Supplementary information for:

Global abundance and size distribution of streams and rivers

J.A. Downing¹, J.J. Cole², C.M. Duarte³, J.J. Middelburg⁴, J.M. Melack⁵, Y.T. Prairie⁶, P. Kortelainen⁷, R.G. Striegl⁸, W.H. McDowell⁹, and L.J. Tranvik¹⁰

¹Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, Iowa 50011-1020

² Cary Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545

³ IMEDEA (CSIC-UIB), Miquel Marques 21, Esporles, Islas Baleares, Spain, and Oceans Institute, University of Western Australia

⁴ Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht and Netherlands Institute of Ecology, Yerseke, Netherlands

⁵ Bren School of Environmental Sciences and Management, University of California, Santa Barbara, California 93106, USA

⁶ Département des Sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, station Centre-Ville, Montreal, Québec H3C 3P8, Canada

⁷ Finnish Environment Institute, P.O. Box 140, 00251 Helsinki, Finland

⁸ United States Geological Survey, National Research Program, Box 25046 MS 413, Denver, Colorado 800025-0046

⁹ Department of Natural Resources, University of New Hampshire, Durham, New Hampshire 03824

¹⁰ Limnology, Department of Ecology and Evolution, Evolutionary Biology Centre, Norbyv. 20, SE-75 236 Uppsala, Sweden

Table 1. Average stream widths for the downstream segments of rivers around the world. The width indicated is the best estimate of the mean wetted width or the width of principal stream channel without considering flood planes. Latitudes and longitudes are in decimal degrees with positive values indicating north and east. Most of these estimates were based on at least 10 measurements of width from satellite images or on long experience of diverse authors with specific river segments. If authors reported a range of values, medians of minima and maxima are listed here. Widths were rounded arbitrarily to a precision of 0.1 m. If more than one value of a width is shown for a given stream, values represent geomorphically divergent segments or segments that were considered by authors to be independent for some other purpose. A "*" next to the reference indicates that the stream width was determined from satellite images (Google 2006).

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Acheron River	2	0.7	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	2	0.7	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	3	8	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	3	8	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	4	8	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	4	11	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	4	11.5	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Acheron River	4	15	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Allegheny River	7	323	Ohio River Basin of the United States	40.51	-79.85	(White and others 2005)*
Alsek River	6	1517	Pacific coast rivers of Canada and Alaska	59.46	-137.83	(Richardson and Milner 2005)*
Altamaha River	7	144	North America	31.45	-81.63	(Smock and others 2005)*
Amazon	12	2838	South America	-1.46	-50.19	(Horton 1945)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Androscoggin River	6	124	North America	44.03	-70.18	(Google 2006; Jackson and others 2005)*
Apalachicola- Chattahoochee-Flint River	8	146	North America	30.14	-85.14	(Ward and others 2005)*
Arkansas River	7	496	Southern plains of the United States	34.06	-91.43	(Matthews and others 2005)*
Assiniboine River	7	102	Nelson and Churchill River basins	49.87	-97.35	(Rosenberg and others 2005)*
Athabasca River	6	421	Mackenzie River basin	58.35	-111.53	(Culp and others 2005)*
Au Sable River	4	48	St. Lawrence River basin	44.43	-83.37	(Thorp and others 2005)*
BC1	2	1.3	USA, Georgia	32.43	-84.77	(Houser and others 2005)
BC2	2	1	USA, Georgia	32.43	-84.77	(Houser and others 2005)
Bear River	6	42	Great Basin Rivers of the United States	41.55	-112.10	(Shiozawa and Rader 2005)*
Beaver Creek	2	2	Quebec	50.22	-66.27	(Corning and others 1989)
Big Black River	4	71	Lower Mississippi River Basin	32.09	-91.00	(Brown and others 2005)*
Big Sioux River	5	50	Missouri River Basin	42.50	-96.48	(Galat and others 2005)*
Black River	4	7	Colorado River basin of the United States	32.94	-109.89	(Blinn and Poff 2005)*
Black River	5	58	St. Lawrence River basin	43.99	-75.93	(Thorp and others 2005)*
Bloomington Creek	1	0.9	USA, Idaho	40.48	-111.512	(Minshall and others 2000)
Bloomington Creek	2	2.5	USA, Idaho	40.48	-111.512	(Minshall and others 2000)
Bloomington Creek	3	5.1	USA, Idaho	40.48	-111.512	(Minshall and others 2000)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Blue River	4	28	Southern plains of the United States	33.89	-95.96	(Matthews and others 2005)*
Borden Creek	4	2.0	SE USA	34.33	-84.37	(Feminella 2000)
Bow River	6	159	Nelson and Churchill River basins	49.96	-111.66	(Rosenberg and others 2005)*
Brazos River	8	138	Southwestern United States	29.03	-95.49	(Dahm and others 2005)*
Bruce Stream	3	6.3	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Brushy Creek	4	4.2	SE USA	34.33	-87.28	(Feminella 2000)
Buck Creek	2	1.9	SE USA	32.57	-85.87	(Feminella 2000)
Buck Run Below Doe Run	5	17.4	USA, Pennsylvania	39.27	-75.78	(Minshall and others 1983)
Buffalo National River	4	77	Lower Mississippi River Basin	36.16	-92.42	(Brown and others 2005)*
C-1	1	1.0	SE USA	33.77	-85.60	(Feminella 2000)
C-3	1	1.0	SE USA	33.77	-85.55	(Feminella 2000)
Cache River	4	62	Lower Mississippi River Basin	34.70	-91.33	(Brown and others 2005)*
Cahaba River	6	53	North America	32.32	-87.09	(Ward and others 2005)*
Camp Creek	2	1.1	USA, Idaho	44.00	-115.00	(Minshall and others 1983)
Canadian River	6	173	Southern plains of the United States	35.29	-95.28	(Matthews and others 2005)*
Cape Fear River	6	64	North America	35.05	-78.86	(Smock and others 2005)*
Capsey Creek	3	3.1	SE USA	34.27	-87.37	(Feminella 2000)
Carmo River	1	1	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	1	2.5	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Carmo River	2	2.5	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	2	3.5	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	3	2.5	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	3	4	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	4	6	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	4	10	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	4	10	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Carmo River	5	21	Brazil, Parque Estadual Intervales	-24.30	-48.42	(Melo and Froehlich 2001)
Casino Site - Salmon River	6	42.9	USA, Idaho	44.00	-115.00	(Minshall and others 1983)
Chattahoochee River	3	9.9	USA, Georgia	33.77	-84.42	(Meyer and others 2005)
Chattahoochee River	3	10.8	USA, Georgia	33.77	-84.42	(Meyer and others 2005)
Chattahoochee River	3	11.3	USA, Georgia	33.77	-84.42	(Meyer and others 2005)
Chattahoochee River	3	15.4	USA, Georgia	33.77	-84.42	(Meyer and others 2005)
Chattahoochee River	4	10.4	USA, Georgia	33.77	-84.42	(Meyer and others 2005)
Chattahoochee River	4	14.9	USA, Georgia	33.77	-84.42	(Meyer and others 2005)
Cheyenne River	4	64	Missouri River Basin	44.69	-101.35	(Galat and others 2005)*
Chilcotin River	6	59	Fraser River Basin of Canada	51.77	-122.45	(Reynoldson and others 2005)*
Chippewa River	6	210	Upper Mississippi River Basin	44.62	-91.98	(Delong 2005)*
Chisholm Creek	3	5.1	SE USA	35.23	-87.57	(Feminella 2000)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Choat Woodlot - White Clay Creek	2	3	USA, Pennsylvania	39.27	-75.78	(Minshall and others 1983)
Choctafaula Creek	3	3.6	SE USA	32.52	-85.58	(Feminella 2000)
Choctawhatchee River	6	94	North America	30.44	-85.93	(Ward and others 2005)*
Churchill River	6	894	Atlantic coast rivers of Canada	53.16	-60.98	(Cunjak and Newbury 2005)*
Cimarron River	4	96	Southern plains of the United States	36.11	-96.51	(Matthews and others 2005)*
Clearwater River	5	93	Fraser River Basin of Canada	51.65	-120.07	(Reynoldson and others 2005)*
Clearwater River	7	263	Columbia River basin of the United States	46.42	-116.99	(Stanford and others 2005)*
Colorado River	6	32	Colorado River basin of the United States	32.28	-115.03	(Blinn and Poff 2005)*
Colorado River	7	63	Southwestern United States	29.31	-96.10	(Dahm and others 2005)*
Columbia River	9	1649	Columbia River basin of the United States	45.57	-122.17	(Stanford and others 2005)*
Connecticut River	7	216	North America	41.76	-72.66	(Google 2006; Jackson and others 2005)*
Connelly Creek	2	0.7	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Connelly Creek	2	0.7	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Connelly Creek	3	1	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Connelly Creek	3	1.2	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Connelly Creek	4	1.9	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Connelly Creek	4	2	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Connelly Creek Connelly Creek	4	2 2.3	Australia (SE) Australia (SE)	-37.33 -37.33	145.83 145.83	(Downes and others 1997) (Downes and others 1997)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Copper River	7	1544	Pacific coast rivers of Canada and Alaska	61.08	-144.78	(Richardson and Milner 2005)*
Cora Lynn Stream	1	1.3	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Cowlitz River	5	115	Columbia River basin of the United States	46.21	-122.91	(Stanford and others 2005)*
Craigieburn Cutting Stream	1	1.1	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Cumberland River	7	199	Ohio River Basin of the United States	36.42	-87.59	(White and others 2005)*
Current River	6	64	Lower Mississippi River Basin	36.12	-91.07	(Brown and others 2005)*
DB1	1	1.8	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
DB3	1	2.1	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
DB5	1	2.8	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
DBf	1	2.5	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
Deep Creek	1	3.8	USA, Idaho	42.13	-112.72	(Koslucher and Minshall 1973; Minshall and others 2000)
Deleware River	7	420	North America	40.08	-74.89	(Google 2006; Jackson and others 2005)*
Des Moines River	6	193	Upper Mississippi River Basin	40.46	-91.54	(Delong 2005)*
Devil's Club Creek	1	0.6	USA, Oregon	44.21184	-122.256	(Minshall and others 1983)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Dolores River	3	7.3	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	3	10.4	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	3	11	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	3	11.9	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	3	12	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	4	12.2	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	4	13.4	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	4	16.8	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dolores River	4	16.8	United States (Colorado)	37.81	-107.66	(Canton and Chadwick 1983)
Dry Stream	2	1.9	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Dunk River	4	64	Atlantic coast rivers of Canada	46.35	-63.68	(Cunjak and Newbury 2005)*
Eel River	6	65	Pacific coast rivers of the United States	40.55	-124.16	(Carter and Resh 2005)*
Escambia-Conecuh River	6	66	North America	30.64	-87.26	(Ward and others 2005)*
Etowah River	2	3.4	SE USA	34.62	-84.10	(Feminella 2000)
Exploits River	6	455	Atlantic coast rivers of Canada	48.98	-55.54	(Cunjak and Newbury 2005)*
Factory Creek	4	6.4	SE USA	35.37	-87.62	(Feminella 2000)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Flathead River	6	169	Columbia River basin of the United States	47.35	-114.75	(Stanford and others 2005)*
Flint River	7	139	North America	30.91	-84.58	(Ward and others 2005)*
Fraser River	8	545	Fraser River Basin of Canada	49.21	-122.89	(Reynoldson and others 2005)*
Fuirosos	3	3.5	Catalonia	41.70	2.57	(Acuña and others 2005)
Gasconade River	6	118	Missouri River Basin	38.67	-91.55	(Galat and others 2005)*
Gila River	6	39	Colorado River basin of the United States	32.72	-114.57	(Blinn and Poff 2005)*
Grand Cascapedia River	6	94	Atlantic coast rivers of Canada	48.28	-65.90	(Cunjak and Newbury 2005)*
Grand River	7	110	Missouri River Basin	39.40	-93.12	(Galat and others 2005)*
Grande Ronde River	5	65	Columbia River basin of the United States	46.07	-116.98	(Stanford and others 2005)*
Grasmere Stream	1	3.4	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Great Miami River	6	131	Ohio River Basin of the United States	39.14	-84.81	(White and others 2005)*
Great Pee Dee River	7	110	North America	33.87	-79.39	(Smock and others 2005)*
Green River	5	127	Colorado River basin of the United States	38.21	-109.91	(Blinn and Poff 2005)*
Green River	7	124	Ohio River Basin of the United States	37.83	-87.39	(White and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Gunnison River	4	64	Colorado River basin of the United States	39.01	-108.53	(Blinn and Poff 2005)*
Hay River	6	106	Mackenzie River basin	60.79	-115.82	(Culp and others 2005)*
HB	2	1.7	USA, Georgia	32.43	-84.77	(Houser and others 2005)
Hubbard Creek	5	6.9	SE USA	34.30	-87.50	(Feminella 2000)
Hudson River	7	771	North America	41.72	-73.93	(Google 2006; Jackson and others 2005)*
Humber River	7	248	Atlantic coast rivers of Canada	49.22	-57.40	(Cunjak and Newbury 2005)*
Humboldt River	6	21	Great Basin Rivers of the United States	40.25	-118.41	(Shiozawa and Rader 2005)*
Hurricane Creek	2	1.3	SE USA	33.33	-83.70	(Feminella 2000)
Illinois River	5	96	Southern plains of the United States	35.51	-95.09	(Matthews and others 2005)*
Illinois River	9	335	Upper Mississippi River Basin	39.09	-90.59	(Delong 2005)*
Indaiá	3	2.5	Brazil	-19.27	-43.52	(Gonçalves and others 2006)
James River	7	206	North America	37.42	-77.39	(Smock and others 2005)*
John Day River	6	49	Columbia River basin of the United States	45.60	-120.44	(Stanford and others 2005)*
Kalamazoo River	5	47.5	USA, Michigan	42.50	-85.50	(Minshall and others 1983)
Kanawha River	6	247	Ohio River Basin of the United States	38.81	82.10	(White and others 2005)*
Kansas River	7	133	Missouri River Basin	39.07	-94.63	(Galat and others 2005)*
Kaskaskia River	6	128	Upper Mississippi River Basin	38.06	-89.96	(Delong 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Kellogg Forest - Augusta Creek	3	8	USA, Michigan	42.50	-85.50	(Minshall and others 1983)
Kenai River	6	150	Pacific coast rivers of Canada and Alaska	60.54	-151.18	(Richardson and Milner 2005)*
Kennebec River	6	234	North America	44.29	-69.81	(Google 2006; Jackson and others 2005)*
Kentucky River	6	78	Ohio River Basin of the United States	38.68	-85.19	(White and others 2005)*
Kiamichi River	5	44	Southern plains of the United States	33.96	-95.30	(Matthews and others 2005)*
Kinndard Creek	1	1.6	SE USA	33.27	-83.80	(Feminella 2000)
Klamath River	7	195	Pacific coast rivers of the United States	41.38	-123.92	(Carter and Resh 2005)*
Klondike River	5	85	Yukon River basin	64.04	-139.41	(Bailey 2005)*
KM1	2	1.9	USA, Georgia	32.43	-84.77	(Houser and others 2005)
KM2	3	1.6	USA, Georgia	32.43	-84.77	(Houser and others 2005)
Kowai River	2	5.3	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Koyukuk River	8	365	Yukon River basin	64.97	-157.57	(Bailey 2005)*
Kuskokwim River	9	1236	Pacific coast rivers of Canada and Alaska	60.70	-161.70	(Richardson and Milner 2005)*
LaHave River	5	60	Atlantic coast rivers of Canada	44.39	-64.52	(Cunjak and Newbury 2005)*
LC	2	1.9	USA, Georgia	32.43	-84.77	(Houser and others 2005)
Ledbetter Creek	2	2.0	SE USA	32.63	-85.80	(Feminella 2000)
Ledyards Spring Branch - White Clay Creek	1	1.5	USA, Pennsylvania	39.27	-75.78	(Minshall and others 1983)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Liard River	8	656	Mackenzie River basin	61.79	-121.22	(Culp and others 2005)*
Licking River	6	72	Ohio River Basin of the United States	39.07	-84.49	(White and others 2005)*
Lillooet and Harrison Rivers	5	84	Fraser River Basin of Canada	49.76	-122.00	(Reynoldson and others 2005)*
Little Colorado River	4	31	Colorado River basin of the United States	35.95	-111.65	(Blinn and Poff 2005)*
Little River	6	77	Southern plains of the United States	33.63	-93.87	(Matthews and others 2005)*
Little River Stream	2	3	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	2	3	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	3	3.8	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	3	5.5	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	4	5.6	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	4	6	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	4	8	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little River Stream	4	8	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Little Rock Creek	2	3.9	SE USA	34.72	-84.10	(Feminella 2000)
Little Tennessee River	7	60	USA, North Carolina	35.33	-83.52	(Hutchens and others 2004)
Little Tennessee River	7	70	USA, North Carolina	35.33	-83.52	(Hutchens and others 2004)
Long Creek	3	2.1	SE USA	31.67	-86.83	(Feminella 2000)
Lookout Creek	4	10	Oregon, Cascade Mountains	44.21	-122.26	(Cuffney and others 1984)
Lookout Creek	5	12	USA, Oregon	44.21184	-122.256	(Minshall and others 1983)
Lower Mississippi River	10	1125	Lower Mississippi River Basin	31.26	-91.62	(Brown and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
LPK	1	0.8	USA, Georgia	32.43	-84.77	(Houser and others 2005)
Mack Creek	3	3	USA, Oregon	44.21	-122.26	(Minshall and others 1983)
Mack Creek	3	4.5	Oregon, Cascade Mountains	44.21	-122.26	(D'Angelo and others 1997)
Mackenzie River	9	2704	Mackenzie River basin	68.01	-134.46	(Culp and others 2005)*
Madison River	6	52	Missouri River Basin	45.92	-111.50	(Galat and others 2005)*
Matamek River	6	51.7	Quebec	50.22	-66.27	(Corning and others 1989)
Maumee River	7	340	St. Lawrence River basin	41.44	-83.80	(Thorp and others 2005)*
McKenzie River	7	40	USA, Oregon	44.21	-122.26	(Minshall and others 1983)
Merrimack River	6	350	North America	42.82	-70.96	(Google 2006; Jackson and others 2005)*
Methow River	5	41	Columbia River basin of the United States	48.06	-119.93	(Stanford and others 2005)*
Middle Bush Stream	2	0.9	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Milk River	7	65	Missouri River Basin	48.08	-106.27	(Galat and others 2005)*
Mill Creek	2	1.8	SE USA	31.50	-86.68	(Feminella 2000)
Minnesota River	7	109	Upper Mississippi River Basin	44.80	-93.30	(Delong 2005)*
Mirimichi River	8	748	Atlantic coast rivers of Canada	47.01	-65.53	(Cunjak and Newbury 2005)*
Missouri River	9	433	Missouri River Basin	38.85	-90.25	(Galat and others 2005)*
Mitchell Creek	1	3.1	SE USA	32.63	-85.77	(Feminella 2000)
Mobile River	8	401	North America	31.11	-87.95	(Ward and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Moisie River	9	208.7	Quebec	50.22	-66.27	(Corning and others 1989)
Moisie River	9	294	Atlantic coast rivers of Canada	50.26	-66.12	(Cunjak and Newbury 2005)*
Monkey River Drainage	3	13.1	Belize	16.22	-88.29	(Esselman and others 2006)
Monkey River Drainage	3	17.5	Belize	16.22	-86.29	(Esselman and others 2006)
Monkey River Drainage	3	20.3	Belize	16.22	-85.29	(Esselman and others 2006)
Monkey River Drainage	3	20.6	Belize	16.22	-81.29	(Esselman and others 2006)
Monkey River Drainage	3	31.3	Belize	16.22	-87.29	(Esselman and others 2006)
Monkey River Drainage	4	13	Belize	16.22	-82.29	(Esselman and others 2006)
Monkey River Drainage	4	18.1	Belize	16.22	-84.29	(Esselman and others 2006)
Monkey River Drainage	4	29.1	Belize	16.22	-83.29	(Esselman and others 2006)
Monongahela River	7	224	Ohio River Basin of the United States	40.37	-79.84	(White and others 2005)*
Moose River	7	366	Rivers of arctic North America	51.15	-80.80	(Milner and others 2005)*
Mountain Run	1	1.5	USA Pennsylvania	39.79	-78.86	(Margolis and others 2001)
Mountain Run	1	1.9	USA Pennsylvania	39.79	-78.86	(Margolis and others 2001)
Mountain Run	1	1.9	USA Pennsylvania	39.79	-78.86	(Margolis and others 2001)
Mountain Run	1	2.0	USA Pennsylvania	39.79	-78.86	(Margolis and others 2001)
MRN1	1	1.3	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
MRN2	1	4.9	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
MTD1	1	4.2	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
Muskrat River	5	21.9	Quebec	50.22	-66.27	(Corning and others 1989)
Nass River	7	293	Pacific coast rivers of Canada and Alaska	55.05	-129.49	(Richardson and Milner 2005)*
Nechako River	7	153	Fraser River Basin of Canada	53.93	-122.76	(Reynoldson and others 2005)*
Neches River	7	161	Southwestern United States	30.12	-94.08	(Dahm and others 2005)*
Nelson River	9	852	Nelson and Churchill River basins	56.93	-93.12	(Rosenberg and others 2005)*
Neosho (Grand) River	6	182	Southern plains of the United States	35.86	-95.23	(Matthews and others 2005)*
Niger	10	1341	African rivers	6.80	6.65	(Shiklomanov and Rodda 2003; Welcomme 1976)*
Nile	11	481	African rivers	30.08	31.23	(Shiklomanov and Rodda 2003; Welcomme 1976)*
Niobrara River	4	269	Missouri River Basin	42.76	-98.31	(Galat and others 2005)*
NMT4	1	2	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
NMT5	1	3.4	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
Noatak River		394	Rivers of arctic North America	67.25	-162.56	(Milner and others 2005)*
Nueces River	7	40	Southwestern United States	28.27	-98.03	(Dahm and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Nushagak River	8	341	Pacific coast rivers of Canada and Alaska	58.89	-157.85	(Richardson and Milner 2005)*
Obsidian Site - Salmon River	5	27.1	USA, Idaho	44.00	-115.00	(Minshall and others 1983)
Oeiras	4	6	Portugal	37.47	-8.02	(Gonçalves and others 2006)
Ogeechee River	2	1.7	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	2	3	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	3	0.6	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	3	2.8	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	3	3.7	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	3	5.5	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	4	8.1	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	4	10.1	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	6	33	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	6	37	USA, Georgia	32.13	-81.42	(Meyer and others 1997; Meyer and Edwards 1990)
Ogeechee River	6	39	North America	32.16	-81.41	(Smock and others 2005)*
Ohio River	9	1076	Ohio River Basin of the United States	37.11	-89.11	(White and others 2005)*
Ontonagon River	4	73	St. Lawrence River basin	46.84	-89.32	(Thorp and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Ottawa River	8	1093	St. Lawrence River basin	45.60	-74.55	(Thorp and others 2005)*
Otter Tail River	5	39	Nelson and Churchill River basins	46.27	-96.58	(Rosenberg and others 2005)*
Ouachita River	6	141	Lower Mississippi River Basin	31.84	-91.80	(Brown and others 2005)*
Owyhee River	5	44	Columbia River basin of the United States	43.74	-117.17	(Stanford and others 2005)*
Panther Creek	2	0.6	SE USA	31.72	-86.80	(Feminella 2000)
Pascagoula River- Black Creek	6	112	North America	30.55	-88.59	(Ward and others 2005)*
Peace River	8	638	Mackenzie River basin	58.94	-111.57	(Culp and others 2005)*
Pearl River	6	30	North America	30.30	-89.67	(Ward and others 2005)*
Pecos River	5	80	Southwestern United States	29.71	-101.35	(Dahm and others 2005)*
Peel River	6	273	Mackenzie River basin	67.61	-134.75	(Culp and others 2005)*
Penobscot River	6	225	North America	44.78	-68.78	(Google 2006; Jackson and others 2005)*
Petitcodiac River	6	69	Atlantic coast rivers of Canada	46.03	-65.02	(Cunjak and Newbury 2005)*
Platte River	5	387	Missouri River Basin	41.05	-95.99	(Galat and others 2005)*
Porcupine River	8	522	Yukon River basin	66.49	-146.71	(Bailey 2005)*
Porter River	2	4.9	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Poteau River	4	38	Southern plains of the United States	35.05	-94.09	(Matthews and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Potomac River	7	212	North America	38.97	-77.17	(Google 2006; Jackson and others 2005)*
Provo River	5	16	Great Basin Rivers of the United States	40.24	-111.72	(Shiozawa and Rader 2005)*
Q-1	1	0.7	SE USA	33.78	-85.57	(Feminella 2000)
Q-2	1	0.5	SE USA	33.78	-85.58	(Feminella 2000)
Quesnel River	6	68	Fraser River Basin of Canada	52.99	-122.45	(Reynoldson and others 2005)*
Raritan River	5	179	North America	40.49	-74.41	(Google 2006; Jackson and others 2005)*
Red River	7	213	Southern plains of the United States	31.22	-91.77	(Matthews and others 2005)*
Red River of the North	8	284	Nelson and Churchill River basins	50.28	-96.85	(Rosenberg and others 2005)*
Redrick's Creek	1	3.52	SE USA	31.80	-86.70	(Feminella 2000)
Redwood River	2	8	USA, Minnesota	44.39	-95.87	(MacFarlane 1983)
Redwood River	3	10	USA, Minnesota	44.51	-95.42	(MacFarlane 1983)
Redwood River	3	20	USA, Minnesota	44.54	-95.12	(MacFarlane 1983)
Reference Stream	1	0.5	North Carolina	35.00	-84.00	(Cuffney and others 1984)
Rhône River between Lake Geneva and Lyon	7	100	France	45.70	4.78	(Bournaud and others 1996)
Rhône River between Lake Geneva and Lyon	7	160	France	45.70	4.78	(Bournaud and others 1996)
Rhône River between Lake Geneva and Lyon	7	250	France	45.70	4.78	(Bournaud and others 1996)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Rhône River						(Bournaud and others
between Lyon and	8	200	France	45.70	4.78	1996)
the Mediterranean						1770)
Rhône River						(Bournaud and others
between Lyon and	8	250	France	45.70	4.78	1996)
the Mediterranean						1330)
Rhône River	_		_			(Bournaud and others
between Lyon and	8	300	France	45.70	4.78	1996)
the Mediterranean						
Rhône River	0	250	Г	45.70	4.70	(Bournaud and others
between Lyon and	8	350	France	45.70	4.78	1996)
the Mediterranean Rhône River						,
	8	425	France	45.70	4.78	(Bournaud and others
between Lyon and the Mediterranean	8	423	France	43.70	4.78	1996)
Ribeira da Avessada	4	1.2	Portugal	40.15	-8.18	(Graça and others 2001)
Ribeira da Fonte de			•			,
Espinho	2	1.7	Portugal	40.07	-8.20	(Graça and others 2001)
Ribeira de Cerdeira	3	0.6	Portugal	40.08	-8.20	(Graça and others 2001)
Ribeira de Espinho,	4	2.2	Portugal	40.08	-8.30	(Graça and others 2001)
Cadaixo	7	2.2	Tortugar	40.00	-0.50	(Graça and others 2001)
Ribeira de S. Joao,	5	6.8	Portugal	40.10	-8.23	(Graça and others 2001)
Lousa	· ·	0.0	1 0114841	10.10	0.23	(Grușu unu omero 2001)
Ribeira de Sra. da	4	2.3	Portugal	40.07	-8.30	(Graça and others 2001)
Piedade, Pereira			•			
Ribeira do Candal	3	1.6	Portugal	40.08	-8.20	(Graça and others 2001)
Ribeira Pe da Lomba	3	0.7	Portugal	40.08	-8.20	(Graça and others 2001)
Richelieu River	7	262	St. Lawrence River basin	45.97	-73.14	(Thorp and others 2005)*
Rio Armeria- Ayuquila	6	67	Riverso of Mexico	19.24	-104.48	(Hudson and others 2005)*
Rio Ceira, Azenha	6	11.7	Portugal	40.18	-8.33	(Graça and others 2001)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Rio Ceira, Serpins	6	18	Portugal	40.15	-8.20	(Graça and others 2001)
Rio Grande	7	29	Southwestern United States	25.84	-97.38	(Dahm and others 2005)*
Rio Sotao, Ponte do Seladinho	5	11.1	Portugal	40.13	-8.13	(Graça and others 2001)
Riveira do Cabeco	2	1.1	Portugal	40.07	-8.20	(Graça and others 2001)
Roanoake River	6	98	North America	36.16	-77.28	(Smock and others 2005)*
Rock Creek	2	2.89	SE USA	33.20	-83.50	(Feminella 2000)
Rock River	7	220	Upper Mississippi River Basin	41.45	-90.46	(Delong 2005)*
Rocky Fork River	2	3	USA, Ohio	40.80	-83.58	(Kilbane and Holomuzki 2004)
Rogue River	7	101	Pacific coast rivers of the United States	42.48	-124.31	(Carter and Resh 2005)*
Root River	5	54	Upper Mississippi River Basin	43.77	-91.34	(Delong 2005)*
Russian River	6	115	Pacific coast rivers of the United States	38.47	-123.03	(Carter and Resh 2005)*
S-40	1	1.5	SE USA	31.53	-86.75	(Feminella 2000)
S-41	1	1.2	SE USA	31.50	-86.77	(Feminella 2000)
Sabine River	8	143	Southwestern United States	30.13	-93.70	(Dahm and others 2005)*
Sacramento River	8	174	Pacific coast rivers of the United States	38.42	-121.53	(Carter and Resh 2005)*
Sagavanirktok River	7	79	Rivers of arctic North America	70.27	-148.23	(Milner and others 2005)*
Sageunay River	8	874	St. Lawrence River basin	48.45	-71.13	(Thorp and others 2005)*
Saint-Maurice River	7	251	St. Lawrence River basin	46.41	-72.66	(Thorp and others 2005)*
Salinas River	6	27	Pacific coast rivers of the United States	36.71	-121.75	(Carter and Resh 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Saline River	5	55	Lower Mississippi River Basin	33.21	-92.12	(Brown and others 2005)*
Salmon River	4	6.3	USA, Idaho	44.00	-115.00	(Minshall and others 1992; Minshall and others 1983; Minshall and others 2000)
Salt River	5	21	Colorado River basin of the United States	32.88	-113.58	(Blinn and Poff 2005)*
San Antonio and Guadalupe Rivers	7	18	Southwestern United States	28.50	-96.88	(Dahm and others 2005)*
San Joaquin River	8	169	Pacific coast rivers of the United States	37.99	-121.39	(Carter and Resh 2005)*
San Juan River	4	121	Colorado River basin of the United States	37.29	-110.37	(Blinn and Poff 2005)*
Santa Ana River	6	12	Pacific coast rivers of the United States	33.91	-117.61	(Carter and Resh 2005)*
Santa Margarita River	5	3	Pacific coast rivers of the United States	33.27	-117.38	(Carter and Resh 2005)*
Santee River	7	57	North America	33.51	-80.07	(Smock and others 2005)*
São João	4	4	Portugal	40.10	-8.23	(Gonçalves and others 2006)
Saskatchewan River	8	365	Nelson and Churchill River basins	53.25	-104.53	(Rosenberg and others 2005)*
Satilla River	6	100	North America	30.90	-81.87	(Smock and others 2005)*
Savannah River	7	114	North America	32.49	-81.22	(Smock and others 2005)*
SB2	2	1.5	USA, Georgia	32.43	-84.77	(Houser and others 2005)
SB3	1	1	USA, Georgia	32.43	-84.77	(Houser and others 2005)
SB4	1	1.3	USA, Georgia	32.43	-84.77	(Houser and others 2005)
Scioto River	6	61	Ohio River Basin of the United States	38.75	-83.01	(White and others 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Second Choice Creek	1	0.5	Quebec	50.22	-66.27	(Corning and others 1989)
Sevier River	5	25	Great Basin Rivers of the United States	39.16	-112.94	(Shiozawa and Rader 2005)*
Sipsey River	5	23	North America	33.03	-88.15	(Ward and others 2005)*
Skeena River	8	481	Pacific coast rivers of Canada and Alaska	54.60	-129.35	(Richardson and Milner 2005)*
Slave River	8	665	Mackenzie River basin	61.13	-113.19	(Culp and others 2005)*
Slip Spring	1	2.5	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)
Smiley Creek	2	7.7	USA, Idaho	44.00	-115.00	(Cushing and others 1993; Minshall and others 1992; Minshall and others 2000)
Smith Site - Augusta Creek	1	1.5	USA, Michigan	42.50	-85.50	(Minshall and others 1983)
Smoky River	7	211	Mackenzie River basin	56.13	-117.38	(Culp and others 2005)*
Snake/Salmon River	8	927	Columbia River basin of the United States	46.40	-118.66	(Stanford and others 2005)*
South Nahanni River	6	237	Mackenzie River basin	61.02	-123.48	(Culp and others 2005)*
Spokane River	6	115	Columbia River basin of the United States	47.84	-117.88	(Stanford and others 2005)*
St. Croix River	6	551	Upper Mississippi River Basin	44.80	-92.78	(Delong 2005)*
St. John River	7	702	Atlantic coast rivers of Canada	45.86	-66.25	(Cunjak and Newbury 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
St. Johns River	5	532	North America	29.62	-81.64	(Smock and others 2005)*
St. Joseph River	5	113	St. Lawrence River basin	42.04	-86.40	(Thorp and others 2005)*
St. Lawrence River main stem	8	2712	St. Lawrence River basin	46.57	-72.07	(Thorp and others 2005)*
Stewart River	7	228	Yukon River basin Pacific coast rivers	63.28	-139.25	(Bailey 2005)*
Stikine River	8	162	of Canada and Alaska	57.69	-131.55	(Richardson and Milner 2005)*
Stroud Woodlot - White Clay Creek	3	6.2	USA, Pennsylvania	39.27	-75.78	(Minshall and others 1983)
Stuart River	6	83	Fraser River Basin of Canada	54.04	-123.59	(Reynoldson and others 2005)*
Susitna River	7	1042	Pacific coast rivers of Canada and Alaska	61.48	-150.52	(Richardson and Milner 2005)*
Susquehanna River	7	821	North America	39.64	-76.15	(Google 2006; Jackson and others 2005)*
Suwannee River Sycamore Creek	7 1	150 1.6	North America SE USA	29.41 32.63	-83.02 -85.73	(Ward and others 2005)* (Feminella 2000)
Taggerty/Steavenson Creek	2	2.5	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Taggerty/Steavenson Creek	2	4.5	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Taggerty/Steavenson Creek	3	4.3	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Taggerty/Steavenson Creek	3	5	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Taggerty/Steavenson Creek	4	9	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Taggerty/Steavenson Creek	4	10	Australia (SE)	-37.33	145.83	(Downes and others 1997)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Taggerty/Steavenson Creek	4	11	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Taggerty/Steavenson Creek	4	11.3	Australia (SE)	-37.33	145.83	(Downes and others 1997)
Tagliamento	2	1.6	Italy	46.00	12.50	(Arscott and others 2005)
Tagliamento	2	3.4	Italy	46.00	12.50	(Arscott and others 2005)
Tagliamento	2	6	Italy	46.00	12.50	(Arscott and others 2005)
Tagliamento	3	4	Italy	46.00	12.50	(Arscott and others 2005)
Tagliamento	4	8	Italy	46.00	12.50	(Arscott and others 2005)
Tagliamento	7	90	Italy	46.00	12.50	(Arscott and others 2005)
Tagliamento	7	150	Italy	46.00	12.50	(Arscott and others 2005)
Tai Po Kau Forest Stream	3	10	China, Hong Kong	22.40	114.08	(Mantel and others 2004)
Taku River	8	270	Pacific coast rivers of Canada and Alaska	58.54	-133.74	(Richardson and Milner 2005)*
Tanana River	8	1065	Yukon River basin	64.97	-151.51	(Bailey 2005)*
TC1	1	2.4	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
TC1b	1	2.4	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
TC43	1	3.8	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)
Tennessee River	8	413	Ohio River Basin of the United States	37.05	-88.41	(White and others 2005)*
Thompson Creek	5	1.6	SE USA	34.35	-87.47	(Feminella 2000)
Thompson River	7	17	Fraser River Basin of Canada	50.25	-121.57	(Reynoldson and others 2005)*
Tobler Creek	1	1.3	SE USA	32.97	-83.78	(Feminella 2000)
TQ1	1	2.7	Canada, Vancouver Island	49.00	-125.00	(Halwas and others 2005)

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference
Treated Stream	1	0.5	North Carolina	35.00	-84.00	(Cuffney and others 1984)
Tributary to Herrington Creek	2	1.3	USA, Maryland	39.47	-79.43	(Margolis and others 2001)
Tributary to Herrington Creek	2	1.3	USA, Maryland	39.47	-79.43	(Margolis and others 2001)
Tributary to Herrington Creek	2	1.6	USA, Maryland	39.47	-79.43	(Margolis and others 2001)
Tributary to Herrington Creek	2	2.9	USA, Maryland	39.47	-79.43	(Margolis and others 2001)
Trinity River	7	101	Southwestern United States	30.05	-94.83	(Dahm and others 2005)*
Truckee River	5	30	Great Basin Rivers of the United States	39.84	-119.37	(Shiozawa and Rader 2005)*
Turkey Creek	1	3.1	SE USA	34.73	-84.03	(Feminella 2000)
Uchee Creek	2	2.0	SE USA	32.40	-85.37	(Feminella 2000)
Umpqua River	6	262	Pacific coast rivers of the United States	43.66	-123.91	(Carter and Resh 2005)*
Upper 43 Rd - Augusta Creek	2	6.2	USA, Michigan	42.50	-85.50	(Minshall and others 1983)
Upper Mississippi River	10	618	Upper Mississippi River Basin	37.06	-89.24	(Delong 2005)*
Upper Tombigbee River	6	132	North America	32.50	-87.92	(Ward and others 2005)*
Verde River	4	29	Colorado River basin of the United States Colorado River	33.59	-111.67	(Blinn and Poff 2005)*
Virgin River	3	7	basin of the United States	36.62	-114.33	(Blinn and Poff 2005)*

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference	
Volta	9	669	African rivers	6.05	0.34	(Gyau-Boakye and Tumbulto 2000; Obeng- Asiedu 2004; Shiklomanov and Rodda 2003; Welcomme 1976)*	
Wabash River	7	359	Ohio River Basin of the United States	37.93	-88.03	(White and others 2005)*	
Walker River	6	10	Great Basin Rivers of the United States	38.88	-118.78	(Shiozawa and Rader 2005)*	
Wapsipinicon River	5	83	Upper Mississippi River Basin	41.76	-90.44	(Delong 2005)*	
Washita River	4	41	Southern plains of the United States	34.21	-96.77	(Matthews and others 2005)*	
Weber River	5	40	Great Basin Rivers of the United States	41.26	-112.11	(Shiozawa and Rader 2005)*	
White River	6	152	Missouri River Basin	43.75	-99.57	(Galat and others 2005)*	
White River	6	635	Yukon River basin	64.02	-139.50	(Bailey 2005)*	
White River	7	130	Lower Mississippi River Basin	33.97	-91.14	(Brown and others 2005)*	
Whitewater Stream	3	5.8	New Zealand, Waimakiriri River Basin	-44.00	170.50	(Death and Winterbourn 1994)	
Willamette River	7	266	Columbia River basin of the United States	45.45	-122.64	(Stanford and others 2005)*	
Wisconsin River	8	203	Upper Mississippi River Basin	43.00	-91.05	(Delong 2005)*	
Yakima River	5	87	Columbia River basin of the United States	46.26	-119.29	(Stanford and others 2005)*	

Stream Name	Order (Strahler)	Width (m)	Location	Latitude	Longitude	Reference	
Yampa River	4	77	Colorado River basin of the United States	40.52	-108.93	(Blinn and Poff 2005)*	
Yazoo River	6	176	Lower Mississippi River Basin	32.41	-90.92	(Brown and others 2005)*	
Yellowknife River	5	77	Mackenzie River basin	62.52	-114.32	(Culp and others 2005)*	
Yellowstone River	8	345	Missouri River Basin	47.89	-103.96	(Galat and others 2005)*	
York River	6	2241	North America	37.52	-76.79	(Smock and others 2005)*	
Yukon River	9	1417	Yukon River basin	62.79	-160.07	(Bailey 2005)*	

Table 2. Stream order, number (n_{ω}) , and mean length (\bar{l}_{ω}) of rivers and streams in the contiguous United States (Leopold 1962), combined with the trapezoidal mean of median stream widths (see text) from Fig. 1 and Table 1 to calculate the total area and size distribution of streams.

Order (ω)	n_{ω}	$ar{l}_{\omega}$ (km)	Total length (km)	Width (m)	Area (km²)	% of total
1	1570000	1.6	2512000	0.8	2010	4.6%
2	350000	3.7	1295000	1.8	2299	5.3%
3	80000	8.5	680000	3.7	2526	5.8%
4	18000	19.2	345600	8.3	2851	6.6%
5	4200	44.9	188580	29.3	5516	12.7%
6	950	102.4	97280	73.3	7126	16.5%
7	200	235.2	47040	131.5	6186	14.3%
8	41	540.8	22173	264.5	5865	13.6%
9	8	1243.2	9946	608.5	6052	14.0%
10	1	2880	2880	988.5	2847	6.6%

Table 3. Stream order, number (n_{ω}) , and mean length (\bar{l}_{ω}) of rivers and streams in Africa (Welcomme 1976), combined with the trapezoidal mean of median stream widths (see text) from Fig. 1 and Table 1, to calculate the total area and size distribution of streams.

Order (ω)	n_{ω}	$ar{l}_{\omega}$ (km)	Total length (km)	Width (m)	Area (km²)	% of total
1	4166969	1.6	6667150	0.8	5334	5.9%
2	870615	3.7	3221276	1.8	5718	6.3%
3	181900	8.5	1546150	3.7	5744	6.4%
4	38005	20	741098	8.3	6114	6.8%
5	7940	45	355712	29.3	10405	11.5%
6	1659	103	171375	73.3	12553	13.9%
7	347	237	82378	131.5	10833	12.0%
8	72	547	39391	264.5	10419	11.5%
9	15	1259	18887	608.5	11492	12.7%
10	3	2898	8693	988.5	8593	9.5%
11	1	6669	6669	481	3208	3.5%

IA Downing et al. (2012). Global abundance and size distribution of streams and rivers
Supplementary electronic material to: IA Downing et al. (2012). Inland Waters 2, pp. 220-236. DOI: 10.5268/IW-2.4.502

References

- Acuña V, Muñoz I, Giorgi A, Omella M, Sabater F, Sabater S. 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24(4):919-933.
- Arscott DB, Tockner K, Ward JV. 2005. Lateral organization of aquatic invertebrates along the corridor of a braided floodplain river.

 Journal of the North American Benthological Society 24(4):934-954.
- Bailey RC. 2005. Yukon River basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 775-802.
- Blinn D, W., Poff NL. 2005. Colorado River basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 483-538.
- Bournaud M, Cellot B, Richoux P, Berrahou A. 1996. Macroinvertebrate Community Structure and Environmental Characteristics along a Large River: Congruity of Patterns for Identification to Species or Family. Journal of the North American Benthological Society 15(2):232-253.
- Brown AV, Brown KB, Jackson DC, Pierson WK. 2005. Lower Mississippi River and its tributaries. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 231-281.
- Canton SP, Chadwick JW. 1983. Seasonal and Longitudinal Changes in Invertebrate Functional Groups in the Dolores River, Colorado. Freshwater Invertebrate Biology 2(1):41-47.

- Carter JL, Resh VH. 2005. Pacific coast rivers of the coterminous United States. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 541-589.
- Corning KE, Duthie HC, Paul BJ. 1989. Phosphorus and Glucose Uptake by Seston and Epilithon in Boreal Forest Streams. Journal of the North American Benthological Society 8(2):123-133.
- Cuffney TF, Wallace JB, Webster JR. 1984. Pesticide Manipulation of a Headwater Stream: Invertebrate Responses and Their Significance for Ecosystem Processes. Freshwater Invertebrate Biology 3(4):153-171.
- Culp JM, Prowse TD, Luiker EA. 2005. Mackenzie River basin. In: Benke AC, Cushing CE, editors. Rivers of North America.

 Amsterdam: Elsevier Academic Press. p. 805-850.
- Cunjak RA, Newbury RW. 2005. Atlantic coast rivers of Canada. In: Benke AC, Cushing CE, editors. Rivers of North America.

 Amsterdam: Elsevier Academic Press. p. 939-980.
- Cushing CE, Minshall GW, Newbold JD. 1993. Transport dynamics of fine particulate organic matter in two Idaho streams. Limnology and Oceanography 38(6):1101-1115.
- D'Angelo DJ, Gregory SV, Ashkenas LR, Meyer JL. 1997. Physical and Biological Linkages within a Stream Geomorphic Hierarchy:

 A Modeling Approach. Journal of the North American Benthological Society 16(3):480-502.
- Dahm CN, Edwards RJ, Gelwick FP. 2005. Gulf coast rivers of the Southwestern United States. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 181-228.

- Death RG, Winterbourn MJ. 1994. Environmental Stability and Community Persistence: A Multivariate Perspective. Journal of the North American Benthological Society 13(2):125-139.
- Delong MD. 2005. Upper Mississippi River Basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 327-373.
- Downes BJ, Glaister A, Lake PS. 1997. Spatial Variation in the Force Required to Initiate Rock Movement in 4 Upland Streams: Implications for Estimating Disturbance Frequencies. Journal of the North American Benthological Society 16(1):203-220.
- Esselman PC, Freeman MC, Pringle CM. 2006. Fish-assemblage variation between geologically defined regions and across a longitudinal gradient in the Monkey River Basin, Belize. Journal of the North American Benthological Society 25(1):142-156.
- Feminella JW. 2000. Correspondence between Stream Macroinvertebrate Assemblages and 4 Ecoregions of the Southeastern USA.

 Journal of the North American Benthological Society 19(3):442-461.
- Galat DL, Berry CR, Jr., Peters EJ, White RG. 2005. Missouri River basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 427-480.
- Gonçalves JF, Jr, Graça MAS, Callisto M. 2006. Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25(2):344-355.
- Google. Google Earth [Internet]. Available from: http://earth.google.com

- Graça MAS, Ferreira RCF, Coimbra CN. 2001. Litter Processing along a Stream Gradient: The Role of Invertebrates and Decomposers. Journal of the North American Benthological Society 20(3):408-420.
- Gyau-Boakye P, Tumbulto JW. 2000. The Volta Lake and declining rainfall and stream flows in the Volta River basin. Environment, Development, and Sustainability 2:1-10.
- Halwas KL, Church M, Richardson JS. 2005. Benthic assemblage variation among channel units in high-gradient streams on Vancouver Island, British Columbia. Journal of the North American Benthological Society 24(3):478-494.
- Horton RE. 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56:275-370.
- Houser JN, Mulholland PJ, Maloney KO. 2005. Catchment disturbance and stream metabolism: patterns in ecosystem respiration and gross primary production along a gradient of upland soil and vegetation disturbance. Journal of the North American Benthological Society 24(3):538-552.
- Hudson PF, Hendrickson DA, Benke AC, Varela-Romero A, Rodiles-Hernandez R, Minckley WL. 2005. Riverso of Mexico. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 1031-1084.
- Hutchens JJ, Jr, Wallace JB, Romanizyn ED. 2004. Role of *Podostemum ceratophyllum* Michx. in structuring benthic macroinvertebrate assemblages in a southern Appalachian river. Journal of the North American Benthological Society 23(4):713-727.

- Jackson JK, Huryn AD, Strayer DL, Courtemanch DL, Sweeney BW. 2005. Atlantic coast rivers of the Northeastern United States. In:

 Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 21-71.
- Kilbane GM, Holomuzki JR. 2004. Spatial attributes, scale, and species traits determine caddisfly distributional responses to flooding. Journal of the North American Benthological Society 23(3):480–493.
- Koslucher DG, Minshall GW. 1973. Food habits of some benthic invertebrates in a northern cool-desert stream (Deep Creek, Curlew Valley, Idaho-Utah). Transactions of the American Microsopical Society 92(3):441-452.
- Leopold LB. 1962. Rivers. American Scientist 50(4):511-537.
- MacFarlane MB. 1983. Structure of Benthic Macroinvertebrate Communities in a Midwestern Plains Stream. Freshwater Invertebrate Biology 2(3):147-153.
- Mantel SK, Salas M, Dudgeon D. 2004. Foodweb structure in a tropical Asian forest stream. Journal of the North American Benthological Society 23(4):728–755.
- Margolis BE, Raesly RL, Shumway DL. 2001. The effect of beaver created wetlands on the benthic macroinvertebrate assemblages of two Appalachian streams. Wetland 21(4):554–563.
- Matthews WJ, Vaughn CC, Gido KB, Marsh-Matthews E. 2005. Southern plains rivers. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 283-325.

- Melo AS, Froehlich CG. 2001. Macroinvertebrates in Neotropical Streams: Richness Patterns along a Catchment and Assemblage Structure between 2 Seasons. Journal of the North American Benthological Society 20(1):1-16.
- Meyer JL, Benke AC, Edwards RT, Wallace JB. 1997. Organic Matter Dynamics in the Ogeechee River, a Blackwater River in Georgia, USA. Journal of the North American Benthological Society 16(1):82-87.
- Meyer JL, Edwards RT. 1990. Ecosystem metabolism and turnover of organic carbon along a blackwater river continuum. Ecology 71(2):668-677.
- Meyer JL, Paul MJ, Taulbee WK. 2005. Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24(3):602-612.
- Milner AM, Oswood MW, Munkittrick KR. 2005. Rivers of arctic North America. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 903-937.
- Minshall GW, Petersen R, C., Bott TL, Cushing CE, Cummins KW, Vannote RL, Sedell JR. 1992. Stream ecosystem dynamics of the Salmon River, Idaho: an 8th order system. Journal of the North American Benthological Society 11(2):111-137.
- Minshall GW, Petersen R, C., Cummins KW, Bott TL, Sedell JR, Cushing CE, Vannote RL. 1983. Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53(1):1-25.
- Minshall GW, Thomas SA, Newbold JD, Monaghan MT, Cushing CE. 2000. Physical Factors Influencing Fine Organic Particle Transport and Deposition in Streams. Journal of the North American Benthological Society 19(1):1-16.

- Obeng-Asiedu P. 2004. Allocating water resources for agriculture and economic development in the Volta River basin. [Legon, Ghana]: University of Ghana. p. 183.
- Reynoldson TB, Culp J, Lowell R, Richardson JS. 2005. Fraser River basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 697-732.
- Richardson JS, Milner AM. 2005. Pacific coast rivers of Canada and Alaska. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 735-773.
- Rosenberg DM, Chambers PA, Culp JM, Franzin WG, Nelson PA, Salki AG, Stainton MP, Bodaly RA, Newbury RW. 2005. Nelson and Churchill River basins. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 853-901.
- Shiklomanov IA, Rodda JC. 2003. World water resources at the beginning of the twenty-first century. Cambridge, U.K.: Cambridge University Press.
- Shiozawa DK, Rader RB. 2005. Great Basin rivers. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 655-694.
- Smock LA, Wright AB, Benke AC. 2005. Atlantic coast rivers of the Southeastern United States. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 73-122.

- Stanford JA, Hauer FR, Gregory SV, Snyder EB. 2005. Columbia River basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 591-653.
- Thorp JH, Lamberti GA, Casper AF. 2005. St. Lawrence River basin. In: Benke AC, Cushing CE, editors. Rivers of North America.

 Amsterdam: Elsevier Academic Press. p. 983-1028.
- Ward GM, Harris PM, Ward AK. 2005. Gulf coast rivers of the Southeastern United States. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 125-178.
- Welcomme RL. 1976. Some general and theoretical considerations on the fish yield of African rivers. Journal of Fish Biology 8:351-364.
- White D, Johnston K, Miller M. 2005. Ohio River basin. In: Benke AC, Cushing CE, editors. Rivers of North America. Amsterdam: Elsevier Academic Press. p. 375-424.