test
% with ≥ 1 visit

Meteorological Area  (32 km × 32 km) Continuous North American 
Regional Reanalysis 
data

Temperature
Relative humidity 

Regional dummy variable Regional Categorical GEOS-Chem 3D 
global chemical 
transport model

10 geographical regions with similar 
PM2.5 chemical profile 

a Based on information in Di et al. 2017c, Supplementary Materials (available in Additional Materials on the HEI website).

b American Community Survey (ACS); Behavioral Risk Factor Surveillance System (BRFSS); n/a = not applicable. 
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the data for each subgroup. To test for statistically signifi-
cant differences in estimated relative risk and the absolute
risk difference between categories within each subgroup
(e.g., male vs. female), they used a two-sample test, based
on the point estimate and standard error. They explored
the health effects at lower levels of exposure by performing
subanalyses with cases restricted to those occurring on
days with daily air pollution concentrations below
25 µg/m3 for PM2.5 and 60 ppb for O3. 

Key Findings Reported by the Investigators

Exposure Assessment Dominici and colleagues reported
overall good performance for the PM2.5 prediction model,
with R2 of 0.84 (range 0.78 to 0.88) (Di et al. 2016). During
the course of the study, annual PM2.5 concentrations
ranged from 6.2 to 15.6 µg/m3 (5th and 95th percentiles,
respectively). The average annual PM2.5 concentration was
11.0 µg/m3 during the study period, 2000–2012. The
model performed better in the eastern and central United
States and less well in the western United States (Di et al.
2016, Supplementary Appendix Table S4). The highest
PM2.5 concentrations were predicted to be in the eastern
and southeastern United States and in parts of California.
The R2 values were lower after 2010, apparently as PM2.5
ambient levels decreased in the eastern United States (R2

in 2000 and 2001 of 0.86 and 0.84 vs. 0.81 and 0.74 in 2011
and 2012). In addition, the model performed better during
the summer — when PM2.5 levels often tend to peak — fol-
lowed by autumn, spring, and winter (mean R2 values of
0.88, 0.84, 0.84, and 0.80, respectively) (Di et al. 2016, sup-
plementary materials). 

The O3 prediction model performed similarly well, with
an overall R2 of 0.80 (Di et al. 2017b).* The average of 8-
hour, daily, warm-season O3 concentrations across the
country during the study period ranged from 36 to 56 ppb
(5th and 95th percentiles, respectively), with an average of
46.3 ppb during the study period. The investigators found
a west–east gradient in the O3 level, with the model perfor-
mance being the best in the middle Atlantic, south
Atlantic, east north Central, west south Central, and the
Pacific States regions. Model performance was not affected
by the year, so no year-to-year trend in model fit was
observed. Seasonal trends in model performance were also
apparent, with the R2 being highest in the autumn, fol-
lowed by summer, spring, and winter (R2 values of 0.75,
0.71, 0.68, and 0.67, respectively). O3 concentrations were
the highest in the Mountain region and in California and

were lower in the eastern states. Annual PM2.5 and warm-
season O3 concentrations were only weakly correlated,
with a Pearson correlation coefficient of 0.24.

The Cohort Study The 2000–2012 cohort of Medicare
beneficiaries, with about 61 million enrollees and 23 mil-
lion deaths, provided a very large population to study
association with the long-term exposure to ambient air
pollution, including at concentrations below the current
NAAQS for both PM2.5 and O3. In two-pollutant analyses,
Dominici and colleagues report a 7.3% (95% confidence
interval [CI], 7.1% to 7.5%) higher risk of all-cause mor-
tality for each 10-µg/m3 increase in annual average PM2.5
concentrations and a 1.1% (CI, 1.0% to 1.2%) higher risk
of mortality for each 10-ppb increase in annual average O3
concentration in the warm season (Di et al. 2017c). At low
concentrations — less than 12 µg/m3 for PM2.5 and less
than 50 ppb for O3 — the risk was 13.6% (CI, 13.1% to
14.1%) for PM2.5 and 1.0% (CI, 0.9% to 1.1%) for O3.
Thin-plate-spline regression analysis for concentration–
response relationship in two-pollutant models produced
almost linear curves, with no suggestion of a threshold
down to 5 µg/m3 of PM and 30 ppb of O3 (see Figure 7 in
the Investigators’ Report and Supplementary Appendix,
Section 5 of Di et al. 2017c, found in Additional Materials).

In subgroup analyses for PM2.5, the investigators found
larger estimates of effect among males and among His-
panics, Asians, and particularly African Americans com-
pared with whites. Individuals with low SES, as indicated
by eligibility for Medicaid, appear to have a slightly higher
risk per unit of air pollution (Di et al. 2017c, Supplemen-
tary Appendix, Table S3, found in Additional Materials).
For long-term O3 exposure, the subgroup analysis showed
that the effect estimates were higher for Medicaid-eligible
enrollees and slightly higher for whites, but these analyses
also produced hazard ratios of less than 1 for certain sub-
groups, including Hispanics and Asians, and particularly
for Native Americans, than the overall population. 

The Case–Crossover Study The case–crossover anal-
yses comprised more than 22 million deaths (case days)
and more than 76 million control days among Medicare
enrollees between 2000 and 2012, again a very large popu-
lation. For short-term exposures, the investigators observed
a 1.05% (95% CI, 0.95% to 1.15%) greater risk of mortality
in two-pollutant models for a 10-µg/m3 increase in PM2.5
concentrations, and 0.51% (CI, 0.41% to 0.61%) for a
10-ppb increase in average 8-hour warm-season O3 concen-
tration (pollutant levels were averaged over the current and
previous day) (Di et al. 2017a). At low concentrations
(<25 µg/m3 of PM2.5 and <60 ppb of O3), the associations
remained elevated for both PM2.5 and O3, with relative risk

*Note that this publication reports the R2 as 0.76 [range 0.74 to 0.80]; pre-
sumably this is because the authors improved the model after publication of
the earlier article (Di et al. 2017b).
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increases (RRI) of 1.61% (95% CI, 1.48% to 1.74%) and
0.58% (CI, 0.46% to 0.70%), respectively. In exposure–
response curves, the relative risk increase rises sharply for
both pollutants at a relatively low concentrations and then
levels out at higher concentrations (see Figure 8 in the
Investigators’ Report).

In subgroup analyses for the case–crossover study, signif-
icant effect modifications were reported for several vari-
ables. For PM2.5, the investigators observed higher mortality
risk for females and individuals who were older (age >70
years), black, or eligible for Medicaid (i.e., lower SES) (Di et
al. 2017a, Figure 3). For O3, there was much less contrast
between groups, except for age where the older group had a
significantly higher risk of mortality (0.69 for ≤69 years vs.
1.83 for ≥85 years) (Di et al. 2017a, Figure 4).

REVIEW PANEL EVALUATION

This report by Dominici and colleagues summarizes an
impressive amount of work completed in the first part of
this project. There are several particularly strong aspects of
this work: The investigators amassed an extremely large
cohort by compiling a very large amount of data on health
and related factors across the continental United States from
national databases (Medicare and others). They also esti-
mated U.S.-wide air pollution concentrations at high spatial
resolution (with 1 km × 1 km grids) and temporal resolution
(enabling daily averages). Finally, they developed and
applied state-of-the-art statistical techniques to the assess-
ment of health effects of low levels of air pollution. 

The Panel’s evaluation of this report was made chal-
lenging by the nature of the report submitted; the Phase 1
study report was largely compiled from the initial pub-
lished reports, as well as from some as-yet-unpublished
methodological work. The Panel has therefore expanded the
focus of this review to include — in addition to the Investi-
gators’ Report — some of this recently published work (in
particular, Di et al. 2017a and 2017c; the latter can be found
in Additional Materials on the HEI website). Di and col-
leagues have provided many details in the supplemental
materials of the two publications. Additionally, the Panel
communicated with the investigators during the course of
the review. In response to comments from the Panel, the
investigators added an additional discussion to the Investi-
gators’ Report of limitations and plans for future work.

As stated earlier, the Phase 1 report represents a snap-
shot of the ambitious work undertaken by the investiga-
tors. Much work, including further development of causal
methods that would properly allow for the complexities in
the design of the studies and nature of the data is currently

ongoing. As a whole, this work is likely to represent an
important contribution to the literature on the health
impacts of air pollution on older adults in the United
States. The current report represents a high-quality and
thorough investigation of some of the most challenging
problems in environmental health. 

EXPOSURE ASSESSMENT

The use of large, diverse, and existing data sets to generate
estimates of PM2.5 and O3 concentrations on a 1 km × 1 km
national grid for the entire continental United States
(~8 million km2) is impressive, both in terms of the vast
amount and variety of data assembled and the tremendous
computational requirements for the analysis (Di et al. 2016,
2017b). The methods developed should prove valuable to
researchers studying air pollution and health, especially
because the investigators have made efforts to make their
modeling approach publicly available for others to use. 

Using a hybrid model, Dominici and colleagues esti-
mated PM2.5 and O3 concentrations in areas where moni-
tors are sparse, allowing estimates for a larger number of
ZIP codes, and thus individuals, to be included within the
analyses. However, as with any exposure assessment, it is
critical to consider the potential for prediction errors, par-
ticularly those that may be systematic, and the implications
for the interpretation of the associated epidemiological
results. Specific strengths and weaknesses of the exposure
assessment are discussed below.

First, Dominici and colleagues used U.S. EPA ground-
monitoring data to cross-validate their exposure models.
Regional and monthly dummy variables were used in the
model in an attempt to account for regional and daily vari-
ations related to differences in meteorology and aerosol
composition (Di et al. 2016). However, both geographical
and temporal variability in the errors of the concentration
estimates remained in the final estimates for both PM2.5
and O3, as discussed earlier. The source(s) and impact of
such variability are not understood and deserve attention. 

Second, because U.S. EPA monitors are located for the
purpose of compliance with NAAQS, they are generally
placed in the more populated, urban areas where air pollu-
tion levels are higher. Consequently, the rural areas —
where population density is lower and lower pollutant
concentrations are found — are not as intensively moni-
tored, and the model may be more prone to larger error in
such areas. Further, rural ZIP codes generally cover much
larger areas than urban ZIP codes. The potential impact of
this on exposure estimates can be seen, for example, in the
lower R2 values for PM2.5 estimates for the Mountain
region (see Di et al. 2016, Figure 1). Although only about
25% of the U.S. population lives 20 km or farther away
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from the nearest monitoring station — primarily in rural
areas — these are the residents of potentially greatest
interest, in the context of this study, because of their lower
exposures to pollutants; therefore, the nature, size, and
potential impact of these errors are important to understand.

Third, based on the relationship between the model pre-
dictions and observed PM2.5 and O3 levels (see Di et al.
2016, Figure 5, and Di et al. 2017b, Figure 6), it appears
that the model may systematically underpredict concen-
trations (i.e., produce predictions below the 1:1 line). The
impact of such underprediction may be important and
should be explored in future research. (Both curves show
much greater uncertainty at high pollutant concentrations,
but few people live in such high-concentration areas.) 

Finally, though the Panel recognizes that the investiga-
tors were building a very large, national-scale model with
a resolution of 1 km × 1 km, the model does not capture
fine scale variability in ambient concentrations. Thus, the
model at this scale does not capture local, high gradients in
concentrations, such as those along roadways or near major
point sources. The exposure estimation for those living in
the vicinity of such areas is probably underestimated (for
PM2.5) or overestimated (for O3, because of local area scav-
enging), though typically PM2.5 and O3 levels tend to be
more uniform at urban and regional scales than pollutants
such as NO2, which exhibit higher spatial variation. 

Using input from disparate sources to develop a model
at the national scale, with a 1 km × 1 km resolution, is a
major accomplishment, though the model has its limita-
tions. The Panel has noted that the investigators are taking
steps to improve their models — by using three different
machine-learning models that complement one another —
and extending their models to the year 2016. In addition to
updating the PM2.5 and O3 models, they are also modeling
NO2 (see the “Next Steps” section in the Investigators’
Report). The application of the improved and additional
models for epidemiological analysis should prove useful
and may shed greater light on the exposure–response rela-
tionships described in these two studies. 

HEALTH EFFECTS: COHORT STUDY*

Using the massive database of all Medicare recipients
during 2000 to 2012, and combining it with the equally
large exposure predictions, Dominici and colleagues have
performed a study with unsurpassed power to investigate
the association between all-cause mortality and long-term
exposure to a range of PM2.5 and O3 levels. That they

observed an association between annual average concen-
trations and mortality at higher concentrations was not the
new finding of this work, but the findings at low levels,
particularly at levels below the current NAAQSs, are novel
and potentially important. 

The greatest challenge to the internal validity of this
study, as for all observational studies, is the potential for
confounding, which can bias the results. To address such
concerns, the investigators performed numerous analyses
with some 20 covariates (Commentary Table) (for details,
see Di et al. 2017c, Supplementary Appendix, available in
Additional Materials on the HEI website). They also uti-
lized findings from a smaller Medicare cohort that had a
much richer set of potential confounding variables to
assess the likely impact of having only a limited number of
covariates in the main cohort analysis. To allow for the
effects of time-dependent covariates that are known to
vary from year to year, the investigators utilized a variant
of the classic Cox proportional hazards model — the AG
formulation (Andersen and Gill 1982). 

However, this is a complex study. Health and personal
characteristics are available for individuals, but ambient
air pollutant exposure is estimated at the ZIP code level
(averaged from the 1 km × 1 km spatial scale of the predic-
tion model). Additionally, the ZIP code scale is the
smallest spatial unit at which individual residential and
other covariate information is available. These factors,
coupled with confounders that can act at the level of the
individual, the community, or the regional environment,
result in a complex hybrid model. These issues pose
important challenges for the next phase of the work
planned by the investigators, and the causal inference
methods under development will need to focus on these
challenges. Based on the current results, the Panel offers
the following comments.  

Temporal Confounding 

Although the investigators have used the AG formula-
tion of the Cox proportional hazards model to better repre-
sent time-dependent variables, the Panel’s biggest concern
relates to the problem of the potential for temporal con-
founding, with both the overall nonaccidental mortality
and the PM2.5 levels declining steadily over the period of
the study, 2000 to 2012. Since this is an open cohort (new
individuals enter the cohort as they enroll for Medicare),
age — which is controlled in the analyses — is not neces-
sarily strongly correlated with calendar time. As a result,
confounding can occur due to the contributions of both age
and calendar time. In this study, however, there was no
adjustment for calendar time, and age was included in the
models using five-year categories. Although the Panel
understands that there are computational challenges to

* A copy of the article by Di and colleagues (2017c), along with its Supple-
mentary Appendix, is available in Additional Materials on the HEI website,
with permission of the publisher.
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including a finer resolution for age, the supplementary
materials accompanying the article by Di and colleagues
(2017c, Supplementary Appendix, found in Additional
Materials) show that the hazard ratio drops from 1.07
when a five-year age category is used to 1.05 when it is
replaced with a three-year age category. This suggests that
this question is unresolved and deserves more attention.
Similarly, the Panel acknowledges that disentangling sec-
ular trends from any possible causal effect of PM2.5 on
mortality can be challenging and that including year in the
models may over-adjust for exposure by removing true
variability over time. Regardless, the inability to ade-
quately account for potential bias due to temporal trends
introduces a large element of uncertainty in interpreting
the study’s findings to date. 

In summary, the Panel believes that, without accounting
for confounding by time, the findings of the long-term
exposure study should be viewed with caution. The Panel
is glad to note that the investigators acknowledge these
limitations and looks forward to the development of
appropriate causal inference techniques and their applica-
tion to the Medicare data set.

Potential for Residual Confounding

Dominici and colleagues have performed various anal-
yses to explore the possible sources of residual con-
founding; however, as discussed below, the Panel
identified several areas with a potential for residual con-
founding in the cohort study that need resolution. 

Subgroup Differences Some results from the subgroup
analyses are puzzling, as acknowledged by the investiga-
tors’ team: for example, the dramatically higher effect of
PM2.5 in African Americans and the negative (protective)
effects of O3 for Native Americans, Hispanics, and Asians.
It is possible that these observations reflect true intergroup
differences; alternatively, it may be more likely that the
subgroup designation serves as a surrogate for other risk
factors not fully considered, resulting in residual con-
founding. Model misspecification is another possibility. 

Spatial Differences Another issue here is the different
scales at which the exposure and health models operate. The
Panel has concerns about the impact of the likely exposure
misclassification and confounding related to the spatial dif-
ferences between aggregated summaries of exposures
(1 km × 1 km) and residential locations (at the ZIP code
level). The Panel appreciates that the health and covariate
data are available only as aggregated ZIP-code-level values
and looks forward to the results of the planned analyses in
the Final Phase 2 report, in which the investigators plan to

explore exposure measurement error in the health anal-
yses using a causal-inference framework. The Panel is also
aware that the exposure measurement error correction
methodology for spatially varying pollutants in multipol-
lutant research is in its infancy (e.g., Bergen et al. 2016;
Szpiro and Paciorek 2013), and even more so in the causal
inference framework — as duly acknowledged by the
investigators — so it is not surprising that Dominici and
colleagues did not yet address this in their extensive work.

Smoking, Diet, and Exercise Data on individual health-
related behaviors, which are well known for affecting sur-
vival time, were available only at the ZIP code level. Some
of the information — for example, binary variables for
smoking behavior — does not capture the full extent of the
variability in the behaviors. The Panel understands the
complexity of these factors and the difficulty in finding
data on a national scale to include in the model. However,
some of these behaviors are known to vary regionally, and
it is conceivable that one or the other is geographically cor-
related with PM2.5 or O3. For example, residents of the
southeast have some of the highest PM2.5 exposure levels
and also have the highest rates of obesity in the United
States (Centers for Disease Control and Prevention 2019). 

Socioeconomic Status (SES) The investigators appro-
priately consider a variety of measures of SES at the indi-
vidual and community level; these measures represent a
number of factors that might increase mortality risk. They
include baseline health status, diet, exercise, psychosocial
stressors, risk of violent crime, risk of exposure to chem-
ical and microbial contaminants, and access to medical
care. The only measure of individual-level SES available
for the entire cohort is Medicaid eligibility status, which
produced a fairly small difference in hazard ratios (eligible
1.080 vs. noneligible 1.075) (Di et al. 2017c, Supplemen-
tary Appendix, Table S3, found in Additional Materials).
To the extent that Medicaid eligibility is an imperfect mea-
sure of the relevant aspects of SES, additional sources for
residual confounding may be present. 

The issues with individual-level SES notwithstanding,
neighborhood SES factors — not individual SES — have
been reported to be the more important confounders
affecting air-pollution-associated mortality (Hajat et al. 2013;
Makar et al. 2017). The investigators used four different and
reasonable measures of community SES: median household
income, median housing price, percentage below poverty
level, percentage of homes owner-occupied, and percentage
below high school education. They report that none of these
had a significant correlation with the observed outcomes
(Di et al. 2017c, Supplementary Appendix, found in Addi-
tional Materials). The adjustment for neighborhood
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SES partly addressed concerns about the limitations of
accounting only for individual-level SES, so the inclusion
of these additional SES-related factors in the analyses is a
strength of this study. 

Cohort vs. Case–Crossover Analysis The Panel was not
persuaded by the claim made in the “Limitations” section
of the Investigators’ Report that estimating effects in both
the case–crossover and cohort analyses provides some
assurance against confounding. At best, this provides evi-
dence that PM does affect mortality. However, the nature of
the confounders and the effects being estimated (Eftim and
Dominici 2005; Künzli et al. 2001; Rabl 2003) are so dif-
ferent that consistency of findings across the two designs
provides essentially no assurance against confounding.

Precision of Effect Estimates

Another issue to consider is related to one of the major
strengths of the study: the extremely large number of
observations. Statistical methods have been developed in
light of the limitation that an entire population is generally
not available for study, so one must study a sample of the
population. Statistical methods related to the estimation of
different parameters (e.g., bias) and related inferences (e.g.,
CIs and P values) are based on the premise that study par-
ticipants are sampled from a larger existing or theoretical
population. The Dominici study represents a growing
trend in the new “Big Data” era in that the entire Medicare
population of more than 60 million individuals has been
studied. Though this enormous sample gave the study
unprecedented power to investigate effects, it also raises
questions about interpretation of the very narrow CIs and
other comparative statistics reported for the cohort. In this
situation, bias and model misspecification are likely to be
more critical concerns than sampling variability. Because
the impact of bias and model misspecification is not
reflected in standard uncertainty measures, one should be
cautious about overinterpreting the narrow CIs, as the
interval width is driven by the very large sample size (see
Meng 2018), and the Panel’s comments and concerns about
the potential impacts of bias and of unmeasured con-
founding should be viewed in this broader context. 

Other Pollutants

Dominici and colleagues have looked at mortality asso-
ciations with both PM2.5 and O3; this is another strength of
this study. However, other pollutants may also confound
the associations between PM2.5 and O3 and mortality. The
Panel looks forward to the results of ongoing work to
strengthen the current exposure models (e.g., using data
from the IMPROVE network) and to the inclusion of a NO2
model and possibly PM composition. 

HEALTH EFFECTS: CASE–CROSSOVER STUDY*

Long-term studies are typically considered more impor-
tant for risk and burden assessments as well as policy
making, though short-term studies have played an impor-
tant role as well in the development of air pollution epide-
miology science and its applications to policy. The second
epidemiology study in this report uses a case–crossover
design — a variant of the time-series design — with the
Medicare population to evaluate short-term effects of air
pollution exposure. One advantage that this design has
over the study of long-term health effects is that it is based
on variation in exposure and mortality over short periods
of time (days, rather than years). Therefore, only con-
founding factors that vary over short periods of time, such
as weather, are of potential concern, rather than the much
larger array of potential confounders that either do not
vary with time or have long-term trends. On the other
hand, by design time-series analyses address only the
immediate impact of air pollution on mortality rather than
the role of pollutants in the development of chronic mor-
bidity and subsequent mortality. The two designs are both
valuable analyses but address different sets of covariates
and different questions. 

Dominici and colleagues report an RRI of 1.05% (95%
CI, 0.95%–1.15%) and 0.51% (0.41%–0.61%) in daily
mortality rate, respectively, for each 10-µg/m3 increase in
PM2.5 and 10-ppb increase in O3 (Di et al. 2017a). The con-
centration–response analysis for PM2.5 and O3 suggests a
nonlinear relationship, with a steeper slope at low concen-
trations and flattening at higher concentrations (see Figure
8, Investigators’ Report). The investigators have provided
the effect estimates for concentrations below 25 µg/m3 for
PM2.5 and 60 ppb for O3, which are the concentrations of
interest for this study and below which the curves are
linear. 

In addition to the main findings, the authors have inves-
tigated effect modification for a range of variables. For
example, they report that the mortality effect of short-term
exposure to PM2.5 is greater in women than in men (RRI of
1.20 vs. 0.86; Di et al. 2017a, Figure 3), in contrast to the
finding in their cohort study. There is again a clear age
effect, particularly for O3 exposure, with older individuals
having a significantly higher RRI. The effects in other sub-
group analyses were generally not significant, except for
Medicaid eligibility. An important group of time-varying
covariates not fully included in these models is copollut-
ants, such as NO2.

* The paper by Di and colleagues (2017a) may be viewed at https://jamanet-
work.com/journals/jama/fullarticle/2667069 (courtesy of JAMA).
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SHARING OF MODELS AND DATA

From the inception of this project, the Panel was glad to
note that the investigators planned to make available their
methods, models, and data with other investigators. To
facilitate this, they have posted their data, workflows, and
analyses to a secure high-performance computing cluster
with the objective of developing an open science research
data platform (https://osf.io/2cg6v/). Additionally, the
codes and software tools are available from the location
https://github.com/NSAPH/airpred. The investigators’
efforts in this area — to make both models and data avail-
able — will continue. 

Model With an interest in making their model widely
available, the investigators developed a flexible R package
so that interested environmental health scientists may
design and train spatiotemporal models that can predict
air pollutants, including PM2.5 (Sabath et al. 2018). This is
accomplished via neural network tools to produce expo-
sure predictions with high spatial (1 km × 1 km grids) and
temporal (enabling daily averages) resolution. The adop-
tion of the R platform — as opposed to the less user-
friendly MATLAB platform used by Di and colleagues
(2016, 2017b) in their work and on which the airpred
package is based — is a major strength since it is likely to
promote wider use of the modeling tools by other environ-
mental health researchers. The use of an open source big
data platform (H2O) for better computational efficiency
and hence scalability is also another major strength. The R
package airpred has the flexibility to allow specification of
“different types of neural networks, with different parame-
ters, or even to perform ensemble modelling.” 

Data In their research, Dominici and colleagues have
made use of a great deal of data generated by public
sources, including the National Aeronautics and Space
Administration, the U.S. EPA, and the CMS; data from
most of these sources are in the public domain and readily
available to anyone. The one exception is the Medicare
data, which the investigators are prohibited from sharing
under terms of access of the data from CMS. However,
these data are available from ResDAC; following an appli-
cation, payment of fees, and commitments to protect per-
sonal data and other requirements, any investigator can
access this information. For their part, the investigators
have developed codes and packages to allow others to link
the curated exposure and confounder data to the Medicare
data, and they are prepared to provide the appropriate
code and instructions. 

The investigators’ commitment to making their data and
methods publicly available is noteworthy and welcomed; it

enables other investigators to access the data, to test different
approaches to the analysis, and to move the science forward.

CAUSAL INFERENCE MODELS

In addition to the research discussed earlier, Dominici
and colleagues note in their report the importance of, and
are devoting significant effort to, the development and
extension of methods for causal analysis, an area where
they have considerable expertise. This work is increasingly
important because of the challenges in accounting for and
analyzing all the covariates in the preceding analyses of
observational data, and they have made some strides in this
direction. The Investigators’ Phase 1 report includes only a
relatively brief summary of this work — understandably
still in progress — so interested readers are advised to go to
the referenced papers, which the HEI Review Panel
reviewed for details (Wu et al. 2019; Papadogeorgou and
Dominici, forthcoming publication; see also Makar et al.
2017). The causal modeling work so far has taken two dif-
ferent directions, described and discussed as follows:

Regression Calibration In the first method, the investi-
gators have developed causal inference approaches based
on regression calibration (RC) to account for exposure pre-
diction errors (Wu et al. 2019). A generalized propensity
score approach is utilized for confounding adjustment
along with the RC to address exposure measurement error.
The development of approaches to handle exposure mea-
surement error and confounding in the causal setting
would be an important advance given that environmental
exposures are almost always prone to error (whether
obtained through direct monitoring or via exposure mod-
eling) and confounding bias is a persistent concern in
observational studies. Hence, this research is potentially
innovative and significant.

However, in its current form this work has several
potential limitations that might lower its effectiveness in
the setting of ambient air-pollution-related models for
which the method is primarily intended. For example:

• It is not immediately clear whether PM2.5 concentra-
tions monitored inside a grid cell are error-free expo-
sures for that grid cell, as the investigators assume.
Ideally, one would use more flexible methods to allow
for the possibility of such errors. 

• Given that the internal validation study for the RC step
is based on data from monitored locations (likely high-
er pollution locations compared with nonmonitored lo-
cations), it is very likely this sample will be
systematically different from the main study sample.
Specifically, this situation might violate some of the
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assumptions such as “transportability” (i.e., the rela-
tionship between true (X) and error-prone (W) expo-
sures, conditional on covariates (D), would be the
same in the validation study where X is observed and
in the main study in which it is not). The extensive
simulation study does not appear to address this is-
sue. Moreover, it doesn't grapple with the complexi-
ties of air pollution exposure, the impact of the
complicated exposure modeling that produces the ex-
posure estimates and their associated measurement
error, or the complicated spatial structures of expo-
sure, outcome, and covariates. This raises questions
about the usefulness of this method in the real context
of the epidemiological analyses performed in this
study. 

• The investigators focus on settings for which they
have a continuous monitoring data (with error), yet
they convert the continuous values into a categorical
scale, likely because of technical challenges. It is
important that future work attempt to develop similar
methods, but for continuous exposure, which is more
useful for the ultimate intended application.

Local Exposure–Response Confounding Adjustment In
the second method, Dominici and colleagues have devel-
oped a new Bayesian causal approach known as local ex-
posure–response confounding adjustment (LERCA), to
estimate exposure–response curves accounting for con-
founding bias under low exposure settings (Papadogeorgou
and Dominici, forthcoming publication). This work recog-
nizes and addresses the potentially differential effects of con-
founders at different levels of exposure and also the model
uncertainty associated with confounder selection. The devel-
opment of an R package to implement the approach, the sim-
ulation study to assess performance, and the application to a
large data set are some of the notable strengths.

Developing a preliminary directed acyclic graph would
be informative in the design and interpretation of models
such as the LERCA model. With that as a starting point — a
Bayesian prior in essence — the investigation can use the
models to inform our understanding of these relationships
and modify the underlying conceptual model in what will
likely be an ongoing, iterative process. The LERCA model
has great potential as a useful new statistical tool, but it is
not entirely clear what public health concerns about the
data motivated the investigators to develop this specific
model, and why differential confounding at different levels
of exposure would be expected. It seems at least as likely
that confounding might differ for different levels of the con-
founders given that, unlike the presumed effects of PM2.5,
these are often not directly causal or have nonmonotonic

relationships. Housing value, for example, does not
directly cause disease or hospitalization and, as a surro-
gate for other factors with strong regional variation, is
likely to have a complex relationship with this outcome.
Temperature has a U-shaped relationship with biological
stress and its role as a confounder is likely to vary strongly
with temperature level.

A common limitation of both these approaches stems
from the different spatial refinement of the data, in other
words, between ambient air pollution concentration esti-
mates (at 1 km2, which are then aggregated to the ZIP code
level) and data on health and other covariates (available at
the ZIP code level). Neither of the new techniques appears
to try to deal with this complexity. This continues to raise
questions of exposure error and confounding that poten-
tially affect the primary analyses, a limitation which the
investigators specifically note as well. As this work pro-
ceeds, a clarification and better understanding of these
issues and their impact would be important to the suc-
cessful completion of the full analyses in this project. 

Fully exploring and explaining the observed relation-
ships between air pollution and mortality will necessarily
be an iterative process, and the Panel was glad to learn that
the investigators plan to spend considerable efforts in this
direction in their future work. However, although prom-
ising, the current state of methods development is only the
first step and may not be a match for the complexity in
study design (particularly its hybrid nature), exposure
measurement error, and modeling structure of the analysis
that has been published using traditional regression-based
methods. The investigators have also indicated their plan
to develop less computationally intensive methods for
analyzing the entire air pollution and health database; it
will be informative if the causal models can be applied to
those large data sets using these more efficient methods.
Given that each of these models relies on assumptions
(e.g., accurate measurement of confounders and their full
and appropriate specification) to make them mathemati-
cally tractable, it is important that the potential impact of
these assumptions be explicitly and carefully considered
in any interpretation of results as these methods are
applied to the larger data sets.

CONCLUSIONS OF THE PANEL’S EVALUATION OF THE 
PHASE 1 INITIAL ANALYSES

Dominici and colleagues have conducted an extensive
and innovative set of initial analyses in these extraordi-
narily large air pollution and health data sets. They have
conducted two distinct types of analyses: a cohort-based
analysis of long-term exposures and a case–crossover-based
analysis of short-term exposures. They report positive
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associations of both PM2.5 and O3 with all-cause mortality,
with associations extending to the lowest concentrations
and with little evidence of a threshold in these initial anal-
yses. These findings met the criteria for statistical signifi-
cance, although, as noted earlier, it is important to not
overinterpret the statistical robustness of results derived
from such a very large data set (Meng 2018). To their credit,
the investigators also conducted a range of sensitivity anal-
yses, and they also attempted to control for many key
potential confounders in their cohort study that were
available in the larger data set, as well as in the smaller
Medicare Beneficiaries Survey; in all the analyses to date,
these further analyses did not meaningfully change the ini-
tial findings of associations. 

These initial analyses do make a valuable contribution to
the literature; however, while these analyses are thorough
and extensive, there is still more work to be done to under-
stand fully the importance of the findings. The investigators
are well aware of many of the issues brought up in this com-
mentary and acknowledge them, both in the “Introduction”
section and in the “Limitations” section of their Investiga-
tors’ Report. The Panel was also glad to note that the investi-
gators are proceeding, in completing their project for HEI,
with additional analyses and are also developing a less com-
putationally intensive analytic approach in the full cohort.
As noted in their discussion of limitations, there are several
important analyses that will need to be undertaken before
firmer conclusions can be drawn from these studies. Key
among important further analyses are:

• Further analyses of measured and unmeasured con-
founders: While the investigators applied the data
available on confounders and adopted the AG
approach, which offered some advantage over the tradi-
tional Cox proportional hazards method in addressing
some confounding due to time-dependent covariates,
significant questions remain. The Panel discussed
these in some detail and would like to highlight here
some that will need to be further analyzed:

� Potential confounding by time trends: With air pol-
lution and death rates having declined over the 
course of the cohort analyses, the degree to which 
potential confounding of the results may have been 
affected by time was not adequately analyzed in 
these initial analyses. The investigators have 
acknowledged this and indicated they plan to fur-
ther analyze this important question, by conduct-
ing sensitivity analyses using a newly developed 
causal inference approach. 

� Potential confounding by other pollutants: Other 
air pollutants may also confound the estimates of 
exposure and effects seen in these analyses. The 

investigators did test the potential influence of O3 
exposure on PM effects — and vice versa — which 
was an important strength of their work. In addi-
tion, they are now developing an exposure model 
for NO2 that will allow adjustment for this pollut-
ant in their final models.

� Analysis of spatial confounding and geographical 
patterns: As the Panel noted earlier and the investi-
gators acknowledge, the current analyses are con-
ducted at a national level, without fully addressing 
potentially significant geographical variation in air 
pollution (both concentrations and composition) 
and the underlying health status (i.e., variability in 
PM2.5 levels and substantial diversity in levels of 
obesity across different regions).

• Spatial scales and the hybrid model: There are several
spatial scales of the many variables in both the long-
term and short-term analyses, and the resulting com-
plex quasi-ecological (hybrid) nature of these analyses
make it difficult to fully understand the implications
of these. For example, as the Panel noted earlier — and
despite the considerable efforts by the investigators to
estimate exposure accurately — there are some poten-
tial sources of error that may affect results. These
include, though may not be limited to, (1) potential
underestimation of rural concentration levels due to
the relative paucity of ground monitors for evaluation
and training in those areas; and (2) the potential differ-
ences between exposures estimated at a 1-km2 grid but
then applied to health data at the ZIP code level.
Although it may not be possible to fully eliminate
exposure error from an observational study such as
this, the investigators will greatly enhance their final
efforts by making every effort to quantify these errors
and ideally to account for them in the health analyses.

• Development, testing, and application of causal infer-
ence methods in the full population: As noted earlier,
these analyses would benefit from rigorous applica-
tion of causal inference methods to the full cohort. To
their credit, the investigators have taken initial steps
toward developing two such methods and continue to
work on them. Properly developed and applied, these
methods can also address concerns about residual
confounding. The Panel has noted some important
questions about these and recommends that the meth-
ods be fully evaluated and then applied. 

The investigators are to be congratulated for a set of
extensive and creative analyses conducted in the largest
air pollution and health database to date. While initial
conclusions may be drawn from these first analyses, the
Panel will wait for the planned extensive further analyses
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to be completed before reaching full conclusions on the air
pollution and public health implications of this important
research.
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AG Andersen Gill

AOD aerosol optical depth

AQS air quality system

BMI body mass index

CASAC Clean Air Scientific Advisory Committee

CI confidence interval

CMS Centers for Medicare and Medicaid 
Services

CTM chemical transport model

df degrees of freedom

ER exposure–response

GEE generalized estimating equation

GEOS-Chem Goddard Earth Observing System (chemical  
transport model)

GPS generalized propensity score

IPTW inverse probability treatment weighting

LERCA local exposure–response confounding 
adjustment

MCBS Medicare Current Beneficiary Survey

MODIS moderate resolution imaging spectro-
radiometer

NAAQS National Ambient Air Quality Standards

NASA National Aeronautics and Space 
Administration

NDVI normalized difference vegetation index

NO2 nitrogen dioxide

NOAA National Oceanic and Atmospheric 
Administration (U.S.)

NOx nitrogen oxides

O3 ozone

OMI ozone monitoring instrument

PM particulate matter

PM2.5 particulate matter ≤ 2.5 µm in
aerodynamic diameter

RC regression calibration

RC-GPS regression calibration-generalized 
propensity score

ResDAC Research Data Assistance Center

RR relative risk

RRI relative risk increase

SES socioeconomic status

U.S. CAA U.S. Clean Air Act

U.S. EPA U.S. Environmental Protection Agency

VOC volatile organic compound
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