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Disparities in PM2.5 air pollution in the United States
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Air pollution at any given time is unequally distributed across locations. Average concentrations of fine
particulate matter smaller than 2.5 micrometers in diameter (PM2.5) have fallen over time. However,
we do not know how the spatial distribution of PM2.5 has evolved. Here, we provide early evidence. We
combine 36 years of PM2.5 concentrations measured over ~8.6 million grid cells with geographic,
economic, and demographic data from ~65,000 U.S. census tracts. We show that differences in PM2.5

between more and less polluted areas declined substantially between 1981 and 2016. However, the
most polluted census tracts in 1981 remained the most polluted in 2016. The least polluted census tracts
in 1981 remained the least polluted in 2016. The most exposed subpopulations in 1981 remained the
most exposed in 2016. Overall, absolute disparities have fallen, but relative disparities persist.

F
ine particulate matter concentrations
in the United States have declined by
~70% since 1981 (1, 2). These improve-
ments in air quality are associated with
greater life expectancy, reduced infant

mortality, higher property values, increased
productivity, higher earnings, and other ben-
efits (3–11). The existing literature document-
ing changes in air pollution over time focuses
on concentrations averaged across locations.
However, little evidence documents how the
distribution of pollution concentrations has
changed over time.
Air pollution in any given time period is un-

equally distributed over space (12). Particulate
matter and other criteria air pollutants vary
geographically because of differences in popula-
tiondensity, emissions sources, economicactivity,
climate, and geophysical conditions (13). Pollu-
tion is associated with race, poverty, and demo-
graphic factors owing to sociopolitical forces,
residential choice, and other influences (12, 14, 15).
However, related scholarship does not system-
atically characterize how this spatial variation
has evolved over time. We have limited infor-
mation on whether policy or other factors have
reduced pollution disparities across locations or
whether such disparities persist through time.
Here, we provide evidence onhow the spatial

distribution of fine particulate matter smaller
than 2.5 mm in diameter (PM2.5) has changed
over recent decades. To do this, we compile
36 years of annual PM2.5 data from chemical
transport modeling, satellite remote sensing,
and ground-based measurements over ~8.6
million U.S. grid cells that measure 0.01° by
0.01° (0.9 kmby 1.1 km) (2) (supplementary text,
section S1). We focus on PM2.5 because of its
high morbidity and mortality risk, because of
its disproportionate impact on themonetized
benefits of federal regulation, andbecausenewly

available data provide fine-scale estimates
spanning nearly four decades (2, 8, 10, 16, 17).
We combine these PM2.5 estimates with time-
varying administrative, geographic, policy,
and sociodemographic data for each of the
~65,000 census tracts in the contiguousUnited
States (supplementary text, sections S2 and S3).
We first characterize how the distribution of

PM2.5 concentrations across U.S. census tracts
changed between 1981 and 2016. Figure 1 docu-
ments a 69% decline in mean PM2.5 between
1981 and 2016, consistent with (1, 2). Figure 1
also illustrates that the gaps in PM2.5 concen-
trations between more and less polluted cen-
sus tracts narrowed considerably. The PM2.5

concentration gap between the 90th and
10th percentiles was 15.66 mg/m3 in 1981 and
4.16 mg/m3 in 2016. PM2.5 concentration gaps
between census tracts with high and low frac-
tions of disadvantaged subpopulations have
generally, but not universally, narrowed over
time as well (fig. S1).
The reductions in absolute disparities docu-

mented in Fig. 1 provide limited information

on relative disparities across locations. We do
not know whether locations that were his-
torically the most polluted are still the most
polluted. It is not clear a priori whether one
might expect persistence or reversals in rela-
tive disparities (supplementary text, section
S4). To explore the issue, we assign each cen-
sus tract to a percentile of the distribution and
examine the correlation between PM2.5 percen-
tile rank in 1981 and the average correspond-
ing PM2.5 percentile rank in 2016. Rank-rank
comparisons are common for analyzing distri-
butional changes over time and have statisti-
cal advantages (18). On average, we estimate a
rank-rank correlation coefficient of 0.80 (p <
0.01), indicating a very strong positive associ-
ation between historical relative pollution and
more recent relative pollution (table S1). The
modal change in percentile rank between 1981
and2016was 0, themean changewas−0.00006,
and the median change was −1 percentile point.
On average, the least polluted census tracts in
2016were the least polluted census tracts in 1981.
On average, the most polluted census tracts
in 2016 were the most polluted census tracts
in 1981.
Figure 2 plots percentiles of census tracts

according to PM2.5 in 2016 (vertical axis) against
PM2.5 percentiles in 1981 (horizontal axis). First,
we observe widespread relative rank preser-
vation across the entire distribution. All per-
centile pairs lie near the 45° line, such that, on
average, a census tract’s PM2.5 percentile rank
in 2016 was similar to its PM2.5 rank in 1981.
Second, we observe modest median reversion.
On average, a census tract with below-median
PM2.5 in 1981 experienced greater relative pol-
lution in 2016, and a census tract with above-
median PM2.5 in 1981 experienced lower relative
pollution in 2016. Third, the tails of the distribu-
tion are particularly stable. Values on the y
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Fig. 1. Change in PM2.5 concentrations between 1981 and 2016 in mg/m3. We observe that mean PM2.5

concentrations have fallen substantially over time, from 23.43 mg/m3 in 1981 to 7.32 mg/m3 in 2016, a
reduction of 16.11 mg/m3. In addition, we observe that the gap between the 90th and 10th percentiles has
also shrunk. In 1981, the difference between the 90th and 10th percentiles was 15.66 mg/m3. In 2016, the
difference between the 90th and 10th percentiles was 4.16 mg/m3. Gaps between the 90th and 10th
percentiles are arbitrarily chosen but illustrative of broader patterns.
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axis (2016 ranks) for particularly low and high
1981 ranks are systematically near the 45° line.
Of themost polluted 5% of census tracts in 1981,
93.9% were among the most polluted 10% of
census tracts in 2016. Of the least polluted 5% of
census tracts in 1981, 89.7% were among the
least polluted 10% of census tracts in 2016.
These summary statistics are arbitrarily chosen
but illustrative of broader patterns (fig. S2).
A possible explanation for the persistence in

relative disparities across locations is that reduc-
tions in PM2.5 were proportional. Figure 3A illus-
trates that PM2.5 concentrations fell more in
census tracts that were more polluted in 1981.
However, larger reductions came from much
higher baselines. Figure 3B indeed documents
that observed PM2.5 concentration reductions
were approximately proportional across U.S.
census tracts. Themost polluted locations didnot
experience disproportional reductions in PM2.5.
Our findings suggest that relative disparities

persist for most U.S. census tracts. Neverthe-
less, it remains possible that aggregation ob-
scures regional or local differences. Figure 4
summarizes the geographic distribution of
changes in PM2.5 percentile rank over time. The
dominant message remains that relatively more
polluted areas in 1981 were still more polluted
in 2016 and relatively less polluted areas in
1981 were still less polluted in 2016. However,
some local variation in rank change exists.
Ohio, West Virginia, eastern Kentucky, and the
Northeast Corridor became relatively less pol-

luted. California’s Central and Imperial Valleys,
southwestern Arizona, southern Texas, and
western Arkansas and eastern Oklahoma be-
came relativelymore polluted.Mechanisms for
differential trends in these specific locations
may include import competition, the decline
in manufacturing, changes in the structure of
energy production (e.g., the hydraulic fracking
boom, a decline in coal production), and differ-
ential environmental regulation (19–26).
Our results are robust to population weight-

ing, which rebalances the analysis to apply to
the average American rather than the average
U.S. census tract (table S1). From a socioeco-
nomic and demographic perspective, the most
exposed subpopulations also remain similar
through time (fig. S3 and table S2). Census
tracts’ baseline 1981 black population shares,
educational attainment, unemployment rates,
and poverty rates are unrelated statistically
to changes in rank between 1981 and 2016.
More populated, whiter, higher income, and
less Hispanic areas at baseline in 1981 are as-
sociated with reductions in rank over time. A
1-SD increase in a census tract’s baseline 1981
population, white share, and income is asso-
ciated with an average decrease of 1.77, 2.36,
and 0.93 percentile rank points between 1981
and 2016. A 1-SD increase in a census tract’s
baseline 1981 Hispanic share is associated with
an average increase of 3.92 percentile rank
points between 1981 and 2016. Areas becoming
more populated, poorer, more Hispanic, less

white, and less educated between 1981 and
2016 are associatedwith increases in rank over
time. A 1-SD increase in a census tract’s growth
in population, poverty rate, unemployment
rate, and Hispanic share is associated with an
average increase of 3.27, 1.98, 2.01, and 3.68 per-
centile rank points between 1981 and 2016. A
1-SD increase in a census tract’s growth in in-
come, educational attainment, andwhite share is
associated with an average decrease of 1.60,
2.56, and 2.52 percentile rank points between
1981 and 2016. We caution that these are de-
scriptive correlations, documenting differences
across subpopulations.
We find somewhat larger associations be-

tween PM2.5 percentile rank and market or
regulatory factors (fig. S3 and table S2). A 1-SD
decrease in a census tract’s manufacturing em-
ployment share over time is associatedwith an
average increase of 4.68 percentile rank points
between 1981 and 2016. Census tracts in non-
attainment with PM2.5 ambient air-quality
standards before 2016 are associated with an
average decrease of 7.09 percentile rank points
between 1981 and 2016.
We explore sensitivity. Our findings are ro-

bust to using alternative measures of relative
disparities (table S3). Our results are not driven
by differences in population density or urban-
rural distinctions (fig. S4 and table S4). Our
results are robust to comparisons within states;
rank-rank correlations within each state range
from 0.72 to 0.99 and average 0.91 (fig. S5 and
table S5). Our results are robust to choosing
comparison years other than 1981.Our approach
generates conservative estimates (fig. S6). Our
results are not sensitive to the choice of single
years as points of comparison. Analyses using
multiyear averages of PM2.5 generate similar
findings (fig. S7 and table S6). Correlations be-
tween changes in PM2.5 percentile rank and
socioeconomic and demographic factors are
robust to using the rank of, and rank changes
in, tract-level characteristics (fig. S8 and table
S7). Our findings are robust to using pollution
monitor data (figs. S9 and S10). Although PM2.5

monitor data are only available between 2000
and 2016 for a comparatively small number of
(mostly urban) locations, we estimate a rank-
rank correlation coefficient of 0.79, which is
statistically indistinguishable from our pri-
mary correlation coefficient. Last, our results
are not sensitive to using different moments
of the PM2.5 distribution, including the median
and each decile (10th through 90th percentile)
(figs. S11 to S13 and table S8). Rank dependence
is weaker when using annual maximum PM2.5

concentrations, but we still estimate a correla-
tion coefficient of 0.5 to 0.7.
We note caveats. First, we study the distribu-

tion of PM2.5 across the contiguousUnited States.
We do not inform distributional changes for
other pollutants or other locations. Second,
we study changes in the distribution of PM2.5
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Fig. 2. Relationship be-
tween PM2.5 rank in 1981
and PM2.5 rank in 2016.
The red line is the 45° line. If
all points lay on the red line,
this would indicate that
there was no change in rank
between 1981 and 2016;
for example, a census tract
at the 20th percentile of the
PM2.5 distribution in 1981
would also be at the 20th
percentile of the PM2.5

distribution in 2016. Devia-
tions from the red line rep-
resent the average change
in rank between 1981 and
2016. Points above the red
line represent an increase in
relative rank and a decrease
in relative air quality. Points
below the red line represent a
reduction in relative rank and
an improvement in relative air
quality. The figure indicates
that there is very high persistence in rank over time. The highest-rank locations in 1981 are the highest-rank
locations in 2016. The lowest-rank locations in 1981 are the lowest-rank locations in 2016. Intermediate ranks
experience some change; however, the average change is small and follows a pattern consistent with reversion to
the median. Below-median x-axis values (1981 ranks) correspond to y-axis values (2016 ranks) above the 45° line,
and above-median x-axis values (1981 ranks) correspond to y-axis values (2016 ranks) below the 45° line.
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across locations; we do not observe individual-
level pollution exposure. Our results are ro-
bust to population weighting. Third, our analysis
is descriptive. We do not directly explore
hypotheses related to demographic change
(i.e., “moving to the nuisance” or “residential
sorting”) (15, 27–30). In our aggregate analysis,
changes in relative pollution are not strongly
correlatedwith socioeconomic anddemograph-

ic factors.Wedonot provide causalmechanisms
for our empirical regularities.
In sum, we explore how the spatial distribu-

tion of PM2.5 has changed in recent decades.
We first document that absolute disparities
are shrinking. Differences in PM2.5 concentra-
tions between more and less polluted census
tracts declined between 1981 and 2016. All else
equal, absolute differences between areas in

particulate-induced morbidity, mortality, and
earnings losses should be expected to decline
(3–5, 7, 8, 10, 11). By contrast, we show that rela-
tive disparities in PM2.5 concentrations across
space are notably persistent. Areas that were
more polluted in 1981 are still more polluted in
2016. Areas that were less polluted in 1981 are
still less polluted in 2016. Fairness, equity, and
justice are often inherently comparative, and
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Fig. 3. Changes in PM2.5 between 1981 and
2016 for each vigintile bin in 1981.
(A) Reduction in PM2.5 concentrations (mg/m3)
between 1981 and 2016 for each vigintile bin
in 1981. We observe that the largest reductions
in PM2.5 concentrations were experienced in
census tracts that were the most polluted in 1981.
(B) Percent reduction in PM2.5 concentrations
between 1981 and 2016 for each vigintile bin in
1981. We observe that reductions in PM2.5

were largely proportional throughout the
distribution. The most polluted census tracts
experienced approximately the same relative
reductions in PM2.5 as the least polluted
census tracts.

Fig. 4. Map of the change in PM2.5 rank be-
tween 1981 and 2016 for each census tract
in the contiguous United States. Green repre-
sents tracts where the rank has declined over
time. Brown represents tracts where the rank has
increased over time. Darker shades represent
greater absolute changes. Most census tracts
have experienced small changes in rank. The
modal change is 0, the mean change is −0.00006,
and the median change is −1. Ohio, West Virginia,
eastern Kentucky, and the Northeast Corridor
became relatively less polluted. California’s
Central and Imperial Valleys, southwestern
Arizona, southern Texas, and western Arkansas
and eastern Oklahoma became relatively
more polluted.
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these types of relative disparities are important
for normative aspects of social welfare (31). In
this sense, we build on the growing literature
documenting relative disparities in income,
health, and other contexts (32–37). We also il-
lustrate that changes in relative PM2.5 con-
centrations are not strongly correlated with
socioeconomic and demographic factors. If
anything, relative disparities are growing for
vulnerable subpopulations. From a socioeco-
nomic and demographic perspective, the most
exposed subpopulations to fine particulate mat-
ter remain constant over time.
We do not attempt a formal welfare analy-

sis. Nevertheless, environmental justice and
reducing disparities have been stated objec-
tives of U.S. environmental policy for decades
(12, 14, 15). U.S. Environmental Protection
Agency and state guidelines aim for all people
to enjoy the same degree of protection from
environmental hazards and stipulate that no
groups should bear a disproportionate share
of pollution. Although absolute PM2.5 dispar-
ities have fallen substantially over the past
four decades, relative disparities persist.
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